
FindFace Enterprise Server
Release 4.0.3

NtechLab

Jun 15, 2023

Contents:

1 Get Started 3

2 Architecture 5
2.1 Architectural Elements . 5
2.2 Single- and Multi-Host Deployment . 7
2.3 CPU- and GPU-acceleration . 8

3 System Requirements 9
3.1 Basic Configuration . 9

4 Licensing Principles 11

5 Deploy FindFace Enterprise Server 13
5.1 Install from Console Installer . 13
5.2 Install Step-by-Step . 16
5.3 Test Requests . 27
5.4 Fast Index . 37
5.5 Additional findface-video-worker deployment on remote hosts 39
5.6 Neural Network Models Installation . 40
5.7 Guide to Typical Cluster Installation . 41
5.8 Fully Customized Installation . 48

6 Biometric API 49
6.1 How to Use Biometric API . 49
6.2 Biometric API Methods . 51

7 Video Face Detection API 73
7.1 How to Use Video Face Detection API . 73
7.2 Video Face Detection API Methods . 74

8 Set Face Processing Directives 81
8.1 Configure findface-facerouter to Use Plugins . 81
8.2 Basics . 81
8.3 Classes and Methods . 84
8.4 Examples . 92

9 Advanced Features 95
9.1 Direct API requests to findface-extraction-api . 95

i

9.2 Shard Galleries Statistics . 103
9.3 Direct API Requests to Tarantool . 105
9.4 Hacks for findface-tarantool-server . 113
9.5 Real-time Face Liveness Detection . 115
9.6 Multiple Video Cards Usage . 116
9.7 Face Features Recognition . 117

10 Maintenance and Troubleshooting 119
10.1 Checking Component Status . 119
10.2 Analyze Log Files . 119
10.3 Troubleshoot Licensing and findface-ntls . 120
10.4 Automatic Tarantool Recovery . 122

11 Appendices 123
11.1 Neural Network Models . 123
11.2 Components in Depth . 123
11.3 Installation File . 147

Python Module Index 151

Index 153

ii

FindFace Enterprise Server, Release 4.0.3

FindFace Enterprise Server is a cutting-edge fast and accurate AI-based face recognition technology.

Features:

• Fast and robust AI-based face detection in still images and video.

• Fast and accurate AI-based face identification and verification.

• Customized face processing directives.

• AI recognition of gender, age, emotions, and other face attributes.

• AI face liveness detector.

• Extended biometric API.

• Extended API for video face detection.

• Possibility of cluster deployment. Almost infinite scalability.

• Network or on-premise licensing.

• Integration via HTTP API.

Being integrated into specific solutions and Android/iOS applications, FindFace Enterprise Server can make for ac-
complishing diverse goals. Some of these goals are biometric identification and access control, customer analytics,
customer offer tailoring, offline retargeting, managing whitelists/blacklists, sorting and optimizing media libraries,
borrower scoring, crime prevention, employee productivity control, building SafeCities, to name a few.

FindFace Enterprise Server will be of interest to independent software vendors (ISVs), system integrators, enterprise
IT customers, and original equipment manufacturers (OEMs). It can be harnessed in numerous areas, such as re-
tail, banking, social networking, entertainment, sports, event management, dating services, video surveillance, public
safety, homeland security, and many others.

This guide is intended for developers and system integration engineers who are going to integrate the FindFace Enter-
prise Server functionality into their systems.

To get a general idea of the deployment process, first, take a look at the 6 steps to face recognition. Let’s get started!

Contents: 1

FindFace Enterprise Server, Release 4.0.3

2 Contents:

CHAPTER 1

Get Started

Follow the 6 steps below to implement the FindFace Enterprise Server’s services to your system:

1. Choose deployment architecture.

2. Prepare hardware.

3. Install FindFace Core. Be sure to test the system work.

4. Configure video face detection. Specify directives for face processing.

5. Consider using advanced features.

6. Finalize the system with coding.

3

FindFace Enterprise Server, Release 4.0.3

4 Chapter 1. Get Started

CHAPTER 2

Architecture

Be sure to take a minute to learn the FindFace Enterprise Server architecture. This knowledge is essential for the
FindFace Enterprise Server deployment, integration, maintenance, and troubleshooting.

In this chapter:

• Architectural Elements

• Single- and Multi-Host Deployment

• CPU- and GPU-acceleration

2.1 Architectural Elements

FindFace Enterprise Server consists of the following architectural elements:

• FindFace core,

• (optional) application modules.

Note: Application modules are not available in the basic configuration. To learn more about building a turnkey
application with the help of our team, contact our experts by info@ntechlab.com.

The FindFace core includes the following components:

5

mailto:info@ntechlab.com

FindFace Enterprise Server, Release 4.0.3

6 Chapter 2. Architecture

FindFace Enterprise Server, Release 4.0.3

Com-
po-
nent

Description Vendor

findface-
extraction-
api

Service that uses neural networks to detect a face in an image and extract a face biometric
sample (feature vector), gender, age, emotions, and other face attributes. CPU- or GPU-
acceleration.

Ntech
Lab
own
deploy-
ment

findface-
sf-api

Service that implements HTTP API for face detection and face recognition.

findface-
tarantool-
server

Service that provides interaction between the findface-sf-api service and the biomet-
ric database (the Tarantool-powered database that stores face biometric samples).

findface-
upload

NGINX-based web server used as a storage for original images, thumbnails, and normalized
face images.

findface-
facerouter

Service used to define processing directives for detected faces.

findface-
video-
manager

Part of the video face detection module. Service that is used for managing the video face
detection functionality, configuring the video face detector settings, and specifying the list of
to-be-processed video streams.

findface-
video-
worker

Part of the video face detection module. Service that recognizes a face in the video and posts
its normalized image, full frame, and such metadata as the camera ID and detection time to
the findface-facerouter service for further processing according to given directives.
CPU- or GPU-acceleration.

findface-
ntls

License server which interfaces with the NtechLab Global License Server or a USB dongle
to verify the license of your FindFace Enterprise Server instance.

Taran-
tool

Third-party software which implements the biometric database that stores extracted biometric
samples (feature vectors).

Taran-
tool

etcd Third-party software that implements a distributed key-value store for
findface-video-manager. Used as a coordination service in the distributed
system, providing the video face detector with fault tolerance.

etcd

NG-
INX

Third-party software which implements the findface-upload component. nginx

mem-
cached

Third-party software which implements a distributed memory caching system. Used by
findface-extraction-api as temporary storage for extracted face biometric sam-
ples before they are written to the biometric database powered by Tarantool.

mem-
cached

See also:

Components in Depth

2.2 Single- and Multi-Host Deployment

Depending on your system characteristics and performance requirements, you can opt to install FindFace Enterprise
Server standalone or in a cluster environment:

2.2. Single- and Multi-Host Deployment 7

https://tarantool.io/en/
https://tarantool.io/en/
https://github.com/etcd-io/etcd
https://www.nginx.com
https://memcached.org
https://memcached.org

FindFace Enterprise Server, Release 4.0.3

De-
ploy-
ment

Recommendation

Stan-
dalone

You can deploy FindFace Enterprise Server and neural network models on a single host (standalone) if the
number of faces in the database does not exceed 1,000,000 (recommended limit). This variant makes it
easier to start deployment and cater to the basic requirements of your system.

Clus-
ter

If the number of faces in the database does exceed 1,000,000, we recommend you to deploy FindFace
Enterprise Server in a cluster environment. In this case, FindFace Enterprise Server components will be
distributed across several hosts. This is a medium and large deployment that can be scaled almost infinitely.
It will also suit professional high load projects with severe requirements for performance.

If you opt for the cluster deployment, we offer you one of the following deployment schemes:

• Deploy FindFace Enterprise Server standalone and distribute additional findface-video-worker compo-
nents across multiple hosts.

• Distribute the FindFace Enterprise Server components across multiple hosts. If necessary, set up load balancing.

2.3 CPU- and GPU-acceleration

The findface-extraction-api and findface-video-worker services can be either CPU- or GPU-
based. During installation from the developer-friendly installer, you will have an opportunity to choose the accel-
eration type you need.

If you opt to install FindFace Enterprise Server from the repository package, deploy the
findface-extraction-api and findface-video-worker-cpu packages on a CPU-based server,
and the findface-extraction-api-gpu and/or findface-video-worker-gpu packages on a
GPU-based server.

Important: Refer to System Requirements when choosing hardware configuration.

Important: If the resolution of a camera(s) in use is more than 1280x720px, it is strongly recommended to use the
GPU-accelerated package findface-video-worker-gpu.

8 Chapter 2. Architecture

CHAPTER 3

System Requirements

To calculate the FindFace Enterprise Server host(s) characteristics, use the requirements provided in this chapter.

Tip: Be sure to learn about the FindFace Enterprise Server architecture first.

In this chapter:

• Basic Configuration

3.1 Basic Configuration

Important: If the resolution of a camera(s) in use is more than 1280x720px, it is strongly recommended to use the
GPU-accelerated package findface-video-worker-gpu.

Note: When designing your system architecture in a cluster environment, bear in mind that the number of
findface-tarantool-server shards on a single host must not exceed the number of CPU memory channels,
multiplied by 2.

9

FindFace Enterprise Server, Release 4.0.3

Minimum Recommended
CPU Intel Core i5 CPU with 4 physical cores 2.8 GHz Intel Xeon E5v3 with 6 physical cores, or higher

or similar CPU
The own needs of FindFace Enterprise Server require 2 cores HT > 2.5 GHz. The characteristics also
depend on the number of cameras in use. A single camera 720p@25FPS requires 2 cores >2.5 GHz.
AVX support

GPU
(op-
tional)

Nvidia Geforce® GTX 980 4GB Nvidia Geforce® GTX 1080+ with 8+Gb RAM

Supported series: GeForce (Maxwell, Pascal, Turing, and above), Tesla (Maxwell, Pascal, Volta v100,
Turing, and above)

RAM 10 Gb 16+ Gb
The own needs of FindFace Enterprise Server require 8 Gb. The RAM consumption also depends on
the number of cameras in use. A single camera 720p@25FPS requires 2 GB RAM

HDD 16 Gb 16+ Gb
The own needs of the operating system and FindFace Enterprise Server require 15 GB.

Oper-
ating
system

Ubuntu 16.04 x64 only

10 Chapter 3. System Requirements

mailto:720p@25FPS
mailto:720p@25FPS

CHAPTER 4

Licensing Principles

FindFace Enterprise Server is licensed by the following criteria:

1. The number of biometric samples extracted from faces detected in static images and videos.

2. The number of cameras in use.

3. The number of findface-extraction-api model instances in use.

4. Face features recognition: gender/age/emotions/glasses/beard.

5. Face liveness detection.

6. Fast index.

You can choose between the online and on-premise (aka offline) licensing:

• Online licensing requires a stable internet connection. Upon being disconnected from the internet, the system
will continue working off-grid for about 1 hour.

• On-premise (offline) licensing requires a USB port on the physical server with the findface-ntls compo-
nent, that will be used to plug in a provided USB dongle.

To provide the system functioning, one findface-ntls instance should be enough. If for some reason, your
system requires more license servers, contact your Ntech Lab manager beforehand to prevent your system from being
blocked.

See also:

Retrieve Licensing Information

11

FindFace Enterprise Server, Release 4.0.3

12 Chapter 4. Licensing Principles

CHAPTER 5

Deploy FindFace Enterprise Server

For your convenience, we offer you several installation options:

• Install from a console installer

• Install step-by-step from an APT repository

After the installation, test your system work and configure a fast index search.

5.1 Install from Console Installer

To install FindFace Enterprise Server, use a developer-friendly console installer.

Tip: Be sure to consult the system requirements prior.

Do the following:

1. Download the installer file <findface-security-and-server-xxx>.run.

2. Put the .run file into some directory on the designated host (for example, /home/username).

3. From this directory, make the .run file executable.

chmod +x <findface-security-and-server-xxx>.run

4. Execute the .run file.

sudo ./<findface-security-and-server-xxx>.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets
the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

1. Product to install: FindFace Server.

2. Installation type:

13

FindFace Enterprise Server, Release 4.0.3

• 1: install FindFace Enterprise Server standalone.

• 2: install FindFace Enterprise Server and configure it to interact with additional remote
findface-video-worker instances.

Tip: To install only findface-video-worker on a host, refer to Additional findface-
video-worker deployment on remote hosts.

• 3: install only the apt repository that can be further used for the step-by-step deployment.

• 4: fully customized installation.

Important: Be sure to manually install neural network models on the host(s) with
findface-extraction-api.

3. Type of findface-video-worker package: CPU or GPU.

4. Type of findface-extraction-api package: CPU or GPU.

After all the questions are answered, the answers will be saved to a file /tmp/
<findface-installer-*>.json. You can edit this file and use it to install FindFace Enterprise
Server on other hosts without having to answer the questions again.

Should you choose the standalone installation, the FindFace Enterprise Server components will be automatically
installed, configured, and/or started in the following configuration:

14 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

Service Configuration
etcd Installed and started.
mem-
cached

Installed and started.

nginx Installed and started.
findface-
ntls

Installed and started.

findface-
tarantool-
server

Installed and started. The number of instances (shards) is calculated using the formula: N =
max(min(mem_mb // 2000, cpu_cores), 1), i.e. it is equal to the RAM size in MB
divided by 2000, or the number of CPU physical cores (but at least 1 shard).

findface-
extraction-
api

Installed and started.

findface-
sf-api

Installed and started.

findface-
facerouter

Installed and started.

findface-
upload

Installed.

findface-
video-
manager

Installed and started.

findface-
video-
worker-*

Installed and started.

findface-
data-*

Neural network models for face and face features recognition (gender, age, emotions, glasses,
beard). Installed.

findface-
gpudetector-
data/

NTechLab gpu detector data. Installed.

jq Installed. Used to pretty-print API responses from FindFace Enterprise Server.

After the installation is complete, the following output will be shown on the console:

Tip: Be sure to save this data: you will need it later.

###
Installation is complete
###
- upload your license to http://127.0.0.1:3185/
- FindFace SF-API address: http://172.20.77.78:18411/
- FindFace VideoManager address: http://172.20.77.78:18411/

5. Upload the FindFace Enterprise Server license file via the findface-ntls web interface http://
<ntls_host_IP_address>:3185.

Note: The IP address is shown in the links to the FindFace web services in the following way: as an external
IP address if the host belongs to a network, or 127.0.0.1 otherwise.

6. To automatically install FindFace Enterprise Server on another host without answering the installation questions,
use the /tmp/<findface-installer-*>.json file. Execute:

5.1. Install from Console Installer 15

FindFace Enterprise Server, Release 4.0.3

sudo ./<findface-security-and-server-xxx>.run -f /tmp/<findface-installer-*>.json

Tip: You can find the installation file example in Installation File.

5.2 Install Step-by-Step

This section will guide you through the FindFace Enterprise Server step-by-step installation process. Follow the
instructions below minding the sequence.

In this section:

• Install APT Repository

• Prerequisites

• Provide Licensing

• Deploy findface-extraction-api

• Deploy findface-tarantool-server

• Deploy findface-upload

• Deploy findface-sf-api

• Deploy findface-facerouter

• Deploy Video Face Detection

5.2.1 Install APT Repository

First of all, install the FindFace apt repository as follows:

1. Download the installer file <findface-security-and-server-xxx>.run.

2. Put the .run file into some directory on the designated host (for example, /home/username).

3. From this directory, make the .run file executable.

chmod +x <findface-security-and-server-xxx>.run

4. Execute the .run file.

sudo ./<findface-security-and-server-xxx>.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets
the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

1. Product to install: FindFace Server.

2. Installation type: repo: Don't install anything, just set up the APT
repository.

16 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

3. Neural network models to install if necessary. To select a model(s), deselect all those on the list by entering
-* in the command line first, then select the required model by entering its sequence number (keyword):
for example, 1 3. Enter done to save your selection and proceed to another step.

Important: At least one model for face biometry has to be installed.

After that, the FindFace apt repository will be automatically installed.

5.2.2 Prerequisites

FindFace Enterprise Server requires such third-party software as etcd and memcached. Do the following:

1. Install the prerequisite packages as such:

sudo apt update
sudo apt install -y etcd memcached

2. Open the memcached configuration file. Set the maximum memory to use for items in megabytes: -m 512.
Set the max item size: -I 16m. If one or both of these parameters are absent, add them to the file.

sudo vi /etc/memcached.conf

-m 512
-I 16m

3. Enable the prerequisite services autostart and launch the services:

sudo systemctl enable etcd.service memcached.service
sudo systemctl start etcd.service memcached.service

5.2.3 Provide Licensing

You receive a license file from your Ntech Lab manager. If you opt for the on-premise licensing, we will also send
you a USB dongle.

