

TASK ENGINE Documentation

The Task Engine is a product that facilitates the creation of VOD from online and offline sources. It is designed to allow simple or complicated custom workflows to be developed, deployed and maintained easily and quickly. The Task Engine is exposed via a REST API and reports back to the client system via a callback mechanism.

How it works

The Task Engine breaks a workflow up in to several component parts. Every piece of work submitted is a job, and each job is broken up in to a series of tasks. These tasks are then scheduled on to queues which workers then process.

Every job and task have unique identities, and these are exposed back to the client system both through the response to the initial job submission and through the callbacks (unless for some reason the configuration prevents this from happening).

Callbacks are sent to the specified endpoints when each task starts and ends (successful or fail). This allows the integrated systems to keep track of the job’s progress. A final callback is also submitted when a job completes. The final callback will always contain the status of the job (success or fail) and information about the assets related to the job.

Contents:

	DEVELOPER DOCUMENTATION
	INTEGRATION

	TASK ENGINE API

	TASK ENGINE WORKFLOW FEATURES

	TASK ENGINE WORKFLOWS

	VCH API [https://docs.vualto.com/projects/VIS/en/latest/]

	CLIP2VU [https://docs.vualto.com/projects/clip2vu/en/latest/]

	MEDIA SYNDICATION [https://docs.vualto.com/projects/media-syndication/en/latest/]

	RELEASE NOTES
	v2.1.x

	v2.0.x

	v1.173.x

	v1.172.x

	v1.171.x

	v1.170.x

	v1.169.x

	v1.168.x

	v1.167.x

	v1.166.x

	v1.165.x

	SUPPORT
	HOW TO CONTACT US

	SYSTEM REQUIREMENTS

DEVELOPER DOCUMENTATION

As mentioned in the index page the Task Engine facilitates the creation of VOD from online and offline sources. This supports products such as VCH, Clip2VU and Media Syndication.

	INTEGRATION
	API

	CALLBACKS

	AUTHENTICATION

	TASK ENGINE API
	STATUS ENDPOINTS

	JOB ENDPOINTS

	LOG ENDPOINTS

	SCHEDULER ENDPOINTS

	SETTINGS ENDPOINTS

	TASK ENGINE WORKFLOW FEATURES
	PRIORITY

	STITCHING CLIPS

	MULTIPLE SOURCES

	GENERATE DOWNLOAD CLIPS

	SCHEDULER

	TRACK PROPERTIES

	FILE PROPERTIES

	STORAGE SUPPORT

	PREVIEW THUMBNAILS

	AVOD AND LIVE COMPOSE

	LIVE COMPOSE WITH MANIFEST MANIPULATION

	CONTINUOUS CAPTURE

	TASK ENGINE WORKFLOWS
	VOD STREAM

	VOD CAPTURE

	VOD DELETE

	DRM SWITCH

	CREATE MP4

	BUILD THUMBNAILS

	VOD REMIX

	GENERATE GIF

	CAPTURE FRAME

	ASSET DELETE

	MEDIATAILOR CHANNEL ASSEMBLY

	MEDIATAILOR CHANNEL STATE

	VOD NPVR

	Trickplay

	WORKFLOW TRIGGER EXAMPLE

	VCH API [https://docs.vualto.com/projects/VIS/en/latest/]

	CLIP2VU [https://docs.vualto.com/projects/clip2vu/en/latest/]

	MEDIA SYNDICATION [https://docs.vualto.com/projects/media-syndication/en/latest/]

INTEGRATION

There are two main integration points for the Task Engine:

API – how jobs are submitted to the Task Engine.

Callbacks – how the Task Engine notifies client systems of job progress.

API

The API is mainly used to trigger workflows within the Task Engine but additional API endpoints are available for job management. Full API documentation can be found here

CALLBACKS

Callbacks are used to notify a integrated services with workflow execution updates. Callback URLs are submitted as part of the payloads and the Task Engine will send callbacks when:

	A task starts

	A task ends (success or fail)

	A job ends (success or fail)

All default task callbacks will the contain the same JSON body structure:

"job_id": "<job id>",
"task_id": "<task id>",
"task_name": "<task name>",
"workflow": "<workflow name>",
"event": "<task event>",
"content_id": "<content_id>",
"message": "<task exception message>"

Job callbacks vary depending on the workflow being executed but the following are common in all workflows.

"job_id": "<job id>",
"status": "<job status>",
"workflow": "<workflow name>",
"content_id": "<content id>",
"custom_data": "<client custom data>"

More information of the callbacks for each workflow can be found here.

Specifying the Vualto Control Hub Video Information Service web-hook (https://vis.controlhub.[client].vualto.com/api/event/vuflow/taskenginecallback) as a callback url, will be add the asset as a VOD event within the Vualto Control Hub CMS. A second CMS web-hook (https://admin.controlhub.[client].vualto.com/vod/PublishVuflowData) can also be included for realtime updates on the status of the job.

As Task Engine is an integration product that can be customised, any specific requirements are easily catered for (eg. setting authentication headers) and the body of a callbacks may also be modified.

AUTHENTICATION

All Task Engine API calls that require authentication currently use the client name and API key provided by Vualto. The credentials should be supplied as client and api-key headers respectively.

TASK ENGINE API

The Task Engine endpoints will always return a JSON response unless explicitly indicated otherwise.

STATUS ENDPOINTS

GET: /

This endpoint will check if the Task Engine endpoint is reachable.

Details

Requires Authentication: No

Required Headers: None

Optional Headers: None

{
 "result": "alive"
}

GET: /health

The health endpoint will run checks on the different Task Engine components and returns the status of each service. The endpoint will also return some information about the Task Engine and statistics about jobs and tasks.

Details

Requires Authentication: Yes

Required Headers:

	client - client name, required for authentication

	api-key - required for authentication

Optional Headers: None

Successful Response:

{
 "version": "1.169.3", // Task Engine version
 "databases": {
 "redis": "OK",
 "postgres": "OK"
 },
 "queues": {
 "windows_capture": {
 "workers": 12,
 "working": 0,
 "pending": 0
 },
 "scheduler": {
 "workers": 1,
 "working": 0,
 "pending": 0
 },
 "work": {
 "workers": 9,
 "working": 0,
 "pending": 0
 },
 "controller": {
 "workers": 1,
 "working": 0,
 "pending": 0
 },
 "callback": {
 "workers": 2,
 "working": 0,
 "pending": 0
 }
 },
 "tasks": {
 "failed": 0,
 "pending": 0,
 "processed": 987654321
 },
 "jobs": {
 "completed": 12345,
 "failed": 65,
 "pending": 0,
 "broken": 20,
 "queued": 4,
 "started": 8,
 "scheduled": 7,
 "paused": 0,
 "max_jobs": 8,
 "priority_slots": 3
 }
}

500 - Error Response:

{
 "error": "<error message>"
}

GET: /dashboard

The dashboard endpoint returns information about the current Task Engine queue status. The information includes lists of started, queued and scheduled jobs as well as the setting information for the maximum concurrent jobs and the number of priority reserved job slots. The Task Engine version is also returned.

Details

Requires Authentication: Yes

Required Headers:

	client - client name, required for authentication

	api-key - required for authentication

Optional Headers: None

Successful Response:

{
 "max_jobs": 2,
 "priority_slots": 0,
 "started": [
 {
 "id": 123,
 "client": "demo-client",
 "workflow": "vodcapture",
 "priority": 5,
 "position": 1,
 "created_at": "2019-11-29T10:47:50.431Z",
 "updated_at": "2020-07-13T09:44:48.451Z",
 "queue_state": "started",
 "failed": false,
 "run_at": "2020-11-29T18:00:30.000Z"
 },
 {
 "id": 124,
 "client": "demo-client",
 "workflow": "vodcapture",
 "priority": 5,
 "position": 1,
 "created_at": "2020-06-19T15:23:36.197Z",
 "updated_at": "2020-09-07T15:28:12.034Z",
 "queue_state": "started",
 "failed": false,
 "run_at": "2030-06-19T17:00:30.000Z"
 }
],
 "queued": [
 {
 "id": 125,
 "client": "demo-client",
 "workflow": "vodcapture",
 "priority": 6,
 "position": 1,
 "created_at": "2019-11-29T10:47:50.431Z",
 "updated_at": "2020-07-13T09:44:48.451Z",
 "queue_state": "queued",
 "failed": false,
 "run_at": "2020-11-29T18:00:30.000Z"
 },
 {
 "id": 126,
 "client": "demo-client",
 "workflow": "vodcapture",
 "priority": 6,
 "position": 1,
 "created_at": "2020-06-19T15:23:36.197Z",
 "updated_at": "2020-09-07T15:28:12.034Z",
 "queue_state": "queued",
 "failed": false,
 "run_at": "2030-06-19T17:00:30.000Z"
 }
],
 "scheduled": [
 {
 "id": 122,
 "client": "demo-client",
 "workflow": "vodcapture",
 "priority": 5,
 "position": 1,
 "created_at": "2020-07-13T09:49:27.086Z",
 "updated_at": "2020-07-13T09:49:27.206Z",
 "queue_state": "scheduled",
 "failed": false,
 "run_at": "2030-06-19T17:00:30.000Z"
 }
],
 "version": "1.169.3"
}

JOB ENDPOINTS

POST: /job

This endpoint is used to submit jobs to the Task Engine. It is the endpoint used most often. The payload for this endpoint varies substantially depending on the workflow being submitted. More information on the payload properties for each workflow can be found here. Successful job submission will return an accepted result and the job id. An error message is returned when a job submission fails.

Details

Requires Authentication: Yes

Required Headers:

	client - client name, required for authentication

	api-key - required for authentication

	Content-Type - set to application/json

Optional Headers: None

Successful Response:

