Userfeeds Documentation
Release 0.1.0

Grzegorz Kapkowski

May 15, 2018

Contents

1 Introduction to the Userfeeds Platform
1.1 How does the Userfeeds Platform work? i
1.2 Why use the Userfeeds Platform?

2 Quick Start - Guide for Developers
2.1 How to get all links connected with Ethereum
2.2 How to get all feeds existing on ERC721 token (such as CryptoKitty Captain Barbosa)
2.3 How to get all bots (ERC721 tokens) owned by given address

3 Data Model - Claims
3.1 Structure
32 Types
3.3 Value Transfer .

4 Contracts

5 API Reference
5.1 Retrieving Data .

6 Algorithms

6.1 Available built-in algorithms e

7 Transports

7.1 Ethereum Transaction v i i i i e e e e e e e e e

72 HTTP......
7.3 Whisper Protocol

8 Indexes and tables
HTTP Routing Table

Python Module Index

17

19
19

21
21

27
27
27
30

31

33

35

CHAPTER 1

Introduction to the Userfeeds Platform

Userfeeds is envisioned as an infrastructure platform which allows developers to utilize easily data sets of content
rankings for their own use and build similar ones whenever needed.

The Userfeeds Platform can provide sets of data of ranked (filtered) information which can be used for reports and
rankings and a request for the delivery of the information is exectuted through the HTTP of any API which allows to
send a request and invoke particular algorithms for getting particular types of information and the result is obtaining
data from and about transactions (calls).

The Claim is a basic data entity in the Userfeeds Platform and usually a part of each request. It may represent an
“endorsement”, a “like”, an “upvote” for a given URL / Text / Identifier which is signed cryptographically. You can
sign a Claim with the ECDSA and send it through the HTTP or make an Ethereum transaction with data of Claim
which then will be treated as signed. The transaction can be seen as a way of transportation for a claim.

Rankings for transactions (calls) can be obtained through the utilization of algorithms which are actually pre-defined
queries designed for searching through data aggregated from Ethereum blockchains. Those queries can also be seen
as a set of tools supporting the interface. Examples of content rankings are: a list of products on amazon.com, songs
in a playlist on spotify, news on NYTimes, and all other places which have some content (links, articles, songs) sorted
in a particular way which you can access.

As a matter of fact it is possible to see in data reports how scores have been made, who and in what way has influenced
the score, information on users who have made the score in a selected view.

The platform is also capable of tracking financial information regarding particular users and their transactions.

In order to make full use of the API and all algorithms, it is essential that you have a wallet (an address) for Ethereum.
Currently Ethereum (and Bitcoin in the future) is supported on the platform.

For easy set-up of both the wallet, we recommend using the MetaMask service available at https://metamask.io/.

In order to become familiar technically with the Userfeeds Platform and be able to use it efficiently, go to Quick Start
- Guide for Developers and API Reference to see how to use our APIs and how to use the Ethereum blockchain for
pushing information into the Userfeeds Platform.

Using the Userfeeds Platform can be shortly described as:

Making a transaction from an exemplary interface > Getting the requested data through the API > Transaction
is returned with wanted data

https://metamask.io/

Userfeeds Documentation, Release 0.1.0

In short it goes into three easy steps:
Send > Wait > Get

The basic process of obtaining information with use of the Userfeeds Platform can be compared to a simple query for
serach results on Google.

Our mission - as owners of the Userfeeds Platform - is to help developers in obtaining information (data sets) and
scores (reports on aggregated transaction data per a selected view) as well as monetizing their interfaces on web sites
by providing them with ‘ready-to-use’ API’s, libraries and algorithms which they can incorporate in an easy way into
their software and web pages.

1.1 How does the Userfeeds Platform work?

The Userfeeds Platform is composed of a couple of parts which interact together in order to deliver rankings through
HTTP API’s to your application.

Ethekeam Bilon b= ol ok X

Netdvork Netdork Netdvork Netdork

: Blockchain
API H
Gateway : : Nodes

Claims : |
Processor

Rankings
Engine matiRitt OO RPN E SO ERPSRAS: I

L._._._UsenteedsPla.liorm_._._._J

It is important to remember that any transaction is a claim. Such Claim is a basic information package signed crypto-
graphically (with use of unique key) and connected with an address - in the json format - key - claim / key - target.

The claim can also be understood as metadata for any transaction.

Claims created with help of our algorithms land on the Ethereum blockchain from where they are collected and read.
Claims can have extensions which make them a particular type.

2 Chapter 1. Introduction to the Userfeeds Platform

Userfeeds Documentation, Release 0.1.0

In order to learn more about claims, go to claims

First it is the Userfeeds Platform which reads all the information from supported blockchains with help of various
processes (applications and scripts) and stores it in an internal database. We store all transactions and contract calls in
the Graph database and current balances in the standard SQL database.

When someone sends Claim data to the Userfeeds Platform through the HTTP or through the Ethereum network, it is
processed and inserted into the Graph database for further use in ranking and other algorithms.

