

Welcome to Userfeeds - Documentation and Manuals

	Introduction to the Userfeeds Platform
	How does the Userfeeds Platform work?

	Why use the Userfeeds Platform?

	Quick Start - Guide for Developers
	How to get all links connected with Ethereum

	How to get all messages from ERC721 token (such as CryptoKitty Captain Barbosa)

	How to get all bots (ERC721 tokens) owned by given address

	Web Components
	Button

	API Reference
	Retrieving Data

	Algorithms
	Available built-in algorithms

Indexes and tables

	Index

	Module Index

	Search Page

Introduction to the Userfeeds Platform

Userfeeds is envisioned as an infrastructure platform which allows developers to utilize easily content rankings for their own use or for their clients and build better ones whenever needed.

The product and core of the Userfeeds Platform which can be used for that purpose is the http API which allows to get data from internet transactions as well as content rankings and to access databases in which data on transactions, which make the rankings, are stored.

Internet transactions are blocks of the Javascript code which can be called snippets and placed on websites as elements serving for engaging visitors into promotional activities (such as liking and promoting) which are based on the use of crypto-currencies, mainly Ethereum and Bitcoin. Such transactions are technically called ‘Claims’.
The Claim is a basic data entity in the Userfeeds Platform. It may represent an endorsement, a like, an upvote for a given URL / Text / Identifier which is signed by one of the supported signing methods. You can sign a Claim with the ECDSA and send it through the HTTP or make an Ethereum transaction with data of Claim which then will be treated as signed.

Rankings for transactions can be obtained through the utilization of algorithms which are actually pre-defined queries designed for searching through Ethereum. Those queries can also be seen as a set of tools supporting the interface.
Examples of content rankings are: a list of products on amazon.com, songs in a playlist on spotify, news on NYTimes, and all other places which have some content (links, articles, songs) sorted in a particular way which you can access.

It is also possible to track financial information (records) regarding particular users and transactions via smart contracts which are a sort of token defined for information storing.

In order to make full use of the API and all algorithms it is essential that you have a wallet and an account for the Etherum crypto-currency created.
Currently Ethereum, Bitcoin and IPDB are supported on the platform.

For easy set-up of both the wallet and the account, the MetaMask service can be used available at https://metamask.io/.

For more information on crypto-currencies, visit topic-related websites.

In order to become familiar technically with the Userfeeds Platform and be able to use it efficiently, go to Quick Start - Guide for Developers and API Reference to see how to use our ‘read-only’ APIs and how to use the Ethereum blockchain for pushing information into the Userfeeds Platform. Later on you can go to http://api.userfeeds.io/portal/, and register as a developer, and go to http://api.userfeeds.io/portal/apis/ API Catalog to request for an API Key. When the API Key is ready for you - start using all of our HTTP API’s.

Our mission - as owners of the Userfeeds Platform - is to help developers in obtaining information on rankings and reliable scores (per needed perspective) as well as earning money for promotional actions on web sites by providing them with ‘ready-to-use’ API’s, libraries and algorithms which they can incorporate in an easy way into their software and web pages.

How does the Userfeeds Platform work?

The Userfeeds Platform is composed of a couple of parts which interact together in order to deliver rankings through HTTP API’s to your application.

[image: ../_images/overview.png]
It is important to remember that any internet transaction is a claim. Such Claim is a basic information package signed cryptographically (with use of unique key) and connected with an account - in the json format - key - claim / key - target.

The structure of a claim can be presented in the following way:

from who ; for whom ; how much / amount ; transaction identifier.

The claim can also be understood as metadata for any transaction.

Claims created with help of our algorithms land on the Ethereum blockchain from where they are collected and read.
Claims can have extensions which make them a particular type.

First it is the Userfeeds Platform which reads all the information from supported blockchains and stores it in an internal database. We store all transactions and contract calls in the Graph database and current balances in the standard SQL database. When someone sends Claim data to the Userfeeds Platform through the HTTP or through the Ethereum network, it is processed and inserted into the Graph database for further use in ranking algorithms.
When an application makes a HTTP request to our Ranking API endpoint, a Ranking Engine takes the requested algorithm and applies it to the current data stored in the Graph database and the SQL database and returns sorted entries for application to display to the user.

Why use the Userfeeds Platform?

	All our algorithms are of Open Source type and therefore can be improved any time when an issue arises or changed per current needs

	Everyone is able to create their own custom rankings

	We use the blockchain as the source of ranking signals, for example - how many tokens are connected to given content(s), how stable were token holders endorsing given content(s), how involved they are in given token(s).

	Everyone can monetize their application / site easily by providing sponsored ranking on their application / site

	Everyone can deliver superior experience for their users and visitors by customizing our ranking output basing on your needs

	Introduction of promotional elements and activities to any web service is very easy with our algorithms for web components

	Everyone can make their blogs more engaging by bringing widgets for promoting

Quick Start - Guide for Developers

How to get all links connected with Ethereum

The code snippets will return a list of news shared to Ethereum context sorted according to our simple algorithm.