The FindFace Enterprise Server licensing is provided as follows:

1. Deploy findface-ntls, license server in the FindFace core.

sudo apt update
sudo apt install -y findface-ntls
sudo systemctl enable findface-ntls.service && sudo systemctl start findface-ntls.
→˓service

Important: There must be only one findface-ntls instance in each FindFace Enterprise Server installa-
tion.

Tip: In the findface-ntls configuration file, you can change the license folder and specify your proxy
server IP address if necessary. You can also change the findface-ntlsweb interface remote access settings.
See findface-ntls for details.

5.2. Install Step-by-Step 17

FindFace Enterprise Server, Release 4.0.3

2. Upload the license file via the findface-ntls web interface in one of the following ways:

• Navigate to the findface-ntls web interface http://<NTLS_IP_address>:3185/#/. Up-
load the license file.

Tip: Later on, use the findface-ntls web interface to consult your license information,
and upgrade or extend your license.

• Directly put the license file into the license folder (by default, /ntech/license, can be changed in the
/etc/findface-ntls.cfg configuration file).

3. For the on-premise licensing, insert the USB dongle into a USB port.

4. If the licensable components are installed on remote hosts, specify the IP address of the findface-ntls
host in their configuration files. See findface-extraction-api, findface-tarantool-server, Video face detection:
findface-video-manager and findface-video-worker for details.

See also:

Troubleshoot Licensing and findface-ntls

5.2.4 Deploy findface-extraction-api

To deploy the findface-extraction-api component, do the following:

Important: This component requires the installation of neural network models.

1. Install findface-extraction-api as such:

sudo apt install -y findface-extraction-api

Note: To install the GPU-accelerated findface-extraction-api component, use
findface-extraction-api-gpu in the command.

2. Open the findface-extraction-api.ini configuration file.

sudo vi /etc/findface-extraction-api.ini

3. Specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host. See
licensing.

license_ntls_server: 192.168.113.2:3133

4. Configure other parameters if needed. For example, enable or disable fetching Internet images.

fetch:
enabled: true
size_limit: 10485760

5. The min_face_size and max_face_size parameters do not work as filters. They instead indicate the
guaranteed detection interval. Pick up their values carefully as these parameters affect performance.

18 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

nnd:
min_face_size: 30
max_face_size: .inf

6. The instances parameter indicates how many findface-extraction-api instances are used. Specify
the number of instances from your license. The default value (0) means that this number is equal to the number
of CPU cores.

Note: This parameter severely affects RAM consumption.

instances: 2

7. To estimate the face quality, enable the quality_estimator. In this case, extraction-api will return
the quality score in the detection_score parameter.

Tip: Interpret the quality score further in analytics. Upright faces in frontal position are considered the best
quality. They result in values around 0, mostly negative (such as -0.00067401276, for example). Inverted
faces and large face angles are estimated with negative values some -5 and less.

quality_estimator: true

8. Enable recognition models for face features such as gender, age, emotions, glasses3, and/or beard, subject to
your needs. Be sure to choose the right acceleration type for each model, matching the acceleration type of
findface-extraction-api: CPU or GPU. Be aware that findface-extraction-api on CPU
can work only with CPU-models, while findface-extraction-api on GPU supports both CPU- and
GPU-models.

models:
age: faceattr/age.v1.cpu.fnk
emotions: faceattr/emotions.v1.cpu.fnk
face: face/grapefruit_480.cpu.fnk
gender: faceattr/gender.v2.cpu.fnk
beard: faceattr/beard.v0.cpu.fnk
glasses3: faceattr/glasses3.v0.cpu.fnk

The following models are available:

Face feature Acceleration Configuration file parameter
face (biometry) CPU face: face/grapefruit_480.cpu.fnk

GPU face: face/grapefruit_480.gpu.fnk
age CPU age: faceattr/age.v1.cpu.fnk

GPU age: faceattr/age.v1.gpu.fnk
gender CPU gender: faceattr/gender.v2.cpu.fnk

GPU gender: faceattr/gender.v2.gpu.fnk
emotions CPU emotions: faceattr/emotions.v1.cpu.fnk

GPU emotions: faceattr/emotions.v1.gpu.fnk
glasses3 CPU glasses3: faceattr/glasses3.v0.cpu.fnk

GPU glasses3: faceattr/glasses3.v0.gpu.fnk
beard CPU beard: faceattr/beard.v0.cpu.fnk

GPU beard: faceattr/beard.v0.gpu.fnk

5.2. Install Step-by-Step 19

FindFace Enterprise Server, Release 4.0.3

Tip: To disable a recognition model, pass an empty value to a relevant parameter. Do not remove the parameter
itself as in this case the system will be searching for the default model.

models:
gender: ""
age: ""
emotions: ""

9. Enable the findface-extraction-api service autostart and launch the service.

sudo systemctl enable findface-extraction-api.service && sudo systemctl start
→˓findface-extraction-api.service

5.2.5 Deploy findface-tarantool-server

The findface-tarantool-server component connects the Tarantool database and the findface-sf-api
component, transferring search results from the database to findface-sf-api for further processing. To increase
search speed, multiple findface-tarantool-server shards can be created on each Tarantool host. Their
running concurrently leads to a remarkable increase in performance. Each shard can handle up to approximately
10,000,000 faces. In the case of the standalone deployment, you need only one shard (already created by default).
In a cluster environment, the number of shards has to be calculated depending on your hardware configuration and
database size (see details below).

To deploy the findface-tarantool-server component, do the following:

1. Install findface-tarantool-server

sudo apt update
sudo apt install -y findface-tarantool-server

2. Disable autostart and stop the Tarantool exemplary service.

sudo systemctl disable tarantool@example && sudo systemctl stop tarantool@example

3. Open the configuration file:

sudo vi /etc/tarantool/instances.enabled/FindFace.lua

4. Edit the maximum memory usage. The memory usage must be set in bytes, depending on the number of faces
the shard handles, at the rate roughly 1280 byte per face. For example, the value 1.2*1024*1024*1024
corresponds to 1,000,000 faces:

memtx_memory = 1.2 * 1024 * 1024 * 1024,

5. Specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host:

FindFace.start(“127.0.0.1”, 8001, {license_ntls_server=“192.168.113.2:3133”})

6. By default, you can access Tarantool only from the localhost (127.0.0.1). If you plan to be accessing
Tarantool from a certain remote host, either specify this remote host IP address in the FindFace.start
section, or change 127.0.0.1 to 0.0.0.0 in the same section to allow access to Tarantool from any IP
address.

20 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

Tip: To allow access only from a certain remote host (192.168.113.10 in the example), configure as
follows:

FindFace.start("192.168.113.10", 8001, {license_ntls_server=“192.168.113.2:3133”})

To allow access from any IP address, apply 0.0.0.0 instead:

FindFace.start("0.0.0.0", 8001, {license_ntls_server=“192.168.113.2:3133”})

7. In the meta_scheme parameter, create a database structure to store the face recognition results. The structure
is created as a set of fields. Describe each field with the following parameters:

• id: field id;

• name: field name, must be the same as the name of a relevant face parameter;

• field_type: data type;

• default: field default value. If a default value exceeds ‘1e14 – 1’, use a string data type to specify it, for
example, "123123.." instead of 123123...

box.cfg{
listen = '127.0.0.1:33001',

vinyl_dir = '/opt/ntech/var/lib/tarantool/name',
work_dir = '/opt/ntech/var/lib/tarantool/name',
memtx_dir = '/opt/ntech/var/lib/tarantool/name/snapshots',
wal_dir = '/opt/ntech/var/lib/tarantool/name/xlogs',

memtx_memory = 16 * 1024 * 1024 * 1024,

checkpoint_interval = 3600*4,
checkpoint_count = 3,

-- force_recovery = true,
}

pcall(function() box.schema.user.grant('guest', 'execute,read,write', 'universe')
→˓end)

FindFace = require("FindFace")
FindFace.start(

"0.0.0.0",
8001,
{

license_ntls_server="127.0.0.1:3133",
facen_size=480,
meta_scheme = {

{
id = 1,
name = 'm:timestamp',
field_type = 'unsigned',
default = 0

},

{

(continues on next page)

5.2. Install Step-by-Step 21

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

id = 2,
name = 'feat',
field_type = 'string',
default = ""

},

{
id = 3,
name = 'normalized_id',
field_type = 'string',
default = ""

},

{
id = 4,
name = 'm:camera',
field_type = 'string',
default = ""

},

{
id = 5,
name = 'm:photo',
field_type = 'string',
default = ""

},

{
id = 6,
name = 'm:thumbnail',
field_type = 'string',
default = ""

},

{
id = 7,
name = 'm:score',
field_type = 'unsigned',
default = "10000000000000000000"

},

{
id = 8,
name = 'm:bbox',
field_type = 'string',
default = ""

},

{
id = 9,
name = 'm:labels',
field_type = 'set[string]',
default = {}

},

{
id = 10,

(continues on next page)

22 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

name = 'm:is_friend',
field_type = 'unsigned',
default = 0

},
}

}
)

8. (Optional) If there are more than 10,000,000 faces or so on a single shard, the search may take too long. In
the case of a large installation, it is advised to create additional findface-tarantool-server shards,
observing the following rules:

• One shard can successfully handle up to approximately 10,000,000 faces.

• The number of shards on a single host must not exceed the number of CPU memory channels, multiplied
by 2. Bear it in mind, when designing your system architecture in a cluster environment.

To create multiple shards, multiply the configuration file for the default shard /etc/tarantool/
instances.enabled/FindFace.lua. Then override the default shard IP address and port with new
values. To do so, write a bash script (e.g., shard.sh) that will automatically create configuration files for all
shards on a particular host. The script below can be used as an excellent starting point for your own code. The
exemplary script creates 4 shards listening to the ports: findface-tarantool-server 33001..33004
and HTTP 8001..8004.

#!/bin/sh
set -e

for I in `seq 1 4`; do
TNT_PORT=$((33000+$I)) &&
HTTP_PORT=$((8000+$I)) &&
sed "

s#/opt/ntech/var/lib/tarantool/default#/opt/ntech/var/lib/
→˓tarantool/shard_$I#g;

s/listen = .*$/listen = '127.0.0.1:$TNT_PORT',/;
s/\"127.0.0.1\", 8001,/\"0.0.0.0\", $HTTP_PORT,/;

" /etc/tarantool/instances.enabled/FindFace.lua > /etc/tarantool/instances.
→˓enabled/FindFace_shard_$I.lua;

mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/snapshots
mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/xlogs
mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/index
chown -R tarantool:tarantool /opt/ntech/var/lib/tarantool/shard_$I
echo "Shard #$I inited"

done;

Tip: Download the exemplary script.

Run the script from the home directory.

sudo sh ~/shard.sh

Check the configuration files created.

ls /etc/tarantool/instances.enabled/

(continues on next page)

5.2. Install Step-by-Step 23

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

##example.lua FindFace.lua FindFace_shard_1.lua FindFace_shard_2.lua FindFace_
→˓shard_3.lua FindFace_shard_4.lua

9. Enable the findface-tarantool-server shard autostart and launch the shard.

sudo systemctl enable tarantool@FindFace.service && sudo systemctl start
→˓tarantool@FindFace.service

In the case of multiple shards, you can do so by analogy with the following example (launching 4 shards):

for I in `seq 1 4`; do sudo systemctl enable tarantool@FindFace_shard_$I; done;
for I in `seq 1 4`; do sudo systemctl start tarantool@FindFace_shard_$I; done;

5.2.6 Deploy findface-upload

To store all original images ever sent to the system for processing, as well as such FindFace core artifacts as face
thumbnails and normalized images, you will need the findface-upload service.

Tip: Skip the findface-upload deployment if you do not want to store these data on the FindFace Enterprise
Server host. In this case, the system will be saving only face features vectors (biometric samples) in the Tarantool-
powered biometric database.

Install findface-upload as such:

sudo apt update
sudo apt install -y findface-upload

By default, the original images, thumbnails, and normalized images are stored at /var/lib/ffupload/
uploads/.

5.2.7 Deploy findface-sf-api

To deploy the findface-sf-api component, do the following:

1. Install findface-sf-api as such:

sudo apt update
sudo apt install -y findface-sf-api

2. Open the /etc/findface-sf-api.ini configuration file.

sudo vi /etc/findface-sf-api.ini

3. If FindFace Enterprise Server is being deployed in a cluster environment, specify the IP ad-
dresses and ports of the findface-extraction-api host (the extraction-api parame-
ter), the findface-tarantool-server shards (storage-api, in the format: http://
IP_address:port/v2/), and the findface-upload host (upload_url).

extraction-api:
extraction-api: http://10.220.85.120:18666

storage-api:
shards:

(continues on next page)

24 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

- master: http://10.200.85.115:8003/v2/
- master: http://10.200.85.120:8004/v2/
- master: http://10.200.85.120:8005/v2/
- master: http://10.200.85.120:8006/v2/

slave: ‘’
upload_url: http://127.0.0.1:3333/uploads/

4. Enable the findface-sf-api service autostart and launch the service.

sudo systemctl enable findface-sf-api.service && sudo systemctl start findface-sf-
→˓api.service

5.2.8 Deploy findface-facerouter

To deploy the findface-facerouter component, do the following:

1. Install findface-facerouter as such:

sudo apt update
sudo apt install -y findface-facerouter

2. Open the /etc/findface-facerouter.py configuration file.

sudo vi /etc/findface-facerouter.py

3. If the findface-facerouter and findface-sf-api components are installed on different hosts, un-
comment the sfapi_url parameter and specify the findface-sf-api host IP address.

sfapi_url = 'http://localhost:18411'

4. Enable the findface-facerouter service autostart and launch the service.

sudo systemctl enable findface-facerouter.service && sudo systemctl start
→˓findface-facerouter.service

5.2.9 Deploy Video Face Detection

Video face detection is provided by the findface-video-manager and findface-video-worker compo-
nents.

To deploy the findface-video-manager component, do the following:

1. Install findface-video-manager:

sudo apt install -y findface-video-manager

2. Open the /etc/findface-video-manager.conf configuration file.

sudo vi /etc/findface-video-manager.conf

3. In the router_url parameter, specify the IP address and port of the findface-facerouter component
which will receive detected faces from findface-video-worker.

5.2. Install Step-by-Step 25

FindFace Enterprise Server, Release 4.0.3

router_url: http://127.0.0.1:18820/v0/frame

4. In the ntls -> url parameter, specify the IP address of the findface-ntls host if findface-ntls
is installed on a remote host.

ntls:
url: http://127.0.0.1:3185/

5. If necessary, configure the video processing settings which apply to all video streams in the system.

Tip: You can skip this step: when creating a job for findface-video-manager, you will be able to
individually configure processing settings for each video stream (see Video Face Detection API).

6. Enable the findface-video-manager service autostart and launch the service.

sudo systemctl enable findface-video-manager.service && sudo systemctl start
→˓findface-video-manager.service

To deploy the findface-video-worker component, do the following:

1. Install findface-video-worker:

sudo apt update
sudo apt install -y findface-video-worker-cpu

Note: To install the GPU-accelerated findface-video-worker component, use
findface-video-worker-gpu in the command. If you have several video cards on your server,
see Multiple Video Cards Usage.

2. Open the /etc/findface-video-worker-cpu.ini (/etc/findface-video-worker-gpu.
ini) configuration file.

sudo vi /etc/findface-video-worker-cpu.ini
sudo vi /etc/findface-video-worker-gpu.ini

3. In the ntls-addr parameter, specify the IP address of the findface-ntls host if findface-ntls is
installed on a remote host.

ntls-addr=127.0.0.1:3133

4. In the mgr-static parameter, specify the IP address of the findface-video-manager host that will be
providing findface-video-worker with settings and the list of to-be-processed video streams.

mgr-static=127.0.0.1:18811

5. In the capacity parameter, specify the maximum number of video streams that
findface-video-worker is allowed to process.

capacity=10

6. Enable the findface-video-worker autostart and launch the service.

sudo systemctl enable findface-video-worker-cpu.service && sudo systemctl start
→˓findface-video-worker-cpu.service

26 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

5.3 Test Requests

Before you can proceed with development to implement the face recognition services to your system, make sure
that the FindFace Server components are working. To do so, run the test requests below, minding the sequence. To
pretty-print responses, we recommend you to use jq.