When an application makes a HTTP request to our Ranking API endpoint, a Ranking Engine takes the requested
algorithm and applies it to the current data stored in the Graph database and the SQL database and returns sorted
entries for application to display to the user.

1.2 Why use the Userfeeds Platform?

* Delivery of data sets of filtered infomation which is normally not possible for blockchains

* Delivery of business models for monetizing of the interface - there are different monetizing models available
and tools for that can simply be described as “plug and play” for monetization

* Delivery of simple technologies which enable getting all information from blockchains
By being the user of the Userfeeds Platform you can also benefit from the offering of our partners:
> Cryptopurr.co (exemplary interfaces)
> Stateofthedapps.com (catalogue of projects built on Ethereum)

> Stroi.digitalartchain.com (the first fork of cyrptocurr)

1.2. Why use the Userfeeds Platform? 3

Userfeeds Documentation, Release 0.1.0

4 Chapter 1. Introduction to the Userfeeds Platform

CHAPTER 2

Quick Start - Guide for Developers

2.1 How to get all links connected with Ethereum

The code snippets presented below the Demo window return a list of news or messages shared to an Ethereum context
and sorted according to our simple algorithms.

The obtained information and rankings shown in the Demo window below are a result of applying the algorithms
presented per programming language in sections beneath the Demo.

The algorithm used for getting scores in the Demo is available here
Demo:

In order to get the same type of information as presented in the Demo, copy the URL provided below into your
application or browser.

2.1.1 cURL

$ curl 'https://api.userfeeds.io/ranking/links;asset=ethereum'

2.1.2 In JavaScript (browser)

<!DOCTYPE html>
<html>
<head>
<title>Simple ranking for Ethereum:</title>
</head>
<body>
<script>
fetch('https://api.userfeeds.io/ranking/links;asset=ethereum')
.then (function (response) {
return response.json();

Userfeeds Documentation, Release 0.1.0

})
.then (function (ranking) {
var div = document.getElementById('ranking');

for (var 1 = 0; i < ranking.items.length; i++) {
var item = ranking.items[i];
div.innerHTML += i.toString() + '.' + item.

—target + '
';

div.innerHTML += 'Score: ' + item.score + '

';

}

1)
</script>

<hl>Simple ranking for Ethereum</hl>
<div id="ranking"></div>

</body>

</html>

2.1.3 In JavaScript (node.js)

const https = require('https');

const options = {
hostname: 'api.userfeeds.io',
port: 443,
path: '/ranking/links;asset=ethereum',
method: 'GET'

bi
console.log('Simple ranking for Ethereum:\n')

const req = https.request (options, (res) => {
let data = "";

res.setEncoding ('utf8'");
res.on('data', (chunk) => {
data += chunk;
}) i
res.on('end', () => {
let ranking = JSON.parse (data);
for (let index in ranking.items) {
console.log (" ${index}. ${ranking.items[index].target});
console.log (" Score: ${ranking.items[index].score}\n");

reg.on('error', (e) => {
console.error (e);

)i

reqg.end();

// Simple ranking for Ethereum:

//
// 0. http://example.com/one

6 Chapter 2. Quick Start - Guide for Developers

Userfeeds Documentation, Release 0.1.0

// Score: 123.1234324

//

// 1. http://example.com/two
// Score: 32.234542343

2.1.4 In python

import requests
RANKING_URL = "https://api.userfeeds.io/ranking/links;asset=ethereum"
response = requests.get (RANKING_URL) . json ()
print ("Simple ranking for Ethereum:\n")
for index, item in enumerate (response['items']):
print ("{0}. {1}".format (index, item["target"]))
print ("Score: {0}".format (item['score']))
print ()

Simple ranking for Ethereum:

#

#

0. http://example.com/one
Score: 123.1234324
#
#
#

1. http://example.com/two
Score: 32.234542343

2.2 How to get all feeds existing on ERC721 token (such as Cryp-
toKitty Captain Barbosa)

Note: It is important to remember that the ERC721 is recognized as one of standards for tokens.

The feed is the message (call) you send and any message (call) sent to you and about you.
The algorithm used for getting information presented in the Demo is available here
Demo:

In order to get all feeds existing on the ERC721 token, copy the URL provided below into your application or browser.

2.2.1 cURL

$ curl 'https://api.userfeeds.io/ranking/feed;
—context=ethereum:0x06012c8cf97bead5deae237070£9587£f8e7a266d:134330"'
{"items": [{"about":null, "abouted":[], "author":
—"0x6bed50972b30891b16c8588dcbcl0c8c2aef04da”, "context":"ethereum:0x0. ..