Demo:

cURL

$ curl 'https://api.userfeeds.io/ranking/links;asset=ethereum'

In JavaScript (browser)

<!DOCTYPE html>
<html>
<head>
 <title>Simple ranking for Ethereum:</title>
</head>
<body>
 <script>
 fetch('https://api.userfeeds.io/ranking/links;asset=ethereum')
 .then(function(response) {
 return response.json();
 })
 .then(function(ranking) {
 var div = document.getElementById('ranking');

 for (var i = 0; i < ranking.items.length; i++) {
 var item = ranking.items[i];
 div.innerHTML += i.toString() + '.' + item.target + '
';
 div.innerHTML += 'Score: ' + item.score + '

';
 }
 });
 </script>
 <h1>Simple ranking for Ethereum</h1>
 <div id="ranking"></div>
</body>
</html>

In JavaScript (node.js)

const https = require('https');

const options = {
 hostname: 'api.userfeeds.io',
 port: 443,
 path: '/ranking/links;asset=ethereum',
 method: 'GET'
};

console.log('Simple ranking for Ethereum:\n')

const req = https.request(options, (res) => {
 let data = "";

 res.setEncoding('utf8');
 res.on('data', (chunk) => {
 data += chunk;
 });
 res.on('end', () => {
 let ranking = JSON.parse(data);
 for (let index in ranking.items) {
 console.log(`${index}. ${ranking.items[index].target}`);
 console.log(`Score: ${ranking.items[index].score}\n`);
 }
 });
});

req.on('error', (e) => {
 console.error(e);
});

req.end();

// Simple ranking for Ethereum:
//
// 0. http://example.com/one
// Score: 123.1234324
//
// 1. http://example.com/two
// Score: 32.234542343

In python

import requests

RANKING_URL = "https://api.userfeeds.io/ranking/links;asset=ethereum"

response = requests.get(RANKING_URL).json()

print("Simple ranking for Ethereum:\n")

for index, item in enumerate(response['items']):
 print("{0}. {1}".format(index, item["target"]))
 print("Score: {0}".format(item['score']))
 print()

Simple ranking for Ethereum:
#
0. http://example.com/one
Score: 123.1234324
#
1. http://example.com/two
Score: 32.234542343

How to get all messages from ERC721 token (such as CryptoKitty Captain Barbosa)

Demo:

cURL

$ curl 'https://api.userfeeds.io/ranking/feed;context=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:134330'
{"items":[{"about":null,"abouted":[],"author":"0x6be450972b30891b16c8588dcbc10c8c2aef04da","context":"ethereum:0x0...

In JavaScript (browser)

<!DOCTYPE html>
<html>
<head>
 <title>Simple ranking for Ethereum:</title>
</head>
<body>
 <script>
 fetch('https://api.userfeeds.io/ranking/cryptopurr_feed;context=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:134330')
 .then(function(response) {
 return response.json();
 })
 .then(function(ranking) {
 var div = document.getElementById('ranking');

 for (var i = 0; i < ranking.items.length; i++) {
 var item = ranking.items[i];
 div.innerHTML += i.toString() + '. ' + item.target.id + '
';
 }
 });
 </script>
 <h1>Simple ranking for Ethereum</h1>
 <div id="ranking"></div>
</body>
</html>

In JavaScript (node.js)

const https = require('https');

const options = {
 hostname: 'api.userfeeds.io',
 port: 443,
 path: '/ranking/cryptopurr_feed;context=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:134330',
 method: 'GET'
};

console.log('Simple ranking for Ethereum:\n')

const req = https.request(options, (res) => {
 let data = "";

 res.setEncoding('utf8');
 res.on('data', (chunk) => {
 data += chunk;
 });
 res.on('end', () => {
 let ranking = JSON.parse(data);
 for (let index in ranking.items) {
 console.log(`${index}. ${ranking.items[index].target.id}`);
 }
 });
});

req.on('error', (e) => {
 console.error(e);
});

req.end();

// Simple ranking for Ethereum:
//
// 0. http://example.com/one
// Score: 123.1234324
//
// 1. http://example.com/two
// Score: 32.234542343

In python

import requests

RANKING_URL = "https://api.userfeeds.io/ranking/cryptopurr_feed;context=ethereum:0x06012c8cf97bead5deae237070f9587f8e7a266d:134330"

response = requests.get(RANKING_URL).json()

print("Simple ranking for Ethereum:\n")

for index, item in enumerate(response['items']):
 print("{0}. {1}".format(index, item["target"]["id"]))
 print()

How to get all bots (ERC721 tokens) owned by given address

How to get all CryptoBots [https://cryptobots.me/] owned by given address

cURL

$ curl 'https://api.userfeeds.io/ranking/tokens;identity=0x6be450972b30891b16c8588dcbc10c8c2aef04da;asset=ethereum:0xf7a6e15dfd5cdd9ef12711bd757a9b6021abf643'
{"items":[{"sequence":5289388,"token":"4085"}]}

Web Components

Button

…

API Reference

The API root is available at https://api.userfeeds.io/

Retrieving Data

read-only

The available algorithms are described in the Algorithms section.

Schema:

$ curl https://api.userfeeds.io/ranking/algorithm1Name;param1=value1;param2=value2.../algorithm2Name...

An example:

$ curl https://api.userfeeds.io/ranking/links;asset=ethereum

	
GET /ranking/algorithm1Name;param1=value1;param2=value2.../algorithm2Name...

	An example request:

An example response:

OR

Schema:

$ curl -X POST -v -d '{"flow":[{"algorithm":"algorithm1name","params":{"param1":"value1",...},...}]}' -H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/'

An example:

$ curl -X POST -v -d '{"flow":[{"algorithm":"links","params":{"asset":"ethereum"}}]}' -H 'Content-Type: application/json' 'https://api.userfeeds.io/ranking/'

	
POST /ranking/

	An example request:

An example response:

Algorithms

The Userfeeds Platform allows running custom algorithms on the top of data gathered from all supported sources such as Ethereum blockchain (mainnet, ropsten, rinkeby, kovan)

Algorithms can be referenced by their identifier which depends on how the author has decided to share them.