In this section:

• How to Pretty-Print Responses

• Create Gallery

• List Galleries

• Detect Face in Image

• Retrieve Detection Result from memcached

• Add Face from memcached to Gallery

• List Gallery Faces

• Search Face in Gallery

• Compare Faces

5.3.1 How to Pretty-Print Responses

Use jq to parse JSON data in responses. The jq tool is automatically installed from the console installer.

Tip: If it is not so, install jq as such:

sudo apt install jq

Note: Since jq approximates integers larger than 2^53 (e.g., for "id":12107867323949968228, the output is
"id": 12107867323949967000, etc.), you may want to use json_pp instead.

5.3.2 Create Gallery

The following request creates a new gallery galleryname. Relevant HTTP API method: /galleries/
<gallery> POST.

Request

curl -s -X POST http://localhost:18411/v2/galleries/galleryname | jq

5.3. Test Requests 27

FindFace Enterprise Server, Release 4.0.3

Response

{}

5.3.3 List Galleries

The following request returns the names of existing galleries (galleryname). Relevant HTTP API method: /
galleries GET.

Request

curl -s http://localhost:18411/v2/galleries | jq

Response

{
"galleries": [
{

"name": "galleryname",
"faces": 0

}
]

}

5.3.4 Detect Face in Image

The 1st request detects a face in a sample Internet image and returns coordinates of the rectangle around the face (a.k.a.
bbox) and the face orientation. Relevant HTTP API method: /detect POST.

Request #1

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample.jpg -X
→˓POST http://localhost:18411/v2/detect | jq

Response

{
"faces": [
{

"bbox": {
"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"features": {

"score": 0.9999999

(continues on next page)

28 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

}
}

],
"orientation": 1

}

If facen=on, the detection result is saved in memcached. In the 2nd request, the image is the same but this time
facen=on, along with enabled gender, age and emotions recognition.

Tip: To retrieve the detection result from memcached, use the /detect GET method.

Request #2

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample.jpg -X
→˓POST 'http://localhost:18411/v2/detect?facen=on&gender=on&age=on&emotions=on' | jq

Response

{
"faces": [
{

"id": "bhse5elubdg0ajgm2nkg",
"bbox": {

"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"features": {
"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{
"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

(continues on next page)

5.3. Test Requests 29

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

}
}

],
"orientation": 1

}

The 3rd request detects a face in another image and is used merely for the purpose of database population. The
detection result is saved in memcached (facen=on).

Request #3

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample2.jpg -X
→˓POST 'http://localhost:18411/v2/detect?facen=on

{
"faces": [
{

"id": "bhse45dubdg0ajgm2nk0",
"bbox": {

"left": 515,
"top": 121,
"right": 821,
"bottom": 427

},
"features": {

"score": 0.9999982
}

}
],
"orientation": 1

}

5.3.5 Retrieve Detection Result from memcached

The following request retrieves the detection result from memcached by id. Related HTTP API method: /detect
GET.

Note: bhse5elubdg0ajgm2nkg is the id of the detection results in memcached. This id is provided only for
reference. To create valid requests out of the example, replace the identifier with those actually received in the previous

30 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

responses.

Important: Before you proceed, open the findface-sf-api configuration file and make sure that the
allow-return-facen parameter is on.

sudo vi /etc/findface-sf-api.ini

allow-return-facen: on

Request #1

curl -s 'http://localhost:18411/v2/detect/bhse5elubdg0ajgm2nkg'

Response

{
"id": "bhse5elubdg0ajgm2nkg",
"bbox": {
"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"features": {
"score": 0.9999999

}
}

To retrieve a face feature vector (facen) in a detection result, open the /etc/findface-sf-api.ini
configuration file and set allow-return-facen: true. Restart findface-sf-api and append the
return_facen=on query string parameter to the previous command:

Request #2

curl -s 'http://localhost:18411/v2/detect/bhse5elubdg0ajgm2nkg?return_facen=on' | jq

Response

{
"id": "bhse5elubdg0ajgm2nkg",
"bbox": {
"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"features": {
"score": 0.9999999

(continues on next page)

5.3. Test Requests 31

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

},
"facen": "1ji...Vr3TEQg8"

}

5.3.6 Add Face from memcached to Gallery

The following requests not only retrieve the detection results from memcached by their id’s but also add the results
to the gallery galleryname under different custom ids (to be specified in a request). Relevant HTTP API method:
/v2/galleries/<gal>/faces/<id>.

Request #1

curl -s -X POST -H 'Content-Type: application/json' --data '{"from":
→˓"detection:bd2blott8f63g8nbhi50"}' http://localhost:18411/v2/galleries/galleryname/
→˓faces/1 | jq

Response

{
"id": {
"gallery": "galleryname",
"face": 1

},
"features": {
"gender": {

"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [

{
"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},

(continues on next page)

32 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

{
"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "3_bd323i5t8f66ph0eafq0.png"

}

Request #2

curl -s -X POST -H 'Content-Type: application/json' --data '{"from":"detection:
→˓bd44p6dt8f66ph0eahkg "}' http://localhost:18411/v2/galleries/galleryname/faces/2 |
→˓jq

5.3.7 List Gallery Faces

The following request returns the list of faces in the gallery galleryname. Relevant HTTP API method: /
galleries/<gallery>/faces with the active limit= filter (maximum number of returned faces).

Request

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?limit=2' | jq

{
"faces": [
{

"id": {
"gallery": "galleryname",
"face": 1

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

(continues on next page)

5.3. Test Requests 33

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "1_bd321tlt8f66ph0eaflg.png"

},
{

"id": {
"gallery": "galleryname",
"face": 2

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
(continues on next page)

34 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"score": 6.653509e-07
},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "2_bd323f5t8f66ph0eafp0.png"

}
],
"next_page": "3"

}

5.3.8 Search Face in Gallery

The following request searches the gallery galleryname for faces similar to a detected face (detection result stored
in memcached) with threshold similarity equal to 0.5. Relevant HTTP API request: /galleries/<gallery>/
faces with enabled detection:id and similarity filters.

Request

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?
→˓detection:bd3hv4tt8f66ph0eag1g=0.5&limit=1' | jq

Response

{
"faces": [
{

"id": {
"gallery": "galleryname",
"face": 2

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},

(continues on next page)

5.3. Test Requests 35

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

{
"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "2_bd323f5t8f66ph0eafp0.png",
"confidence": 0.9999

}
],
"next_page": "There are more than 1 results, but pagination is not supported when

→˓filtering by FaceN"
}

The following request searches the gallery galleryname for faces similar to a given face in the same gallery with
threshold similarity equal to 0.5. Relevant HTTP API request: /galleries/<gallery>/faces with enabled
face:<gallery>/<db_id> and similarity filters.

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?face:galleryname/1=0.1&
→˓limit=1' | jq

{
"faces": [
{

"id": {
"gallery": "galleryname",
"face": 2

},
"features": null,
"meta": {},
"confidence": 0.999

}
],
"next_page": "There are more than 1 results, but pagination is not supported when

→˓filtering by FaceN"

(continues on next page)

36 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

}

5.3.9 Compare Faces

The following requests compare a pair of faces and return a probability of their belonging to the same person. Relevant
HTTP API method: /verify POST.

The first request compares 2 results of the /detect POST method, stored in memcached.

Request #1

curl -s 'http://localhost:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&
→˓face2=detection:bd3hv8dt8f66ph0eag2g' | jq

Response

{
"confidence": 0.92764723

}

The 2nd request compares a result of the /detect POST method and a face in a gallery.

Request

curl -s 'http://localhost:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&
→˓face2=face:galleryname/2' | jq

Response

{
"confidence": 0.999996

}

5.4 Fast Index

To speed up the search, create a fast index for each gallery, using the findface-tarantool-build-index
utility delivered with the console installer. The utility is independent of the findface-tarantool-server
component and can be installed either on the localhost or on a remote host with access to Tarantool.

To create a fast index, do the following:

1. If you have installed the FindFace core step-by-step, install the findface-tarantool-build-index
utility.

sudo apt install findface-tarantool-build-index

5.4. Fast Index 37

FindFace Enterprise Server, Release 4.0.3

2. Create a fast index for your gallery (testgal in the case-study). First, connect to the Tarantool console.

Important: The gallery must not be empty. See Direct API Requests to Tarantool to fill the gallery with faces.

Note: You have to repeat the fast index creation on each findface-tarantool-server shard.

tarantoolctl connect 127.0.0.1:33001

3. Run prepare_preindex. Each element of the gallery will be moved from the linear space to
preindex:

127.0.0.1:33001> FindFace.Gallery.new("testgal"):prepare_preindex()

...

4. Prepare a file for generating the index:

127.0.0.1:33001> FindFace.Gallery.new("testgal"):save_preindex("/tmp/preindex.bin
→˓")

...

5. Launch index generation with the findface-tarantool-build-index utility (see --help for addi-
tional options). Depending on the number of elements, this process can take up to several hours and can be
done on a separate, more powerful machine (for huge galleries we recommend c4.8xlarge amazon, for example,
spot-instance).

findface-build-index --input /tmp/preindex.bin --output /opt/ntech/var/lib/
→˓tarantool/default/index/testgal.idx --facen_size 320
Config values:
.input = /tmp/preindex.bin
.output = /opt/ntech/var/lib/tarantool/default/index/testgal.idx
.facen_size = 320
.param_m = 12
.param_ef = 500
.limit = 4294967295

Building index: [XX] 100% ; 3 / 3
Index saved at /opt/ntech/var/lib/tarantool/default/index/testgal.idx

6. Delete the preindex.bin file.

sudo rm /tmp/preindex.bin

7. Enable the fast index for the gallery.

Note: If Tarantool works as a replica set, copy the index file (.idx) from the master instance to the same path
on the replica before enabling the fast index for the master instance (:use_index).

Tip: Do not forget to remove obsolete index files on the replica in order to avoid unnecessary index transitions,
should the master instance and replica be heavily out of sync.

38 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

127.0.0.1:33001> FindFace.Gallery.new("testgal"):preindex_to_index()

...
127.0.0.1:33001> sudo FindFace.Gallery.new("testgal"):use_index("/opt/ntech/var/
→˓lib/tarantool/default/index/testgal.idx")

...

8. Search through the gallery should now be significantly faster. Information about the index remains in the service
space, so when you restart Tarantool, the index will also be uploaded.

Warning: Do not move the index file to another location!

5.5 Additional findface-video-worker deployment on remote
hosts

To install only the findface-video-worker service, do the following:

Tip: Be sure to consult the system requirements prior.

Tip: If you have several video cards on your server, see Multiple Video Cards Usage before deploying
findface-video-worker-gpu.

1. Download the installer file <findface-security-and-server-xxx>.run.

2. Put the .run file into some directory on the designated host (for example, /home/username).

3. From this directory, make the .run file executable.

chmod +x <findface-security-and-server-xxx>.run

4. Execute the .run file.

sudo ./<findface-security-and-server-xxx>.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets
the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

1. Product to install: FindFace Video Worker.

2. Type of findface-video-worker package: CPU or GPU.

3. The IP address of the FindFace Enterprise Server host.

After that, the installation process will automatically begin.

Note: The answers will be saved to a file /tmp/<findface-installer-*>.json. You can edit this
file and use it to install findface-video-worker on other hosts without having to answer the questions
again. See Installation File for details.

5.5. Additional findface-video-worker deployment on remote hosts 39

FindFace Enterprise Server, Release 4.0.3

sudo ./<findface-security-and-server-xxx>.run -f /tmp/<findface-installer-*>.json

Note: If you chose to install findface-ntls and/or findface-video-manager on different hosts than that
with findface-sf-api, specify their IP addresses in the findface-video-worker configuration file after
the installation.

sudo vi /etc/findface-video-worker-cpu.ini
sudo vi /etc/findface-video-worker-gpu.ini

In the ntls-addr parameter, specify the findface-ntls host IP address.

ntls-addr=127.0.0.1:3133

In the mgr-static parameter, specify the findface-video-manager host IP address, which provides
findface-video-worker with settings and the video stream list.

mgr-static=127.0.0.1:18811

5.6 Neural Network Models Installation

To detect and identify faces and face attributes (gender, age, emotions, beard, glasses, etc.),
findface-extraction-api needs neural networks.

If you have to manually initiate the models installation, use the console installer as follows:

1. Execute the prepared <findface-security-and-server-xxx>.run file.

sudo ./<findface-security-and-server-xxx>.run

2. Select the installation type: Fully customized installation.

3. Select a component to install: findface-data. To do so, first, deselect all the listed components by entering
-* in the command line, then select the required component by entering its sequence number (keyword): 1.
Enter done to save your selection and proceed to another step.

4. In the same manner, select models to install. After that, the installation process will automatically begin.

Note: You can find installed face recognition models at /usr/share/findface-data/models/face/, face
features recognition models at /usr/share/findface-data/models/faceattr/.

ls /usr/share/findface-data/models/face/
grapefruit_160.cpu.fnk grapefruit_160.gpu.fnk grapefruit_480.cpu.fnk grapefruit_
→˓480.gpu.fnk

ls /usr/share/findface-data/models/faceattr/
age.v1.cpu.fnk age.v1.gpu.fnk beard.v0.cpu.fnk beard.v0.gpu.fnk emotions.v1.cpu.
→˓fnk emotions.v1.gpu.fnk gender.v2.cpu.fnk gender.v2.gpu.fnk glasses3.v0.cpu.fnk
→˓ glasses3.v0.gpu.fnk liveness.v3.gpu.fnk

40 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

5.7 Guide to Typical Cluster Installation

This section is all about deploying FindFace Enterprise Server in a cluster environment.

Tip: If after having read this section, you still have questions, do not hesitate to contact our experts by sup-
port@ntechlab.com.

The reasons for deploying FindFace Enterprise Server in a cluster are the following:

• The necessity to distribute the video processing high load.

• The necessity to process video streams from a group of cameras in the place of their physical location.

Note: The most common use cases where such need comes to the fore are hotel chains, chain stores, several
security checkpoints in the same building, etc.

• The necessity to distribute the biometric sample extraction high load.

• A large number of faces to search through that requires the implementation of a distributed face database.

Before you start the deployment, outline your system architecture, depending on its load and allotted resources (see
System Requirements). The most common distributed scheme is as follows:

• One principal server with the following components: findface-ntls, findface-sf-api,
findface-video-manager, findface-upload, findface-video-worker,
findface-extraction-api, findface-tarantool-server, and third-parties.

• Several additional video processing servers with installed findface-video-worker.

• (If needed) Several additional biometric servers with installed findface-extraction-api.

• (If needed) Additional database servers with multiple Tarantool shards.

This section describes the most common distributed deployment. In high load systems, it may also be necessary to
distribute the API processing (findface-sf-api and findface-video-manager) across several additional
servers. In this case, refer to Fully Customized Installation.

To deploy FindFace Enterprise Server in a cluster environment, follow the steps below:

• Deploy Principal Server

• Deploy Video Processing Servers

• Deploy Biometric Servers

• Distribute Load across Biometric Servers

• Distribute Database

• Configure Network

5.7.1 Deploy Principal Server

To deploy the principal server as part of a distributed architecture, do the following:

1. On the designated physical server, install FindFace Enterprise Server from the console installer as follows:

5.7. Guide to Typical Cluster Installation 41

mailto:support@ntechlab.com
mailto:support@ntechlab.com

FindFace Enterprise Server, Release 4.0.3

• Product to install: FindFace Server.

• Installation type: Single server, multiple video workers. In this case, Find-
Face Enterprise Server will be installed and configured to interact with additional remote
findface-video-worker instances.

• Type of the findface-video-worker acceleration (on the principal server): CPU or GPU, subject to
your hardware configuration.

• Type of the findface-extraction-api acceleration (on the principal server): CPU or GPU, subject
to your hardware configuration.

After the installation is complete, the following output will be shown on the console:

Tip: Be sure to save this data: you will need it later.

###
Installation is complete
###
- upload your license to http://127.0.0.1:3185/
- FindFace SF-API address: http://172.20.77.78:18411/
- FindFace VideoManager address: http://172.20.77.78:18411/

2. Upload the FindFace Enterprise Server license file via the findface-ntls web interface http://
<ntls_host_IP_address>:3185.

Note: The IP address is shown in the links to the FindFace web services in the following way: as an external
IP address if the host belongs to a network, or 127.0.0.1 otherwise.