2.2. How to get all feeds existing on ERC721 token (such as CryptoKitty Captain Barbosa) 7

Userfeeds Documentation, Release 0.1.0

2.2.2 In JavaScript (browser)

<!DOCTYPE html>
<html>
<head>
<title>Simple ranking for Ethereum:</title>
</head>
<body>
<script>
fetch('https://api.userfeeds.io/ranking/cryptopurr_feed;
—context=ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d:134330")
.then (function (response) {
return response.json();
1)
.then (function (ranking) {
var div = document.getElementById('ranking');

for (var i = 0; i < ranking.items.length; i++) {
var item = ranking.items[i];
div.innerHTML += i.toString() + '. ' + item.target.id + '
';
}
1)
</script>

<hl>Simple ranking for Ethereum</hl>
<div id="ranking"></div>

</body>

</html>

2.2.3 In JavaScript (node.js)

const https = require('https');

const options = {
hostname: 'api.userfeeds.io',
port: 443,
path: '/ranking/cryptopurr_feed;
—context=ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d:134330",
method: 'GET'

}i
console.log('Simple ranking for Ethereum:\n')

const req = https.request (options, (res) => {
let data = "";

res.setEncoding ('utf8'");
res.on('data', (chunk) => {

data += chunk;
b
res.on('end', () => {

let ranking = JSON.parse (data);

for (let index in ranking.items) {

console.log(${index}. &{ranking.items[index].target.id});

8 Chapter 2. Quick Start - Guide for Developers

Userfeeds Documentation, Release 0.1.0

reg.on('error', (e) => {
console.error (e);

)i

reg.end () ;

// Simple ranking for Ethereum:
//

// 0. http://example.com/one
// Score: 123.1234324

//

// 1. http://example.com/two
// Score: 32.234542343

2.2.4 In python

import requests

RANKING_URL = "https://api.userfeeds.io/ranking/cryptopurr_feed;
—context=ethereum:0x06012c8cf97bead5deae237070£9587£8e7a266d:134330"

response = requests.get (RANKING_URL) . json ()
print ("Simple ranking for Ethereum:\n")
for index, item in enumerate (response['items']):

print ("{0}. {1}".format (index, item["target"]["id"]))
print ()

2.3 How to get all bots (ERC721 tokens) owned by given address

Note: It is important to remember that the ERC721 is recognized as one of standards for tokens.

In order to get all CryptoBots owned by a given address, copy the URL provided below into your application or
browser.

2.3.1 cURL

$ curl 'https://api.userfeeds.io/ranking/tokens;
—1dentity=0x6bed450972b30891b16c8588dcbcl0c8c2aefl4da;
—asset=ethereum:0xf7a6el5dfd5cdd9%ef12711bd757a9%906021abf643"
{"items":[{"sequence":5289388, "token":"4085"}]}

2.3. How to get all bots (ERC721 tokens) owned by given address 9

https://cryptobots.me/

Userfeeds Documentation, Release 0.1.0

10 Chapter 2. Quick Start - Guide for Developers

CHAPTER 3

Data Model - Claims

Claims are the smallest self-contained pieces of information - an arbitrary information package - inside the Userfeeds
Platform. They are also the only way of introducing any information to databases which is sent via the so-called
transports and then interpreted by algorithms in order to return the requested information to interfaces. All claims
are signed cryptographically or have a reference to their cryptographic origin which can be a transaction (call) on the

blockchain, for example.

3.1 Structure

The typical structure of a claim is presented in the Overview below:

3.1.1 Overview

The Claim may look as follows:

{

"context": "CONTEXT",
"type": ["TYPEA", "TYPEB", "..."],
"claim": {
"target": "TARGET",
"additional": "fields",
"go": ["here", "..."]
}I
"credits": |
{
"type": "interface",
"value": "INTERFACE IDENTIFIER"
}
] ’
"signature": {
"type": "TYPE",
"creator": "CREATOR",

11

Userfeeds Documentation, Release 0.1.0

"signatureValue": "SIGNATURE"

The format of claims is rather isolated from structure of data in a block-chain - and this is why it is in the json format

We cannot say that there are types of claims as they accompany transactions in general and it is the transaction which
is the main part. And it is the contract on a given block-chain which defines in which way the claim will be read and
treated. Basing on that we can that:

* There are Claims with a value for a defined account - usually used for getting to a higher position in a ranking
— the value is the score — and it is the algorithm which decides if the structure of such claim is proper (it is
transation with use of token)

* There are Claims serving solely for connecting sensual / graphic / text data with some transaction data

* There are Claims serving for limiting the number of users who can apply for transactions by defining parameters
for such transactions and users

It is important to remember that claims are an optional part of transactions and in that way they are treated by algo-
rithms.

Claims which do not bear or transfer a value (from the main Ethereum net) can be used on any block-chain as no
token for the identification is needed. Therefore a normal claim without a value should be rather used outside of the
Ethereum main net.

3.1.2 Context

Note: Populating this field is optional.

The Context field is used to denote a destination of a given claim. It can be interpreted as a name of any topic or thing
about which people might want to share information. Usually it will have something to do with a blockchain space
(but it doesn’t have to). For example if you would like to share some information to all people interested in Ethereum
blockchain you will send a claim with et hereum as the context.

Other examples of contexts may be:
* ethereum
* ethereumclassic
* bitcoin
¢ ethereum:0x4564567890abcdef. . . .abc
* ethereumclassic:0x4564567890abcdef. . . .abc
* myspecialcontext
e companyx
e companyx:departmenty

ethereum:0x123....456 context identifiers are interpreted as object Ox123....456 on ethereum and usually will
be used to share information about contracts / addresses on a given blockchain.