Note

The support is currently limited to built-in algorithms created by Userfeeds only. We will open custom algorithms for external developers in the near future.

Available built-in algorithms

 HTTP Routing Table

 /ranking

 		 	

 		
 /ranking	

 	
 	
 GET /ranking/algorithm1Name;param1=value1;param2=value2.../algorithm2Name...	

 	
 	
 POST /ranking/	

Index

Apps

In this section we will describe basic applications built using Userfeeds Platform.

Apps overview can be found at https://userfeeds.io/apps.html

Links

Quick Start

Widgets configurator: https://userfeeds.io/apps/widgets/#/configurator/
Widgets demo: https://userfeeds.io/demo

Overview

Links app allows Publishers to integrate widgets into their web and mobile apps for presenting links and Advertisers to buy presentation space directly from given Publisher.
This simple scheme allows Publishers to monetize their interfaces directly.

Whitelisting

Publisher has an option to choose which links he wants to display. He can either self-manage links by whitelisting them by hand or outsource this task to someone else. All he needs to do is to set whitelist option to desired identifier.
This identifier will be used to query Claim.signature.creator field. It can be set to public address from metamask/mist if Publisher wants to manage links by himself or to any other identifier that will be used by some bot/AI to post whitelist claims.

Widgets

Links App is based on userfeeds-links widget.

Algorithms

Link App uses custom algorithm ads to provide basic advertise-like experiance.

Example response:

{
 "items": [
 {
 "target": "http://target.one/",
 "score": 123,
 "title": "Title One",
 "summary": "Lorem ipsum dolor incididunt officia cillum aute incididunt nisi exercitation voluptate elit.",
 "bids": 10,
 "id": "abc"
 },
 {
 "target": "http://target.two/",
 "score": 123,
 "title": "Title Two",
 "summary": "Lorem ipsum dolor incididunt officia cillum aute incididunt nisi exercitation voluptate elit.",
 "bids": 10,
 "id": "abcd"
 },
 {
 "target": "http://target.three/",
 "score": 123,
 "title": "Title Three",
 "summary": "Lorem ipsum dolor incididunt officia cillum aute incididunt nisi exercitation voluptate elit.",
 "bids": 10,
 "id": "abcde"
 }
]
}

Source: https://github.com/Userfeeds/Algorithms/links/

This algorithm uses time-decay with 7 days decay period. (TODO)

Score key represents cumulated ETH value calculated based time-decay.
Time decay is calculated from the moment of posting link so if publisher is using whitelisting mechanism it can have lower score if publisher takes long time to whitelist link. We encourage advertisers to post links with low amount of ether attached first and only after whitelisting adding more ether to them.

For example if someone pays 10 ETH for link it will have score 10 ETH at this moment.
After 1 day the score will drop linearly to 10 * 6/7 ~ 8.57.
If at this moment strengthening claim will be created with link claim id as target the score will increase to 18.57.

(TODO: add graphs)

Claims

Links App uses type=`link` claim for posting new link and basic claims for approving (whitelisting).

Posting Link Claim:

{
 "context": "ethereum:0x4564567890abcdef....abc",
 "type": ["Link"],
 "claim": {
 "target": "http://some.url/path/",
 "title": "title",
 "summary": "summary"
 },
 ...
}

This claim type has two additional keys compared with basic claim.

title will be used as link title
summary will be used as extended text (might not be displayed on some widgets)

Whitelisting claim is essentially a basic claim:

{
 "claim": {
 "target": "claim:signatureOfLinkClaim",
 },
 "signature": {
 "type": "...",
 "creator": "ethereum:0x1234567890abcdef....123",
 "signatureValue": "..."
 }
}

Basic Concepts

Context

The identifier in a format networkName:networkAddress specifies what the destination for given claims is.
It can be an arbitrary string without a special meaning (it only needs to follow the format).

More complex formats are also possible, eg. networkName:networkAddress:Tag, depending on a use case.

The identifier in format networkName:networkAddress specifies to where given claims are destined.
It can be an arbitrary string without a special meaning (it only needs to follow the format).

More complex formats are possible, eg. networkName:networkAddress:Tag, depending on a use case.

Data Model

Claims are the smallest self-contained pieces of information inside the Userfeeds Platform.
All claims are cryptographically signed or have a reference to their cryptographic origin (eg. transaction on blockchain).

Structure

Overview

{
 "context": "CONTEXT",
 "type": ["TYPEA", "TYPEB", "..."],
 "claim": {
 "target": "TARGET",
 "additional": "fields",
 "go": ["here", "..."]
 },
 "credits": [
 {
 "type": "interface",
 "value": "INTERFACE IDENTIFIER"
 }
],
 "signature": {
 "type": "TYPE",
 "creator": "CREATOR",
 "signatureValue": "SIGNATURE"
 }
}

context

optional

The Context field is used to denote a destination of a given claim. It can be interpreted as a name of any topic/thing that people might want to share information about. Usually it will have something to do with blockchain space (but it doesn’t have to).
For example if you would like to share some information to all people interested in Ethereum blockchain you will send claim with ethereum as the context.