3. Allow the licensable services to access the findface-ntls license server from any IP address, To do so,
open the /etc/findface-ntls.cfg configuration file and set listen = 0.0.0.0:3133.

sudo vi /etc/findface-ntls.cfg

Listen address of NTLS server where services will connect to.
The format is IP:PORT
Use 0.0.0.0:PORT to listen on all interfaces
This parameter is mandatory and may occur multiple times
if you need to listen on several specific interfaces or ports.
listen = 0.0.0.1:3133

5.7.2 Deploy Video Processing Servers

On an additional video processing server, install only a findface-video-worker instance following the step-
by-step instructions. Answer the installer questions as follows:

• Product to install: FindFace Video Worker.

• Type of the findface-video-worker acceleration: CPU or GPU, subject to your hardware configuration.

• FindFace Enterprise Server IP address: IP address of the principal server.

After that, the installation process will automatically begin. The answers will be saved to a file /tmp/
<findface-installer-*>.json. Use this file to install FindFace Video Worker on other hosts without
having to answer the questions again, by executing:

42 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

sudo ./<findface-security-and-server-xxx>.run -f /tmp/<findface-installer-*>.
→˓json

Note: After the installation, specify the findface-ntls and/or findface-video-manager IP
addresses in the findface-video-worker configuration file.

sudo vi /etc/findface-video-worker-cpu.ini
sudo vi /etc/findface-video-worker-gpu.ini

In the ntls-addr parameter, specify the findface-ntls host IP address.

ntls-addr=127.0.0.1:3133

In the mgr-static parameter, specify the findface-video-manager host IP address, which pro-
vides findface-video-worker with settings and the video stream list.

mgr-static=127.0.0.1:18811

5.7.3 Deploy Biometric Servers

On an additional biometric server, install only a findface-extraction-api instance from the console installer.
Answer the installer questions as follows:

• Product to install: FindFace Server.

• Installation type: Fully customized installation.

• FindFace Enterprise Server components to install: findface-extraction-api and findface-data.
To make a selection, first, deselect all the listed components by entering -* in the command line. Select
findface-extraction-api and findface-data by entering their sequence number (keyword): 1 7.
Enter done to save your selection and proceed to another step.

• Type of findface-extraction-api acceleration: CPU or GPU.

• Modification of the findface-extraction-api configuration file: specify the IP address of the
findface-ntls server.

• Neural network models to install: CPU or GPU model for face biometrics (mandatory), and (optional) CPU/GPU
models for gender, age, emotions, glasses and/or beard recognition. To make a selection, first, deselect all the
listed models by entering -* in the command line. Select required models by entering their sequence num-
ber (keyword), for example, 8 2 to select the GPU-models for biometric sample extraction and age recog-
nition. Enter done to save your selection and proceed to another step. Be sure to choose the right ac-
celeration type for each model, matching the acceleration type of findface-extraction-api: CPU
or GPU. Be aware that findface-extraction-api on CPU can work only with CPU-models, while
findface-extraction-api on GPU supports both CPU- and GPU-models. See Face Features Recogni-
tion for details.

The following models are available:

5.7. Guide to Typical Cluster Installation 43

FindFace Enterprise Server, Release 4.0.3

Face fea-
ture

Acceler-
ation

Package

face (biom-
etry)

CPU findface-data-grapefruit-160-cpu_3.0.0_amd64.deb, findface-data-grapefruit-
480-cpu_3.0.0_amd64.deb

GPU findface-data-grapefruit-160-gpu_3.0.0_amd64.deb, findface-data-grapefruit-
480-gpu_3.0.0_amd64.deb

age CPU findface-data-age.v1-cpu_3.0.0_amd64.deb
GPU findface-data-age.v1-gpu_3.0.0_amd64.deb

gender CPU findface-data-gender.v2-cpu_3.0.0_amd64.deb
GPU findface-data-gender.v2-gpu_3.0.0_amd64.deb

emotions CPU findface-data-emotions.v1-cpu_3.0.0_amd64.deb
GPU findface-data-emotions.v1-gpu_3.0.0_amd64.deb

glasses3 CPU findface-data-glasses3.v0-cpu_3.0.0_amd64.deb
GPU findface-data-glasses3.v0-gpu_3.0.0_amd64.deb

beard CPU findface-data-beard.v0-cpu_3.0.0_amd64.deb
GPU findface-data-beard.v0-gpu_3.0.0_amd64.deb

After that, the installation process will automatically begin. The answers will be saved to a file /tmp/
<findface-installer-*>.json. Use this file to install findface-extraction-api on other hosts
without having to answer the questions again.

sudo ./<findface-security-and-server-xxx>.run -f /tmp/<findface-installer-*>.
→˓json

After all the biometric servers are deployed, distribute load across them by using a load balancer.

5.7.4 Distribute Load across Biometric Servers

To distribute load across several biometric servers, you need to set up load balancing. The following
step-by-step instructions demonstrate how to set up NGINX load balancing in a round-robin fashion for 3
findface-extraction-api instances located on different physical hosts: one on the FindFace Enterprise Server
principal server (172.168.1.9), and 2 on additional remote servers (172.168.1.10, 172.168.1.11). Should
you have more biometric servers in your system, load-balance them by analogy.

Tip: You can use any load balancer according to your preference. Please refer to the relevant official documentation
for guidance.

To set up load balancing, do the following:

1. Designate the FindFace Enterprise Server principal server (recommended) or any other server with NGINX as
a gateway to all the biometric servers.

Important: You will have to specify the gateway server IP address when configuring the FindFace Enterprise
Server network.

Tip: You can install NGINX as such:

sudo apt update
sudo apt install nginx

44 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

2. On the gateway server, create a new NGINX configuration file.

sudo vi /etc/nginx/sites-available/extapi

3. Insert the following entry into the newly created configuration file. In the upstream directive (upstream
extapibackends), substitute the exemplary IP addresses with the actual IP addresses of the biometric
servers. In the server directive, specify the gateway server listening port as listen. You will have to
enter this port when configuring the FindFace Enterprise Server network.

upstream extapibackends {
server 172.168.1.9:18666; ## ``findface-extraction-api`` on principal

→˓server
server 172.168.1.10:18666; ## 1st additional extraction server
server 127.168.1.11:18666; ## 2nd additional extraction server

}
server {

listen 18667;
server_name extapi;
client_max_body_size 64m;
location / {

proxy_pass http://extapibackends;
proxy_next_upstream error;

}
access_log /var/log/nginx/extapi.access_log;
error_log /var/log/nginx/extapi.error_log;

}

4. Enable the load balancer in NGINX.

sudo ln -s /etc/nginx/sites-available/extapi /etc/nginx/sites-enabled/

5. Restart nginx.

sudo service nginx restart

6. On the principal server and each additional biometric server, open the /etc/
findface-extraction-api.ini configuration file. Substitute localhost in the listen parameter
with the relevant server address that you have specified in upstream extapibackends (/etc/nginx/
sites-available/extapi) before. In our example, the address of the 1st additional extraction server has
to be substituted as such:

sudo vi /etc/findface-extraction-api.ini

listen: 172.168.1.10:18666

7. Restart the findface-extraction-api on the principal server and each additional biometric server.

sudo systemctl restart findface-extraction-api.service

The load balancing is now successfully set up. Be sure to specify the actual gateway server IP address and listening
port, when configuring the FindFace Enterprise Server network.

5.7.5 Distribute Database

The findface-tarantool-server component connects the Tarantool database and the findface-sf-api
component, transferring search results from the database to findface-sf-api for further processing. To increase

5.7. Guide to Typical Cluster Installation 45

FindFace Enterprise Server, Release 4.0.3

search speed, multiple findface-tarantool-server shards can be created on each Tarantool host. Their
running concurrently leads to a remarkable increase in performance. Each shard can handle up to approximately
10,000,000 faces. When deploying findface-tarantool-server from the console installer, shards are created
automatically given the server hardware.

To distribute the face database, install only a findface-tarantool-server instance on each additional
database server. Answer the installer questions as follows:

• Product to install: FindFace Server.

• Installation type: Fully customized installation.

• FindFace Enterprise Server components to install: findface-tarantool-server. To make a
selection, first, deselect all the listed components by entering -* in the command line. Select
findface-tarantool-server by entering its sequence number (keyword): 13. Enter done to save
your selection and proceed to another step.

After that, the installation process will automatically begin. The answers will be saved to a file /tmp/
<findface-installer-*>.json. Use this file to install findface-tarantool-server on other hosts
without having to answer the questions again.

sudo ./<findface-security-and-server-xxx>.run -f /tmp/<findface-installer-*>.json

As a result of the installation, findface-tarantool-server shards will be automatically installed in the
amount of N = max(min(mem_mb // 2000, cpu_cores), 1), i.e., equal to the RAM size in MB divided
by 2000, or the number of CPU physical cores (but at least 1 shard).

Be sure to specify the shards IP addresses and ports, when configuring the FindFace Enterprise Server network. To
learn the port numbers, execute on each database server:

sudo cat /etc/tarantool/instances.enabled/*shard* | grep -E ".start|(listen =)"`

You will get the following result:

listen = '127.0.0.1:33001',
FindFace.start("127.0.0.1", 8101, {

listen = '127.0.0.1:33002',
FindFace.start("127.0.0.1", 8102, {

You can find the port number of a shard in the FindFace.start section, for example, 8101, 8102, etc.

5.7.6 Configure Network

After all the FindFace Enterprise Server components are deployed, configure their interaction over the network. Do
the following:

1. Open the findface-sf-api configuration file:

sudo vi /etc/findface-sf-api.ini

Specify the following parameters:

46 Chapter 5. Deploy FindFace Enterprise Server

FindFace Enterprise Server, Release 4.0.3

Parameter Description
extraction-api ->
extraction-api

IP address and listening port of the gateway biometric server with set up load
balancing.

storage-api ->
shards -> master

IP address and port of the findface-tarantool-server master shard.
Specify each shard by analogy.

upload_url WebDAV NGINX path to send original images, thumbnails and normalized
face images to the findface-upload service.

...
extraction-api:
extraction-api: http://172.168.1.9:18667

...
webdav:
upload-url: http://127.0.0.1:3333/uploads/

...
storage-api:
...
shards:
- master: http://172.168.1.9:8101/v2/

slave: ''
- master: http://172.168.1.9:8102/v2/

slave: ''
- master: http://172.168.1.12:8101/v2/

slave: ''
- master: http://172.168.1.12:8102/v2/

slave: ''
- master: http://172.168.1.13:8102/v2/

slave: ''
- master: http://172.168.1.13:8102/v2/

slave: ''

2. Open the findface-facerouter configuration file. Specify the IP address of the findface-sf-api
host.

sudo vi /etc/findface-facerouter.py

sfapi_url = 'http://localhost:18411'

3. Open the findface-video-manager configuration file. In the router_url parameter, spec-
ify the IP address and port of the findface-facerouter host to receive detected faces from
findface-video-worker.

sudo vi /etc/findface-video-manager.conf

...
router_url: http://127.0.0.1:18820/v0/frame

The FindFace Enterprise Server components interaction is now set up.

5.7. Guide to Typical Cluster Installation 47

FindFace Enterprise Server, Release 4.0.3

5.8 Fully Customized Installation

The FindFace Enterprise Server developer-friendly installer provides you with quite a few installation options, in-
cluding the fully customized installation. This option is mostly used when deploying FindFace Enterprise Server in a
highly distributed environment.

To initiate the fully customized installation, answer the installer questions as follows:

• Product to install: FindFace Server.

• Installation type: Fully customized installation.

• FindFace Enterprise Server components to install: whenever you have to make a selection, first, deselect all
the listed components by entering -* in the command line. Select required components by entering their
sequence number (keyword), for example: 1 7 (findface-data, findface-extraction-api), 13
(findface-tarantool-server), or 9 (findface-upload). Enter done to save your selection and proceed
to another step.

• Related questions such as about the acceleration type: CPU or GPU.

48 Chapter 5. Deploy FindFace Enterprise Server

CHAPTER 6

Biometric API

6.1 How to Use Biometric API

In this section:

• Endpoint

• API Version

• Face as API Object

• Parameters Format

• How to Use Examples

• Limits

• Error Reporting

6.1.1 Endpoint

Biometric API requests are to be sent to http://<findface-sf-api IP address>:18411/. API requests
are executed by the findface-sf-api component.

6.1.2 API Version

The API version is increased every time a major change is made and allows us to avoid breaking backwards compati-
bility. The API version is to be specified in the request path (for example, v2 in /v2/detect/).

The most recent version is v2.

49

FindFace Enterprise Server, Release 4.0.3

Tip: When starting a new project, always use the latest stable API version.

6.1.3 Face as API Object

Biometric API operates with a face object which represents a human face.

Note: There can be several faces in a photo and thus several face objects associated with it.

Note: Different images of the same person are considered to be different face objects.

Each face object has the following attributes:

• "id" (uint64): (only if the face has been added to the biometric database) face identifier (uint64) to be
specified by a user in an API request when adding a face from memcached to the database. The identifier is
passed as <id> in the /galleries/<gallery>/faces/<id> POST method.

• "facen" (bytes): the face feature vector.

• "meta" (string): set of metadata strings that you can use to store any information associated with the
face, for example, the name of a person, the camera id, the detection date and time, etc.

• "features" (dictionary): a dictionary {key (string):value (any datatype)}. Used to store face biomet-
ric parameters such as gender, age, emotions.

6.1.4 Parameters Format

There are two ways to pass a photo image to the system:

• as a publicly accessible URL,

• as a file.

There are three ways to pass parameters to the biometric API:

• image/jpeg, image/png, image/webp, image/bmp: to pass a photo image as a file,

• text/x-url: to pass a photo image as an URL,

• query string: parameters appended to a URI request.

All responses are in JSON format and UTF-8 encoding.

6.1.5 How to Use Examples

Examples in methods descriptions illustrate possible method requests and responses. To check the examples without
writing code, use the embedded API framework. To access the framework, enter in the address bar of your browser:
http://<findface-sf-api_ip>:18411/v2/docs/v2/overview.html for the API version /v2.

50 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

6.1.6 Limits

FindFace Enterprise Server imposes the following limits.

Limit Value
Image formats JPG, PNG, WEBP, BMP
Maximum photo file size To be configured via the findface-sf-api configuration file.
Minimal size of a face 50x50 pixels
Maximum number of detected faces per photo Unlimited

Important: Additionally, the URL provided to the API to fetch an image must be public (without authentication) and
direct (without any redirects).

6.1.7 Error Reporting

If a method fails, it always returns a response with a HTTP code other than 200, and a JSON body containing the error
description. The error body always includes at least two fields: code and desc.

• code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

• desc is a human-readable description of the error and should not be interpreted automatically.

Common Error Codes

Error code Description HTTP
code

UNKNOWN_ERROR Error with unknown origin. 500
BAD_PARAM The request can be read, however, some method parameters are invalid. This response

type contains additional attributes param and‘‘value‘‘ to indicate which parameters
are invalid.

400

CONFLICT Conflict. 409
EXTRACTION_ERRORError upon a face feature vector extraction. 503
LICENSE_ERROR The system configuration does not match license. 503
MALFORMED_REQUESTThe request is malformed and cannot be read. 400
OVER_CAPACITY The findface-extraction-api queue length has been exceeded. 429
SOURCE_NOT_FOUNDThe face in the from parameter does not exist. 400
SOURCE_GALLERY_NOT_FOUNDThe gallery in the from parameter does not exist. 400
STORAGE_ERROR The biometric database not available. 503
CACHE_ERROR Memcached not available. 503
NOT_FOUND Matching faces not found. 404
NOT_IMPLEMENTEDThis functionality not implemented. 501
GALLERY_NOT_FOUNDMatching galleries not found. 404

6.2 Biometric API Methods

In this section:

6.2. Biometric API Methods 51

FindFace Enterprise Server, Release 4.0.3

• Detect Face in Image

• Retrieve Detection Result from memcached

• Create Detection Result out of findface-extraction-api Response

• List Database Galleries

• Create Database Gallery

• Retrieve Gallery Details

• Delete Gallery

• Add Face to Database

• Retrieve Face from Gallery

• Delete Face from Gallery

• Update Face Metadata in Gallery

• Compare Faces

• Retrieve Data from Gallery. Face Search

6.2.1 Detect Face in Image

/detect POST

This method detects a face in a provided image and returns coordinates of the rectangle around the face (a.k.a. bbox)
and the face orientation.

Note: Face detection is done by the findface-extraction-api component, so the findface-sf-api
component formats your initial request and forwards it to findface-extraction-api.

Important: Be sure to pass the enabled facen parameter in the /detect POST query string in order to save the
returned result in memcached. To retrieve the returned result from memcached, use the /detect GET method.