Special contexts such as starting with userfeeds: are technical and have a special meaning in the Userfeeds Platform,
eg. userfeeds:pairing will create a special PAIRED relationship allowing one to connect their crypto-currency holdings
with an additional public key which will only be used to sign claims.

12 Chapter 3. Data Model - Claims

Userfeeds Documentation, Release 0.1.0

3.1.3 Type

Note: Populating this field is optional.

The Type describes an additional data present in a claim object.
An example can be the labels type. The object of claim of that type needs to have a labels key with an array of values.

The description of all supported types can be found at Types

3.1.4 Cclaim

This key is used to store user provided information and it is mandatory for all claims. claim object will always have
a target key and additional fields depending on the t ype array.

Target

The Target value identifies a target object which the user wants to share or tag with additional information.
Examples of proper target values are:

e http://some.url/path/

* text:base64:base64encodedtext

¢ ipfs:somehash

* ipdb:somehash

¢ claim:claimsignaturehash

* mediachain:somehash

* isbn:0451450523

* isan:0000-0000-9E59-0000-0O-0000-0000-2

* btih:c12felc06bba254a9dc9t519b335aa7c1367a88a

¢ ethereum:0x4564567890abcdef. . . abc

* bitcoin:0Ox4afebedef. .. 123

Additional fields

That depends on the t ype array additional keys which might be present in c1aim object. See the Types for supported
types.

3.1.5 signature

This field is generated in order to denote the ownership of claim and the content can be a cryptographic signature or a
pointer to the cryptographically secured origin of claim.

3.1. Structure 13

http://some.url/path/

Userfeeds Documentation, Release 0.1.0

Type

Describes what type of signature we are dealing with. It could be ecdsa . secp256r1 for the elliptic curve signature
or ethereum.transaction for the claim origination from the Ethereum blockchain.

Supported Signature Types

ecdsa.primel92vl In python: ecdsa.NIST192p
ecdsa.secp256rl/ecdsa.prime256vl In python: ecdsa.NIST256p
ecdsa.secp224rl In python: ecdsa.NIST224p

ecdsa.secp384rl In python: ecdsa.NIST384p

ecdsa.secp521rl In python: ecdsa.NIST521p

ecdsa.secp256kl In python: ecdsa.SECP256k1
ethereum.transaction

Claims posted on ethereum blockchain will be verified by comparing the blockchain content with the
claim content.

Creator

This identifies a public key or an address which signed the claim.
Format: identifier

* hex:04861127b14bf0036e. ..ef7127b114988057

* rinkeby:0x1234567890abcdef. .. 1456

* ethereum:0x1235... 145

* bitcoin:0x123456...1234

Signature Value

This key holds a raw signature value as produced by the signing algorithm or it can be a transaction hash or any valid
identifier of some externally verifiable origin of claim.

3.2 Types

3.2.1 Basic

Basic claim:

{
"claim": {
"target": "http://some.url/path/"
}I
"context": "ethereum:0x4564567890abcdef....abc",
"signature": {
"creator":
—"94d1aa6655d931294d524cf52b0df866976£89774bac38a730cf20e2d51dd24d34efc2bbb4dd5bba%la7a$582511491dde!:

n
",

14 Chapter 3. Data Model - Claims

Userfeeds Documentation, Release 0.1.0

"signatureValue":
—"304402203dac2176721d7e05cd8c580a27a504b64b0a8eel71b18a07630201cbed979%9ac7022013faf873]

"
",

"type": "ecdsa.prime256v1l"

With the acknowledgment of the interface from which the claim was created:

{

"eclaim": {

—"0df1d4915347bcae90a0696c9efd6300e33b610d31130c3049d329fab61afl138de7a7ee55£99057£d8d39¢

"
",

"signatureValue":
—"304502206c243684007¢c9%9e412612b5d1a371b20ebl146652e4b149bblfc0e6dad37e7£7280221000b8c7794

n
",

"type": "ecdsa.prime256v1l"

3.2.2 Link

Additional keys:
e title string

e summary string

{
"eclaim": {
"summary": "summary",
"target": "http://some.url/path/",
"title": "title"
}I
"context": "rinkeby:0xfe5da6ae3f65e7d5¢ce29121a9f5872ffd83b45e6",
"credits": |
{
"type": "interface",
"value": "http://blog.example.com/path/"
}
]I
"signature": {

"creator":
—"ffc8c2f39e8a302bf9cal37b06£fa9014£0cd3c85900c3d8b771£31a91cel33c050948faedadl4d73ad4f6c4]
‘—’"I

"signatureValue":

"INA022710003~EE5~30Khal1369daNN5dafOQ08 fHh301T 4T FFO2AF2IEANAETH 3701 602742797071 F30221 008 F

"
",

3.2. Types

15

£90b957ca465

"target": "http://some.url/path/"
}I
"context": "ethereum:0x4564567890abcdef....abc",
"credits": [
{
"type": "interface",
"value": "http://blog.example.com/path/"
}
]I
"signature": {
"creator":
4664be9flc34.!

