

Welcome to Spinning Up in Deep RL!

[image: _images/spinning-up-in-rl.png]

User Documentation

	Introduction
	What This Is

	Why We Built This

	How This Serves Our Mission

	Code Design Philosophy

	Support Plan

	Installation
	Installing Python

	Installing OpenMPI

	Installing Spinning Up

	Check Your Install

	Installing MuJoCo (Optional)

	Algorithms
	What’s Included

	Why These Algorithms?

	Code Format

	Running Experiments
	Launching from the Command Line

	Launching from Scripts

	Experiment Outputs
	Algorithm Outputs

	Save Directory Location

	Loading and Running Trained Policies

	Plotting Results

Introduction to RL

	Part 1: Key Concepts in RL
	What Can RL Do?

	Key Concepts and Terminology

	(Optional) Formalism

	Part 2: Kinds of RL Algorithms
	A Taxonomy of RL Algorithms

	Links to Algorithms in Taxonomy

	Part 3: Intro to Policy Optimization
	Deriving the Simplest Policy Gradient

	Implementing the Simplest Policy Gradient

	Expected Grad-Log-Prob Lemma

	Don’t Let the Past Distract You

	Implementing Reward-to-Go Policy Gradient

	Baselines in Policy Gradients

	Other Forms of the Policy Gradient

	Recap

Resources

	Spinning Up as a Deep RL Researcher
	The Right Background

	Learn by Doing

	Developing a Research Project

	Doing Rigorous Research in RL

	Closing Thoughts

	PS: Other Resources

	References

	Key Papers in Deep RL
	1. Model-Free RL

	2. Exploration

	3. Transfer and Multitask RL

	4. Hierarchy

	5. Memory

	6. Model-Based RL

	7. Meta-RL

	8. Scaling RL

	9. RL in the Real World

	10. Safety

	11. Imitation Learning and Inverse Reinforcement Learning

	12. Reproducibility, Analysis, and Critique

	13. Bonus: Classic Papers in RL Theory or Review

	Exercises
	Problem Set 1: Basics of Implementation

	Problem Set 2: Algorithm Failure Modes

	Challenges

	Benchmarks for Spinning Up Implementations
	Performance in Each Environment

	Experiment Details

Algorithms Docs

	Vanilla Policy Gradient
	Background

	Documentation

	References

	Trust Region Policy Optimization
	Background

	Documentation

	References

	Proximal Policy Optimization
	Background

	Documentation

	References

	Deep Deterministic Policy Gradient
	Background

	Documentation

	References

	Twin Delayed DDPG
	Background

	Documentation

	References

	Soft Actor-Critic
	Background

	Documentation

	References

Utilities Docs

	Logger
	Using a Logger

	Logger Classes

	Loading Saved Graphs

	Plotter

	MPI Tools
	Core MPI Utilities

	MPI + Tensorflow Utilities

	Run Utils
	ExperimentGrid

	Calling Experiments

Etc.

	Acknowledgements

	About the Author

Indices and tables

	Index

	Module Index

	Search Page

Logger

Table of Contents

	Logger
	Using a Logger
	Examples

	Logging and MPI

	Logger Classes

	Loading Saved Graphs

Using a Logger

Spinning Up ships with basic logging tools, implemented in the classes Logger and EpochLogger. The Logger class contains most of the basic functionality for saving diagnostics, hyperparameter configurations, the state of a training run, and the trained model. The EpochLogger class adds a thin layer on top of that to make it easy to track the average, standard deviation, min, and max value of a diagnostic over each epoch and across MPI workers.

You Should Know

All Spinning Up algorithm implementations use an EpochLogger.

Examples

First, let’s look at a simple example of how an EpochLogger keeps track of a diagnostic value:

>>> from spinup.utils.logx import EpochLogger
>>> epoch_logger = EpochLogger()
>>> for i in range(10):
 epoch_logger.store(Test=i)
>>> epoch_logger.log_tabular('Test', with_min_and_max=True)
>>> epoch_logger.dump_tabular()

AverageTest	4.5
StdTest	2.87
MaxTest	9
MinTest	0

The store method is used to save all values of Test to the epoch_logger‘s internal state. Then, when log_tabular is called, it computes the average, standard deviation, min, and max of Test over all of the values in the internal state. The internal state is wiped clean after the call to log_tabular (to prevent leakage into the statistics at the next epoch). Finally, dump_tabular is called to write the diagnostics to file and to stdout.