Tip: To enable a boolean parameter (gender, age, etc.), use any of the following strings: 1, yes, true, or on, in
any letter case.

Important: To enable recognition of face features, you can use either the new (preferred) or old API parameters (see
the query string parameters for details). The old API allows you to recognize gender, age, emotions, and country, while
the new API provides recognition of gender, age, emotions, country, beard, and glasses. Each face feature (gender,
age, emotions, country, beard, or glasses) must be mentioned only once in a request, either in the new or old API
format.

52 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

Query string parameters:

• "detector": string, face detector to be applied to the image: nnd (regular detector) or normalized (ac-
cepts a normalized face image, skipping the face detection stage).

• "gender": Boolean, enables gender recognition (old API).

• "age": Boolean, enables age recognition (old API).

• "emotions": Boolean, enables emotions recognition (old API).

• "facen": Boolean, the formatted request to findface-extraction-api will include such parameters
as need_facen (extract a face feature vector) and need_normalized (obtain a normalized face image),
while the full findface-extraction-api response will be saved in memcached under a temporary
UUID. You can find this UUID in the id field of the response.

• "countries47:: Boolean, enables country recognition (old API).

• "autorotate": Boolean, auto-rotates an original image to 4 different orientations and returns faces detected
in each orientation.

• "return_facen": Boolean, returns a face feature vector in the response. Requires the enabled
allow-return-facen flag in the findface-sf-api configuration file.

• "attributes": Array of strings in the format ["gender", "age", "emotions",
"countries47", "beard", "glasses3"], enables recognition of the face features passed in
the array (new API).

Parameters in request body:

Image as a file of the image/jpeg, image/png, or image/webp MIME-type, or as a text/x-url link to a
relevant public URL.

Returns:

• list of coordinates of the rectangles around the detected faces;

• temporary UUID of the detection result (id, if facen enabled);

Important: When writing code, be sure to check the relevance of the temporary UUID before you
refer to it as it tends to become irrelevant with time. If so, re-detect the face.

• feature vector (if return_facen enabled);

• gender (if gender enabled): male or female, with algorithm confidence in the result ("score");

• age (if age enabled): number of years;

• emotions (if emotions enabled): 6 basic emotions + neutral (angry, disgust, fear, happy, sad,
surprise, neutral) with algorithm confidence in each emotion expression;

• countries (if countries47 enabled): probable countries of origin with algorithm confidence in the result;

• attributes (if passed): gender (male or female), age (number of years), emotions (predominant emotion),
probable countries of origin, beard (beard or none), glasses (sun, eye, or none), along with algorithm
confidence in the result;

• orientation.

6.2. Biometric API Methods 53

FindFace Enterprise Server, Release 4.0.3

Example

Request

curl -i -X POST 'http://127.0.0.1:18411/v2/detect?facen=on&gender=on&age=on&
→˓emotions=on&attribute=glasses3' -H 'Content-Type: image/jpeg' --data-binary @sample.
→˓jpg
HTTP/1.1 100 Continue

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:BpLnfgDs
Date: Thu, 23 May 2019 12:00:22 GMT
Content-Length: 713

{
"faces": [

{
"id": "bjj8mlhjisgjrk6hj1v0",
"bbox": { "left": 595, "top": 127, "right": 812, "bottom": 344 },
"features": {

"gender": { "gender": "FEMALE", "score": 0.9998938 },
"age": 25,
"score": -0.000696103,
"emotions": [

{ "emotion": "neutral", "score": 0.99958 },
{ "emotion": "sad", "score": 0.0004020365 },
{ "emotion": "happy", "score": 8.603454e-06 },
{ "emotion": "surprise", "score": 8.076766e-06 },
{ "emotion": "disgust", "score": 6.6535216e-07 },
{ "emotion": "angry", "score": 6.1434775e-07 },
{ "emotion": "fear", "score": 7.3372125e-10 }

],
"attributes": {

"glasses3": {
"attribute": "glasses3",
"model": "glasses3.v0",
"result": [

{ "confidence": 0.99958307, "name": "none" },
{ "confidence": 0.00033243417, "name": "eye" },
{ "confidence": 8.4465064e-05, "name": "sun" }

]
}

}
}

}
],
"orientation": 1

}

54 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

6.2.2 Retrieve Detection Result from memcached

/detect/:id GET

This method retrieves the detection results from memcached by their temporary UUID’s (including feature vectors
of the detected faces).

Parameters in path segments:

• :id: the detection result temporary UUID in memcached.

Returns:

JSON representation of the detection result.

Example

Request

curl -i -X GET 'http://127.0.0.1:18411/v2/detect/bg2gu31jisghl6pee09g'

Response:

{
"bbox": { "bottom": 343, "left": 593, "right": 824, "top": 112 },
"features": {

"age": 26.096783,
"emotions": [

{ "emotion": "neutral", "score": 0.9094986 },
{ "emotion": "happy", "score": 0.11464329 },
{ "emotion": "sad", "score": 0.005675929 },
{ "emotion": "surprise", "score": -0.02556022 },
{ "emotion": "fear", "score": -0.14499822 },
{ "emotion": "angry", "score": -0.19491306 },
{ "emotion": "disgust", "score": -0.31617728 }

],
"gender": { "gender": "FEMALE", "score": -2.7309942 },
"score": -0.000696103

},
"id": "bg2gu31jisghl6pee09g"

}

6.2.3 Create Detection Result out of findface-extraction-api Response

/detect/:id POST

This method creates a detection result out of a findface-extraction-api response.

6.2. Biometric API Methods 55

FindFace Enterprise Server, Release 4.0.3

Parameters in path segments:

• :id: specify UUID under which the newly created detection result will be stored in cache.

Returns:

Empty JSON on success.

Example

Request

$ curl -i -X POST 'http://127.0.0.1:18411/v2/detect/bg2gu31jisghl6peea9g' -H 'Content-
→˓Type: application/json' --data-binary '@extapi-face.json'

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: jFSBuSPm
Date: Wed, 05 Dec 2018 08:08:56 GMT
Content-Length: 2

{}

6.2.4 List Database Galleries

/galleries GET

This method returns the list of all galleries in the biometric database.

Parameters:

The method doesn’t accept any parameters.

Returns:

JSON dictionary with the list of gallery names.

Example

Request

GET /v2/galleries HTTP/1.1
Host: 172.17.47.19:18411

56 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:11:43 GMT
Content-Length: 35

{"galleries":[{"name":"sandbox"}]}

6.2.5 Create Database Gallery

/galleries/:gallery POST

This method creates a gallery under a given name.

Parameters in path segments:

:gallery: a new gallery’s name. It can contain English letters, numbers, underscore and minus sign
([a-zA-Z0-9_-]+) and must be no longer than 48 characters.

Returns:

• Empty JSON on success.

• JSON with a relevant error description on failure.

Example

Request

POST /v2/galleries/newone HTTP/1.1
Host: 172.17.47.19:18411

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:18:01 GMT
Content-Length: 2

{}

6.2.6 Retrieve Gallery Details

/galleries/:gallery GET

This method checks a gallery existence and retrieves the number of faces in it.

6.2. Biometric API Methods 57

FindFace Enterprise Server, Release 4.0.3

Parameters in path segments:

:gallery: a gallery’s name.

Returns:

• JSON dictionary with the number of faces and gallery name on success.

• JSON with a relevant error description on failure.

Example

Request

curl -i -X GET 'http://127.0.0.1:18411/v2/galleries/hello'

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: Ard3exjn
Date: Wed, 05 Dec 2018 08:17:54 GMT
Content-Length: 29

{ "faces": 123, "name": "hello" }

6.2.7 Delete Gallery

/galleries/:gallery DELETE

This method deletes a given gallery with all the faces.

Parameters in path segments:

:gallery: the name of the gallery to be deleted.

Returns:

• Empty JSON on success.

• JSON with a relevant error description on failure.

Example

Request

DELETE /v2/galleries/newone HTTP/1.1
Host: 172.17.47.19:18411

58 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:18:01 GMT
Content-Length: 2

{}

6.2.8 Add Face to Database

/galleries/:gallery/faces/:id POST

This method takes a detected face from memcached or a face from a gallery. It then adds the face with its feature
vector to a given gallery under a custom id. The custom id and destination gallery are to be specified in the path
segments. Along with the face, you can also add metadata which uniquely describes the person, for example, the
person’s name.

Parameters in path segments:

• :gallery: the name of the gallery to add the face in.

• :id: permanent face id in the gallery, uint64.

Parameters in request body:

• "from": temporary UUID of the detected face in memcached ("from": "detection:<id>") or face
id in a gallery ("from: "face:<gallery>/<id>").

• "meta" [optional]: the person’s metadata such as the person’s name, original image details, detection date and
time, etc., dictionary.

Returns:

• JSON representation of the added face on success.

• Error on failure.

Example

Request

curl -i -X POST http://127.0.0.1:18411/v2/galleries/hello/faces/123/ -H 'Content-
→˓Type: application/json' --data-binary '@-' <<EOF
{

"from": "detection:bg2gu31jisghl6pee09g",
"meta": {

"camera": "openspace",
"labels": ["foo", "bar"],
"timestamp": "1543837276"

}

(continues on next page)

6.2. Biometric API Methods 59

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

}
EOF

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:OSSKbJg3
Date: Wed, 05 Dec 2018 08:27:59 GMT
Content-Length: 555

{
"features": {

"age": 26.096783,
"emotions": [

{ "emotion": "neutral", "score": 0.9094986 },
{ "emotion": "happy", "score": 0.11464329 },
{ "emotion": "sad", "score": 0.005675929 },
{ "emotion": "surprise", "score": -0.02556022 },
{ "emotion": "fear", "score": -0.14499822 },
{ "emotion": "angry", "score": -0.19491306 },
{ "emotion": "disgust", "score": -0.31617728 }

],
"gender": { "gender": "FEMALE", "score": -2.7309942 },
"score": -0.000696103

},
"id": { "face": 123, "gallery": "hello" },
"meta": {

"camera": "openspace",
"labels": ["foo", "bar"],
"timestamp": "1543837276"

},
"normalized_id": "123_bg2hcupjisghl6pee0ag.png"

}

6.2.9 Retrieve Face from Gallery

/galleries/:gallery/faces/:id GET

This method retrieves a face from a database gallery by id.

Parameters in path segments:

• :gallery: the name of the gallery to retrieve the face from.

• :id: face id in the gallery, uint64.

Returns:

• JSON representation of the retrieved face on success.

• Error on failure.

60 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

Example

Request

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/2' | jq

Response

{
"id": {
"gallery": "galleryname",
"face": 2

},
"features": {
"gender": {

"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [

{
"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {
"timestamp": 2

},
"normalized_id": "2_bd323f5t8f66ph0eafp0.png"

}

6.2. Biometric API Methods 61

FindFace Enterprise Server, Release 4.0.3

6.2.10 Delete Face from Gallery

/galleries/:gallery/faces/:id DELETE

This method deletes a face from a database gallery by id.

Parameters in path segments:

• :gallery: the name of the gallery to delete the face from.

• :id: face id in the gallery, uint64.

Returns:

• Empty JSON on success.

• Error on failure.

Example

Request

curl -s -X DELETE 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/1' | jq

Response

{}

6.2.11 Update Face Metadata in Gallery

/galleries/:gallery/faces/:id PATCH

The method updates a face metadata in a database gallery by id.

Parameters in path segments:

• :gallery: the gallery’s name.

• :id: face id in the gallery, uint64.

Parameters in request body

• "meta": dictionary with the face’s new metastrings.

Returns:

• JSON representation of the updated face on success.

• Error on failure.

62 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

Example

Request

curl -s -X PATCH -H 'Content-Type: application/json' --data '{"meta":{"timestamp":2}}
→˓' 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/2' | jq

Response

{
"id": {
"gallery": "galleryname",
"face": 2

},
"features": {
"gender": {

"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [

{
"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {
"timestamp": 2

},

(continues on next page)

6.2. Biometric API Methods 63

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"normalized_id": "2_bd323f5t8f66ph0eafp0.png"
}

6.2.12 Compare Faces

/verify POST

This method compares a pair of faces and returns a probability of their belonging to the same person (a.k.a. similarity,
or confidence).

Query string parameters:

• "face1": the first face, either a detection result (a result of the /detect POST method being stored in
memcached), or one from the biometric database.

• "face2": the second face, from the same possible sources as the first face.

Returns:

Algorithm confidence that the faces match.

Example

Request #1. Compare 2 detection results

curl -s 'http://172.17.47.19:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&
→˓face2=detection:bd3hv8dt8f66ph0eag2g' | jq

Response

{
"confidence": 0.92764723

}

Request #2. Compare a detection result and a face from a gallery

curl -s 'http://172.17.47.19:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&
→˓face2=face:galleryname/2' | jq

Response

{
"confidence": 0.999996

}

64 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

6.2.13 Retrieve Data from Gallery. Face Search

/v2/galleries/:gallery/faces GET

This method allows you to search faces in a gallery by using filters specified in the query string.

Parameters in path segments:

:gallery: the name of the gallery to search in.

Query string parameters:

• ?limit=: (mandatory) maximum number of faces in the response.

• ?sort=: sorting order. Pass one of the following values: id: increasing order by id, -id: decreasing order
by id, -confidence: decreasing order by face similarity (only if you have specified a feature vector to search
for).

• ?page=<page>: cursor of the next page with search results. The <page> value is returned in the response
in the next_page parameter along with the previous page results (see details below).

• ?ignore_errors: By default, if one or several findface-tarantool-server shards are out of ser-
vice during face identification, findface-sf-api returns an error. Enable this Boolean parameter to use
available findface-tarantool-server shards to obtain face identification results.

• ?meta:in:meta1=val1&meta:in:meta1=val2&...: select a face if a meta string meta1 is equal to
one of the values val1/val2/ . . . , etc. (uint64, string).

• ?meta:gte:meta1=val1: select all faces with a meta string meta1 greater or equal to val1 (uint64).

• ?meta:lte:meta1=val1: select all faces with a meta string meta1 less or equal to val1 (uint64).

• ?id:in=value_id: select all faces with id equal to value_id.

• ?id:gte=value_id: select all faces with id greater or equal to value_id.

• ?id:lte=value_id: select all faces with id less or equal to value_id.

• ?meta:subset:meta1=val1&meta:subset:meta1=val2&...: select a face if a meta string
meta1 includes all the values val1, val2, . . . , etc. ([]string).

• ?<id>=<confidence>: specifies a feature vector to search for in the biometric database, via the <id>
parameter, as well as the threshold similarity in the search results as <confidence>. The <id> parameter can
be either a face ID in a database gallery (specify <id> as face:<gallery>/<db_id>), or the temporary
UUID of a detection result stored in memcached (detection:<memcached_id>) (see the /detect
POST method and examples below). The <confidence> ranges from 0 to 1.

Returns:

JSON representation of an array with found faces. By default, faces in the response are sorted by id. Should you
specify a feature vector to search for, faces will be sorted in decreasing order by similarity.

The response format is the following:

6.2. Biometric API Methods 65

FindFace Enterprise Server, Release 4.0.3

{
"faces": [

{
... face 1 data ...
"confidence": 0.123 // if you search for a feature vector

},
{

... face 2 data ...
"confidence": 0.123 // if you search for a feature vector

},
...

],
"next_page": "vgszk2bkexbl" // next page cursor

}

The next_page parameter is a URL-safe string that you will have to pass in the ?page= in the next request in order
to get the next page of results. Pagination is available only if the filtration by feature vector is disabled.