Other examples of contexts might be:

	ethereum

	ethereumclassic

	bitcoin

	ethereum:0x4564567890abcdef….abc

	ethereumclassic:0x4564567890abcdef….abc

	myspecialcontext

	companyx

	companyx:departmenty

ethereum:0x123....456 context identifiers are interpreted as object 0x123….456 on ethereum and usually will be used to share information about contracts/addresses on a given blockchain.

Special contexts starting with userfeeds: are technical and have a special meaning in the Userfeeds Platform.
eg. userfeeds:pairing will create a special PAIRED relationship allowing one to connect their cryptocurrency holdings with an additional public key that will only be used to sign claims.

type

optional

The Type describes additional data present in a claim object.

Example can be labels type, with this type claim object needs to have labels key with array of values.

Description of all supported types can be found at Types

claim

This key is used to store user provided information and it is mandatory for all claims.
claim object will always have a target key and additional fields depending on the type array.

target

target value identifies target object that user wants to share or tag with additional information.

Some examples of proper target values:

	http://some.url/path/

	text:base64:base64encodedtext

	ipfs:somehash

	ipdb:somehash

	claim:claimsignaturehash

	mediachain:somehash

	isbn:0451450523

	isan:0000-0000-9E59-0000-O-0000-0000-2

	btih:c12fe1c06bba254a9dc9f519b335aa7c1367a88a

	ethereum:0x4564567890abcdef…abc

	bitcoin:0x4afebcdef…123

Additional fields

Depending on the type array additional keys might be present in claim object. See the Types for supported types.

signature

This field is generated in order to denote the ownership of claim and can be a cryptographic signature or a pointer to the cryptographically secure origin of claim.

type

Describes what type of signature we are dealing with. It could be ecdsa.secp256r1 for elliptic curve signature or ethereum.transaction for claim origination from Ethereum blockchain.

Supported Signature Types

	ecdsa.prime192v1

	In python: ecdsa.NIST192p

	ecdsa.secp256r1 / ecdsa.prime256v1

	In python: ecdsa.NIST256p

	ecdsa.secp224r1

	In python: ecdsa.NIST224p

	ecdsa.secp384r1

	In python: ecdsa.NIST384p

	ecdsa.secp521r1

	In python: ecdsa.NIST521p

	ecdsa.secp256k1

	In python: ecdsa.SECP256k1

	ethereum.transaction

	Claims posted on ethereum blockchain will be verified by comparing blockchain content with claim content.

creator

This identifies a public key or an address which signed the claim.

Format: identifier

	hex:04861127b14bf0036e…ef7127b114988057

	rinkeby:0x1234567890abcdef…1456

	ethereum:0x1235…145

	bitcoin:0x123456…1234

signatureValue

This key holds a raw signature value as produced by the signing algorithm, or it can be a transaction hash or any valid identifier of externally verifiable origin of claim.

Types

Basic

Basic claim:

{
 "claim": {
 "target": "http://some.url/path/"
 },
 "context": "ethereum:0x4564567890abcdef....abc",
 "signature": {
 "creator": "94d1aa6655d931294d524cf52b0df866976f89774bac38a730cf20e2d51dd24d34efc2bbb4d5bba91a7a6582511491dde1803dcdf7fd55550cf3132aae16077a",
 "signatureValue": "304402203dac2176721d7e05cd8c580a27a504b64b0a8ee171b18a07630201cbed979ac7022013faf8735f90b957ca4656efb17349856ac22894aab553db136b7dfc2b03ede4",
 "type": "ecdsa.prime256v1"
 }
}

With acknowledgment of the interface from which the claim was created:

{
 "claim": {
 "target": "http://some.url/path/"
 },
 "context": "ethereum:0x4564567890abcdef....abc",
 "credits": [
 {
 "type": "interface",
 "value": "http://blog.example.com/path/"
 }
],
 "signature": {
 "creator": "0df1d4915347bcae90a0696c9efd6300e33b610d31130c3049d329fa61af138de7a7ee55f99057fd8d39c4664be9f1c34361c237433b34c8f523c5858f9fb9a0",
 "signatureValue": "304502206c243684007c9e412612b5d1a371b20eb146652e4b149bb1fc0e6da437e7f728022100b8c77983949feac478de449751587be82d5b37ff30b257da04f2352aab5f8793",
 "type": "ecdsa.prime256v1"
 }
}

link

Additional keys:

	title string

	summary string

{
 "claim": {
 "summary": "summary",
 "target": "http://some.url/path/",
 "title": "title"
 },
 "context": "rinkeby:0xfe5da6ae3f65e7d5ce29121a9f5872ffd83b45e6",
 "credits": [
 {
 "type": "interface",
 "value": "http://blog.example.com/path/"
 }
],
 "signature": {
 "creator": "ffc8c2f39e8a302bf9ca37b06fa9014f0cd3c85900c3d8b771f31a91ce33c050948faedad14d73a4f6c41f5937c3a010b5af24055092c136b7a667fee2249f87",
 "signatureValue": "304602210093c55c30be1868de005def995aefb391d7ff20f235457b37a01e6921427701f80221008e5fc2afc2c9124660a57f9a2c9f4be1187afe3bc4b3c67a30e9a4c52747f4f7",
 "type": "ecdsa.prime256v1"
 },
 "type": [
 "link"
]
}

labels

Additional keys:

	labels array of string

{
 "claim": {
 "labels": [
 "Good",
 "Book",
 "Cats"
],
 "target": "http://some.url/path/"
 },
 "context": "rinkeby:0xfe5da6ae3f65e7d5ce29121a9f5872ffd83b45e6",
 "signature": {
 "creator": "de9965ce03cf6f960a7efe423633409a0052ad8f9f2100e27026ad94551d4d69058c0a263dbd0cacf999ca3e97ddcc0afae5051e91dc42c4ca008e4c7c5c0ddb",
 "signatureValue": "3044022069457927f1fc06b26467a7cc93c99085efea4d8811c6979ffab9ba2196be5ad702201587d3f88d2e9058d6ce48708ddf8713b07017a311ce713b566a1829ea516e41",
 "type": "ecdsa.prime256v1"
 },
 "type": [
 "labels"
]
}