Next, let’s look at a full training procedure with the logger embedded, to highlight configuration and model saving as well as diagnostic logging:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	 import numpy as np
 import tensorflow as tf
 import time
 from spinup.utils.logx import EpochLogger

 def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None):
 for h in hidden_sizes[:-1]:
 x = tf.layers.dense(x, units=h, activation=activation)
 return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)

 # Simple script for training an MLP on MNIST.
 def train_mnist(steps_per_epoch=100, epochs=5,
 lr=1e-3, layers=2, hidden_size=64,
 logger_kwargs=dict(), save_freq=1):

 logger = EpochLogger(**logger_kwargs)
 logger.save_config(locals())

 # Load and preprocess MNIST data
 (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
 x_train = x_train.reshape(-1, 28*28) / 255.0

 # Define inputs & main outputs from computation graph
 x_ph = tf.placeholder(tf.float32, shape=(None, 28*28))
 y_ph = tf.placeholder(tf.int32, shape=(None,))
 logits = mlp(x_ph, hidden_sizes=[hidden_size]*layers + [10], activation=tf.nn.relu)
 predict = tf.argmax(logits, axis=1, output_type=tf.int32)

 # Define loss function, accuracy, and training op
 y = tf.one_hot(y_ph, 10)
 loss = tf.losses.softmax_cross_entropy(y, logits)
 acc = tf.reduce_mean(tf.cast(tf.equal(y_ph, predict), tf.float32))
 train_op = tf.train.AdamOptimizer().minimize(loss)

 # Prepare session
 sess = tf.Session()
 sess.run(tf.global_variables_initializer())

 # Setup model saving
 logger.setup_tf_saver(sess, inputs={'x': x_ph},
 outputs={'logits': logits, 'predict': predict})

 start_time = time.time()

 # Run main training loop
 for epoch in range(epochs):
 for t in range(steps_per_epoch):
 idxs = np.random.randint(0, len(x_train), 32)
 feed_dict = {x_ph: x_train[idxs],
 y_ph: y_train[idxs]}
 outs = sess.run([loss, acc, train_op], feed_dict=feed_dict)
 logger.store(Loss=outs[0], Acc=outs[1])

 # Save model
 if (epoch % save_freq == 0) or (epoch == epochs-1):
 logger.save_state(state_dict=dict(), itr=None)

 # Log info about epoch
 logger.log_tabular('Epoch', epoch)
 logger.log_tabular('Acc', with_min_and_max=True)
 logger.log_tabular('Loss', average_only=True)
 logger.log_tabular('TotalGradientSteps', (epoch+1)*steps_per_epoch)
 logger.log_tabular('Time', time.time()-start_time)
 logger.dump_tabular()

 if __name__ == '__main__':
 train_mnist()

In this example, observe that

	On line 19, logger.save_config is used to save the hyperparameter configuration to a JSON file.

	On lines 42 and 43, logger.setup_tf_saver is used to prepare the logger to save the key elements of the computation graph.

	On line 54, diagnostics are saved to the logger’s internal state via logger.store.

	On line 58, the computation graph is saved once per epoch via logger.save_state.

	On lines 61-66, logger.log_tabular and logger.dump_tabular are used to write the epoch diagnostics to file. Note that the keys passed into logger.log_tabular are the same as the keys passed into logger.store.

Logging and MPI

You Should Know

Several algorithms in RL are easily parallelized by using MPI to average gradients and/or other key quantities. The Spinning Up loggers are designed to be well-behaved when using MPI: things will only get written to stdout and to file from the process with rank 0. But information from other processes isn’t lost if you use the EpochLogger: everything which is passed into EpochLogger via store, regardless of which process it’s stored in, gets used to compute average/std/min/max values for a diagnostic.

Logger Classes

	
class spinup.utils.logx.Logger(output_dir=None, output_fname='progress.txt', exp_name=None)

	A general-purpose logger.

Makes it easy to save diagnostics, hyperparameter configurations, the
state of a training run, and the trained model.

	
__init__(output_dir=None, output_fname='progress.txt', exp_name=None)

	Initialize a Logger.

	Parameters:	
	output_dir (string) – A directory for saving results to. If
None, defaults to a temp directory of the form
/tmp/experiments/somerandomnumber.

	output_fname (string) – Name for the tab-separated-value file
containing metrics logged throughout a training run.
Defaults to progress.txt.

	exp_name (string) – Experiment name. If you run multiple training
runs and give them all the same exp_name, the plotter
will know to group them. (Use case: if you run the same
hyperparameter configuration with multiple random seeds, you
should give them all the same exp_name.)

	
dump_tabular()

	Write all of the diagnostics from the current iteration.