Request #1. Face identification (search a gallery for a face)

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces?
→˓detection:bd3hv4tt8f66ph0eag1g=0.5&limit=1' | jq

Response

{
"faces": [
{

"id": {
"gallery": "galleryname",
"face": 2

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",

(continues on next page)

66 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"score": 8.076798e-06
},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "2_bd323f5t8f66ph0eafp0.png",
"confidence": 0.9999

}
],
"next_page": "There are more than 1 results, but pagination is not supported when

→˓filtering by FaceN"
}

Request #2. List faces in gallery

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces?limit=2' | jq

Response

{
"faces": [
{

"id": {
"gallery": "galleryname",
"face": 1

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

(continues on next page)

6.2. Biometric API Methods 67

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
"score": 6.653509e-07

},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "1_bd321tlt8f66ph0eaflg.png"

},
{

"id": {
"gallery": "galleryname",
"face": 2

},
"features": {

"gender": {
"gender": "FEMALE",
"score": -2.6415923

},
"age": 26.04833,
"score": 0.9999999,
"emotions": [
{

"emotion": "neutral",
"score": 0.99958

},
{

"emotion": "sad",
"score": 0.0004020398

},
{

"emotion": "happy",
"score": 8.603504e-06

},
{

"emotion": "surprise",
"score": 8.076798e-06

},
{

"emotion": "disgust",
(continues on next page)

68 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"score": 6.653509e-07
},
{

"emotion": "angry",
"score": 6.14346e-07

},
{

"emotion": "fear",
"score": 7.33713e-10

}
]

},
"meta": {},
"normalized_id": "2_bd323f5t8f66ph0eafp0.png"

}
],
"next_page": "3"

}

Request #3. Advanced face identification

curl -i -X GET http://127.0.0.1:18411/v2/galleries/history/faces/?limit=5&
→˓meta:in:camera=openspace&meta:in:camera=entrance&meta:lte:timestamp=1543845934&
→˓meta:gte:timestamp=1514801655&detection:bg2gu31jisghl6pee09g=0.4 | jq

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:ibKVYpcb
Date: Wed, 05 Dec 2018 08:37:33 GMT
Transfer-Encoding: chunked

{
"faces": [

{
"confidence": 0.6026,
"features": { "score": 1 },
"id": { "face": 4141715030051545133, "gallery": "history" },
"meta": {

"bbox": "[607, 802, 738, 933]",
"camera": "openspace",
"is_friend": 0,
"labels": [],
"score": 9999999999998079040,
"timestamp": 1542909082

},
"normalized_id": "4141715030051545133_bfrep71jisghl6pedvk0.png"

},
{

"confidence": 0.5325,
"features": { "score": 1 },
"id": { "face": 4141715086422990894, "gallery": "history" },

(continues on next page)

6.2. Biometric API Methods 69

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"meta": {
"bbox": "[741, 905, 953, 1117]",
"camera": "openspace",
"is_friend": 0,
"labels": [],
"score": 9999999999993877300,
"timestamp": 1542909103

},
"normalized_id": "4141715086422990894_bfrepc9jisghl6pedvl0.png"

},
{

"confidence": 0.531,
"features": {

"age": 41.2622,
"gender": { "gender": "FEMALE", "score": -0.880698 },
"score": 1

},
"id": { "face": 4141716493024780347, "gallery": "history" },
"meta": {

"bbox": "[90, 869, 166, 945]",
"camera": "openspace",
"is_friend": 0,
"labels": [],
"score": 10000000000000000013,
"timestamp": 1542909627

},
"normalized_id": "4141716493024780347_bfretf9jisghl6pee020.png"

},
{

"confidence": 0.5236,
"features": {

"age": 48.949913,
"gender": { "gender": "FEMALE", "score": -0.7653318 },
"score": 1

},
"id": { "face": 4141716498393489468, "gallery": "history" },
"meta": {

"bbox": "[56, 853, 125, 923]",
"camera": "openspace",
"is_friend": 0,
"labels": [],
"score": 9999999999999999053,
"timestamp": 1542909629

},
"normalized_id": "4141716498393489468_bfretg1jisghl6pee030.png"

},
{

"confidence": 0.5212,
"features": {

"age": 33.3112,
"gender": { "gender": "MALE", "score": 1.9504981 },
"score": 1

},
"id": { "face": 4141715338752319538, "gallery": "history" },
"meta": {

"bbox": "[-36, 862, 60, 958]",
"camera": "openspace",

(continues on next page)

70 Chapter 6. Biometric API

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"is_friend": 0,
"labels": [],
"score": 9999999999999999425,
"timestamp": 1542909197

},
"normalized_id": "4141715338752319538_bfreq4pjisghl6pedvp0.png"

}
],
"next_page": "There are more than 5 results, but pagination is not supported when

→˓filtering by FaceN"
}

Tip: You can also find the biometric API documentation on our website and at http://
<findface-sf-api_ip>:18411/v2/docs.

6.2. Biometric API Methods 71

https://api.findface.pro/v2/docs/v2/overview.html

FindFace Enterprise Server, Release 4.0.3

72 Chapter 6. Biometric API

CHAPTER 7

Video Face Detection API

7.1 How to Use Video Face Detection API

In this section:

• Endpoint

• Job Object

• Error Reporting

7.1.1 Endpoint

Video face detection API requests are to be sent to http://<findface-video-manager IP
address>:18810/. API requests are executed by the findface-video-manager component.

7.1.2 Job Object

Video face detection API operates on a job object which represents a video processing task that the
findface-video-manager component issues to findface-video-worker.

Each job object has the following attributes:

• id: job id specified by a user.

• stream_url: URL/address of video stream/file to process.

• labels: tag(s) that will be used by the findface-facerouter component to find processing directives
for faces detected in this stream.

• single_pass: if true, disable restarting video processing upon error (by default, false).

73

FindFace Enterprise Server, Release 4.0.3

• router_url: IP address and port of the findface-facerouter component to receive detected faces
from the findface-video-worker component for processing.

• status: job status.

• status_msg: additional job status info.

• statistic: job progress statistics (progress duration, number of posted faces).

• worker_id: id of the findface-video-worker instance executing the job.

7.1.3 Error Reporting

If a method fails, it always returns a response with a HTTP code other than 200, and a JSON body containing the error
description. The error body always includes at least two fields: code and desc.

• code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

• desc is a human-readable description of the error and should not be interpreted automatically.

Common Error Codes

Error code Description HTTP code
UNKNOWN_ERROR Error with unknown origin. 500
BAD_REQUEST The request cannot be read, or some method parameters are invalid. 400
CONFLICT Conflict. 409
NOT_FOUND Job not found. 404
DELETING The previously requested job removal is in progress. 423

7.2 Video Face Detection API Methods

In this section:

• Create Job

• List Existing Jobs

• Retrieve Job Parameters

• Delete Job

• Update Job

• Restart Job

7.2.1 Create Job

POST /job/:id

This method creates a video processing task job for the findface-video-worker component.

74 Chapter 7. Video Face Detection API

FindFace Enterprise Server, Release 4.0.3

Parameters in path segments

:id: job id

Parameters in request body:

• stream_url: URL/address of a video stream/file to process.

• labels: tag(s) that will be used by the findface-facerouter component to find processing directives
for faces detected in this video stream.

• single_pass: if true, disable restarting video processing upon error (by default, false).

• Other video stream parameters that differ from common video stream parameters specified in the
findface-video-manager configuration file.

Returns:

A job object: all parameters from the request, as well as some read-only attributes.

Example

Request

curl -s 'http://localhost:18810/job/myid-123' --data '{"stream_url":"http://1.2.3.4/
→˓stream.mp4", "labels": {"district": "SVAO"}}' | jq

Response

{
"id": "myid-123",
"stream_url": "http://1.2.3.4/stream.mp4",
"labels": {
"district": "SVAO"

},
"router_url": "http://localhost:1514/",
"single_pass": false,
"status": "AWAITING",
"status_msg": "",
"statistic": {
"processed_duration": 0,
"faces_posted": 0

},
"worker_id": ""

}

7.2.2 List Existing Jobs

GET /jobs

This method returns the list of all existing jobs.

7.2. Video Face Detection API Methods 75

FindFace Enterprise Server, Release 4.0.3

Parameters:

This method doesn’t accept any parameters.

Returns:

JSON representation with the list of all jobs.

Example

Request

curl -s 'http://localhost:18810/jobs' | jq

Response

[
{

"id": "b9c73bhg74hnekpaa0o0",
"stream_url": "http://1.2.3.4/stream.mp4",
"labels": {

"district": "SVAO"
},
"router_url": "http://localhost:1514/",
"single_pass": false,
"status": "AWAITING",
"status_msg": "",
"worker_id": ""

},
{

"id": "b9c73rhg74hnekpaa0og",
"stream_url": "http://xxx.ru/stream.mp4",
"labels": {

"district": "ZAO"
},
"router_url": "http://localhost:1514/",
"single_pass": false,
"status": "AWAITING",
"status_msg": "",
"worker_id": ""

}
]

7.2.3 Retrieve Job Parameters

GET /job/:id

This method retrieves a job parameters by id.

76 Chapter 7. Video Face Detection API

FindFace Enterprise Server, Release 4.0.3

Parameters in path segments:

id: job id.

Returns:

JSON representation of the job object.

Example

Request

curl -s 'http://localhost:18810/job/b9c73rhg74hnekpaa0og' | jq

Response

{
"id": "b9c73rhg74hnekpaa0og",
"stream_url": "http://xxx.ru/stream.mp4",
"labels": {

"district": "ZAO"
},
"router_url": "http://localhost:1514/",
"single_pass": false,
"status": "AWAITING",
"status_msg": "",
"worker_id": ""

}

7.2.4 Delete Job

DELETE /job/:id

This method deletes a job by id.

Parameters in path segments:

id: job id.

Returns:

JSON representation of the deleted job object.

7.2. Video Face Detection API Methods 77

FindFace Enterprise Server, Release 4.0.3

Example

Request

curl -s 'http://localhost:18810/job/myid-123' -X DELETE | jq

Response

{
"id": "myid-123",
"stream_url": "http://1.2.3.4/stream.mp4",
"labels": {
"district": "SVAO"

},
"router_url": "http://myrouter",
"single_pass": false,
"status": "DELETED",
"status_msg": "",
"statistic": {
"processed_duration": 0,
"faces_posted": 0

},
"worker_id": "b9kqns1g74hm6mbmhbqg"

}

7.2.5 Update Job

PATCH /job/:id

The method updates a job parameters by id.

Parameters in path segments:

id: job id.

Parameters in request body:

• id: job id.

• stream_url: URL/address of a video stream/file to process.

• labels: tag(s) that will be used by the findface-facerouter component to find processing directives
for faces detected in this video stream.

• single_pass: if true, disable restarting video processing upon error (by default, false).

• router_url: IP address and port of the findface-facerouter component to receive detected faces
from the findface-video-worker component for processing.

• status: job status.

• status_msg: additional job status info.

• statistic: job progress statistics (progress duration, number of posted faces).

78 Chapter 7. Video Face Detection API

FindFace Enterprise Server, Release 4.0.3

• worker_id: id of the findface-video-worker instance executing the job.

• New values of to-be-modified find-video-manager configuration parameters. These value have priority
over those specified in the findface-video-manager configuration file.

Returns:

JSON representation of the updated job object.

Example

Request

curl -s 'http://localhost:18810/job/myid-123' -X PATCH --data '{"router_url":"http://
→˓myrouter"}' | jq

{
"id": "myid-123",
"stream_url": "http://1.2.3.4/stream.mp4",
"labels": {
"district": "SVAO"

},
"router_url": "http://myrouter",
"single_pass": false,
"status": "INPROGRESS",
"status_msg": "",
"statistic": {
"processed_duration": 0,
"faces_posted": 0

},
"worker_id": "b9kqns1g74hm6mbmhbqg"

}

7.2.6 Restart Job

RESTART /job/:id

This method restarts a job by ID.

Parameters in path segments:

id: job id.

Returns:

HTTP/1.1 200 OK on success.

7.2. Video Face Detection API Methods 79

FindFace Enterprise Server, Release 4.0.3

Example

Request

curl -s -D - -X RESTART http://localhost:18810/job/1

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: VbhV3vC5
Date: Tue, 24 Apr 2018 15:23:19 GMT
Content-Length: 0

Tip: You can also find the video face detection API documentation at http://
<findface-video-manager_ip>:18810/docs.

80 Chapter 7. Video Face Detection API

CHAPTER 8

Set Face Processing Directives

In the course of configuring the system, you have to set directives that determine how the system processes a face after
it has been detected in video. To do so, you need to write a Python plugin(s).

Plugins are enabled through the findface-facerouter configuration file. They allow you to configure video
face detection outcome individually for each use case.

8.1 Configure findface-facerouter to Use Plugins

To configure findface-facerouter to use plugins, do the following:

1. Put a plugin into a directory of your choice. You can distribute a set of plugins across several directories.

2. Open the findface-facerouter configuration file.

sudo vi /etc/findface-facerouter.py

Warning: The findface-facerouter.py content must be correct Python code.

3. Uncomment the plugins_dirs parameter and specify the comma-separated list of plugin directories.

plugins_dirs = '/etc/findface/plugins/video, /etc/findface/
→˓plugins/html'

4. Save the configuration file.

8.2 Basics

81

FindFace Enterprise Server, Release 4.0.3

In this section:

• Plugin Architecture

• The preprocess method

• The process method

• The shutdown method

8.2.1 Plugin Architecture

After the findface-video-worker component detects a face, the face is posted to the
findface-facerouter component via an HTTP API request. To process this request, each
findface-facerouter plugin must export the activate(app, ctx, plugin_name,
plugin_source) function.

The activate function has the following parameters:

• app: a tornado.web.Application entity of the findface-facerouter component.

• ctx: data context to be passed to a plugin upon activation.

• plugin_name: the name of the plugin to be activated.

• plugin_source: source object to load the plugin from.

Upon activation, a plugin is passed the following data context:

1. request.ctx.sfapi: a set up ntech.sfapi_client.Client instance that can be invoked directly
to process the result of video face detection (for example, to create a new gallery, add a face to a gallery, etc.).

2. plugins: OrderedDict with all the plugins as (key: plugin name, value: the result returned by the
activate function).

3. idgen: id generator that can be invoked as ctx.idgen().

The activate(app, ctx, plugin_name, plugin_source) function must return an object with the fol-
lowing methods:

1. preprocess,

2. process,

3. shutdown (optional).

8.2.2 The preprocess method

In this method, a findface-facerouter plugin decides if it is interested in the face received from the
findface-video-worker component. If so, it returns a tuple or a list that contains one or several strings
'facen', 'gender', 'age', 'emotions'. This means that it is necessary to extract a biometric sample, rec-
ognize gender, age, emotions respectively. If the returned tuple/list is non-empty, the findface-facerouter
redirects the face to the findface-sf-api in a /detect POST request with relevant query string parameters
(facen=on, gender=on, age=on, emotions=on).

The basic preprocess method to inherit from has the following syntax (see the Plugin class):

preprocess(self, request: FrHTTPRequest, labels: typing.Mapping[str, str]) → typ-
ing.Tuple[str]

82 Chapter 8. Set Face Processing Directives

FindFace Enterprise Server, Release 4.0.3

Parameters

• FrHTTPRequest (tornado.httpserver.HTTPRequest) – a HTTP API
request that includes an extra argument params

• labels (dictionary) – a custom set of a frame labels, which are initially spec-
ified in a job parameters for findface-video-worker and then assigned to
the frame

The params argument of FrHTTPRequest includes the following fields:

Parameters

• photo (bytes) – JPEG video frame featuring a detected face

• face0 (bytes) – normalized face image

• bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner,
y1: y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner,
y2: y coordinate of the bottom-right corner) – coordinates of the face region in the
video frame

• cam_id (string) – camera id

• timestamp (datetime.datetime) – video frame timestamp

• detectorParams (dictionary) – debug information from the video face de-
tector

• bs_type (string) – best face search mode. Available options: overall (the
findface-video-worker posts only one snapshot per track, but of the high-
est quality.), realtime (the findface-video-worker posts the best snapshot
within each of consecutive time intervals).

• labels (dictionary) – (duplicates params.labels) a custom set of a frame la-
bels, which are specified in a job parameters for findface-video-worker and
then assigned to the frame

The decision about face processing is made based on the data in the request.params, including the custom set of
labels, as well as for any other reasons.

8.2.3 The process method

This method is called if the preprocess method returns a non-empty tuple or list (i.e. with ‘facen’, ‘gender’, ‘age’,
an/or ‘emotions’ strings). After the findface-sf-api returns a response with the result of face detection (see the
/detect POST request) with all the requested face features, the findface-facerouter component calls the
process method of the plugin in order to the perform face processing itself.

To process a face, a plugin uses request.ctx.sfapi.

The basic process method to inherit from has the following syntax (see the Plugin class):

process(self, request: FrHTTPRequest, photo: bytes, bbox: typing.List[int], event_id: int, detec-
tion: DetectFace)

8.2.4 The shutdown method

This method is only called before the findface-facerouter shutdown.