3949feacd78dze

£5937¢c3a010b!

2afc2c912466

Userfeeds Documentation, Release 0.1.0

"type": "ecdsa.prime256v1"
by
" type " H [

"link"

3.2.3 Labels

Additional keys:

* labels array of string

"eclaim": {
"labels": [
"Good",
"Book",
"Cats"
]I
"target": "http://some.url/path/"
}l
"context": "rinkeby:0xfeb5dabae3f65e7d5¢ce29121a9f5872ffd83b45e6",
"signature": {
"creator":

—"de9965ce03cf6£960a7efed423633409a0052ad8£9£2100e27026ad94551d4d69058c0a263dbd0cacf999

:"
-

"signatureValue":

—"3044022069457927£1£c06b26467a7cc93c99085efeaddB8811c6979ffab%a2196beb5ad702201587d3£8

("
o

"type": "ecdsa.prime2b6vl"
}I
"type": [

"labels"

3.3 Value Transfer

Along with claims the Userfeeds Database contains normalized data about transfer of assets (tokens and others)

If the transfer of assets was accompanying a claim, they will be connected with the TRANSFER relation.

16 Chapter 3. Data Model - Claims

a3e97ddcclaft:

d2e9058d6ced:

CHAPTER 4

Contracts

Contracts can be decsribed as notaries or agents that mediate between claims and blockchains. Three types of contracts
can be distinguished:

* Notary only - for non-value transations (calls) and claims
» Allowing to pass a value to a given address (acting as a proxy contract)

¢ For the token ERC20 only (which serve for money-related transations)

17

Userfeeds Documentation, Release 0.1.0

18 Chapter 4. Contracts

CHAPTER B

API Reference

The API root is available at https://api.userfeeds.io/

5.1 Retrieving Data

read-only

The available algorithms are described in the Algorithms section.

Schema:

$ curl https://api.userfeeds.io/ranking/algorithmlName;paraml=valuel;param2=value2...
—/algorithm2Name. . .

Example:

$ curl https://api.userfeeds.io/ranking/links;asset=ethereum

GET /ranking/algorithmlName;paraml=valuel;param2=value2.../algorithm2Name. ..
Example request:

Example response:

OR

Schema:

$ curl -X POST -v -d '"{"flow":[{"algorithm":"algorithmlname", "params":{"paraml":
—"valuel",...},...}]}" -H 'Content-Type: application/json' 'https://api.userfeeds.io/
—ranking/"'

Example:

$ curl -X POST -v -d '"{"flow":[{"algorithm":"links", "params":{"asset":"ethereun"}}]}"
——-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/"'

19

https://api.userfeeds.io/

Userfeeds Documentation, Release 0.1.0

POST /ranking/
Example request:

Example response:

20 Chapter 5. API Reference

CHAPTER O

Algorithms

The Userfeeds Platform allows running custom algorithms on the top of data gathered from all supported sources such
as Ethereum blockchain (mainnet, ropsten, rinkeby, kovan)

Algorithms can be referenced by their identifier which depends on how the author has decided to share them.

Note: The support is currently limited to built-in algorithms created by Userfeeds only. We will open custom
algorithms for external developers in the near future.

6.1 Available built-in algorithms

6.1.1 Channel feed

Version: 0.1.0

Example:

curl -X POST \

-d "{"flow":[{"algorithm":"experimental_channel_feed", "params":{"id":"https://www.
—google.com"}}]}1" \

-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/"'

Json claim example:

{
"type": ["about"],
"claim": {
"target":"Cool website, bro!",
"about":"https://www.google.com"

21

Userfeeds Documentation, Release 0.1.0

ERC721 example:
ranking/experimental_channel_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e¢7a266d:593163

Json claim example:

{
"type": ["about"],

"claim": {

"target": "New cool kitten on the block",

"about": "ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d:593163"
by
"context": "ethereum:0x06012c8cf97beadbdeae237070£9587£f8e7a266d:608827"

6.1.2 Channels

Version: 0.1.0

Example:

curl -X POST \
-d '"{"flow":[{"algorithm":"experimental_channels", "params":{"starts_with":"https:/

/"33 N
-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/'

Json claim example:

{
"type": ["about"],
"eclaim": {
"target":"Cool website, bro!",
"about":"https://www.google.com"

ERC721 example:
ranking/experimental_channels;starts_with=ethereum:0x06012c8cf97bead5deae237070f9587{8e7a266d

Json claim example:

{
"type": ["about"],

"claim": {

"target": "New cool kitten on the block",

"about": "ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d:593163"
b
"context": "ethereum:0x06012c8cf97bead5deae237070£9587£f8e7a266d:608827"

6.1.3 Claims

Version: 0.1.0
* Filter by id

ranking/experimental _claims;id=claim:0x98a87. ..526e6:0

22 Chapter 6. Algorithms

https://api.userfeeds.io/ranking/experimental_channel_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:593163
https://api.userfeeds.io/ranking/experimental_channels;starts_with=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d
https://api.userfeeds.io/ranking/experimental_claims;id=claim:0x98a873f7f2843a12fa76d3026ba30072ee21a70f34324e9ec7875c21cb8526e6:0