Writes both to stdout, and to the output file.

	
log(msg, color='green')

	Print a colorized message to stdout.

	
log_tabular(key, val)

	Log a value of some diagnostic.

Call this only once for each diagnostic quantity, each iteration.
After using log_tabular to store values for each diagnostic,
make sure to call dump_tabular to write them out to file and
stdout (otherwise they will not get saved anywhere).

	
save_config(config)

	Log an experiment configuration.

Call this once at the top of your experiment, passing in all important
config vars as a dict. This will serialize the config to JSON, while
handling anything which can’t be serialized in a graceful way (writing
as informative a string as possible).

Example use:

logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())

	
save_state(state_dict, itr=None)

	Saves the state of an experiment.

To be clear: this is about saving state, not logging diagnostics.
All diagnostic logging is separate from this function. This function
will save whatever is in state_dict—usually just a copy of the
environment—and the most recent parameters for the model you
previously set up saving for with setup_tf_saver.

Call with any frequency you prefer. If you only want to maintain a
single state and overwrite it at each call with the most recent
version, leave itr=None. If you want to keep all of the states you
save, provide unique (increasing) values for ‘itr’.

	Parameters:	
	state_dict (dict) – Dictionary containing essential elements to
describe the current state of training.

	itr – An int, or None. Current iteration of training.

	
setup_tf_saver(sess, inputs, outputs)

	Set up easy model saving for tensorflow.

Call once, after defining your computation graph but before training.

	Parameters:	
	sess – The Tensorflow session in which you train your computation
graph.

	inputs (dict) – A dictionary that maps from keys of your choice
to the tensorflow placeholders that serve as inputs to the
computation graph. Make sure that all of the placeholders
needed for your outputs are included!

	outputs (dict) – A dictionary that maps from keys of your choice
to the outputs from your computation graph.

	
class spinup.utils.logx.EpochLogger(*args, **kwargs)

	Bases: spinup.utils.logx.Logger

A variant of Logger tailored for tracking average values over epochs.

Typical use case: there is some quantity which is calculated many times
throughout an epoch, and at the end of the epoch, you would like to
report the average / std / min / max value of that quantity.

With an EpochLogger, each time the quantity is calculated, you would
use

epoch_logger.store(NameOfQuantity=quantity_value)

to load it into the EpochLogger’s state. Then at the end of the epoch, you
would use

epoch_logger.log_tabular(NameOfQuantity, **options)

to record the desired values.

	
get_stats(key)

	Lets an algorithm ask the logger for mean/std/min/max of a diagnostic.

	
log_tabular(key, val=None, with_min_and_max=False, average_only=False)

	Log a value or possibly the mean/std/min/max values of a diagnostic.

	Parameters:	
	key (string) – The name of the diagnostic. If you are logging a
diagnostic whose state has previously been saved with
store, the key here has to match the key you used there.

	val – A value for the diagnostic. If you have previously saved
values for this key via store, do not provide a val
here.

	with_min_and_max (bool) – If true, log min and max values of the
diagnostic over the epoch.

	average_only (bool) – If true, do not log the standard deviation
of the diagnostic over the epoch.

	
store(**kwargs)

	Save something into the epoch_logger’s current state.

Provide an arbitrary number of keyword arguments with numerical
values.

Loading Saved Graphs

	
spinup.utils.logx.restore_tf_graph(sess, fpath)

	Loads graphs saved by Logger.

Will output a dictionary whose keys and values are from the ‘inputs’
and ‘outputs’ dict you specified with logger.setup_tf_saver().

	Parameters:	
	sess – A Tensorflow session.

	fpath – Filepath to save directory.

	Returns:	A dictionary mapping from keys to tensors in the computation graph
loaded from fpath.

When you use this method to restore a graph saved by a Spinning Up implementation, you can minimally expect it to include the following:

	Key
	Value

	x
	Tensorflow placeholder for state input.

	pi
	
Samples an action from the agent, conditioned

on states in x.

The relevant value functions for an algorithm are also typically stored. For details of what else gets saved by a given algorithm, see its documentation page.

Plotter

See the page on plotting results for documentation of the plotter.