{
 "id": "<job id>",
 "result": "accepted"
}

400 - Error Response:

```json
{
    "id": "<job id>",
    "error": "<error message>"
}





500 - Error Response:

    "Unable to create job request"









GET: /jobs

This endpoint is used to return a list of jobs from the Task Engine database. Filtering is supported through query string parameters. The default search (no parameters) will return the last 10 jobs.

Details

Requires Authentication: No

Required Headers: None

Optional Headers:None

Query String Parameters:


	limit - the maximum number of jobs to return


	order_by - order the query by a job property


	asc - order the results in ascending or descending order. Accepts 1 (true) or 0 (false)


	state - filter by job state. One of the following IDs needs to be specified


	0 - queued


	1 - started


	2 - completed


	3 - pending


	4 - broken


	5 - scheduled


	6 - paused






	from - used to filter by date range, based on the job creation date


	to - used to filter by date range, based on the job creation date


	failed - returned failed jobs. If used with a state, jobs will only be returned if state is set to 2 (completed)


	search - search term used to filter by eg. the content id for a submitted job


	job_ids - comma separated job ids


	client - client name to filter by


	persist - filter for jobs set to persist. Accepts 1 (true) or 0 (false)




Successful response for /jobs?limit=3&client=demo-client&state=2

[
    {
        "id": 123,
        "client": "demo-client",
        "workflow": "vodcapture",
        "priority": 5,
        "position": 1,
        "created_at": "2020-09-24T11:55:33.755Z",
        "updated_at": "2020-09-24T12:17:33.566Z",
        "queue_state": "completed",
        "parameters": "<parameters submitted when creating the job>",
        "failed": false,
        "run_at": "2020-09-24T11:55:33.755Z"
    },
    {
        "id": 114,
        "client": "demo-client",
        "workflow": "vodcapture",
        "priority": 5,
        "position": 1,
        "created_at": "2020-09-24T11:55:32.971Z",
        "updated_at": "2020-09-24T12:05:18.937Z",
        "queue_state": "completed",
        "parameters": "<parameters submitted when creating the job>",
        "failed": false,
        "run_at": "2020-09-24T11:55:32.971Z"
    },
    {
        "id": 102,
        "client": "demo-client",
        "workflow": "vodcapture",
        "priority": 5,
        "position": 1,
        "created_at": "2020-09-24T11:55:32.031Z",
        "updated_at": "2020-09-24T12:18:33.641Z",
        "queue_state": "completed",
        "parameters": "<parameters submitted when creating the job>",
        "failed": false,
        "run_at": "2020-09-24T11:55:32.031Z"
    }
]





400 - Error Response:

{
    "error": "<error message>"
}









GET: /jobs/<job_id>

This endpoints returns information about the specified job.

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication




Optional Headers: None

Successful response for /jobs/123

{
    "id": 123,
    "client": "demo-client",
    "workflow": "vodstream",
    "priority": 5,
    "position": 1,
    "top_of_queue": false,
    "parameters": "<parameters submitted when creating the job>",
    "created_at": "2019-09-18T17:13:47.713Z",
    "updated_at": "2019-09-18T17:16:05.215Z",
    "queue_state": "completed",
    "failed": false,
    "run_at": "2019-09-18T17:13:47.713Z"
}





400 - Error Response:

{
    "error": "<error message>"
}









PATCH: /jobs/<job_id>

This endpoint is used to update job fields. Only a specific selection of fields can be updated after a job has been submitted. The response will return the job id and the result of the update.

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication


	Content-Type - set to application/json




Optional Headers: None

The list of job fields that can be updated:


	queue_state - The queue state for a job can be updated. This can be used to pause or break a job by specifying the values paused or broken respectively


	run_at - Updating the run_at field for a job changes when the job will be queued. The date must be in UTC and in the following format yyyy-MM-ddTHH:mm:ss.fff


	priority - Updating the priority for a job. More information on job priority can be found here


	sempahore_url - This url can be used as part of the scheduling process. More information on the semaphore url can be found here


	persist - This boolean flag is used to indicate that the job and its logs should persist and not be cleared as part of any automatic database clean up




Sample payload:

{
    "client": "demo-client",
    "priority": "2",
    "run_at": "2020-09-09T14:30:00.000"
}





Successful Response:

{
    "id": "<job id>",
    "result": "Performed updates: <list of updates>"
}





400 - Error Response:

{
    "id": "<job id>",
    "error": "<error message>"
}









POST: /jobs/<job id>/rerun

This endpoint is used to rerun a job with exactly the same parameters. When rerunning a job, the original job’s queue state will be set to broken since the content it generated will no longer be valid.

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication




Optional Headers: None

Successful Response:

{
    "id": "<job id>",
    "result": "accepted"
}





400 - Error Response:

{
    "error": "<error message>"
}










LOG ENDPOINTS


GET: /logs/<job id>

This endpoint is used to retrieve the logs for the specified job.

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication


	Accept - set to application/json




Optional Headers: None

Successful Response:

[
    {
        "id": 691464,
        "job_id": 123,
        "severity": 1,
        "severity_description": "INFO",
        "progname": "api",
        "message": "{\"path\":\"POST /job\",\"remote_addr\":\"99.80.104.160\",\"headers\":{\"HTTP_VERSION\":\"HTTP/1.1\",\"HTTP_X_AUTH_KEY\":\"********************************3e2d\",\"HTTP_API_KEY\":\"********************************3e2d\",\"HTTP_X_API_KEY\":\"********************************3e2d\",\"HTTP_ACCEPT\":\"application/json, application/xml, text/json, text/x-json, text/javascript, text/xml\",\"HTTP_USER_AGENT\":\"RestSharp/106.3.1.0\",\"HTTP_HOST\":\"taskengine.demo-client.vualto.com\",\"HTTP_ACCEPT_ENCODING\":\"gzip, deflate\"},\"parameters\":{\"client\":\"demo-client\",\"parameters\":{\"folder\":\"a40fdaff-f904-4ea5-b893-a89152708952\",\"content_id\":\"a40fdaff-f904-4ea5-b893-a89152708952\",\"rest_endpoints\":[\"https://vis.controlhub.demo-client.vualto.com/api/event/vuflow/taskenginecallback\",\"https://admin.controlhub.demo-client.vualto.com/vod/PublishVuflowData\"]},\"job\":{\"workflow\":\"drmswitch\"}},\"payload\":\"job_created\"}",
        "created_at": "2020-07-06T12:48:49.591Z",
        "updated_at": "2020-07-06T12:48:49.591Z",
        "task_id": 0,
        "visible": true
    },
    {
        "id": 691465,
        "job_id": 123,
        "severity": 1,
        "severity_description": "INFO",
        "progname": "worker",
        "message": "No client definitions. Using common definitions.",
        "created_at": "2020-07-06T12:48:50.079Z",
        "updated_at": "2020-07-06T12:48:50.079Z",
        "task_id": 24100,
        "visible": true
    },
    ...
    ...
    ...
    {
        "id": 691516,
        "job_id": 123,
        "severity": 1,
        "severity_description": "INFO",
        "progname": "worker",
        "message": "'rename_manifests' completed successfully",
        "created_at": "2020-07-06T12:48:52.282Z",
        "updated_at": "2020-07-06T12:48:52.282Z",
        "task_id": 24102,
        "visible": true
    },
    {
        "id": 691519,
        "job_id": 123,
        "severity": 1,
        "severity_description": "INFO",
        "progname": "controller",
        "message": "job has completed successfully",
        "created_at": "2020-07-06T12:48:52.684Z",
        "updated_at": "2020-07-06T12:48:52.684Z",
        "task_id": 24102,
        "visible": true
    },
    {
        "id": 691520,
        "job_id": 123,
        "severity": 1,
        "severity_description": "INFO",
        "progname": "callback",
        "message": "No client definitions. Using common definitions.",
        "created_at": "2020-07-06T12:48:53.421Z",
        "updated_at": "2020-07-06T12:48:53.421Z",
        "task_id": 24102,
        "visible": true
    },
]





400 - Error Response:

{
    "error": "<error message>"
}










SCHEDULER ENDPOINTS


GET: /schedules

Returns a list of the currently active schedules. More information about the Task Engine scheduler can be found here

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication




Optional Headers:None

Successful Response:

{
    "result": "ok",
    "schedules": {
        "queue_scheduled_jobs": {
            "class": "QueueJobs",
            "every": [
                60,
                {
                    "first_in": 5
                }
            ],
            "queue": "scheduler",
            "description": "Enqueues scheduled jobs that have a run_at time in the past."
        }
    }
}





400 - Error Response:

{
    "error": "<error message>"
}









PUT: /scheduler

This endpoint allows for activating or deactivating schedules. More information about the Task Engine scheduler can be found here

Details

Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication




Optional Headers:None

Payload parameters:


	schedule - name of the schedule to be activated or deactivated


	active - accepts true or false to set the schedule to active or inactive




Sample Payload:

{
    "schedule": "<schedule name>",
    "active": true
}





Successful Response:

{
    "result": "ok",
    "schedules": ["<list of schedules>"]
}





400 - Error Response

{
    "error": "<error message>"
}










SETTINGS ENDPOINTS


POST: /settings

This settings endpoint is used to update or create new Task Engine settings. Only one setting can be added or updated at a time.

Details

System default settings:


	max_jobs - The maximum number of concurrent jobs. Default: 2


	priority_slots - The number of concurrent job slots that should be reserved for high priority jobs. More information can be found here. Default: 0


	priority_threshold - The threshold at which jobs will start being considered as priority. Default: 5.


	schedule_interval - The interval, in seconds, between scheduler executions. Default: 60


	retry_delay - The delay, in seconds, between retries for failed Resque tasks. Default: 5


	retry_limit - The number of times a Resque task should be retried before a job is abandoned. Default: 3




Requires Authentication: Yes

Required Headers:


	client - client name, required for authentication


	api-key - required for authentication


	content-type - set to application/json




Optional Headers:None

Payload parameters:


	name - setting name from the list above or name for a new setting


	setting - the value to be given to that setting




Sample Payload:

{
    "name": "max_jobs", // setting name
    "setting": "4" // value
}





Successful Response:

{
    "result": "ok",
    "message": "<setting name> setting created/updated"
}





400 - Error Response

{
    "error": "<error message>"
}










          

      

      

    

  

    
      
          
            
  
TASK ENGINE WORKFLOW FEATURES


PRIORITY

The Task Engine supports ordering of jobs by priority. The priority parameter can be submitted as part of the json payload being submitted. The priority is in ascending order as follows:

1 - Top Priority  
.  
.  
5 - Default  
.  
.  
10 - Least Priority





The "priority" parameter needs to be submitted within the "job" section of the json payload as shown below:

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture",
    "priority": 3
  },
  "parameters": {
    "content_id": "demo1",
    ...
    ...
    ...
  }
}





Whenever an execution slot is available, the system will first check by priority and then check the submission time and date of the job. In the case where multiple jobs are executed with the same priority (eg. with the default priority 5), the Task Engine operates in a FIFO (First In First Out) manner.


Priority Slots

Two settings are available to further enhance support for priority jobs.


	Priority Slots - The number of job slots reserved for priority jobs.


	Priority Threshold - The priority at which a job can run within a priority slot. The threshold value defaults to 5 and cannot be less than 1.




The advantage of using priority slots is to stop the queue from being held up by low priority jobs. This is especially useful if long running jobs are given a lower priority as they can be queued up without exhausting the setup’s concurrency availability. It is also a good way of fast tracking certain types of jobs by giving them a higher priority and setting the threshold to an appropriate value. This ensures that the priority slots are reserved for such jobs.

The slots and threshold can be modified on the fly through the Task Engine API settings endpoint.

Important note: This will not increase the number of max concurrent jobs but it will reserve some fo the concurrency for jobs with priority between 1 and the Priority Threshold. As an example, if a setup has 5 maximum concurrent jobs and the priority slots is set to 2, any job can ustilise 3 concurrency slots but only priority jobs can utilise the 2 priority slots.




STITCHING CLIPS

The Task Engine includes a feature that will allow multiple clips to be stitched together into a single clip, in a single job. This can be done by defining multiple objects within the "clips" parameter in the json payload for VOD Capture. This also allows a mixture of live and VoD sources to be captured and stitched together into a new clip. The example below shows how the "clips" parameter would need to be provided to achieve this.

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture"
  },
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "clips": [
      {
        "source": "http://mydomain.com/copyright.ism/manifest"