The basic shutdown method to inherit from has the following syntax (see the Plugin class):

8.2. Basics 83

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime

FindFace Enterprise Server, Release 4.0.3

shutdown(self)

8.3 Classes and Methods

In this section:

• Basic Classes

• Object Classes

• Face Detection and Gallery Management

• Filters for Database Search

• Display Error Messages

8.3.1 Basic Classes

class facerouter.plugin.Plugin
Provides the basic methods for writing a plugin (see Basics). A custom class that wraps a plugin must inherit
from the Plugin class.

preprocess(self, request: FrHTTPRequest, labels: typing.Mapping[str, str])→ typing.Tuple[str]
Returns a tuple that contains one or several strings 'facen', 'gender', 'age', 'emotions'. This
means that findface-facerouter must request findface-extraction-api to extract a bio-
metric sample, recognize gender, age, emotions respectively.

Parameters

• FrHTTPRequest (tornado.httpserver.HTTPRequest) – a HTTP API request
that includes an extra argument params

• labels (dictionary) – a custom set of a frame labels from request.params

Returns one or several strings 'facen', 'gender', 'age', 'emotions'

Return type tuple

The params argument of FrHTTPRequest includes the following fields:

Parameters

• photo (bytes) – JPEG video frame featuring a detected face

• face0 (bytes) – normalized face image

• bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner, y1:
y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner, y2: y
coordinate of the bottom-right corner) – coordinates of the face region in the video frame

• cam_id (string) – camera id

• timestamp (datetime.datetime) – video frame timestamp

• detectorParams (dictionary) – debug information from the video face detector

84 Chapter 8. Set Face Processing Directives

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime

FindFace Enterprise Server, Release 4.0.3

• bs_type (string) – best face search mode. Available options: overall (the
findface-video-worker posts only one snapshot per track, but of the highest qual-
ity.), realtime (the findface-video-worker posts the best snapshot within each of
consecutive time intervals).

• labels (dictionary) – (duplicates params.labels) a custom set of a frame labels,
which are specified in a job parameters for findface-video-worker and then as-
signed to the frame

process(self, request: FrHTTPRequest, photo: bytes, bbox: typing.List[int], event_id: int, detection:
DetectFace)

Accepts the detected face features.

Parameters

• request (tornado.httpserver.HTTPRequest) – a HTTP API request from
findface-video-worker

• photo (bytes) – JPEG video frame featuring a detected face, from request.params

• bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner, y1:
y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner, y2: y
coordinate of the bottom-right corner) – coordinates of the face region in the video frame,
from request.params

• event_id (uint64) – id of the face automatically set by findface -facerouter
upon receiving it from findface-video-worker. Can be used as a face custom
identifier in the biometric database.

• detection (objects.DetectFace) – detection result received from
findface-sf-api, that contains requested face features such as faces, gender,
age and emotions.

Returns n/a

Return type n/a

shutdown(self)
This method is invoked before the findface-facerouter shutdown.

Param n/a

Returns n/a

8.3.2 Object Classes

class objects.BBox
Represents coordinates of the rectangle around a face.

class objects.DetectFace
Represents a detection result with the following fields:

Parameters

• id (string) – id of the detection result in memcached

• bbox (objects.Bbox) – coordinates of the rectangle around a face

• features (dictionary) – (optional) information about gender, age and emotions

class objects.DetectResponse
Represents a list of objects.DetectionFace objects with an additional field orientation featuring
information about the face EXIF orientation in the image.

8.3. Classes and Methods 85

https://docs.python.org/3/library/stdtypes.html#bytes

FindFace Enterprise Server, Release 4.0.3

Parameters orientation (EXIF orientation) – orientation of a detected face

class objects.FaceId(namedtuple(’FaceId’, (’gallery’, ’face’)))
Represents a custom face identifier object in the gallery.

Parameters

• gallery (string) – gallery name

• face (integer) – custom face identifier in the gallery

class objects.Face
Represents a result of database search by biometric sample

Parameters

• id (objects.FaceId) – FaceId object.

• features (dictionary) – information about gender, age and emotions

• meta (dictionary) – face meta data

• confidence (float) – similarity between the biometric sample and a face in the search
result

class objects.ListResponse
Represents a list of objects.Face objects (i.e. a list of biometric sample search results) with an additional
field next_page featuring the cursor for the next page with search results.

Parameters next_page (string) – cursor for the next page with search results

8.3.3 Face Detection and Gallery Management

class ntech.sfapi_client.client.Client
Represents basic methods to detect faces in images and work with galleries.

detect(self, *, url=None, image=None, facen=False, gender=False, age=False, emotions=False, re-
turn_facen=False, autorotate=False, detector: str = None, timeout=None)→ DetectResponse

Detects a face and returns the result of detection.

Parameters

• url (URL) – image URL if you pass an image that is publicly accessible on the internet

• image (bytes) – PNG/JPG/WEBP image file is you pass an image as a file

• facen (boolean) – extract a biometric sample from the detected face. To save the
detection result in memcached pass facen=True

• gender (boolean) – extract and return information about gender

• age (boolean) – extract and return information about age

• emotions (boolean) – extract and return information about emotions

• return_facen (boolean) – return facen in the method result

• autorotate (boolean) – automatically rotate the image in 4 different orientations to
detect faces in each of them. Overlapping detections with IOU > 0.5 will be merged

• detector (boolean) – nnd or normalized. The normalized detector is
used to process normalized images, for example, those which are received from
findface-video-worker.

86 Chapter 8. Set Face Processing Directives

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes

FindFace Enterprise Server, Release 4.0.3

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns Detection result

Return type DetectorResponse object.

gallery(self, name)
Returns a gallery object sfapi_client.Gallery to refer to it later (for example, to list gallery faces).

Parameters name (string) – gallery name

Returns a gallery object

Return type sfapi_client.Gallery

list_galleries(self, timeout=None):
Returns the list of galleries.

Parameters timeout (number) – FindFace core response timeout, in seconds (if none, the
default value is used)

Returns list of galleries with the fields name (a gallery name, string) and number (the number
of faces in the gallery, number)

Return type list of GalleryListItem

class ntech.sfapi_client.gallery.Gallery
Provides methods to work with galleries and faces.

list(self, *, filters: typing.Iterable[filters.Filter] = None, limit: int = 1000, sort: str = ”, page=None,
ignore_errors=False, timeout=None)→ ListResponse

Returns a list-like object with faces from the gallery, that match the given filters. The returned list-like
object has an additional property next_page which can be used as a value for the page parameter in
next requests.

Parameters

• filters (sfapi_client.filters.Filter) – list of filters

• limit (integer) – maximum number of returned faces

• sort – sorting order. Pass one of the following values: id: increasing order by id,
-id: decreasing order by id (sorting by id is used if you have NOT specified a feature
vector to search for), -confidence: decreasing order by face similarity (only if you
have specified a feature vector to search for). By default, the method uses the id order (no
feature vector specified), or -confidence (with feature vector).

• sort – string

• page – cursor of the next page with search results. The page value is returned in the
response in the next_page parameter along with the previous page results.

• ignore_errors (boolean) – By default, if one or several
findface-tarantool-server shards are out of service during face identifi-
cation, findface-sf-api returns an error. Enable this Boolean parameter to use
available findface-tarantool-server shards to obtain face identification results.

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns list with faces from the gallery, that match the given filters.

Return type ListResponse object

8.3. Classes and Methods 87

FindFace Enterprise Server, Release 4.0.3

add(self, new_id: typing.Union[int, typing.Callable], source: typing.Union[DetectFace, Face, str], *,
meta: typing.Dict[str, typing.Union[int, str, typing.List[str]]] = None, regenerate_attempts=None,
timeout=None)→ Face
Creates a face in the gallery.

Parameters

• new_id (integer or callable) – custom face identifier (Face ID) in the database
gallery. May be a (async) callable which returns the id. To generate id, you can use the
ctx.idgen() function delivered with the context.

• source (sfapi_client.DetectFace, sfapi_client.Face,
sfapi_client.FaceId, or string) – face source: create a face using
another face in the database or a detection result as a source.

• meta (dictionary) – face metadata. Keys must be strings and values must be either
ints, strings or lists of strings. Metadata keys and types must be previously specified in the
storage (findface-tarantool-server) configuration files.

• regenerate_attempts – number of attempts to regenerate a unique Face ID with the
ctx.idgen() function if new_id is callable

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns representation of the newly created face

Return type Face object

delete(self, face: typing.Union[Face, int], timeout=None)→ None
Removes a face from the gallery.

Parameters

• face (sfapi_client.Face, sfapi_client.FaceId or id in
integer) – face to be removed

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns None

get(self, face: typing.Union[Face, int], timeout=None)→ Face
Retrieves a face from the gallery.

Parameters

• face (sfapi_client.Face, sfapi_client.FaceId or id in
integer) – face to be retrieved

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns representation of the face

Return type Face object

create(self, timeout=None)→ None
Creates a gallery in findface-sf-api as a sfapi_client.Gallery object. Being a proxy object,
sfapi_client.Gallery doesn’t require a gallery to be existing on the server.

Parameters timeout (number) – FindFace core response timeout, in seconds (if none, the
default value is used)

Returns None

88 Chapter 8. Set Face Processing Directives

FindFace Enterprise Server, Release 4.0.3

drop(self, timeout=None)→ None:
Removes a gallery from findface-sf-api.

Parameters timeout (number) – FindFace core response timeout, in seconds (if none, the
default value is used)

Returns None

update(self, face: typing.Union[Face, str], *, meta: typing.Dict[str, typing.Union[int, str, typ-
ing.List[str]]] = None, timeout=None)→ Face

Update face meta data in the gallery.

Parameters

• face (sfapi_client.Face, sfapi_client.FaceId or id in
integer) – face to be updated

• meta (dictionary) – face meta data to be updated. Keys must be strings and values
must be either ints, strings or lists of strings. If a meta string is not passed or passed as
null, it won’t be updated in the database.

• timeout (number) – FindFace core response timeout, in seconds (if none, the default
value is used)

Returns representation of the updated face

Return type Face object

8.3.4 Filters for Database Search

class ntech.sfapi_client.filters.Filter
Generic class. Represents a list of filters (with assigned values) that have to be applied to the gallery content.

serialize(self)
Method that passes the list of filters with assigned values to the findface-sf-api component.

Returns filter names and filter values

Return type tuple (‘filtername’, [“value1”, “value2”])

class ntech.sfapi_client.filters.Id
Represents methods for filtering gallery content by id. Don’t instantiate, use relevant classmethods to call a
filter.

classmethod lte(cls, value: int)→ Filter
LTE filter. Select all faces with id less or equal to value.

Parameters value (integer) – id value

Returns filter name (LTE) and its value.

Return type object of Filter class.

Example: Id.lte(1234) selects faces with id less or equal to 1234.

classmethod gte(cls, value: int)→ Filter
GTE filter. Select all faces with id greater or equal to value.

Parameters value (integer) – id value

Returns filter name (GTE) and its value.

Return type object of Filter class.

Example: Id.lte(1234) selects faces with id greater or equal to 1234.

8.3. Classes and Methods 89

https://docs.python.org/3/library/stdtypes.html#tuple

FindFace Enterprise Server, Release 4.0.3

classmethod oneof(cls, *value: typing.Union[int])→ Filter
IN filter. Select a face(s) with id from a given set.

Parameters value (list of integers) – list of id values

Returns filter name (IN) and its value.

Return type object of Filter class.

Example: Id.oneof(1234, 5678) selects a face(s) with id 1234 and/or 5678.

class ntech.sfapi_client.filters.Meta
Represents methods for filtering gallery content by metadata. Don’t instantiate, use relevant classmethods to
call a filter.

classmethod lte(self, value: typing.Union[str, int])→ Filter
LTE filter. Select all faces with a metastring less or equal to value

Parameters value (string or integer) – metastring value

Returns filter name (LTE) and its value.

Return type object of Filter class.

Example: Meta('foo').lte(1234) selects faces with a metastring foo less or equal to 1234.

classmethod gte(self, value: typing.Union[str, int])→ Filter
GTE filter. Select all faces with a metastring greater or equal to value

Parameters value (string or integer) – metastring value

Returns filter name (GTE) and its value.

Return type object of Filter class.

Example: Meta('foo').gte(1234) selects faces with a metastring foo greater or equal to 1234.

classmethod oneof(self, *value: typing.Union[str, int])→ Filter

IN filter. Select a face(s) with a metastring from a given set.

param value list of metastring values

type value list of strings or integers

return filter name (IN) and its value.

rtype object of Filter class.

Example: Meta.oneof(1234, 5678) selects a face(s) with a metastring 1234 and/or
5678.

classmethod subset(self, *value: str)→ Filter
SUBSET filter. Select all faces with a metastring featuring all values from a given set.

Parameters value (list of strings or integers) – list of metastring values
Returns filter name (SUBSET) and its value.
Return type object of Filter class.

Example: Meta('foo').subset("male", "angry") selects face with a metastring foo
featuring all values from the set [“male”, “angry”].

class ntech.sfapi_client.filters.Detection(Filter)
Represents a method that identifies a detected face (searches the database for similar faces).

__init__(self, id: typing.Union[str, objects.DetectFace], threshold: float)

Parameters

90 Chapter 8. Set Face Processing Directives

FindFace Enterprise Server, Release 4.0.3

• id (objects.DetectFace or temporary face id in memcached returned by
sfapi_client.Client.detect(), string) – face (detection result) to be identified

• threshold (float) – identification threshold similarity between faces from 0 to 1.

Example: Detection(det1, 0.77) selects faces similar to the detection result det1 with similarity
greater or equal to 0.77.

class ntech.sfapi_client.filters.Face(Filter)
Represents a method that searches the database for faces similar to a given face from a gallery.

__init__(self, id: typing.Union[str, objects.Face], threshold: float)

Parameters

• id (objects.Face, objects.FaceId or custom face id in the gallery, string) – face
from a gallery to be identified

• threshold (float) – identification threshold similarity between faces from 0 to 1.

Example: Detection(FaceId(“gal1”, 1234), 0.77) selects faces similar to the face 1234 from the gal1
gallery with similarity greater or equal than 0.77.

Several Filters Usage Example

filters=[filters.Id.gte(123456), filters.Meta('age').gte(45), filters.Meta('camera').
→˓oneof('abc', 'def')]

8.3.5 Display Error Messages

class sfapi_client.SFApiRemoteError
This error message appears if the error occurred for a reason other than a network failure.

The error body always includes at least two fields: code and desc.

• code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

• desc is a human-readable description of the error and should not be interpreted automatically.

8.3. Classes and Methods 91

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

FindFace Enterprise Server, Release 4.0.3

Common Error Codes

Error code Description
UNKNOWN_ERROR Error with unknown origin.
BAD_PARAM The request can be read, however, some method parameters are invalid. This response type

contains additional attributes param and‘‘value‘‘ to indicate which parameters are invalid.
CONFLICT Conflict.
EXTRACTION_ERRORError upon a face feature vector extraction.
LICENSE_ERROR The system configuration does not match license.
MALFORMED_REQUESTThe request is malformed and cannot be read.
OVER_CAPACITY The findface-extraction-api queue length has been exceeded.
SOURCE_NOT_FOUNDThe face in the from parameter does not exist.
SOURCE_GALLERY_NOT_FOUNDThe gallery in the from parameter does not exist.
STORAGE_ERROR The biometric database not available.
CACHE_ERROR Memcached not available.
NOT_FOUND Matching faces not found.
NOT_IMPLEMENTEDThis functionality not implemented.
GALLERY_NOT_FOUNDMatching galleries not found.

class sfapi_client.SFApiMalformedResponseError
This error message appears if the error occurred due to a network failure, or if Client was unable to read an API
response from findface-sf-api.

8.4 Examples

The following examples illustrate the basics of writing a plugin, as well as the use of classes and methods.