Userfeeds Documentation, Release 0.1.0

« Filter by author
ranking/experimental_claims;author=0x7195ebc1bdbcff1d8557541a2b186c6dfd01aef8
* Filter by target
ranking/experimental_claims;target=claim:0x1470e. . . fd0d1:0
All of above filters support filtering by multiple arguments:
ranking/experimental_claims;author=0x7195e. .. 1aef8;author=0xda9d64. .. 8d18el
Filters can be put in any combination:
ranking/experimental_claims;author=0x7195e. .. laef8;target=claim:0x1470ee. . . fd0d1:0

JSON claim example:

{
"author": "Ox7195ebclbdbcffld8557541a2bl86c6dfd0laef8",

"created_at": 1522921352000,
"family": "kovan",
"id": "claim:0x98a873f£7£2843a12fa76d3026ba30072ee21a70£34324e9ec7875c21cb8526e6:0

"sequence": 6727044,

"target":
—"claim:0x1470ee0b001370a4e84272a117c94182c092£8e0bfb22b60909c754ce9dfd0d1:0"
}

6.1.4 Context feed

Version: 0.1.0
ERC721 example:
ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:587035

Json claim example:

{

"claim": {
"target": "I love catnip"
b
"context": "ethereum:0x06012c8cf97bead5deae237070£9587£8e7a266d:587035"

6.1.5 Contexts

Version: 0.1.0
ERC721 example:
ranking/experimental_contexts;starts_with=ethereum:0x06012c8cf97beadS5deae237070f9587{8e7a266d

Json claim example:

{
"eclaim": {
"target": "I love catnip"
by

6.1. Available built-in algorithms 23

https://api.userfeeds.io/ranking/experimental_claims;author=0x7195ebc1bdbcff1d8557541a2b186c6dfd01aef8
https://api.userfeeds.io/ranking/experimental_claims;target=claim:0x1470ee0b001370a4e84272a117c94182c092f8e0bfb22b60909c754ce9dfd0d1:0
https://api.userfeeds.io/ranking/experimental_claims;author=0x7195ebc1bdbcff1d8557541a2b186c6dfd01aef8;author=0xda9d643b264d969788adfc01e22c8b3e2e8d18e1
https://api.userfeeds.io/ranking/experimental_claims;author=0x7195ebc1bdbcff1d8557541a2b186c6dfd01aef8;target=claim:0x1470ee0b001370a4e84272a117c94182c092f8e0bfb22b60909c754ce9dfd0d1:0
https://api.userfeeds.io/ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:587035
https://api.userfeeds.io/ranking/experimental_contexts;starts_with=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d

Userfeeds Documentation, Release 0.1.0

"context": "ethereum:0x06012c8cf97beadbdeae237070£9587£8e7a266d:587035"

6.1.6 Feed

Algorithm used by https://userfeeds.github.io/cryptopurr/

Returns frontend specific structure of purrs.

Version: 0.1.1

Example:
ranking/cryptopurr_feed;context=ethereum:0x06012c8cf97bead5deae237070f9587t8e7a266d

Json claim example:

{

"about": null,

"abouted": [],

"author": "0x460031lae4db5720d92a48fecf06a208c5099c186",

"context": "ethereum:0x06012c8cf97bead5deae237070£9587£8e7a266d:593163",
"created_at": 1523000940000,

"family": "kovan",

"id": "claim:0x464762e30e39458aflbfed2756adfdd3c673caefadfb84544b21bbd90d403d262:0

"sequence": 6742075,

"target": {

"id": "Hurry up!"
}I
"targeted": [],
"type": "regular"

6.1.7 Filter claim hodl

Version: 0.1.0

For now it filters claims authored by identities which received at latest one transfer of given asset.
Possible root assets: ethereum, rinkeby, ropsten, kovan

Any ERC20: ethereum:0xe41d2489571d322189246dafa5ebde 14699498

Example:

ranking/experimental_claims;target=claim:0x49994. . . bf8e8:0/experimental_claim_hodl;asset=rinkeby

6.1.8 Filter by labels

It filters claims by those labeling target with given labels. Also adds info about those (filtered) labels to each claim.
Version: 0.1.0

Examples:

24 Chapter 6. Algorithms

https://userfeeds.github.io/cryptopurr/
https://api.userfeeds.io/ranking/cryptopurr_feed;context=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d
https://api.userfeeds.io/ranking/experimental_claims;target=claim:0x4999436ecf49984576651c7586dc95d4b59766e00c779cc2fdeade6ffc0bf8e8:0/experimental_claim_hodl;asset=rinkeby

Userfeeds Documentation, Release 0.1.0

ranking/experimental_context_feed;id=ethereum:0x06012. ..a266d:341605/experimental _filter_labels;id=like rank-
ing/experimental_context_feed;id=ethereum:0x06012...a266d:341605/experimental_filter_labels;id=follow;id=favourite

6.1.9 Sort

Sorts items by given key. To sort in reversed order pass order=desc.