      },
      {
        "source": "http://mydomain.com/live.isml/manifest",
        "start": "2018-06-06T10:00:00.000",
        "end": "2018-06-06T10:30:00.000",
        "filter": "type==\"audio\"||type==\"video\"&&systemBitrate==1300000"
      },
      {
        "source": "http://mydomain.com/live.isml/manifest",
        "start": "2018-06-06T10:35:00.000",
        "end": "2018-06-06T11:00:00.000",
        "filter": "type==\"audio\"||type==\"video\"&&systemBitrate==1300000"
      }
    ],
    ...
    ...
    ...
  }
}







MULTIPLE SOURCES

In some cases, a live stream could have multiple origins setup (eg. for load balancing the origin servers). The Task Engine, allows for both streams to be defined as the source for a capture. It is smart enough to find which live stream will provide the best output capture and use that stream as the source. If the Task Engine discovers discontinuities within the streams, it will use segments from both streams to try and generate a clip with the least number of missing fragments.

The streams can be defined in the "sources" parameter when executing the VOD Capture workflow.

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture"
  },
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "clips": [
      {
        "sources": [
          "http://mydomain.com/live_1.isml/manifest",
          "http://mydomain.com/live_2.isml/manifest"
        ],
        "start": "2018-06-06T10:00:00.000",
        "end": "2018-06-06T10:30:00.000",
        "filter": "type==\"audio\"||type==\"video\"&&systemBitrate==1300000"
      }
    ],
    ...
    ...
    ...
  }
}





In this case, "sources"  replaces the "source" parameter, however; it can still be used in conjunction with other clips which only contain a single stream as shown below.

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture"
  },
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "clips": [
      {
        "source": "http://mydomain.com/copyright.ism/manifest",
      },
      {
        "sources": [
          "http://mydomain.com/live_1.isml/manifest",
          "http://mydomain.com/live_2.isml/manifest"
        ],
        "start": "2018-06-06T10:00:00.000",
        "end": "2018-06-06T10:30:00.000",
        "filter": "type==\"audio\"||type==\"video\"&&systemBitrate==1300000"
      }
    ],
    ...
    ...
    ...
  }
}







GENERATE DOWNLOAD CLIPS

The Task Engine VOD Capture workflow supports generating download clips without creating VoD assets. This is done by setting the property "generate_vod" to false and "generate_mp4" to true. It is important that if "generate_vod" is set to false, to not manually override the "create_dref" parameter. Setting "create_dref" to true will lead to a failed workflow as this requires VoD assets to generate DREF mp4s.

The resulting download will be an MP4 containing all the video, audio and caption tracks defined using the clip’s "filter" parameter. If no filter is defined, the resulting MP4 will contain all the tracks available in the stream.



SCHEDULER

The Task Engine supports scheduling of jobs via the run_at and sempahore_url job attributes. Jobs are moved from a queue_state of scheduled to a queue_state of queued via a scheduler-worker. The interval at which this runs is pulled from the database settings table (schedule_interval, default: 1 hour).

The scheduler-worker looks for jobs which have a queue_state of scheduled, a run_at time in the past and a semphore_url that returns a successful response (2XX/3XX).

The schedule_interval can be set via an api call. (where x is time in seconds)

post '/settings'

{
  "client": "demo-client",
  "name": "schedule_interval",
  "setting": "<x>"
}





A jobs run_at and semaphore_url attributes can be set in multiple ways. The run_at defaults to the time the job was created. If the job’s run_at time is in the future, a log will be added to indicate such. The run_at time format should be yyyy-MM-ddTHH:mm:ss.fff.


	When submitting a job




post '/job'

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture",
    "run_at": "2040-06-06T10:00:00.000",
    "semaphore_url": "https://www.vualto.com/"
  }
}





In the above example the job will be queued at 10:00AM on the 6th of June 2040 and when https://www.vualto.com/ returns a successful response. The following message Job will run at: "2040-06-06T10:00:00.000" will be logged against the job.


	When updating an existing job




put '/jobs/:job_id'

{
  "client": "demo-client",
  "run_at": "2040-06-06T10:00:00.000",
  "semaphore_url": "https://www.vualto.com/"
}






	When submitting a capture with a clip end time in the future




If a capture is submitted with a clip end time that is in the future, it will be automatically scheduled to run at the end time of the clip which is furthest in the future. The exception to this is if the run_at time is specified and is further in the future than the end time, then the run_at time will be used.



TRACK PROPERTIES

There are instances when track properties need to be added to specific tracks within the VOD manifest. This usually occurs when custom track descriptions or track roles need to be set. The Task Engine supports adding track properties to audio and subtitle tracks. Filtering of tracks is based on type (audio or textstream) and a combination of language and/or track role. The filters and values can be set in Vualto’s Central Configuration so they can easily be applied to all VODs being captured or ingested. They can also be defined as part of the job submission. The value set will overwrite the existing value for the property, if it already exists. Below are some samples of how the filters can be defined.

Setting the defined track description where the audio language is not set or set to und (undefined).

"track_properties": {
  "audio": [
    {
      "language": "und",
      "properties": {
        "track_description": "Original Audio Track"
      }
    },
    {
      "language": "",
      "properties": {
        "track_description": "Original Audio Track"
      }
    },
  ]
}





Setting the defined track description and track name where the language is set eng and the role is set to description.

"track_properties": {
  "audio": [
    {
      "language": "eng",
      "role": "description",
      "properties": {
        "track_name": "Audio Description - English",
        "track_description": "English Audio Descriptive"
      }
    }
  ]
}





Setting the defined track role and description to the subtitle track where the language is set to eng.

"track_properties": {
  "textstream": [
    {
      "language": "eng"
      "properties": {
        "track_role": "caption",
        "track_description": "English CC"
      }
    }
  ]
}





Adding a track description to the audio description track.

"track_properties": {
  "audio": [
    {
      "language": "eng",
      "kind": "main-desc",
      "properties": {
        "track_description": "English (describes video)"
      }
    }
  ]
}





Setting a combination of properties to both audio and subtitle tracks.

"track_properties": {
  "audio": [
    {
      "language": "und",
      "properties": {
        "track_description": "Original Audio"
      }
    },
    {
      "language": "",
      "properties": {
        "track_description": "Original Audio"
      }
    },
    {
      "language": "eng",
      "role": "alternate"
      "properties": {
        "track_name": "English Alt",
        "track_description": "English Alternate track"
      }
    },
    {
      "language": "eng",
      "properties": {
        "track_role": "main"
      }
    }
  ],
  "textstream": [
    {
      "language": "eng",
      "properties": {
        "track_role" : "caption",
        "track_description": "English CC"
      }
    }
  ]
}





Supported properties are:


	track_name


	track_description


	track_role


	track_language




Supported filters are:


	language (retrieved from the .ism)


	role (retrieved from the .ism, should not be mixed with kind in the same track)


	kind (retrieved from the track file, should not be mixed with role in the same track)






FILE PROPERTIES

File properties can be used to set the track kind and language in audio tracks. Track kind allows accessibility options, such as audio description tracks, to be indicated. The language of the track can also be changed using this property. This replaces the legacy behaviour of specifying the language between the last underscore and the extension (_<language>.m4a).

Here is the list of available track kinds [https://html.spec.whatwg.org/multipage/media.html#dom-audiotrack-kind].

Here is an example for marking audio1.m4a as the Dutch audio description track:

"file_properties": {
  "audio1.m4a": {
    "kind": "main-desc",
    "language": "dut",
  }
}





Both kind and language are optional. If language is specified, then this will override the legacy behaviour of checking the language in the file name.



STORAGE SUPPORT

The Task Engine supports multiple storage types for ingesting content and saving VOD. Support has also been added so a combination of storage types can be used for the same job. This can be done by setting the source_storage and destination_storage in the job payload (for supported workflows). Eg. Ingesting content from local storage and save VOD assets on S3 would require source_storage to be set to local and destination_storage to be set to S3.

The system default storage type is Amazon S3, however; the default can be customised per client as well as set on a job per job basis. Additional setup may be required when using local storage, as the folders will need to be mapped to the worker docker containers.

Natively supported storage types:


	Amazon S3 (S3)


	Azure Blob Storage (azure_blob)


	On premises infrastructure (local)






PREVIEW THUMBNAILS


Note:

Trickplay support has been added to the VOD Capture and VOD Stream workflows. This can be used as an alternative to generating the preview thumbnails.




Preview thumbnails refers to the thumbnails that appear on the a video player’s timeline as the user hovers over the progress bar. These can be generated on 3 different occasions:


	When capturing content, by setting the preview_thumbnails property to true when submitting a VOD Capture job.


	When ingesting content, by setting the preview_thumbnails property to true when submitting a VOD Stream job.


	By submitting a separate Build Thumbnails job.




The process is pretty much the same for all of the above. A sprite is generated with thumbnails at every ‘x’ second intervals (default is 10 seconds) and a VTT file which relates each thumbnail within the sprite to corresponding time within the stream. These files must be made accessible to the players. On cloud platforms, this is usually done by create a CDN for .jgp and .vtt files. The Vualto Assets API [https://docs.vualto.com/projects/VIS/en/latest/assets.html] can be used to retrieve the URL for the VTT file.

Important Note: The interval is a very close approximation and not an exact interval.The thumbnail image is generated from the closest iframe.

Different players reference the VTT file differently. The following are some examples of how some players reference them:


	Bitmovin [https://bitmovin.com/demos/thumbnail-seeking]


	THEOPlayer [https://docs.portal.theoplayer.com/docs/next/add-ons/user-engagement/text-track/text-track-5-how-to-implement-thumbnails/#__docusaurus]






AVOD AND LIVE COMPOSE

The Vualto Task Engine now supports creating AVOD and Live Compose playlists using the vodremix workflow.


	AVOD refers to a playlist of clips (VOD or MP4s) with support for server side ad insertion and replacement through SCTE35 markers.


	Live Compose refers to a playlist of clips (VOD or MP4s), played out as a live stream, with support for server side ad replacement through SCTE35 markers. Ad insertion is currently not supported for simulated live streams. Live Compose playlists can be created by setting the live_compose flag to true in the job payload. To set a specific start time for a live stream use the stream_start_time parameter. If this is not set, the live stream will begin as soon as the manifest is packaged and available. The rest of the payload is identical to AVOD.




A markers object can be added to each clip object. The marker object supports setting the timescale and sync samples for each marker. The main use for the marker object is to specify meta events (SCTE35 markers. It’s important to note that the presentation_time property of each meta event is relative to the clip and will always consider the clip start to be “00:00:00”.

When adding meta events for ad replacement ( "type": "replace" - default) the duration property will indicate how much of the original clip content is to be replaced by an ad. When adding meta events for ad insertion ("type": "insert") the duration property indicates how long the ad inserted will be. The original clip content will continue from where it stopped when the ad is inserted.

The AVOD example below shows three clips being stitched together. The first clip has two SCTE 35 markers, a 4 minute and 30 second replacement marker at the 10 minute mark and a 30second ad insertion at the 16 minute mark. The second clip doesn’t have any SCTE 35 markers. The third clip has a 2 minute replacement marker at the 5 minute mark.

{
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "clips": [
      {
        "sources": [
          "https://bucket.s3-eu-west-1.amazonaws.com/clip1_1080.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip1_720.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip1_480.mp4"
        ],
        "markers": {
          "frame_accurate": true,
          "meta_events": [
            {
              "presentation_time": "00:10:00",
              "duration": "00:04:30.000"
            },
            {
              "type": "insert",
              "presentation_time": "00:16:00",
              "duration": "00:00:30.000"