Value Transfer

Along with claims the Userfeeds Database contains normalized data about transfer of assets (tokens and others)

If the transfer of assets was accompanying a claim, they will be connected with the TRANSFER relation.

Features

Done

	
	Links Exchange

	
	userfeeds-links widget

	Whitelisting

	Link bidding

	
	Rankings

	
	Links ranking

	Sponsored ranking

	
	Basic data synchronization

	
	
	Ethereum - ether

	
	mainnet

	ropsten

	rinkeby

	Simple sponsored Items App

	
	Claim transports

	
	HTTP

	Ethereum Contract

	Continuous deployment (dev environment)

Planned

	
	Stable data synchronization

	
	
	Ethereum - ether, tokens

	
	mainnet

	ropsten

	kovan

	rinkeby

	Bitcoin - value transactions

	BigchainDB (IPDB) - asset/value transactions

	
	Claim transports

	
	Ethereum Whisper

	BigchainDB (IPDB)

	Suite of Integration Tests

	
	Link Exchange

	
	Production ready look&feel

	
	More userfeeds-links widget types

	
	X links

	Integrations with partners

	Status.im integration

	
	Pairing

	
	Authorization Service

	Simple userfeeds-button widget

	Simple Governance Application

	Simple Attention Guard Application

	
	Rankings

	
	Hold

	
	Public Database Access

	
	Data dumps

	Public instances

	
	External algorithm providers

	
	Github

	Gitlab

	Gist

	Bitbucket

	External providers of fraud-detection data

Under consideration

	Distributed, decentralized, verifiable claims/data storage

Guides

In this section we will try to introduce you to more in-depth look at Userfeeds Platform

API Authorization

APIs that write to Userfeeds Platform require Authorization header to be present with API key as a value.

Note

API key can be requested at https://api.userfeeds.io/portal/apis/, after registration.
API key requests are currently approved manually so it may take up to 24h for you request to be approved.

Example of Authorized request would be:

cURL:

$ curl -X POST https://api.userfeeds.io/verify/ \
 -H "Content-Type: application/json" \
 -H "Authorization: YourAPIKey123" \
 --data @/path/to/claim.json

Python:

import json
import requests

claim = open('claim.json').read()
claim = json.loads(claim)

response = requests.post(
 "https://api.userfeeds.io/storage/",
 json=claim,
 headers={
 "Authorization": "YourAPIKey123"
 })

print(response.content)

Claims Signatures

Signed claims are created by adding special signature object to claim.

All claims inside Userfeeds Platform databases are signed (in some way).
Claims sent to Userfeeds Platform through HTTP needs to be signed prior to being sent in contrast to claims sent via Ethereum transaction which signature is created on Userfeeds Platform side based on transaction containing the claim.

signature object structure inside claim looks like this:

{
 "context": "...",
 "claim": {
 "target": "..."
 },
 "signature": {
 "type": "TYPE",
 "creator": "CREATOR",
 "signatureValue": "SIGNATURES_VALUE"
 }
}

type

It descries what kind of signature we are dealing with.

Full list of supported types can be found at claim.signature.type reference.

creator

Identifier of entity that created the signature.

signatureValue

Signature allowing for verification that creator signed this claim.

Create signed Claim (ECDSA)

Following code will show you how to create signed claim with signature type of ecdsa.*.

Simple signing script written in Python.

import ecdsa
import json
import sys
import binascii
import hashlib

Read claim from file
claim = open(sys.argv[-1]).read()
claim = json.loads(claim)

Generate Keys
private_key = ecdsa.SigningKey.generate(curve=ecdsa.NIST256p)
public_key = private_key.get_verifying_key()

Sign claim
message = json.dumps(claim, separators=(',', ':'), sort_keys=True).encode('utf8')

creator = public_key.to_string()
creator = binascii.hexlify(creator)
creator = creator.decode("utf8")

signature = private_key.sign(message, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_der)
signature = binascii.hexlify(signature)
signature = signature.decode("utf8")

claim["signature"] = {
 "type": "ecdsa.prime256v1",
 "creator": creator,
 "signatureValue": signature
}

Print signed claim
print(json.dumps(claim, separators=(',', ':'), sort_keys=True))

Save this code to sign.py and run it like this:

$ pip install ecdsa
$
$ python sign.py /path/to/claim.json

Simple signing script written in Javascript.

let KJUR = require('jsrsasign');
let serialize = require('canonical-json');
let fs = require('fs');

// Read claim from file
let claim = fs.readFileSync(process.argv[process.argv.length - 1]);
claim = JSON.parse(claim);

// Generate Keys
let curve = "secp256k1";
let keypair = KJUR.KEYUTIL.generateKeypair("EC", curve);
let sig = new KJUR.crypto.Signature({"alg": "SHA256withECDSA"});