MPI Tools

Table of Contents

	MPI Tools
	Core MPI Utilities

	MPI + Tensorflow Utilities

Core MPI Utilities

	
spinup.utils.mpi_tools.mpi_avg(x)

	Average a scalar or vector over MPI processes.

	
spinup.utils.mpi_tools.mpi_fork(n, bind_to_core=False)

	Re-launches the current script with workers linked by MPI.

Also, terminates the original process that launched it.

Taken almost without modification from the Baselines function of the
same name [https://github.com/openai/baselines/blob/master/baselines/common/mpi_fork.py].

	Parameters:	
	n (int) – Number of process to split into.

	bind_to_core (bool) – Bind each MPI process to a core.

	
spinup.utils.mpi_tools.mpi_statistics_scalar(x, with_min_and_max=False)

	Get mean/std and optional min/max of scalar x across MPI processes.

	Parameters:	
	x – An array containing samples of the scalar to produce statistics
for.

	with_min_and_max (bool) – If true, return min and max of x in
addition to mean and std.

	
spinup.utils.mpi_tools.num_procs()

	Count active MPI processes.

	
spinup.utils.mpi_tools.proc_id()

	Get rank of calling process.

MPI + Tensorflow Utilities

The spinup.utils.mpi_tf contains a a few tools to make it easy to use the AdamOptimizer across many MPI processes. This is a bit hacky—if you’re looking for something more sophisticated and general-purpose, consider horovod [https://github.com/uber/horovod].

	
class spinup.utils.mpi_tf.MpiAdamOptimizer(**kwargs)

	Adam optimizer that averages gradients across MPI processes.

The compute_gradients method is taken from Baselines MpiAdamOptimizer [https://github.com/openai/baselines/blob/master/baselines/common/mpi_adam_optimizer.py].
For documentation on method arguments, see the Tensorflow docs page for
the base AdamOptimizer [https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer].

	
apply_gradients(grads_and_vars, global_step=None, name=None)

	Same as normal apply_gradients, except sync params after update.

	
compute_gradients(loss, var_list, **kwargs)

	Same as normal compute_gradients, except average grads over processes.

	
spinup.utils.mpi_tf.sync_all_params()

	Sync all tf variables across MPI processes.

Run Utils

Table of Contents

	Run Utils
	ExperimentGrid

	Calling Experiments

ExperimentGrid

Spinning Up ships with a tool called ExperimentGrid for making hyperparameter ablations easier. This is based on (but simpler than) the rllab tool [https://github.com/rll/rllab/blob/master/rllab/misc/instrument.py#L173] called VariantGenerator.

	
class spinup.utils.run_utils.ExperimentGrid(name='')

	Tool for running many experiments given hyperparameter ranges.

	
add(key, vals, shorthand=None, in_name=False)

	Add a parameter (key) to the grid config, with potential values (vals).

By default, if a shorthand isn’t given, one is automatically generated
from the key using the first three letters of each colon-separated
term. To disable this behavior, change DEFAULT_SHORTHAND in the
spinup/user_config.py file to False.

	Parameters:	
	key (string) – Name of parameter.

	vals (value or list of values) – Allowed values of parameter.

	shorthand (string) – Optional, shortened name of parameter. For
example, maybe the parameter steps_per_epoch is shortened
to steps.

	in_name (bool) – When constructing variant names, force the
inclusion of this parameter into the name.

	
print()

	Print a helpful report about the experiment grid.

	
run(thunk, num_cpu=1, data_dir=None, datestamp=False)

	Run each variant in the grid with function ‘thunk’.

Note: ‘thunk’ must be either a callable function, or a string. If it is
a string, it must be the name of a parameter whose values are all
callable functions.

Uses call_experiment to actually launch each experiment, and gives
each variant a name using self.variant_name().

Maintenance note: the args for ExperimentGrid.run should track closely
to the args for call_experiment. However, seed is omitted because
we presume the user may add it as a parameter in the grid.

	
variant_name(variant)

	Given a variant (dict of valid param/value pairs), make an exp_name.

A variant’s name is constructed as the grid name (if you’ve given it
one), plus param names (or shorthands if available) and values
separated by underscores.

Note: if seed is a parameter, it is not included in the name.

	
variants()

	Makes a list of dicts, where each dict is a valid config in the grid.

There is special handling for variant parameters whose names take
the form

'full:param:name'.