            }
          ]
        }
      },
      {
        "sources": [
          "https://bucket.s3-eu-west-1.amazonaws.com/clip2_1080.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip2_720.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip2_480.mp4"
        ],
        "start": "00:00:00.000",
        "end": "00:10:00.000",
        "frame_accurate": "true"
      },
      {
        "sources": [
          "https://bucket.s3-eu-west-1.amazonaws.com/clip3_1080.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip3_720.mp4",
          "https://bucket.s3-eu-west-1.amazonaws.com/clip3_480.mp4"
        ],
        "start": "00:00:00.000",
        "end": "00:20:00.000",
        "frame_accurate": "true",
        "markers": {
          "meta_events": [
            {
              "type": "replace",
              "presentation_time": "00:05:00",
              "duration": "00:02:00"
            }
          ]
        }
      }
    ],
    "dvr_window_length": 60,
    "drm": [
        "fairplay",
        "playready",
        "cenc",
        "widevine"
    ],
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ],
    "output_file": "remix.mp4"
  },
  "client": "demo-client",
  "job": {
      "workflow": "vodremix"
  }
}







LIVE COMPOSE WITH MANIFEST MANIPULATION

The VUALTO Task Engine now supports manifest manipulation to generate LIVE COMPOSE streams (VOD playlist looping), using AWS Mediatailor Channel Assembly. This workflow takes VOD streaming URLs directly and the resulting live stream fragments come from the original VOD streaming URLs - this could result in cost savings in caching layers.

With this workflow, it is also possible to condition live streams for SSAI (server side ad insertion), however, it requires ad slate clips (also in the form of VODs) in order to signal ad breaks. The slate clips are stitched linearly with the clip sources at the given presentation_time (relative to the clip source) and the relevant ad break timed metadata added to the resulting live stream. If no presentation_time is provided, it will default to 00:00:00 (pre-roll).


Important! VOD sources must be encoded similarly. For example the same number of renditions, codecs, resolutions, etc. Job requests with mixed encoding profiles will fail validation.




The example below would result in a live stream where assets source_1.m3u8, source_2.m3u8, and source_3.m3u8 would loop infinitely with ad breaks (where the ad content is ad-slate.m3u8) in between each clip. source_3.m3u8 would have an additional ad break approximately 30 seconds in the video (mid-roll).

{
  "client": "demo-client",
  "job": {
    "workflow": "mediatailor_channel_assembly"
  },
  "parameters": {
    "content_id": "demo-content",
    "clips": [
      {
        "source": "https://cdn.com/assets/source_1.m3u8",
        "markers": {
          "meta_events": [
            {
              "slate": "https://cdn.com/assets/ad-slate.m3u8",
              "presentation_time": "00:00:00"
            }
          ]
        }  
      },
      {
        "source": "https://cdn.com/assets/source_2.m3u8",
        "markers": {
          "meta_events": [
            {
              "slate": "https://cdn.com/assets/ad-slate.m3u8",
              "presentation_time": "00:00:00"
            }
          ]
        }
      },
      {
        "source": "https://cdn.com/assets/source_3.m3u8",
        "markers": {
          "meta_events": [
            {
              "slate": "https://cdn.com/assets/ad-slate.m3u8",
              "presentation_time": "00:00:00"
            },
            {
              "slate": "https://cdn.com/assets/ad-slate.m3u8",
              "presentation_time": "00:00:30"
            }
          ]
        }
      }
    ],
    "rest_endpoints": [
      "http://your.custom.endpoint"
    ]
  }
}







CONTINUOUS CAPTURE

The Task Engine VOD Capture workflow supports the continuous_capture parameter which will begin capturing clips before the specified end time. By default it will begin capturing once 80% of the time has elapsed between the earliest start time of the specified clips and the latest end time of all clips, or if the difference is less than 60 seconds it will begin capturing at the earliest start time. This can be overridden by setting the run_at parameter.





          

      

      

    

  

    
      
          
            
  
TASK ENGINE WORKFLOWS


VOD STREAM

This workflow will generate a VOD asset from an offline source (eg. MP4). A server side manifest is created, with and/or without DRM, that can be used for on the fly delivery of VOD content via the Unified Streaming Platform.


VOD Stream: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'vodstream'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source_folder
	Yes
	
	Location of the source files. All files to be processed will need to be in a discrete folder, the ‘root’ folder will be specified in the client configuration.



	delete_source
	No
	false
	This boolean indicates whether the source should be deleted from source storage after the job has completed.



	encrypted (deprecated)
	No
	
	Deprecated and replaced by enable_drm for clarity.



	enable_drm
	No
	true
	This boolean indicates whether the drm manifest (if created - read drm parameter) should be enabled.



	output_folder
	No
	"{source_folder}"
	The folder for processed files to be placed.  The ‘root’ folder will be specified in the client configuration.



	drm
	No
	["clear"]
	A list of DRM systems o be applied to the VOD stream. This could be "playready" and/or ”widevine” and/or ”fairplay” and/or “cenc” and/or "aes".  If this value isn’t present or "clear" is specified as a system a DRM-free manifest is created.



	cpix
	No
	false
	This boolean indicates whether DRM will be handled using a CPIX document.



	download_cpix
	No
	false
	This boolean indicates whether the cpix document should be downloaded. This should be set to false if the cpix proxy is being used.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	create_thumbnail
	No
	true
	This boolean indicates whether a thumbnail should be created for the content.



	thumbnail_time
	No
	0 (seconds)
	Time at which the thumbnail will be taken.



	generate_mp4
	No
	false
	This boolean indicates whether an MP4 is generated for the VOD content.



	mp4_filename
	No
	"{content_id}.mp4"
	Filename for the generated MP4, if generate_mp4 is set to true.



	mezzanine
	No
	false
	This boolean indicates whether the generated mp4 contains all the video tracks or just the highest bitrate audio and video track.



	combine_sources
	No
	true
	This boolean indicates whether the isma/v/ts generated from the source content are to be combined into a single ismv before packaging the manifests.



	create_dref
	No
	true
	This boolean indicates whether a dref MP4 is generated for the VOD content.



	all_audio_tracks
	No
	true
	This boolean indicates whether all audio tracks or only the audio tracks with the highest bitrates for each language are packaged.



	encrypt_ismv
	No
	false
	This boolean indicates whether the resulting ismv file should be encrypted. This is can be used to implement TransDRM.



	playready_key
	No
	
	The playready key used to encrypt the ismv file (if encrypt_ismv is set to true). If no playready key is provided, one will be generated through VuDRM.



	preview_thumbnails
	No
	false
	This boolean indicates whether to generate thumbnail assets which can be used for video timeline previews.



	preview_thumbnails_interval
	No
	10
	Interval time between thumbnail captures in seconds.



	apply_track_properties
	No
	false
	This boolean indicates whether custom track properties (set in track_properties when submitting the job or in central configuration) should be applied to the VOD asset.



	track_properties
	No
	
	This is used to define track properties to be applied to the VOD (See Track Properties section).



	file_properties
	No
	
	This is used to define file properties (language, kind) to be applied to the VOD (See File Properties section).



	retries
	No
	0
	This is used to indicate the number of times fetching the source should be re-tried.



	source_storage
	No
	"S3"
	This is used to indicate where the source content is stored (see Storage Support section).



	destination_storage
	No
	"{source_storage}"
	This is used to indicate the destination for the VOD assets (see Storage Support section).



	encode_source
	No
	false
	This boolean indicates whether the source is to be encoded into multiple bitrates/resolutions.



	encoding_profile
	No
	"H264"
	This is used to indicate which encoding profiles are used when encoding the source.



	encoding_mode
	No
	"STANDARD"
	This is used to indicate which Bitmovin encoding mode is used (See here for more details).



	encoding_region
	No
	
	This is used to indicate in which region Bitmovin's encoding process should be executed.



	encoder_version
	No
	"STABLE"
	This is used to select which Bitmovin encoder version. This is useful to allow testing with BETA releases of Bitmovin encoders



	extract_audio
	No
	"{encode_source}"
	This boolean indicates whether the audio track from the original source needs to be extracted. This only required when encoding the source into multiple bitrates



	trickplay
	No
	false
	This boolean indicates whether trickplay should be added to the resulting VOD.



	trickplay_thumbnails
	No
	"{trickplay}"
	This boolean indicates whether to generate thumbnail assets which can be used for trickplay.



	trickplay_thumbnail_size
	No
	0 (original size)
	This is used to specify the size of the long edge of each trickplay thumbnail (in pixels).



	trickplay_thumbnail_interval
	No
	10
	This is used to indicate the duration between trickplay thumbnails (in seconds).



	trickplay_thumbnail_quality
	No
	30
	This is used to indicate the quality of the thumbnail generated for trickplay (1 - 100).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






VOD Stream: JSON Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "vodstream"
  },
  "parameters": {
    "content_id": "demo1",
    "source_folder": "mz-ast-2055fcff-8cca-4e37-85b9-9647dbe50398-1",
    "delete_source": false,
    "enable_drm": true,
    "output_folder": "mz-ast-2055fcff-8cca-4e37-85b9-9647dbe50398-1",
    "drm": [
      "fairplay",
      "playready",
      "widevine"
    ],
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://aaa.com/end",
      "http://bbb.com/end"
    ],
    "create_thumbnail": true,
    "thumbnail_time": "1:34.000",
    "generate_mp4": true,
    "mp4_filename": "demo_sample.mp4",
    "mezzanine": true,
    "combine_sources": true,
    "create_dref": true,
    "all_audio_tracks": true,
    "preview_thumbnails": true,
    "preview_thumbnails_interval": 20,
    "apply_track_properties": true,
    "source_storage": "local",
    "destination_storage": "S3"
  }
}







VOD Stream: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Full path of the active manifest, for the generated content.



	files
	List of files (manifests, content files, thumbnail, etc...) that have been copied to the final destination.



	metadata.duration
	Duration of the VOD event.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








VOD CAPTURE

This workflow allows you to create a frame accurate VOD clip by passing in a start and end time. If the source stream contains time stamps, UTC time stamps can be used for the start and end times. The result will be a new VOD asset and/or a downloadable MP4.


VOD Capture: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'vodcapture'.



	content_id
	Yes
	
	This is the id for the resulting capture.



	output_folder
	Yes
	
	This is the folder where the resulting capture will be saved on the destination storage. This is cleared before the capture is uploaded.



	clips
	yes
	
	This is an array of sources, with optional start and end times, please see the example request below.



	clips.source
	Yes
	
	This would need to be either an HLS, MSS or Dash stream URL to the Live or Archive content. e.g. http://mydomain.com/test.ism/.m3u8 , http://mydomain.com/test.ism/manifest , http://mydomain.com/test.ism/.mpd



	clips.start
	No
	
	UTC timestamp for the start timecode. e.g 2016-10-13T10:10:40.251Z or Offsets e.g. hh:mm:ss.



	clips.end
	No
	
	UTC timestamp for the end timecode e.g 2016-10-13T10:20:40.251Z or Offsets e.g. hh:mm:ss.



	clips.filter
	No
	
	This allows you to pass filter expressions to select certain video, audio tracks. e.g. to all video bitrates below 8Mbps and all audio bitrates at 64Kbps "type==\\"video\\"&&systemBitrate==800000\|\|type==\\"audio\\"&&systemBitrate==64000".



	clips.key_id
	No
	
	Should the stream be DRM’d we would require the KeyID.



	clips.content_key
	No
	
	Should the stream be DRM’d we would require the Content Key.



	clips.seed
	No
	
	Should the stream be encrypted with VUDRM, this can be provided instead of the key_id and content_key.



	encrypted (deprecated)
	No
	
	Deprecated and replaced by enable_drm for clarity.



	enable_drm
	No
	true
	This boolean indicates whether the drm manifest (if created - read drm parameter) should be enabled.



	drm
	No
	["clear"]
	A list of DRM systems o be applied to the VOD stream. This could be "playready" and/or ”widevine” and/or ”fairplay” and/or “cenc” and/or "aes".  If this value isn’t present or "clear" is specified as a system a DRM-free manifest is created.



	cpix
	No
	false
	This boolean indicates whether DRM will be handled using a CPIX document.



	download_cpix
	No
	false
	This boolean indicates whether the cpix document should be downloaded. This should be set to false if the cpix proxy is being used.



	frame_accurate
	No
	true
	This boolean allows the capture to be done using frame accuracy.



	copy_ts
	No
	false
	This boolean indicates whether the timestamps should be included in the resulting manifests.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	generate_vod
	No
	true
	This boolean indicates whether VOD manifests are generated for the capture.