// Sign claim
let message = serialize(claim);

let creator = keypair.pubKeyObj.pubKeyHex;

sig.init(keypair.prvKeyObj);
sig.updateString(message);
let signature = sig.sign();

claim. signature = {
 type: "ecdsa." + curve,
 creator: creator,
 signatureValue: signature
};

// Print signed claim
console.log(serialize(claim));

Save this code to sign.js and run it like this:

$ npm install canonical-json jsrsasign
$
$ node sign.js /path/to/claim.json

Verify claim signature

$ curl -X POST https://api.userfeeds.io/verify/ \
 -H "Content-Type: application/json" \
 -H "Authorization: API_KEY" \
 --data @/path/to/claim.json

Submiting claims

TODO

HTTP

TODO

Ethereum Transaction

TODO

Whisper message

TODO

Sponsored vs Organic Rankings

TODO

Organic ranking with interface token

Warning

NOT IMPLEMENTED!

You can pass additional token to organic rankings to inject sponsored results into organic rankings. Those results will be marked with sponsored: true key in items list.

example:

GET /ranking/ORGANIC_TOKEN/SIMPLE_RANKING/?sponsored=INTERFACE_TOKEN

{
 "items": [
 {
 "value": "http://organic.com/art/1",
 "score": 1234
 },
 {
 "value": "http://organic.com/art/1",
 "score": 0,
 "sponsored": true
 },
 {
 "value": "http://organic.com/art/1",
 "score": 1100
 },
 ...
]
}

TODO…

Overview

What is the Userfeeds Platform?

Userfeeds Platform was envisioned as a infrastructure allowing developers to easily use and build better content rankings for their clients.
We want to help developers by providing them ready to use APIs, libraries and algorithms that they can incorporate into their software.

What is a content ranking?

Some examples of content rankings are: list of products on amazon.com, songs in playlist on spotify, news on nytimes, and all other places which have some content (links, articles, songs) sorted in a particular way that you can access.

How the Userfeeds Platform works?

The Userfeeds Platform is composed of a couple of parts which interact together in order to deliver rankings through HTTP APIs to your application.

[image: ../_images/overview.png]
First it is the Userfeeds Platform which reads all the information from supported blockchains and stores it in an internal database. We store all transactions and contract calls in the Graph database and current balances in the standard SQL database. When someone sends Claim data to the Userfeeds Platform through the HTTP or through the Ethereum network, it is processed and inserted into the Graph database for further use in ranking algorithms.
When an application makes a HTTP request to our Ranking API endpoint, a Ranking Engine takes the requested algorithm and applies it to the current data stored in the Graph database and the SQL database and returns sorted entries for application to display to the user.

Which blockchains are supported?

Currently we support Ethereum, Bitcoin, and IPDB.

What is Claim?

The Claim is a basic data entity in the Userfeeds Platform. It may represent an endorsement, a like, upvote for a given URL/Text/Identifier which is signed by one of supported signing methods.

What are supported signing methods?

You can sign a Claim with ECDSA and send it through the HTTP or make an Ethereum transaction with Claim data which will be treated as signed.

Why use the Userfeeds Platform?

	All our algorithms are open source and therefore can be improved any time when an issue arises

	You are able to create your own custom rankings

	We use blockchain as a source of ranking signals, eg. how much tokens are connected to given content, how stable were token holders endorsing given content, how involved they are in given token.

	You can monetize your app/site easily by providing sponsored ranking on your app/site

	You can deliver superior experience for your users and viewevrs by customizing our ranking output basing on your needs.

I’m a developer. How can I start using the Userfeeds Platform?

You should go to Quick Start - Guide for Developers and API Reference in order to check out how to use our ‘read-only’ APIs and how to use the Ethereum blockchain for pushing information into the Userfeeds Platform. Later on you can go to http://api.userfeeds.io/portal/, and register as a developer, and go to http://api.userfeeds.io/portal/apis/ API Catalog to request an API Key. When the API Key is ready for you - start using all of our HTTP APIs.

Roadmap

Applications

Links

	Finish current views

	ShareApp - allow posting links to given contexts

Labels

	Web app gallery with pictures with labels, grouping based on labels

	Mobile gallery app with picture gouping based on labels

	ShareApp - allow sharing pictures with attached labels

StateOfTheDapps

	Integrate sponsored ranking for dapps

	Add sorting by hold for ether and other tokens

Status.im

	Integrate sponsored dapps page

	userfeeds-button endorse/star on each dapp

CryptoAuth

	claims signing

	claims sending through HTTP

	claims sending through web3.js (MetaMask, Mist)

	pairing support

	Support for import/export of identity to mobile app (ShareApp)

Clouds

	bring back clouds ui for most popular tokens

Algorithms

Labels

	Targets for context with their labels

	All labels attached to identifier

Hold

	Postgresql filled with hold data for tokens and ether

Piping

	Change algorithms to be albe to pipe | them through
- links:contextID|timedecay:7days|groupby:id
- links:contextID|hold|groupby:id
- claims:contextID|hold
- authored:contextID|timedecay:7days
- labels:contextID|groupby

Widgets

userfeeds-links

	link list widget

userfeeds-button

	allow selecting transport

	connect with cryptoauth.io

Data synchronization

Tokens

	Add token transactions support

	Verify if postgresql fillers are working correctly

	Add token-hold data to postgresql

Claims

Move claims to blocks reader

	
	Based on Keccak-256 hash of:

	
	Claim(address,string)

	Claim(address,address,string)

	Look through all transaction recipts if it generates such topics and treat them as proper claims

Transports

HTTP

You can send signed claims through the HTTP Gateway of Userfeeds Platform.