The colons are taken to indicate that these parameters should
have a nested dict structure. eg, if there are two params,

	Key
	Val

	'base:param:one'
	1

	'base:param:two'
	2

the variant dict will have the structure

variant = {
 base: {
 param : {
 a : 1,
 b : 2
 }
 }
 }

Calling Experiments

	
spinup.utils.run_utils.call_experiment(exp_name, thunk, seed=0, num_cpu=1, data_dir=None, datestamp=False, **kwargs)

	Run a function (thunk) with hyperparameters (kwargs), plus configuration.

This wraps a few pieces of functionality which are useful when you want
to run many experiments in sequence, including logger configuration and
splitting into multiple processes for MPI.

There’s also a SpinningUp-specific convenience added into executing the
thunk: if env_name is one of the kwargs passed to call_experiment, it’s
assumed that the thunk accepts an argument called env_fn, and that
the env_fn should make a gym environment with the given env_name.

The way the experiment is actually executed is slightly complicated: the
function is serialized to a string, and then run_entrypoint.py is
executed in a subprocess call with the serialized string as an argument.
run_entrypoint.py unserializes the function call and executes it.
We choose to do it this way—instead of just calling the function
directly here—to avoid leaking state between successive experiments.

	Parameters:	
	exp_name (string) – Name for experiment.

	thunk (callable) – A python function.

	seed (int) – Seed for random number generators.

	num_cpu (int) – Number of MPI processes to split into. Also accepts
‘auto’, which will set up as many procs as there are cpus on
the machine.

	data_dir (string) – Used in configuring the logger, to decide where
to store experiment results. Note: if left as None, data_dir will
default to DEFAULT_DATA_DIR from spinup/user_config.py.

	**kwargs – All kwargs to pass to thunk.

	
spinup.utils.run_utils.setup_logger_kwargs(exp_name, seed=None, data_dir=None, datestamp=False)

	Sets up the output_dir for a logger and returns a dict for logger kwargs.

If no seed is given and datestamp is false,

output_dir = data_dir/exp_name

If a seed is given and datestamp is false,

output_dir = data_dir/exp_name/exp_name_s[seed]

If datestamp is true, amend to

output_dir = data_dir/YY-MM-DD_exp_name/YY-MM-DD_HH-MM-SS_exp_name_s[seed]

You can force datestamp=True by setting FORCE_DATESTAMP=True in
spinup/user_config.py.

	Parameters:	
	exp_name (string) – Name for experiment.

	seed (int) – Seed for random number generators used by experiment.

	data_dir (string) – Path to folder where results should be saved.
Default is the DEFAULT_DATA_DIR in spinup/user_config.py.

	datestamp (bool) – Whether to include a date and timestamp in the
name of the save directory.

	Returns:	logger_kwargs, a dict containing output_dir and exp_name.

Acknowledgements

We gratefully acknowledge the contributions of the many people who helped get this project off of the ground, including people who beta tested the software, gave feedback on the material, improved dependencies of Spinning Up code in service of this release, or otherwise supported the project. Given the number of people who were involved at various points, this list of names may not be exhaustive. (If you think you should have been listed here, please do not hesitate to reach out.)

In no particular order, thank you Alex Ray, Amanda Askell, Ben Garfinkel, Christy Dennison, Coline Devin, Daniel Zeigler, Dylan Hadfield-Menell, Ge Yang, Greg Khan, Jack Clark, Jonas Rothfuss, Larissa Schiavo, Leandro Castelao, Lilian Weng, Maddie Hall, Matthias Plappert, Miles Brundage, Peter Zokhov, and Pieter Abbeel.

We are also grateful to Pieter Abbeel’s group at Berkeley, and the Center for Human-Compatible AI, for giving feedback on presentations about Spinning Up.

About the Author

Spinning Up in Deep RL was primarily developed by Josh Achiam, a research scientist on the OpenAI Safety Team and PhD student at UC Berkeley advised by Pieter Abbeel. Josh studies topics related to safety in deep reinforcement learning, and has previously published work on safe exploration [https://arxiv.org/abs/1705.10528].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spinup	

 	
 	
 spinup.utils.mpi_tf	

 	
 	
 spinup.utils.mpi_tools	

Index

 Symbols
 | _
 | A
 | C
 | D
 | E
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

Symbols

 	
 	
 --act, --ac_kwargs:activation

 	command line option

 	
 --count

 	command line option

 	
 --cpu, --num_cpu

 	command line option

 	
 --data_dir

 	command line option

 	
 --datestamp

 	command line option

 	
 --env, --env_name

 	command line option

 	
 --exclude=[EXC ...]