	create_thumbnail
	No
	true
	This boolean indicates whether a thumbnail should be created for the content.



	thumbnail_time
	No
	0 (seconds)
	Time at which the thumbnail will be taken.



	generate_mp4
	No
	false
	This boolean indicates whether an MP4 is generated for the VOD content.



	mp4_filename
	No
	"{content_id}.mp4"
	Filename for the generated MP4.



	mezzanine
	No
	false
	This boolean indicates whether the generated mp4 contains all the video tracks or just the highest bitrate audio and video track.



	create_dref
	No
	"{generate_vod}"
	This boolean indicates whether a dref MP4 is generated for the VOD content.



	encrypt_ismv
	No
	false
	This boolean indicates whether the resulting ismv file should be encrypted. This is can be used to implement TransDRM.



	playready_key
	No
	
	The playready key used to encrypt the ismv file (if encrypt_ismv is set to true). If no playready key is provided, one will be generated through VuDRM.



	empty_target
	No
	true
	This boolean indicates whether the target folder in storage should be cleared before the output assets are save.



	destination_storage
	No
	"S3"
	This is used to indicate the destination for the VOD assets (see Storage Support section).



	apply_track_properties
	No
	false
	This boolean indicates whether custom track properties (set when submitting the job or in central configuration) should be applied to the VOD asset.



	track_properties
	No
	
	This is used to define track properties to be applied to the VOD (See Track Properties section).



	preview_thumbnails
	No
	false
	This boolean indicates whether to generate thumbnail assets which can be used for video timeline previews.



	preview_thumbnails_interval
	No
	10
	Interval time between thumbnail captures in seconds.



	transcode_proxy
	No
	
	This field accepts the url for the remote transcode proxy.



	trickplay
	No
	false
	This boolean indicates whether trickplay should be added to the resulting VOD.



	trickplay_thumbnails
	No
	"{trickplay}"
	This boolean indicates whether to generate thumbnail assets which can be used for trickplay.



	trickplay_thumbnail_size
	No
	0 (original size)
	This is used to specify the size of the long edge of each trickplay thumbnail (in pixels).



	trickplay_thumbnail_interval
	No
	10
	This is used to indicate the duration between trickplay thumbnails (in seconds).



	trickplay_thumbnail_quality
	No
	30
	This is used to indicate the quality of the thumbnail generated for trickplay (1 - 100).



	continuous_capture
	No
	false
	Determines if capturing should begin before the end of all clips (See Continuous Capture section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






VOD Capture: JSON Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "vodcapture"
  },
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "clips": [
      {
        "source": "http://mydomain.com/live.isml/manifest",
        "start": "2018-06-06T10:00:00.000",
        "end": "2018-06-06T10:30:00.000",
        "filter": "type==\"audio\"||type==\"video\"&&systemBitrate==1300000",
        "key_id": "346AS5847333DDSHKFSDS7633429CD33",
        "content_key": "346AS5847333DDSHKFSDS7633429CD33"
      }
    ],
    "enable_drm": false,
    "drm": [
      "fairplay",
      "playready",
      "cenc",
      "widevine",
      "aes"
    ],
    "frame_accurate": true,
    "transcode_proxy": "https://vualto.transcode-proxy.com",
    "copy_ts": false,
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ],
    "create_thumbnail": true,
    "thumbnail_time": "1:34.000",
    "generate_mp4": true,
    "mp4_filename": "demo_sample.mp4",
    "create_dref": true,
    "preview_thumbnails": true,
    "preview_thumbnails_interval": 20
  }
}







VOD Capture: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Full path of the active manifest, for the generated content.



	files
	List of files (manifests, content files, thumbnail, etc...) that have been copied to the final destination.



	metadata.duration
	Duration of the VOD event.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








VOD DELETE

This workflow allows you to a delete VOD asset from storage.


VOD Delete: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'voddelete'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	folder
	Yes
	
	Folder where the content to be deleted is currently saved.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	source_storage
	No
	"S3"
	This is used to indicate where the VOD assets are stored (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






VOD Delete: JSON Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "voddelete"
  },
  "parameters": {
    "content_id": "demo1",
    "folder": "vualto-test-1",
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ]
  }
}







VOD Delete: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Name of the folder deleted from storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








DRM SWITCH

This workflow allows you to toggle DRM on and off for a VOD asset. Missing manifests will be generated when required. If the VOD asset does not have a DRM manifest and DRM is being enabled, a list of DRM systems needs to be provided as part of the payload.


DRM Switch: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'drmswitch'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	folder
	Yes
	
	Folder where the content to be DRM toggled is stored.



	drm
	No
	[]
	A list of DRM systems o be applied to the VOD stream. This could be "playready" and/or ”widevine” and/or ”fairplay” and/or “cenc” and/or "aes".



	cpix
	No
	false
	This boolean indicates whether DRM will be handled using a CPIX document.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	source_storage
	No
	"S3"
	This is used to indicate where the VOD assets are stored (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






DRM Switch: Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "drmswitch"
  },
  "parameters": {
    "content_id": "demo1",
    "folder": "vualto-test-1",
    "drm": [
      "fairplay",
      "cenc"
    ],
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ]
  }
}







DRM Switch: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Full path of the active manifest, for the generated content.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








CREATE MP4

This workflow allows you to create an MP4 from a VOD asset.


Create MP4: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'createmp4'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source_folder
	Yes
	
	Folder where the VoD source content can be found.



	output_folder
	No
	"{source_folder}"
	Folder where the MP4 should be saved.



	retries
	No
	0
	Retry limit when attempting to copy from the source storage.



	mp4_filename
	No
	"{content_id}.mp4"
	The name of the resulting mp4 file.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	mezzanine
	No
	false
	This boolean indicates whether the generated mp4 contains all the video tracks or just the highest bitrate audio and video track.



	source_storage
	No
	"S3"
	This is used to indicate where the source VOD is stored (see Storage Support section).



	destination_storage
	No
	"{source_storage}"
	This is used to indicate the destination for the generated MP4 (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






Create MP4: Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "createmp4"
  },
  "parameters": {
    "content_id": "demo1",
    "source_folder": "vualto-test-1",
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ],
    "mp4_filename": "result.mp4",
    "output_folder": "vualto-test-1/downloads"
  }
}







Create MP4: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	MP4 filename.



	files
	List of files uploaded to the destination storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








BUILD THUMBNAILS

This workflow allows you to generate thumbnail assets which can then be used for video timeline previews.


Build Thumbnails: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'build_thumbnails'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source
	Yes
	
	URL of the HLS source from which to create assets. Live sources (.isml) must be in a state of stopped.



	filename_prefix
	No
	"{content_id}"
	Prefix for the file names of generated assets, eg: "{target_filename}_sprite.jpg" .



	output_folder
	Yes
	"{content_id}"
	This is the folder where the resulting assets will be saved on the destination storage.



	preview_thumbnails_interval
	No
	10
	Interval time between thumbnail captures in seconds.



	video_fps
	No
	24
	Fallback parameter, which will only be used if the fps cannot be obtained from the source metadata.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	destination_storage
	No
	"S3"
	This is used to indicate the destination for the generated thumbnail assets (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






Build Thumbnails: Payload example

{
    "parameters": {
        "content_id": "demo1",
        "source": "http://mydomain.com/example.ism/.m3u8",
        "output_folder": "vualto-test-1/downloads",
        "target_filename": "demo_sample",
        "preview_thumbnails_interval": 20,
        "video_fps": 24,
        "rest_endpoints": []
    },
    "client": "demo-client",
    "job": {
        "workflow": "build_thumbnails"
    }
}







Build Thumbnails: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	List of thumbnail assets uploaded to the destination storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








VOD REMIX

This workflow allows you to create a virtual VOD asset that is just a playlist referencing other VOD streams or video files.


VOD Remix: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'vodremix'.



	content_id
	Yes
	
	This is the id for the resulting VOD.



	output_folder
	Yes
	
	This is the folder where the resulting VOD will be saved on the destination storage. This is cleared before the capture is uploaded.



	clips
	Yes
	
	This is an array of sources, with optional start and end times, please see the example request below.



	clips.source
	Yes
	
	This would need to be either a VOD stream or the URL to a video file. Must be accessible from both Task Engine and the Origin. E.g. http://mydomain.com/manifest.ism, https://bucket-name.s3-eu-west-1.amazonaws.com/path/test.mp4. Required unless clips.sources is used.



	clips.sources
	Yes
	
	An array of video and audio files (tracks or renditions). E.g. ["http://library/path/low.mp4","http://library/high.mp4","http://library/eng.m4a"]. Required unless clips.source is used.



	clips.start
	No
	
	UTC timestamp for the start timecode. e.g 2016-10-13T10:10:40.251Z OR Offsets e.g. hh:mm:ss.



	clips.end
	No
	
	UTC timestamp for the end timecode e.g 2016-10-13T10:20:40.251Z OR Offsets e.g. hh:mm:ss.



	clips.frame_accurate
	No
	false
	This boolean indicates whether the specified clip will be trimmed using frame accuracy.



	clips.output_description
	No
	false
	This boolean indicates that this clip should be used to set the target profile. There should be only one clip with this set to true.



	clips.markers
	No
	
	This object contains all the information related to the SCTE35 markers for the clip (see AVOD and Live Compose section).



	clips.markers.timescale
	No
	1000
	This is used to define the base timescale for the SCTE35 markers.



	clips.markers.frame_accurate
	No
	{clip.frame_accurate}
	This boolean is used to add sync samples at the markers position.



	clips.markers.meta_events
	No
	
	Array of meta_event objects.



	clips.markers.meta_events.presentation_time
	Yes
	
	This is the time position at which the marker will be inserted relative to the clip.



	clips.markers.meta_events.duration
	Yes
	
	This is the duration of the marker.



	clips.markers.meta_events.type
	No
	replace
	replace or insert. This indicates whether the intention is to replace the underlying content with ads, or to insert ads and then resume from the point the ad was inserted.



	output_file
	No
	"remix.mp4"
	Name of the output .mp4 file.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	drm
	No
	["clear"]
	A list of DRM systems o be applied to the VOD stream. This could be "playready" and/or ”widevine” and/or ”fairplay” and/or “cenc” and/or "aes".  If this value isn’t present or "clear" is specified as a system a DRM-free manifest is created.



	cpix
	No
	false
	This boolean indicates whether DRM will be handled using a CPIX document.



	download_cpix
	No
	false
	This boolean indicates whether the cpix document should be downloaded. This should be set to false if the cpix proxy is being used.



	empty_target
	No
	true
	This boolean indicates whether the target folder in storage should be cleared before the output assets are save.



	enable_drm
	No
	true
	This boolean indicates whether the drm manifest (if created - read drm parameter) should be enabled.



	destination_storage
	No
	"S3"
	This is used to indicate the destination for the VOD assets (see Storage Support section).



	remote_execute_timeout_seconds
	No
	0
	This parameter is used to specify the timeout length in seconds for remote workers to complete execution.



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.



	live_compose
	No
	false
	Generate a live stream looping the playlist (as opposed to the default VOD).



	stream_start_time
	No
	
	This field accepts a UTC timestamp eg. 2016-10-13T10:10:40.251Z that will be used to indicate when the Live Compose stream should start.



	dvr_window_length
	No
	60
	The duration in seconds of the live stream DVR window.



	custom_active_manifest_name
	No
	
	This field accepts a string that will be used as the manifest name.



	transcode_proxy
	No
	
	This field accepts the url for the remote transcode proxy.






VOD Remix: JSON Payload example

{
  "parameters": {
    "content_id": "demo_1",
    "output_folder": "demo_1",
    "transcode_proxy": "https://vualto.transcode-proxy.com",
    "clips": [
      {