Properties:

	In-transport secrecy

	the claim cannot be sniffed on transport thanks to HTTPS connection and will only be available to the outside world after it is incorporated into the Userfeeds Platform through APIs rankings and database dumps.

	Independent distribution

	the claim exists only inside the Userfeeds Platform database and will be distributed with Userfeeds Platform database dumps.

Example of posting a claim directly to the Userfeeds Platform through the HTTP transport:

$ curl \--=der43
 -X POST https://api.userfeeds.io/storage/ \
 -H "Content-Type: application/json" \
 -H "Authorization: 59049c8fdfed920001508e2a03414df648e34ea665f544a17d5c113b" \
 -d '{"claim":{"target":"http://some.url/path/"},"context":"ethereum:0x4564567890abcdef....abc","signature":{"creator":"82fb68fc14719b94b36e99e588c9988458ca187d4791463164285bb064458232c4bb5bb638158096f4ed957e275e2e1576d1b24cca81ceb3a53cd7493ae88474","signatureValue":"c675d123fb1e99ffe59e7626c655806ebe47ec1ca4100b953029731159c2e14f4461e2ebf7f43a071b847b57cbcbd66bd8fa9451a5e27c4db4bbaec3cdd16b02","type":"ecdsa.prime256v1"}}'

Ethereum Transaction

You can send a claim through an Ethereum Blockchain transaction.

Note

The Userfeeds Platform does not monitor every transaction for potential claims yet.

In order to send a claim through a transaction you need to call special contracts which are monitored by the Userfeeds Platform.

Properties:

	In-transport secrecy

	The claim is available from the moment it is distributed through the Ethereum network and can be sniffed before it reaches its desired ranking.

	Independent distribution

	The claim will be a part of the Etherum Blockchain and will be available from all copies of the blockchain.

Contracts

With a value transfer:

Code

pragma solidity ^0.4.11;

contract Userfeeds {

 event Claim(address sender, address userfeed, string data);

 function post(address userfeed, string data) payable {
 userfeed.transfer(msg.value);
 Claim(ms4g.sender, userfeed, data);
 }
}

ABI

[
 {
 "constant":false,
 "inputs":[
 { "name":"userfeed", "type":"address" },
 { "name":"data", "type":"string" }
],
 "name":"post",
 "outputs":[],
 "payable":true,
 "type":"function"
 },
 {
 "anonymous":false,
 "inputs":[
 { "indexed":false, "name":"sender", "type":"address" },
 { "indexed":false, "name":"userfeed", "type":"address" },
 { "indexed":false, "name":"data", "type":"string" }
],
 "name":"Claim",
 "type":"event"
 }
]

Addresses

	For Mainnet: …

	For Rinkeby: 0x0a48ac8263d9d79768d10cf9d7e82a19c49f0002

	For Ropsten: 0xa845c686a696c3d33988917c387d8ab939c66226

	For Kovan: …

Without a value transfer:

Code

pragma solidity ^0.4.11;
contract Userfeeds {

 event Claim(address sender, string data);

 function post(string data) {
 Claim(msg.sender, data);
 }
}

ABI

[
 {
 "constant":false,
 "inputs":[
 { "name":"data", "type":"string" }
],
 "name":"post",
 "outputs":[],
 "payable":false,
 "type":"function"
 },
 {
 "anonymous":false,
 "inputs":[
 { "indexed":false, "name":"sender", "type":"address" },
 { "indexed":false, "name":"data", "type":"string" }
],
 "name":"Claim",
 "type":"event"
 }
]

Addresses

	For Mainnet: …

	For Rinkeby: 0x09dcdf34e0c28b106fdfe51009cb71ae92bf8bbc

	For Ropsten: 0x5c3fe6b94b57c1e294000403340f12f083e71b83

	For Kovan: …

Whisper Protocol

TODO: Direct message
TODO: Broadcast

IPDB (BigchainDB)

TODO

Tutorials

React App

TODO

Angular App

TODO

Android App

TODO

Widgets

This section describes details about options and implementation of widgets.

The configurator of Widgets: https://app.linkexchange.io/direct/configurator

linkexchange-link

The source: https://github.com/Userfeeds/Apps/tree/master/widgets/linkexchange-link

The latest version is available at: https://cdn.jsdelivr.net/npm/@linkexchange/widgets@latest

Common parameters:

	asset

	
	string

	required

	values: ethereum | rinkeby | ropsten | kovan | ethereum:erc20TokenContractAddress

specifies the asset being used in the widget

	recipient-address

	
	string

	required

	values: recipientAddress

specifies the address to which the asset will be sent on each transaction

	whitelist

	
	string

	optional

	values: whitelistAddress

specifies the address which will be used as a whitelist for links. If specified all the links shown all page will need to be first accepted by the whitelist address

	algorithm

	
	string

	optional

	default: ads

	values: Algorithms

name of the algorithm to use for links filtering/sorting

	size

	
	string

	optional

	default: rectangle

	values: rectangle, leaderboard

specifies the size of widget

	widget-title

	
	string

	required

specifies the title of widget shown in details

	description

	
	string

	required

specifies the description of widget shown in details

	contact-method

	
	string

	required

specifies a contact method shown in widget details

	slots

	
	number

	optional

	default: 10

specifies a number of links shown in widget

	timeslot

	
	number

	optional

	default: 5

seconds each link fitting into the slots will be shown in widget

	translations

	
	string

	optional

name of the object in global window object which contains mapping of translations