Version: 0.1.0

Example:

ranking/experimental_tokens;identity=0x157da. .. 2bee3;asset=ethereum:0x06012. . . a266d/experimental_sort;by=sequence

ranking/experimental_tokens;identity=0x157da. .. 2bee3;asset=ethereum:0x06012. . . a266d/experimental_sort;by=sequence;order=DES

6.1.10 Valid erc721

It filters claims authored by an owner of context. It parses claim context to get collectible id and erc721 contract
address. Then it verifies if claim author was an owner of this collectible at the time of creating claim.

Version: 0.1.0

Example:

ranking/experimental_context_feed;id=ethereum:0x06012. ..a266d:341605/experimental _valid_erc721

6.1.11 Tokens

Returns all erc721 tokens of given asset owned by given identity.
Version: 0.1.0
Example:

ranking/experimental_tokens;identity=0x157da. .. 2bee3;asset=ethereum:0x06012. .. 7a266d

6.1.12 Receivers

Version: 0.1.0

Returns receivers of given asset since given timestamp but not older than one day. Timestamp have to be in millisec-
onds.

Example:

curl -X POST \
-d "{"flow":[{"algorithm":"experimental_receivers", "params":{"timestamp
—":1523450030000, "asset":"ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d"} 11" \
-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/"'

6.1. Available built-in algorithms 25

https://api.userfeeds.io/ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:341605/experimental_filter_labels;id=like
https://api.userfeeds.io/ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:341605/experimental_filter_labels;id=follow;id=favourite
https://api.userfeeds.io/ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:341605/experimental_filter_labels;id=follow;id=favourite
https://api.userfeeds.io/ranking/experimental_tokens;identity=0x157da080cb7f3e091eadfa32bc7430d9f142bee3;asset=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d/experimental_sort;by=sequence
https://api.userfeeds.io/ranking/experimental_tokens;identity=0x157da080cb7f3e091eadfa32bc7430d9f142bee3;asset=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d/experimental_sort;by=sequence;order=desc
https://api.userfeeds.io/ranking/experimental_context_feed;id=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:341605/experimental_valid_erc721
https://api.userfeeds.io/ranking/experimental_tokens;identity=0x157da080cb7f3e091eadfa32bc7430d9f142bee3;asset=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d

Userfeeds Documentation, Release 0.1.0

6.1.13 Receivers

Version: 0.1.0
Returns all addresses which historically received given asset.

Example:

curl -X POST \

-d '"{"flow":[{"algorithm":"experimental_all_receivers", "params":{"asset":
—"ethereum:0x06012c8cf97bead5deae237070£9587f8e7a266d"} 111" \

—-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/'

6.1.14 Airdrop receivers

Version: 0.1.0
Returns all addresses which historically received transfer connected with given airdrop id.

Example:

curl -X POST \
-d "{"flow":[{"algorithm":"experimental airdrop_receivers", "params":{"id":
—"claim:0xb08b45fe956elc0b31dfdf7d6f1007¢cb910799a77f4de2307a6a19a1£85a386¢c:0"}1}11}1" \
-H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/"'

26 Chapter 6. Algorithms

CHAPTER /

Transports

Transports are manners of passing claims to blockchains. They can simply be seen as transport layers. Transports can
also be seen as intermediaries between claims and blockchains.

7.1 Ethereum Transaction

You can send a claim through an Ethereum Blockchain transaction.

Note: The Userfeeds Platform does not monitor every transaction for potential claims yet.

In order to send a claim through a transaction you need to call special contracts which are monitored by the Userfeeds
Platform.

Properties:

In-transport secrecy The claim is available from the moment it is distributed through the Ethereum network and can
be sniffed before it reaches its desired ranking.

Independent distribution The claim will be a part of the Etherum Blockchain and will be available from all copies
of the blockchain.

7.2 HTTP

You can send signed claims through the HTTP Gateway of the Userfeeds Platform.
Properties of transports are as follows:

In-transport secrecy The claim cannot be sniffed on transport thanks to a HTTPS connection and will only be avail-
able to the outside world after it is incorporated into the Userfeeds Platform through APIs rankings and database
dumps.

27

Userfeeds Documentation, Release 0.1.0

Independent distribution The claim exists only inside the Userfeeds Platform database and will be distributed with
Userfeeds Platform database dumps.