        "source": "https://bucket.s3-eu-west-1.amazonaws.com/manifest.ism",
        "start": "2018-06-06T10:00:00.000",
        "end": "2018-06-06T10:30:00.000"
      },
      {
        "source": "https://bucket.s3-eu-west-1.amazonaws.com/ad.mp4",
        "output_description": true
      },
      {
        "source": "https://bucket.s3-eu-west-1.amazonaws.com/manifest.ism",
        "start": "2018-06-06T10:40:00.000",
        "end": "2018-06-06T11:00:00.000"
      },
      {
        "source": "https://bucket.s3-eu-west-1.amazonaws.com/manifest.ism",
        "start": "2018-06-06T11:00:00.000",
        "end": "2018-06-06T11:10:00.000",
        "frame_accurate": true,
      }
    ],
    "drm": [
        "fairplay",
        "playready",
        "cenc",
        "widevine",
        "aes"
    ],
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ],
    "output_file": "remix.mp4"
  },
  "client": "demo-client",
  "job": {
      "workflow": "vodremix"
  }
}







VOD Remix: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	output
	List of files (manifests, content files, thumbnail, etc...) that have been copied to the final destination.



	metadata.duration
	Duration of the VOD event.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








GENERATE GIF

This workflow allows you to create animated GIFs from a VOD stream.


Generate GIF: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'generate_gif'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source
	Yes
	
	URL for the VOD source used to generate the GIF.



	start_at
	Yes
	
	Start time for the GIF capture. This will either be in seconds, a UTC based timestamp or a time offset ("hh:mm:ss")



	duration
	Yes
	
	The duration of the capture used for the GIF. This should be specified in seconds (milliseconds are supported).



	output_folder
	Yes
	
	Folder where the GIF should be saved.



	gif_filename
	Yes
	
	The name of the resulting GIF file.



	bitrate
	No
	
	This is used to filter the source and capture the GIF from a specific video bitrate within the stream.



	fps
	No
	12
	The frames per second of the resulting bitrate.



	width
	No
	-1
	The width of the resulting GIF. If not provided it will be calculated automatically based on the aspect ration and the height specified.



	height
	No
	-1
	The height of the resulting GIF. If not provided, it will be calculated automatically based on the aspect ration and width specified. If neither height or width are specified, a height of 480 pixels is used.



	playback_loop
	No
	0
	The number of times the GIF should loop.



	reverse
	No
	false
	This boolean indicates whether the GIF should be played in revers.



	playback_speed
	No
	1
	This indicates the speed at which the GIF should be played back. Eg. 1.5 for GIF playback that is 1 and a half faster than the actual speed.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	destination_storage
	No
	"S3"
	This is used to indicate the destination for the generated MP4 (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






Generate GIF: Payload example

{
  "client": "demo-client",
  "job": {
      "workflow": "generate_gif"
  },
  "parameters": {
      "content_id": "demo-content",
      "source": "http://mydomain.com/example.ism/.m3u8",
      "start_at": 30,
      "duration": 6,
      "output_folder": "/demo-content/assets",
      "gif_filename": "half speed.gif",
      "bitrate": 1549288,
      "fps": 15,
      "width": 500,
      "playback_speed": 0.5,
      "rest_endpoints": [
        "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
        "http://your.custom.endpoint"
      ]
  }
}







Generate GIF: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	GIF filename.



	files
	List of files uploaded to the destination storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








CAPTURE FRAME

This workflow allows you to capture a single frame from a stream.


Capture Frame: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'capture_frame'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source
	Yes
	
	URL for the VOD source used to capture the frame from.



	frame_time
	Yes
	
	Time of the frame within the source stream. This will either be a UTC based timestamp or a time offset ("hh:mm:ss").



	output_folder
	Yes
	
	Folder where the captured frame should be saved.



	image_filename
	Yes
	
	The name of the resulting image file.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	destination_storage
	No
	"S3"
	This is used to indicate the destination for the generated MP4 (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






Capture Frame: Payload example

{
  "client": "demo-client",
  "job": {
      "workflow": "capture_frame"
  },
  "parameters": {
      "content_id": "demo-content",
      "source": "http://mydomain.com/example.ism/.m3u8",
      "frame_time": "00:00:07.0400000",
      "output_folder": "/demo-content/assets",
      "image_filename": "frame.jpg",
      "rest_endpoints": [
        "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
        "http://your.custom.endpoint"
      ]
  }
}







Capture Frame: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Image filename.



	files
	List of files uploaded to the destination storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








ASSET DELETE

This workflow allows you to delete individual assets without deleting an entire VOD directory.


Asset Delete: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'asset_delete'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	files
	Yes
	
	Array of files to be deleted from S3.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	source_storage
	No
	"S3"
	This is used to indicate where the source VOD is stored (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






Asset Delete: Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "asset_delete"
  },
  "parameters": {
    "content_id": "demo-content",
    "files": [
      "demo-content/assets/foo.gif",
      "demo-content/thumbnail.jpg"
    ],
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://your.custom.endpoint"
    ]
  }
}







Asset Delete: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	files
	



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	List of files to requested for deletion the destination storage.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








MEDIATAILOR CHANNEL ASSEMBLY

This workflow allows for creating and updating Live Compose streams - very similar to VOD REMIX Live Compose. Please refer to Live Compose with Manifest Manipulation for more information and ad break signaling examples.


MediaTailor Channel Assembly: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'mediatailor_channel_assembly'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	clips
	Yes
	
	This is an array of sources, each with optional start and end times, please see the example request below.



	clips.source
	Yes
	
	This is a VOD stream. Currently only HLS streams are supported. E.g. http://mydomain.com/manifest.m3u8.



	clips.markers
	No
	
	This object contains all the information related to the SCTE35 markers for the clip (see AVOD and Live Compose section).



	clips.markers.meta_events
	No
	
	Array of meta_event objects.



	clips.markers.meta_events.presentation_time
	Yes
	
	This is the time position at which the marker will be inserted relative to the clip.



	clips.markers.meta_events.slate
	Yes
	
	This is the duration of the marker.



	restart_channel
	No
	true
	This boolean indicates whether the MediaTailor channel must be restarted or not. Channel restart is required if the source types do not match.



	update_existing_vod_sources
	No
	false
	This boolean indicates whether existing MediaTailor vod sources should be updated if content with the same vod source location is submitted.



	dvr_window_length
	No
	60
	The duration in seconds of the live stream DVR window.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference) and returns it as part of the job callback.






MediaTailor Channel Assembly: Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "mediatailor_channel_assembly"
  },
  "parameters": {
    "content_id": "demo-content",
    "clips": [
      {
        "source": "https://cdn.com/assets/1.m3u8"
      },
      {
        "source": "https://cdn.com/assets/2.m3u8"
      },
      {
        "source": "https://cdn.com/assets/3.m3u8"
      }
    ],
    "rest_endpoints": [
      "http://your.custom.endpoint"
    ]
  }
}







MediaTailor Channel Assembly: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Resulting live streaming URL



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








MEDIATAILOR CHANNEL STATE

This workflow allows for stopping and starting MediaTailor channels.


MediaTailor Channel State: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'mediatailor_channel_state'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	state
	Yes
	
	Either start or stop.



	delete
	No
	false
	This boolean indicates whether the channel must be deleted or not.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.






MediaTailor Channel State: Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "mediatailor_channel_state"
  },
  "parameters": {
    "content_id": "demo-content",
    "state": "stop",
    "delete": true
  }
}







MediaTailor Channel State: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








VOD NPVR

This workflow will generate a VOD asset from segments captured through the Vualto Archiver. Segments are shared across different VOD assets which reduces storage requirements and processing time.

A server side manifest is created, with and/or without DRM, that can be used for on the fly delivery of VOD content via the Unified Streaming Platform. The VOD NPVR workflow includes support to inherit the DRM keys form a specified Vualto Archiver profile and stores it as a custom manifest. This workflow will include any SCTE35 markers that occurred during each segment.


VOD NPVR: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'vodnpvr'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	clips
	yes
	
	This is an array of sources, with optional start and end times, please see the example request below.



	clips.capture_id
	Yes
	
	This would be the capture id for the Vualto Archiver event to be used as the source.



	clips.start
	Yes
	
	UTC timestamp for the start timecode. e.g 2016-10-13T10:10:40.251Z .



	clips.end
	Yes
	
	UTC timestamp for the end timecode e.g 2016-10-13T10:20:40.251Z .



	output_folder
	Yes
	
	The folder for processed files to be placed.  The ‘root’ folder will be specified in the client configuration.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	apply_custom_drm
	No
	false
	This boolean indicates whether a custom DRM manifest using drm keys from the specified Vualto Archiver profile.



	profile_id
	No
	
	This is the id for the profile used for the custom DRM manifest.



	custom_manifest_name
	No
	"custom.ism"
	The name to be given to the custom DRM manifest.



	drm
	No
	["clear"]
	The type of DRM that is required. This could be “playready” and/or ”widevine” and/or ”fairplay” and/or “cenc” and/or "aes". If this value isn’t present the the normal DRM manifest is not created.



	cpix
	No
	false
	This boolean indicates whether DRM will be handled using a CPIX document.



	download_cpix
	No
	false
	This boolean indicates whether the cpix document should be downloaded. This should be set to false if the cpix proxy is being used.



	empty_target
	No
	true
	This boolean indicates whether the target folder in storage should be cleared before the output assets are save.



	source_storage
	No
	"S3"
	This is used to indicate where the source content is stored (see Storage Support section).



	destination_storage
	No
	"{source_storage}"
	This is used to indicate the destination for the VOD assets (see Storage Support section).



	remote_execute_timeout_seconds
	No
	0
	This parameter is used to specify the timeout length in seconds for remote workers to complete execution.



	overwrite_segments
	No
	false
	This boolean indicates whether segments already in use by other VOD assets should be overwritten when generating the current VOD asset.



	custom_package_options
	No
	"--timed_metadata --splice_media"
	This contains package options required to support SCTE35 markers within remix profiles.



	missing_content_limit
	No
	5.0
	The limit in seconds of missing content over which the VOD asset generation is abandoned. Missing content is usually caused by discontinuities from the Archiver source stream.



	enable_drm
	No
	true
	This boolean indicates whether the drm manifest (if created - read drm parameter) should be enabled.



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.



	transcode_proxy
	No
	
	This field accepts the url for the remote transcode proxy.






VOD NPVR: JSON Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "vodnpvr"
  },
  "parameters": {
    "content_id": "vudrm_1",
    "clips": [
        {
            "start": "2020-09-08T14:10:00Z",
            "end": "2020-09-08T14:44:00Z",
            "capture_id": "test4"
        }
    ],
    "transcode_proxy": "https://vualto.transcode-proxy.com",
    "output_root": "output_root",
    "apply_custom_drm": true,
    "profile_id": "test4_drm",
    "custom_manifest_name": "manifest.ism",
    "drm": [
      "fairplay",
      "cenc",
      "clear"
    ],
    "cpix": false,
    "missing_content_limit": 700,
    "output_folder": "vudrm/test4_1599574200000_1599576240000",
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://aaa.com/end",
      "http://bbb.com/end"
    ],
    "custom_data": { "custom_ref" : "ref-123" }
  }
}







VOD NPVR: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	message
	Full path of the active manifest, for the generated content.



	files
	List of files (manifests, content files, thumbnail, etc...) that have been copied to the final destination.



	segments
	Segments used for the VOD asset.



	metadata.duration