 	command line option

 	
 --exp_name

 	command line option

 	
 --hid, --ac_kwargs:hidden_sizes

 	command line option

 	
 --select=[SEL ...]

 	command line option

 	
 	
 -d, --deterministic

 	command line option

 	
 -i I, --itr=I, default=-1

 	command line option

 	
 -l L, --len=L, default=0

 	command line option

 	
 -l, --legend=[LEGEND ...]

 	command line option

 	
 -n N, --episodes=N, default=100

 	command line option

 	
 -nr, --norender

 	command line option

 	
 -s, --smooth=S, default=1

 	command line option

 	
 -x, --xaxis=XAXIS, default='TotalEnvInteracts'

 	command line option

 	
 -y, --value=[VALUE ...], default='Performance'

 	command line option

_

 	
 	__init__() (spinup.utils.logx.Logger method)

A

 	
 	add() (spinup.utils.run_utils.ExperimentGrid method)

 	
 	apply_gradients() (spinup.utils.mpi_tf.MpiAdamOptimizer method)

C

 	
 	call_experiment() (in module spinup.utils.run_utils)

 	
 command line option

 	--act, --ac_kwargs:activation

 	--count

 	--cpu, --num_cpu

 	--data_dir

 	--datestamp

 	--env, --env_name

 	--exclude=[EXC ...]

 	--exp_name

 	--hid, --ac_kwargs:hidden_sizes

 	--select=[SEL ...]

 	-d, --deterministic

 	-i I, --itr=I, default=-1

 	-l L, --len=L, default=0

 	-l, --legend=[LEGEND ...]

 	-n N, --episodes=N, default=100

 	-nr, --norender

 	-s, --smooth=S, default=1

 	-x, --xaxis=XAXIS, default='TotalEnvInteracts'

 	-y, --value=[VALUE ...], default='Performance'

 	logdir

 	
 	compute_gradients() (spinup.utils.mpi_tf.MpiAdamOptimizer method)

D

 	
 	ddpg() (in module spinup)

 	
 	dump_tabular() (spinup.utils.logx.Logger method)

E

 	
 	EpochLogger (class in spinup.utils.logx)

 	
 	ExperimentGrid (class in spinup.utils.run_utils)

G

 	
 	get_stats() (spinup.utils.logx.EpochLogger method)

L

 	
 	log() (spinup.utils.logx.Logger method)

 	log_tabular() (spinup.utils.logx.EpochLogger method)

 	(spinup.utils.logx.Logger method)

 	
 	
 logdir

 	command line option

 	Logger (class in spinup.utils.logx)

M

 	
 	mpi_avg() (in module spinup.utils.mpi_tools)

 	mpi_fork() (in module spinup.utils.mpi_tools)

 	
 	mpi_statistics_scalar() (in module spinup.utils.mpi_tools)

 	MpiAdamOptimizer (class in spinup.utils.mpi_tf)

N

 	
 	num_procs() (in module spinup.utils.mpi_tools)

P

 	
 	ppo() (in module spinup)

 	
 	print() (spinup.utils.run_utils.ExperimentGrid method)

 	proc_id() (in module spinup.utils.mpi_tools)

R

 	
 	restore_tf_graph() (in module spinup.utils.logx)

 	
 	run() (spinup.utils.run_utils.ExperimentGrid method)

S

 	
 	sac() (in module spinup)

 	save_config() (spinup.utils.logx.Logger method)

 	save_state() (spinup.utils.logx.Logger method)

 	setup_logger_kwargs() (in module spinup.utils.run_utils)

 	
 	setup_tf_saver() (spinup.utils.logx.Logger method)

 	spinup.utils.mpi_tf (module)

 	spinup.utils.mpi_tools (module)

 	store() (spinup.utils.logx.EpochLogger method)

 	sync_all_params() (in module spinup.utils.mpi_tf)

T

 	
 	td3() (in module spinup)

 	
 	trpo() (in module spinup)

V

 	
 	variant_name() (spinup.utils.run_utils.ExperimentGrid method)

 	
 	variants() (spinup.utils.run_utils.ExperimentGrid method)

 	vpg() (in module spinup)

 _static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/openai-favicon2_32x32.png

_static/comment.png

_static/spinning-up-logo2.png
OpenAl
Spinning Up

_static/down-pressed.png

_static/minus.png

_static/comment-close.png

_static/down.png

_static/comment-bright.png

_images/spinning-up-in-rl.png