An example of posting a claim directly to the Userfeeds Platform through the HTTP transport:

$ curl \--=der4d3
-X POST https://api.userfeeds.io/storage/ \
-H "Content-Type: application/json" \
-H "Authorization: 59049c8fdfed920001508e2a03414df648e34ea665f544a17d5c113b" \
-d '"{"claim":{"target":"http://some.url/path/"},"context":

—"ethereum:0x4564567890abcdef....abc", "signature":{"creator":
—"82fb68fcl14719094b36e99e588c9988458call87d4791463164285bb064458232c4bb5bb638158096f4ed
—","signaturevalue":

—"c675d123fble99ffe59e7626c655806ebed7eclcadl00b953029731159c2e14f4461e2ebf7£43a071b84]

n

<", "type":"ecdsa.prime256v1"}}’

7.2.1 Contracts

With a value transfer:

Code

pragma solidity 70.4.11;

contract Userfeeds {
event Claim(address sender, address userfeed, string data);
function post (address userfeed, string data) payable {

userfeed.transfer (msg.value);
Claim(ms4g.sender, userfeed, data);

ABI

"constant":false,

"inputs": [
{ "name":"userfeed", "type":"address" },
{ "name":"data", "type":"string" }

]I

"name" :"post",

"outputs":[],

"payable" :true,

"type":"function"

"anonymous": false,

"inputs": [
{ "indexed":false, "name":"sender", "type":"address" },
{ "indexed":false, "name":"userfeed", "type":"address" },
{ "indexed":false, '"name":"data", "type":"string" }

]I

"name":"Claim",

"type":"event"

28 Chapter 7. Transports

57e275e2el157

b57cbcbdéebd

Userfeeds Documentation, Release 0.1.0

]

Addresses

* For Mainnet: ...
* For Rinkeby: 0x0a48ac8263d9d79768d10cf9d7e82a19c49f0002
* For Ropsten: 0xa845c686a696c3d33988917¢387d8ab939¢c66226

¢ For Kovan: ...

Without a value transfer:

Code

pragma solidity 70.4.11;
contract Userfeeds {

event Claim(address sender, string data);

function post (string data) {
Claim (msg.sender, data);

}

ABI

]

"constant": false,
"inputs": [
{ "name":"data", "type":"string" }
] 4
"name" :"post",
"outputs":[],
"payable":false,
"type":"function"

"anonymous": false,

"inputs": [
{ "indexed":false, "name":"sender", "type":"address" 1},
{ "indexed":false, "name":"data", "type":"string" }

1,
"name":"Claim",
"type":"event"

Addresses

 For Mainnet: ...
* For Rinkeby: 0x09dcdf34e0c28b106fdfe51009cb71ae92bf8bbc
* For Ropsten: 0x5¢3fe6b94b57¢1e294000403340f12f083e71b83

¢ For Kovan: ...

7.2. HTTP 29

Userfeeds Documentation, Release 0.1.0

7.3 Whisper Protocol

TODO: Direct message The data on topic will be available soon.

TODO: Broadcast The data on topic will be available soon.

30 Chapter 7. Transports

CHAPTER 8

Indexes and tables

* genindex
* modindex

e search

31

Userfeeds Documentation, Release 0.1.0

32

Chapter 8. Indexes and tables

HTTP Routing Table

/ranking

GET /ranking/algorithmlName; paraml=valuel;param2=value2.../algorithm2Name.. .,
19
POST /ranking/, 20

33

Userfeeds Documentation, Release 0.1.0

34

HTTP Routing Table

Python Module Index

a

algorithms
algorithms
26
algorithms
25
algorithms
21
algorithms
algorithms
algorithms
algorithms
23
algorithms
algorithms
24
algorithms
algorithms
algorithms
algorithms

25

.experimental.
.experimental.

.experimental
.experimental.
.experimental
.experimental.

.experimental
.experimental.

.experimental.
.experimental.
.experimental
.experimental.

.cryptopurr. feed, 24

.experimental.airdrop_receivers,

all_receivers,
channel_feed,

.channels, 22
claim_hodl, 24
.claims, 22
context_feed,

.contexts, 23
filter_labels,

receivers, 25
sort, 25
.tokens, 25
valid_erc721,

35

Userfeeds Documentation, Release 0.1.0

36

Python Module Index

Index

A

algorithms.cryptopurr.feed (module), 24
algorithms.experimental.airdrop_receivers (module), 26
algorithms.experimental.all_receivers (module), 25
algorithms.experimental.channel_feed (module), 21
algorithms.experimental.channels (module), 22
algorithms.experimental.claim_hodl (module), 24
algorithms.experimental.claims (module), 22
algorithms.experimental.context_feed (module), 23
algorithms.experimental.contexts (module), 23
algorithms.experimental filter_labels (module), 24
algorithms.experimental.receivers (module), 25
algorithms.experimental.sort (module), 25
algorithms.experimental.tokens (module), 25
algorithms.experimental.valid_erc721 (module), 25

37

	Introduction to the Userfeeds Platform
	How does the Userfeeds Platform work?
	Why use the Userfeeds Platform?

	Quick Start - Guide for Developers
	How to get all links connected with Ethereum
	How to get all feeds existing on ERC721 token (such as CryptoKitty Captain Barbosa)
	How to get all bots (ERC721 tokens) owned by given address

	Data Model - Claims
	Structure
	Types
	Value Transfer

	Contracts
	API Reference
	Retrieving Data

	Algorithms
	Available built-in algorithms

	Transports
	Ethereum Transaction
	HTTP
	Whisper Protocol

	Indexes and tables
	HTTP Routing Table
	Python Module Index