	Duration of the VOD event.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








Trickplay

This workflow will generate (with trickplay_thumbnails enabled) a thumbnail CMAF track containing JPEG compressed frames from points in a AVC/H.264 or HEVC/H.265 video.

If trickplay_thumbnails is disabled, it will only insert sync-samples.


Trickplay: Parameters




	Parameter Name
	Required
	Default
	Description





	workflow
	Yes
	
	Specify 'trickplay'.



	content_id
	Yes
	
	Unique identifier of the content. This is usually a key that allows identification of the content in the client’s system.



	source_folder
	Yes
	
	Location of the source files. All files to be processed will need to be in a discrete folder, the ‘root’ folder will be specified in the client configuration.



	output_folder
	No
	"{source_folder}"
	The folder for processed files to be placed.  The ‘root’ folder will be specified in the client configuration.



	rest_endpoints
	No
	
	Endpoints that will receive the callbacks defined in the workflow. Multiple end points can be specified.



	source_storage
	No
	"S3"
	This is used to indicate where the source content is stored (see Storage Support section).



	destination_storage
	No
	"{source_storage}"
	This is used to indicate the destination for the VOD assets (see Storage Support section).



	custom_data
	No
	
	This field accepts consumer custom data (such as consumer internal reference ) and returns it as part of the job callback.



	retries
	No
	0
	Retry limit when attempting to copy from the source storage.



	trickplay_thumbnails
	No
	true
	This boolean indicates whether to generate thumbnail assets which can be used for trickplay.



	trickplay_thumbnail_size
	No
	0 (original size)
	This is used to specify the size of the long edge of each trickplay thumbnail (in pixels).



	trickplay_thumbnail_interval
	No
	10
	This is used to indicate the duration between trickplay thumbnails (in seconds).



	trickplay_thumbnail_quality
	No
	30
	This is used to indicate the quality of the thumbnail generated for trickplay (1 - 100).






Trickplay: JSON Payload example

{
  "client": "demo-client",
  "job": {
    "workflow": "trickplay"
  },
  "parameters": {
    "content_id": "vudrm_1",
    "source_folder": "vualto-test-1",
    "trickplay_thumbnails": true,
    "trickplay_thumbnail_interval": 5,
    "trickplay_thumbnail_size": 1280,
    "trickplay_thumbnail_quality": 50,
    "output_root": "output_root",
    "output_folder": "vualto-output",
    "rest_endpoints": [
      "https://vis.vuworkflow.staging.vualto.com/api/event/vuflow/taskenginecallback",
      "http://aaa.com/end",
      "http://bbb.com/end"
    ],
    "custom_data": { "custom_ref" : "ref-123" }
  }
}







Trickplay: Callback properties


Task Callback

Task callbacks are triggered after each task within a workflow is completed. Below is a list of the default properties for the callback:




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	task_id
	Unique task identifier generated by the Task Engine.



	task_name
	Name of the task that triggered the callback.



	workflow
	Name of the workflow being executed.



	event
	This will identify the event that caused the callback to be triggered. It can be one of start, complete or fail.



	content_id
	Content ID provided when the job was submitted.



	message
	Any message associated with the event. This will usually contain exception messages.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.






Job Callback

Job callbacks are triggered when the entire job has completed. Below is a list of the default properties for the callback.




	Property Name
	Description





	job_id
	Unique job identifier generated by the Task Engine.



	status
	This will identify the status of the job. It can be either completed or failed.



	workflow
	Name of the workflow being executed.



	content_id
	Content ID provided when the job was submitted.



	files
	List of files (manifests, content files, thumbnail, etc...) that have been copied to the final destination.



	custom_data
	Returns the custom data submitted to the workflow.



	time
	Time (UTC) the callback was submitted.



	client
	Client name provided when the job was submitted.








WORKFLOW TRIGGER EXAMPLE

Example of a curl command to trigger ingest for the VOD Stream workflow:

curl -X POST \
http://vualto.demo.com/job \
-H "API-KEY: aabbccdd-1122-3344-5566-eeff77889900" \
-H 'Cache-Control: no-cache' \
-H 'Content-Type: application/json' \
-d '{
  "client": "vualto",
  "job": {
    "workflow": "vodstream"
  },
  "parameters": {
      "content_id": "demo_1",
      "source_folder": "/input/demo1",
      "delete_source": false,
      "enable_drm": false,
      "output_folder": "/test",
      "drm": [
        "fairplay",
        "playready",
        "cenc",
        "widevine"
      ],"rest_endpoints": [
        "https://webhook.site/55151d14-cee1-416b-b956-a90525ae8f58",
        "https://webhook.site/bc4c13ee-f118-4d5b-a4af-7ac07890a7f1"
      ],
      "create_thumbnail": false,
      "generate_mp4": true,
      "combine_sources": true,
      "create_dref": true,
      "all_audio_tracks": false,
    }
  }





This results in the files <content_id>_<drm_tag>_<unique_guid>.ism and <content_id>_<unique_guid>.ismv being produced in the folder:

<configured_root>(/<optional_output_folder>)/<content_id>

The response from this call should be either a 200 OK, with the following payload:

{ "job_id": <job_id>, "result": "accepted" }

or a 400 BAD REQUEST with the following payload:

{ "error": "<description_of_error>" }

Assuming the call is successful, this would add an ingest job to the Task Engine queue, with the files to be ingested expected to be in the following location:

<input_root>/input/demo1

If the process completes successfully, then the output would be the following files:

<output_root>/test/demo1.ism
<output_root>/test/demo1.ismv

If the ‘output_folder’ parameter was excluded, then the files would be output to the following locations:

<output_root>/demo1.ism
<output_root>/demo1.ismv

NOTE: there may be some additional files, depending on the exact processes involved, but the minimum would usually be these.





          

      

      

    

  

    
      
          
            
  
RELEASE NOTES


	v2.1.x


	v2.0.x


	v1.173.x


	v1.172.x


	v1.171.x


	v1.170.x


	v1.169.x


	v1.168.x


	v1.167.x


	v1.166.x


	v1.165.x





v2.1.x


2.1.2 - 2023-07-05


	Fixed an issue where the incorrect duration was being used to decide the transcode options.


	Added support for USP 1.12.3






2.1.1 - 2023-05-16


	Fixed Twitter upload not working.


	Added the option to enabled/disable the use of a cpix document instead of the cpix proxy when generating VOD using the following workflows:


	vodcapture


	vodnpvr


	vodremix


	vodstream










2.1.0 - 2023-04-19


	Cleaned up FFmpeg errors.


	Added support for Linux based trickplay track generation.


	Fixed an issue in the drmswitch workflow were the files array did not return full paths.


	Workflows can now be setup for more concurrent task execution.







v2.0.x


2.0.5 - 2023-04-19


	Changed track properties format, the old format is deprecated but still works.


	Track properties can now match based on the track kind.






2.0.4 - 2023-03-31


	Adding an index to audio tracks to avoid accessibility audio tracks from being set as the default.






2.0.3 - 2023-03-27


	Removed + from generated filenames to avoid issues with Apache on VOD Origins






2.0.2 - 2023-03-22


	Fixed null objects being added to the json metadata file


	Added file_parameters property to vodstream to specify accessibility settings and language without needing to change the name of the file.






2.0.1 - 2023-03-13


	Added support for USP 1.12.1.


	Removed native support for USP versions older than 1.11.20.






2.0.0


	Added official multi-tenancy support.


	Clients using a multi-tenant cluster will still have their own queue settings.






	Added support for client filtering in the queue page


	Client name is displayed in job rows.


	Added support for continuous captures.


	This feature is experimental and needs to be explicitly specified when submitting a capture job.


	This feature enables captures that end in the future to start before the end time and continuously capture until the end time is reached.






	Optimised job submission performance.


	Added support for notify_subscribers for YouTube syndication.


	Authentication has been made a requirement for more API endpoints.


	Removed native support for USP versions older than 1.11.12.


	The base images now run on top of Ubuntu 20


	A new persist flag has been added to jobs.


	Jobs flagged to persist will not be cleared as part of the 30 day routines.






	Added a check on ingest (vodstream) workflows to fail the job as soon as no sources are found.


	General performance improvements.







v1.173.x


1.173.11 - 2022-12-05


	Hotfix: Fixed a race condition where a job may be started twice if multiple controllers are present






1.173.10 - 2022-11-14


	Hotfix: vodremix workflow no longer uss the default package options --timed_metadata --splice_media






1.173.9 - 2022-09-01


	Hotfix: NPVR hotfix to use archiver usp packaging options.


	Hotfix: NPVR hotfix to use symlinks when using local storage.


	Updated local storage:


	Added support for symlinks.










1.173.8 - 2022-08-22


	Hotfix: NPVR hotfix to support nil values for segment end iframe times.






1.173.7 - 2022-08-02


	Hotfix: Deducting start time from the duration value when generating mp4s






1.173.6


	Patch: Added rescue to Twitter publications to handle forbidden actions.


	Patch: Changed the source used for trickplay thumbnail generation to improve performance.


	Patch: Update mediatailor_channel_assembly workflow.


	Added support for updating an existing VOD sources.






	Hotfix: Fixed the duration by reducing the time value from the metadata. This was causing issues when assets included capture timestamps.


	Hotfix: Removed hardcoded no multiplex option when packaging DRM manifests that include FairPlay.






1.173.1


	Improved filtering for trickplay track selection.






1.173.0


	Bugfix: Fixed API error codes for issues when submitting a job with missing parameters.


	Added support for the latest USP GA release, 1.11.9.





Callbacks


	Added UTC date and time to all workflow callbacks


	Added the client name to all workflow callbacks






VOD Capture


	New seed parameter has been added to the clip object. This can be used instead of the content_key and key_id to capture from VUDRM encrypted streams.


	Frame Accuracy is automatically enabled for captures from streams with discontinuities. This reduces the chance of audio/video sync issues.


	Added support for adding trickplay to captures.






VOD Stream


	Added support for adding trickplay to ingests.








v1.172.x


1.172.5 - 2021-08-18


	Minor hot fixes introduced by 1.172.3 release






v1.172.3 - 2021-08-17


	Added support for transmuxing when generating the mp4 based on the duration of the content.






v1.172.0 - 2021-06-07


	Added mediatailor_channel_assembly workflow for creating and updating MediaTailor VOD playlist channels.


	Added mediatailor_channel state workflow for starting, stopping and deleting MediaTailor VOD playlist channels.


	Added support for the priority_threshold setting.


	Minor UI updates to reflect the new setting.





VOD Capture


	New transcode_proxy parameter for off loading frame accurate transcoding to a remote proxy.






VOD Remix


	New stream_start_time parameter for setting the stream start time for a Live Compose stream.


	New dvr_window_length parameter for setting the DVR window for Live Compose streams


	New custom_active_manifest_name parameter to allow the consumer to specify the manifest name for the resulting stream.


	New transcode_proxy parameter for off loading frame accurate transcoding to a remote proxy.






VOD Remix


	New transcode_proxy parameter for off loading frame accurate transcoding to a remote proxy.








v1.171.x


v1.171.1 - 2021-04-08


	Added a task to extract event metatdata to a json file.


	Added event duration to the job callback within a new metadata object.


	Bugfix: fixed an issue that could cause re-run job to fail.





VOD Stream


	Output transcoding step has been updated to only execute when an mp4 is requested.


	Added support for SRT subtitle files.


	Optimised the process of preparing captions for packaging.


	Extracting the audio track from the original source when transcoding the source.


	Added support for specifying the Bitmovin encoder version for transcoding.


	Added support for m4v files as encoding sources.






VOD Capture


	Output transcoding step has been updated to only execute when an mp4 is requested.


	Clip sorting for discontinuities has been improved.






VOD Remix


	Added support for creating AVOD playlists with SCTE35 ad insertion and replacement markers.


	Added support for creating live streams from VOD content with SCTE35 ad replacement markers.






Asset Delete


	Bugfix: Added checks for empty arrays before deleting attempting to delete files.








v1.170.x


v1.170.4 - 2020-11-18


	Bugfix: Fixed failing re-run job endpoint.






v1.170.3 - 2020-11-18


	Bugfix: Transcoding file extension check was case sensitive.






v1.170.2 - 2020-10-21


	Bugfix: Fixed issue causing some scheduled jobs to never be queued.






v1.170.1 - 2020-09-30


	File properties in callbacks are returned as a JSON array instead of a string containing an array.


	A new custom_data parameter has been added to all workflows to allow consumers to submit references they want returned in the final job callback.


	Running jobs can be paused using the update job endpoint and setting the queue_state to paused.


	SSL certificate verification of callbacks can be disabled.





VOD Stream