	translations-url

	
	string

	optional

url to json file which contains mapping of translations

	open-details

	
	“modal” | “tab”

	optional

	default: “modal”

	since 0.0.158

defines how widget details will be opened

Sample usage

<linkexchange-link
 algorithm="links"
 slots=2
 timeslot=7
 size="leaderboard"
 asset="rinkeby:0xd5cfec7...eec72aced241e5e"
 recipient-address="0xcD335186...41909D3448BC60f0665"
 whitelist="0xcD335186...5215215215abcdabcdabcd"
 widget-title="First Widget"
 description="I accept only links that are about science and technology. I like trains"
 impression="N/A"
 contact-method="office@linkexchange.io"
>
</linkexchange-link>
<script src="https://cdn.jsdelivr.net/npm/@linkexchange/widgets@latest"></script>

<linkexchange-link
 algorithm="links"
 slots=10
 size="leaderboard"
 asset="ethereum"
 recipient-address="0xcD335186...41909D3448BC60f0665"
 widget-title="Real widget"
 description="True widget"
 impression="50k - 100k"
 contact-method="contact@realwidget.realwidget"
>
</linkexchange-link>
<script src="https://cdn.jsdelivr.net/npm/@linkexchange/widgets@latest"></script>

Custom validations

The widget allows you to register and unregister your own custom validators during runtime.
In order to do that you can use addValidation and removeValidation methods defined on linkexchange-link html element.

addValidation

addValidation(
 formName: string,
 inputName: string = 'form',
 callback: (fieldName: string, value: any) => Promise<string | null> | string | null,
) : void

addValidation is a method that registers a validator that returns a string when validation did not pass. It can also return a Promise that resolves with string when error occurs.

Sample usage:

const widget = document.querySelector("linkexchange-link");
widget.addValidation("add-link", "title", (fieldName, value) => {
 return value === "Inappropriate" ? "Title can't be appropriate" : null;
});

removeValidation

removeValidation(
 formName: string,
 inputName: string = 'form',
 callback: (fieldName: string, value: any) => Promise<string | null> | string | null,
) : void

removeValidation is a method that unregisters a validator.

Sample usage:

const widget = document.querySelector("linkexchange-link");
const validator = (fieldName, value) => {
 return value === "Inappropriate" ? "Title can't be appropriate" : null;
};
widget.addValidation("add-link", "title", validator);
widget.removeValidation("add-link", "title", validator);

Current forms

Currently supported forms with fields withcustom validations are:

	add-link

	title

	summary

	target

	value

Translations

Translations can be provided using transactions or transactions-url attribute of the widget. When using remote file with translations widget rendering is defered.

Sample usage:

<script>
 window.my-custom-translations = {
 'banner.sponsoredWith': 'Gesponsert mit',
 'banner.noLinks': 'Keine Links verfügbar',
 'menu.buyLink': 'Kaufe einen Link',
 };
</script>
<linkexchange-link
 transactions="my-custom-translations"
 size="leaderboard"
 type="text"
 asset="ropsten"
 ...
></linkexchange-link>

Currently supported default transactions:

{
 "list.slots.title": "Slots",
 "list.approved.title": "Approved",
 "list.algorithm.title": "Algorithm",
 "widgetSpecification.title": "Widget Specification",
 "userfeedsAddressInfo.title": "Userfeed Address",
 "list.header.no": "NO",
 "list.header.probability": "Probability",
 "list.header.content": "Content",
 "list.header.score": "Current score",
 "list.header.bids": "Bids",
 "widgetSummary.openInNewWindow": "New Window",
 "widgetSummary.addLink": "Create new link",
 "widgetSummary.declaredImpression": "Declared impressions",
 "widgetSummary.sourceDomain": "Source Domain",
 "widgetSummary.contact": "Contact",
 "widgetSummary.validTill": "Valid till",
 "sideMenu.slots": "Slots",
 "sideMenu.approved": "Approved",
 "sideMenu.algorithm": "Algorithm",
 "sideMenu.specification": "Specification",
 "sideMenu.userfeed": "Userfeed",
 "menu.buyLink": "Buy a Link",
 "banner.sponsoredWith": "Sponsored With",
 "banner.noLinks": "No links available"
}

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to Userfeeds - Documentation and Manuals

 		
 Introduction to the Userfeeds Platform

 		
 How does the Userfeeds Platform work?

 		
 Why use the Userfeeds Platform?

 		
 Quick Start - Guide for Developers

 		
 How to get all links connected with Ethereum

 		
 cURL

 		
 In JavaScript (browser)

 		
 In JavaScript (node.js)

 		
 In python

 		
 How to get all messages from ERC721 token (such as CryptoKitty Captain Barbosa)

 		
 cURL

 		
 In JavaScript (browser)

 		
 In JavaScript (node.js)

 		
 In python

 		
 How to get all bots (ERC721 tokens) owned by given address

 		
 cURL

 		
 Web Components

 		
 Button

 		
 API Reference

 		
 Retrieving Data

 		
 Algorithms

 		
 Available built-in algorithms

_images/overview.png
Netivork Netivork Netivork Netivork

Blockchain
API

Gateway

Claims
Processor

Rankings
Engine

L._._._UsedaedsPlaﬁDrm_._._._J

_static/ajax-loader.gif