	Bugfix: The filename for audio tracks was not being checked for a language code when the language is missing within the metadata.






VOD Capture


	Stream decryption keys (key_id and content_key) now need to be specified as part of the clip object. This allows for the capture and stitching from two streams encrypted with different keys.


	Native support for capturing from local ingested streams through a new local_source property within clip objects.






VOD Delete


	The content_id parameter is now optional.






DRM Switch


	For VUDRM clients, if a clear or DRMed manifest is missing when trying to switch DRM on or off, the manifest will be generated dynamically.






VOD NPVR


	New workflow for capturing VOD from Vualto archiver segments.


	This workflow is intelligent in that a segment is only uploaded once even if it is used by multiple VODs.


	SCTE35 markers are preserved and included within the VOD.


	Supports custom manifests that apply DRM keys from Vualto Archiver profiles to the resulting VOD.








v1.169.x


v1.169.3 - 2020-07-09


	Dashboard hotfix.






v1.169.2 - 2020-07-07


	General release build.






v1.169.1 - 2020-07-07


	Build fixes.






v1.169.0 - 2020-07-06


	API enhancements for UI integrations.


	Updated to a newer Ruby version.


	Support for specifying Bitmovin encoding region.


	Bitmovin encodings now have client labels assigned.


	Queue reservation functionality for priority jobs.


	Optimised thumbnail and VTT generation for timeline preview thumbnails.







v1.168.x


v1.168.1 - 2020-03-17


	Added workflows for:


	generating gifs


	capturing single frames as jpgs


	deleting multiple assets without deleting an entire VOD.






	Added support for multiple file formats when ingesting and encoding using Bitmovin.


	Full list of supported source files are:


	mp4


	mov


	mpg


	mkv


	avi










	Added number of failed jobs in the health check endpoint response.


	Bugfix: Added index to audio tracks when ingesting mp4s. This is to ensure each track name is unique.


	Added support for USP 1.10.18.







v1.167.x


v1.167.2 - 2019-11-04


	Bitmovin enhancements for re-packaging.






v1.167.1 - 2019-10-29


	Bitmovin integration now supports setting the ACL permission for the mp4 outputs.






v1.167.0 - 2019-10-25


	Added support for Azure Blob Storage as a source and/or destination storage option.


	The option needs to be specified as azure_blob.






	Added the functionality to encode ingest source into multiple smaller resolutions.


	Caveat: Currently this only works if there is a single MP4 source in the ingest folder.






	Task Engine version is now visible within the queue page and returned as part of the health check api request.


	Updates to the preview thumbnail (trickplay) generation to improve performance.


	Updated VOD remix:


	Added support for Frame Accurate clips.


	Added option for setting the profile (for a clip) for the remix output.






	Updated Task Engine queue and logs UI.


	Completed status filter will no longer load failed jobs.


	Search by job IDs is now supported. Multiple job IDs must be comma separated.


	There is no longer a requirement for both From and To date to be provided for the date filter to work.


	Search results will now include the Created At information for the jobs.


	Word wrapping has been added to logs.






	Added output_root option to all workflows.


	API error codes updated.


	CPIX support for DRM packaging.


	Completed vodremix workflow.







v1.166.x


v1.166.8 - 2019-09-04


	Hotfix: Updated DRM switch callback message.






v1.166.7 - 2019-08-20


	Hotfix: supporting spaces in file inputs/outputs.






v1.166.6 - 2019-08-14


	Added support for USP 1.10.12.


	Removed support for USP 1.8.5.






v1.166.5 - 2019-08-13


	Added visible field to log with show_all param toggling.


	Improvements to the build_thumbnails workflow.


	Complete re-write of the way storage is handled:


	Storage controller dictates which storage medium is used.


	S3 storage re-written to support this.


	Added local storage support.


	Added support for different source and destination storage types within the same job.


	Eg. Source for ingest can be a local MP4 and the destination for the packaged content is S3.










	Rewrite of DRM switch.


	Added vodcapture.json optional parameter “output_root” to specify the output root key.


	Added vodcapture.json optional parameter “empty_target” to specify whether to delete the contents of the output folder or not.


	New versioning system for the Task Engine.







v1.165.x


v1.165.0 - 2019-02-15


	Fixed issue with retry job call from the front end (queue page).


	Fixed bug with job scheduler not assigning the correct run_at time.


	Added a health check endpoint for improved Zabbix monitoring.


	Added proper support for TransDRM (without subtitles).


	Creating a clear manifest now requires the clear option to be added to the DRM list.


	Added build_thumbnails workflow (builds thumbnail sprite and vtt file for VOD content).


	Added transcoding option back to mp4 generation due to compatibility issues with Twitter.


	Added support for applying track properties to manifest files.


	These can be added either through the job JSON payload or saved in Central Configuration.













          

      

      

    

  

    
      
          
            
  
SUPPORT


HOW TO CONTACT US

For all non-critical support requests please email support@vualto.com. If you are a registered user you can contact support via the help centre.

For all critical issues please contact support via one of the numbers below.

+44 (0)800 0314391
+44 (0)1752 916051
(800) 857 1808 (toll-free US number)





If there is a problem, please include as much information about the issue as possible.



SYSTEM REQUIREMENTS

The Task Engine is designed to run in Docker containers, and is therefore able to run on any Docker-supported Linux host. Recent releases of the Task Engine are also compatible with Kubernetes deployments and are fully integrated with Rancher for easy deployment and upgrade management. Any workers that need to run on Windows are currently not containerized but are installed as a native Windows service. Windows workers are a requirement for frame accurate captures.

When a worker starts a task, it will generally need to copy one or more files to storage to perform its work in an efficient manner, so it’s critical that hosts have sufficient disk space for processing to take place. This is particularly important when dealing with video transcoding or DRM encryption. A shared storage is also used to store any assets required during job execution and facilitate horizontal scaling of workers. Vualto will usually advise on disk space requirements once the workflow is fully defined and some representative test content has been processed.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          TASK ENGINE Documentation
        


        		
          DEVELOPER DOCUMENTATION
          
            		
              INTEGRATION
              
                		
                  API
                


                		
                  CALLBACKS
                


                		
                  AUTHENTICATION
                


              


            


            		
              TASK ENGINE API
              
                		
                  STATUS ENDPOINTS
                


                		
                  JOB ENDPOINTS
                


                		
                  LOG ENDPOINTS
                


                		
                  SCHEDULER ENDPOINTS
                


                		
                  SETTINGS ENDPOINTS
                


              


            


            		
              TASK ENGINE WORKFLOW FEATURES
              
                		
                  PRIORITY
                


                		
                  STITCHING CLIPS
                


                		
                  MULTIPLE SOURCES
                


                		
                  GENERATE DOWNLOAD CLIPS
                


                		
                  SCHEDULER
                


                		
                  TRACK PROPERTIES
                


                		
                  FILE PROPERTIES
                


                		
                  STORAGE SUPPORT
                


                		
                  PREVIEW THUMBNAILS
                


                		
                  AVOD AND LIVE COMPOSE
                


                		
                  LIVE COMPOSE WITH MANIFEST MANIPULATION
                


                		
                  CONTINUOUS CAPTURE
                


              


            


            		
              TASK ENGINE WORKFLOWS
              
                		
                  VOD STREAM
                


                		
                  VOD CAPTURE
                


                		
                  VOD DELETE
                


                		
                  DRM SWITCH
                


                		
                  CREATE MP4
                


                		
                  BUILD THUMBNAILS
                


                		
                  VOD REMIX
                


                		
                  GENERATE GIF
                


                		
                  CAPTURE FRAME
                


                		
                  ASSET DELETE
                


                		
                  MEDIATAILOR CHANNEL ASSEMBLY
                


                		
                  MEDIATAILOR CHANNEL STATE
                


                		
                  VOD NPVR
                


                		
                  Trickplay
                


                		
                  WORKFLOW TRIGGER EXAMPLE
                


              


            


          


        


        		
          RELEASE NOTES
          
            		
              v2.1.x
              
                		
                  2.1.2 - 2023-07-05
                


                		
                  2.1.1 - 2023-05-16
                


                		
                  2.1.0 - 2023-04-19
                


              


            


            		
              v2.0.x
              
                		
                  2.0.5 - 2023-04-19
                


                		
                  2.0.4 - 2023-03-31
                


                		
                  2.0.3 - 2023-03-27
                


                		
                  2.0.2 - 2023-03-22
                


                		
                  2.0.1 - 2023-03-13
                


                		
                  2.0.0
                


              


            


            		
              v1.173.x
              
                		
                  1.173.11 - 2022-12-05
                


                		
                  1.173.10 - 2022-11-14
                


                		
                  1.173.9 - 2022-09-01
                


                		
                  1.173.8 - 2022-08-22
                


                		
                  1.173.7 - 2022-08-02
                


                		
                  1.173.6
                


                		
                  1.173.1
                


                		
                  1.173.0
                


              


            


            		
              v1.172.x
              
                		
                  1.172.5 - 2021-08-18
                


                		
                  v1.172.3 - 2021-08-17
                


                		
                  v1.172.0 - 2021-06-07
                


              


            


            		
              v1.171.x
              
                		
                  v1.171.1 - 2021-04-08
                


              


            


            		
              v1.170.x
              
                		
                  v1.170.4 - 2020-11-18
                


                		
                  v1.170.3 - 2020-11-18
                


                		
                  v1.170.2 - 2020-10-21
                


                		
                  v1.170.1 - 2020-09-30
                


              


            


            		
              v1.169.x
              
                		
                  v1.169.3 - 2020-07-09
                


                		
                  v1.169.2 - 2020-07-07
                


                		
                  v1.169.1 - 2020-07-07
                


                		
                  v1.169.0 - 2020-07-06
                


              


            


            		
              v1.168.x
              
                		
                  v1.168.1 - 2020-03-17
                


              


            


            		
              v1.167.x
              
                		
                  v1.167.2 - 2019-11-04
                


                		
                  v1.167.1 - 2019-10-29
                


                		
                  v1.167.0 - 2019-10-25
                


              


            


            		
              v1.166.x
              
                		
                  v1.166.8 - 2019-09-04
                


                		
                  v1.166.7 - 2019-08-20
                


                		
                  v1.166.6 - 2019-08-14
                


                		
                  v1.166.5 - 2019-08-13
                


              


            


            		
              v1.165.x
              
                		
                  v1.165.0 - 2019-02-15
                


              


            


          


        


        		
          SUPPORT
          
            		
              HOW TO CONTACT US
            


            		
              SYSTEM REQUIREMENTS
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