1. If a detected face contains a label ‘emo’, this plugin will request facen and emotions data extraction and then
log the received data.

import logging

from ntech import sfapi_client

from facerouter.plugin import Plugin

logger = logging.getLogger(__name__)

class LogEmoPlugin(Plugin):
async def preprocess(self, request, labels):

if labels.get('emo'):
return ('facen', 'emotions')

async def process(self, request, photo, bbox, event_id, detection: sfapi_
→˓client.DetectFace):

logger.info('%r: %r', bbox, detection.features.get('emotions')[0]['emotion
→˓'])

logger.info('%r: params: ', bbox)
for param in request.params._fields:

param_repr = repr(getattr(request.params, param))
if len(param_repr) > 100:

param_repr = param_repr[:97] + "..."
(continues on next page)

92 Chapter 8. Set Face Processing Directives

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

logger.info("%r: %s", param, param_repr)

def activate(app, ctx, plugin_name, plugin_source):
return LogEmoPlugin(ctx=ctx)

2. This plugin requests facen extraction, after that it saves a face in the 'ppl' gallery of the biometric database.
If such a gallery doesn’t exist, it will be created.

import logging
import PIL.Image
import time
from io import BytesIO

from ntech import sfapi_client

from facerouter.plugin import Plugin

logger = logging.getLogger(__name__)

class EnrollPlugin(Plugin):
async def preprocess(self, request, labels):

if labels.get('lol') == 'kek':
return ('facen',)

async def process(self, request, photo, bbox, event_id, detection: sfapi_
→˓client.DetectFace):

img = PIL.Image.open(BytesIO(photo))
thumb = img.crop(bbox)
fname = '/tmp/%x.jpeg' % (event_id,)
thumb.save(fname)
while True:

try:
await self.ctx.sfapi['ppl'].add(event_id, detection, meta={

'timestamp': int(time.time()),
'photo_hash': fname,

})
except sfapi_client.SFApiRemoteError as e:

if e.code == "GALLERY_NOT_FOUND":
await self.ctx.sfapi['ppl'].create()

else:
raise

else:
break

logger.info('%r: %r %r', bbox, event_id, fname)

def activate(app, ctx, plugin_name, plugin_source):
return EnrollPlugin(ctx=ctx)

8.4. Examples 93

FindFace Enterprise Server, Release 4.0.3

94 Chapter 8. Set Face Processing Directives

CHAPTER 9

Advanced Features

9.1 Direct API requests to findface-extraction-api

You can use HTTP API to extract data directly from the findface-extraction-api component.

Note: Being a findface-sf-api counterpart when it comes to face features extraction via API,
findface-extraction-api is more resource-demanding. The component cannot fully substitute
findface-sf-api as it doesn’t allow adding faces and working with the database.

Tip: Normalized images received from findface-extraction-api are qualified for posting to
findface-sf-api.

In this section:

• API Requests

• API Response Format

• Examples

9.1.1 API Requests

The findface-extraction-api component accepts POST requests to http://127.0.0.1:18666/.

There are 2 ways to format the request body:

• application/json: the request body contains only JSON.

95

FindFace Enterprise Server, Release 4.0.3

• multipart/form-data: the request body contains a JSON part with the request itself, other body parts are
used for image transfer.

The JSON part of the request body contains a set of requests:

{
"requests": [request1, request2, .., requestN]
"include_timings": true|false // include face processing timing in response,

→˓false by default
}

Each request in the set applies to a specific image or region in the image and accepts the following parameters:

Important: To enable recognition of face features, you can use either the new (preferred) or old API parameters. The
old API allows you to recognize gender, age, and emotions, while the new API provides recognition of gender, age,
emotions, country, beard, and glasses. Each face feature (gender, age, emotions, country, beard, or glasses) must be
mentioned only once in a request, either in the new or old API format.

• "image": an uploaded image (use multipart:part to refer to a relevant request body part), or a publicly
accessible image URL (http:, https:).

• "roi": a region of interest in the image. If the region is not specified, the entire image is processed.

• "detector": a face detector to apply to the image (legacy, nnd or prenormalized). The
prenormalized mode accepts normalized face images and omits detecting faces. Use nnd if you need
to estimate the face quality ("quality_estimator": true).

• "need_facen": if true, the request returns a facen in the response.

• "need_gender": returns gender (old API).

• "need_emotions": returns emotions (old API).

• "need_age": returns age (old API).

• "need_normalized": returns a normalized face image encoded in base64. The normalized image can then
be posted again to the findface-extraction-api component as “prenormalized”.

• "auto_rotate": if true, auto-rotates an original image to 4 different orientations and returns faces detected
in each orientation. Works only if "detector": "nnd" and "quality_estimator": true.

• "attributes": array of strings in the format ["gender", "age", "emotions",
"countries47", "beard", "glasses3"], enables recognition of the face features passed in
the array (new API).

{
"image": "http://static.findface.pro/sample.jpg",
"roi": {"left": 0, "right": 1000, "top": 0, "bottom": 1000},
"detector": "nnd",
"need_facen": true,
"need_gender": true,
"need_emotions": true,
"need_age": true,
"need_normalized": true,
"auto_rotate": true

}

96 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

9.1.2 API Response Format

A typical response from the findface-extraction-api component contains a set of responses to the requests
wrapped into the main API request:

{
"response": [response1, response2, .., responseN]

}

Each response in the set contains the following JSON data:

• "faces": a set of faces detected in the provided image or region of interest.

• "error": an error occurred during processing (if any). The error body includes the error code which can be
interpreted automatically ("code") and a human-readable description ("desc").

• "facen_model": face extraction model if "need_facen": true.

• "timings": processing timings if "include_timings": true.

{
"faces": [face1, face2, .., faceN],
"error": {

"code": "IMAGE_DECODING_FAILED",
"desc": "Failed to decode: reason"

}
"facen_model": "elderberry_576",
"timings": ...

}

Each face in the set is provided with the following data:

• "bbox": coordinates of a bounding box with the face.

• "detection_score": either the face detection accuracy, or the face quality score (depending on whether
quality_estimator is false or true at /etc/findface-extraction-api.ini). Upright faces
in frontal position are considered the best quality. They result in values around 0, mostly negative (such as -0.
00067401276, for example). Inverted faces and large face angles are estimated with negative values some -5
and less.

• "facen": face feature vector.

• "gender": gender information (MALE or FEMALE) with recognition accuracy if requested (old API).

• "age": age estimate if requested (old API).

• "emotions": all available emotions in descending order of probability if requested (old API).

• "countries47": probable countries of origin with algorithm confidence in the result if requested (old API).

• "attributes": gender (male or female), age (number of years), emotions (predominant emotion), proba-
ble countries of origin, beard (beard or none), glasses (sun, eye, or none), along with algorithm confidence
in the result if requested (new API).

• "normalized": a normalized face image encoded in base64 if requested.

• "timings": face processing timings if requested.

{
"bbox": { "left": 1, "right": 2, "top": 3, "bottom": 4},
"detection_score": 0.99,

(continues on next page)

9.1. Direct API requests to findface-extraction-api 97

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"facen": "...",
"gender": {

"gender": "MALE",
"score": "1.123"

},
"age": 23.59,
"emotions": [

{ "emotion": "neutral", "score": 0.95 },
{ "emotion": "angry", "score": 0.55 },
...

],
"normalized": "...",
"attributes": {
"age": {

"attribute": "age",
"model": "age.v1",
"result": 25

},
"beard": {

"attribute": "beard",
"model": "beard.v0",
"result": [

{ "confidence": 0.015328666, "name": "beard" }
]

},
"countries47": {

"attribute": "countries47",
"model": "countries47.v1",
"result": [

{ "confidence": 0.90330666, "name": "UKR" },
{ "confidence": 0.013165677, "name": "RUS" },
{ "confidence": 0.009136979, "name": "POL" },
...

]
},
"emotions": {

"attribute": "emotions",
"model": "emotions.v1",
"result": [

{ "confidence": 0.99959123, "name": "neutral" },
{ "confidence": 0.00039093022, "name": "sad" },
{ "confidence": 8.647058e-06, "name": "happy" },
{ "confidence": 7.994732e-06, "name": "surprise" },
{ "confidence": 6.495376e-07, "name": "disgust" },
{ "confidence": 6.063106e-07, "name": "angry" },
{ "confidence": 7.077886e-10, "name": "fear" }

]
},
"gender": {

"attribute": "gender",
"model": "gender.v2",
"result": [

{ "confidence": 0.999894, "name": "female" },
{ "confidence": 0.00010597264, "name": "male" }

]
},
"glasses3": {

(continues on next page)

98 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"attribute": "glasses3",
"model": "glasses3.v0",
"result": [

{ "confidence": 0.9995815, "name": "none" },
{ "confidence": 0.0003348241, "name": "eye" },
{ "confidence": 8.363914e-05, "name": "sun" }

]
}

}
"timings": ...

}

9.1.3 Examples

Request #1

curl -X POST -F sample=@sample.jpg -F 'request={"requests":[{"image":"multipart:sample
→˓","detector":"nnd", "need_gender":true, "need_normalized": true, "need_facen": true}
→˓]}' http://127.0.0.1:18666/| jq

Response

{
"responses": [
{

"faces": [
{
"bbox": {

"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"detection_score": -0.0012599,
"facen": "qErDPTE...vd4oMr0=",
"gender": {

"gender": "FEMALE",
"score": -2.6415858

},
"normalized": "iVBORw0KGgoAAAANSUhE...79CIbv"

}
]

}
]

}

Request #2

curl -X POST -F 'request={"requests": [{"need_age": true, "need_gender": true,
→˓"detector": "nnd", "roi": {"left": -2975, "top": -635, "right": 4060, "bottom":
→˓1720}, "image": "https://static.findface.pro/sample.jpg", "need_emotions": true}]}'
→˓http://127.0.0.1:18666/ |jq (continues on next page)

9.1. Direct API requests to findface-extraction-api 99

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

Response

{
"responses": [
{

"faces": [
{
"bbox": {

"left": 595,
"top": 127,
"right": 812,
"bottom": 344

},
"detection_score": 0.9999999,
"gender": {

"gender": "FEMALE",
"score": -2.6415858

},
"age": 26.048346,
"emotions": [

{
"emotion": "neutral",
"score": 0.90854686

},
{
"emotion": "sad",
"score": 0.051211596

},
{
"emotion": "happy",
"score": 0.045291856

},
{
"emotion": "surprise",
"score": -0.024765536

},
{
"emotion": "fear",
"score": -0.11788454

},
{
"emotion": "angry",
"score": -0.1723868

},
{
"emotion": "disgust",
"score": -0.35445923

}
]

}
]

}
]

}

100 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

Request #3. Auto-rotation

curl -s -F 'sample=@/path/to/your/photo.png' -F 'request={"requests":[{"image":
→˓"multipart:sample","detector":"nnd", "auto_rotate": true, "need_normalized": true }
→˓]}' http://192.168.113.79:18666/

Response

{
"responses": [
{

"faces": [
{
"bbox": {

"left": 96,
"top": 99,
"right": 196,
"bottom": 198

},
"detection_score": -0.00019264,
"normalized": "iVBORw0KGgoAAAANSUhE....quWKAAC"
},

{
"bbox": {
"left": 205,
"top": 91,
"right": 336,
"bottom": 223

},
"detection_score": -0.00041600747,
"normalized": "iVBORw0KGgoAAAANSUhEUgAA....AByquWKAACAAElEQVR4nKy96XYbybIdnF"

}
]

}
]

}

Request #4. New API usage (attributes: “beard”, “emotions”, “age”, “gender”, “glasses3”, “face”)

curl -s -F photo=@sample.jpg -Frequest='{"requests": [{"image":"multipart:photo",
→˓"detector": "nnd", "attributes": ["beard", "emotions", "age", "gender", "glasses3",
→˓"face"]}]}' http://127.0.0.1:18666 | jq

Response

{
"responses": [
{

"faces": [
{
"bbox": {

"left": 595,

(continues on next page)

9.1. Direct API requests to findface-extraction-api 101

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"top": 127,
"right": 812,
"bottom": 344

},
"detection_score": -0.00067401276,
"rotation_angle": 0,
"attributes": {

"age": {
"attribute": "age",
"model": "age.v1",
"result": 25

},
"beard": {
"attribute": "beard",
"model": "beard.v0",
"result": [
{
"confidence": 0.015324414,
"name": "beard"

}
]

},
"emotions": {
"attribute": "emotions",
"model": "emotions.v1",
"result": [
{
"confidence": 0.99958,
"name": "neutral"

},
{
"confidence": 0.0004020365,
"name": "sad"

},
{
"confidence": 8.603454e-06,
"name": "happy"

},
{
"confidence": 8.076766e-06,
"name": "surprise"

},
{
"confidence": 6.6535216e-07,
"name": "disgust"

},
{
"confidence": 6.1434775e-07,
"name": "angry"

},
{
"confidence": 7.3372125e-10,
"name": "fear"

}
]

},
"face": {

(continues on next page)

102 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"attribute": "face",
"model": "elderberry_576",
"result": "KjiHu6cWh70ppqa9l"

},
"gender": {
"attribute": "gender",
"model": "gender.v2",
"result": [
{
"confidence": 0.9998938,
"name": "female"

},
{
"confidence": 0.000106243206,
"name": "male"

}
]

},
"glasses3": {
"attribute": "glasses3",
"model": "glasses3.v0",
"result": [
{
"confidence": 0.99958307,
"name": "none"

},
{
"confidence": 0.00033243417,
"name": "eye"

},
{
"confidence": 8.4465064e-05,
"name": "sun"

}
]

}
}

}
],
"orientation": 1

}
]

}

9.2 Shard Galleries Statistics

You can get a shard galleries statistics and other data right in your browser. This functionality can be harnessed in
monitoring systems.

Note: In the case of the standalone deployment, you can access Tarantool by default only locally (127.0.0.1). If
you want to access Tarantool remotely, alter the Tarantool configuration file.

9.2. Shard Galleries Statistics 103

FindFace Enterprise Server, Release 4.0.3

In this section:

• List Galleries

• Get Gallery Information

9.2.1 List Galleries

To list all galleries on a shard, type in the address bar of your browser:

http://<tarantool_host_ip:shard_port>/stat/list/:start/:limit

:start is the number of a gallery the list starts with.
:limit is the maximum number of galleries in the list.

The response will feature JSON with the following fields:

• next: pagination cursor to retrieve the next page with results, pass it as :start_id in the following request

• total: total number of galleries on the shard

• galleries: gallery list with the following data:

– id: gallery id

– name: gallery name

– cnt_linear: number of faces in the linear space (faces without fast index)

– cnt_preindex: number of faces in the preindex space (intermediate stage when creating fast index)

– cnt_indexed: number of faces in the indexed space (faces with fast index)

Example

Request

http://127.0.0.1:8001/stat/list/1/99
or
curl http://127.0.0.1:8001/stat/list/1/99 \| jq

Response

HTTP/1.1 200 Ok
Content-length: 170
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"next":3,"galleries":[{"cnt_indexed":3,"id":1,"cnt_preindex":0,"name":"a","cnt_linear
→˓":0},{"cnt_indexed":1,"id":2,"cnt_preindex":0,"name":"b","cnt_linear":1}],"total":5}

104 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

9.2.2 Get Gallery Information

To get a gallery information, type in the address bar of your browser:

http://<tarantool_host_ip:shard_port>/stat/info/:name

:name is the gallery name.

The response will feature JSON with the following fields:

• id: gallery id

• name: gallery name

• cptr: uint64_t address of the gallery object in the memory

• cnt_linear: number of faces in the linear space

• cnt_preindex: number of faces in the preindex space

• cnt_preindex_deleted: number of faces removed from the preindex space, which are physically still
present in Tarantool

• cnt_indexed: number of faces in the indexed space

• cnt_indexed_deleted: number of faces removed from the indexed space, which are physically still
present in Tarantool

• index_file: path to fast index file

• index_loaded: indicator of whether or not fast index is loaded

Example

Request

http://127.0.0.1:8001/stat/info/my_gal
or
curl http://127.0.0.1:8001/stat/info/my_gal | jq

Response

HTTP/1.1 200 Ok
Content-length: 196
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"cnt_indexed":2464344,"cnt_preindex_deleted":139,"index_file":"none","index_loaded
→˓":false,"cnt_preindex":8310,"cnt_linear":959,"cptr":29253696,"id":1,"name":"my_gal",
→˓"cnt_indexed_deleted":78811}

9.3 Direct API Requests to Tarantool

You can use HTTP API to extract data directly from the Tarantool Database.

9.3. Direct API Requests to Tarantool 105

FindFace Enterprise Server, Release 4.0.3

In this section:

• General Information

• Add Face

• Remove Face

• Face Search

• Edit Face Metadata and Feature Vector

• List Galleries

• Get Gallery Info

• Create Gallery

• Remove Gallery

9.3.1 General Information

API requests to Tarantool are to be sent to http://<tarantool_host_ip:port>.

Tip: The port for API requests can be found in the FindFace.start section of the Tarantool configuration file:

cat /etc/tarantool/instances.enabled/FindFace.lua

##8001:
FindFace.start("127.0.0.1", 8001)

Note: In the case of the standalone deployment, you can access Tarantool by default only locally (127.0.0.1). If you
want to access Tarantool remotely, alter the Tarantool configuration file.

API requests to Tarantool may contain the following parameters in path segments:

• :ver: API version (v2 at the moment).

• :name: gallery name.

Tip: To list gallery names on a shard, type in the following command in the address bar of your browser (see
List Galleries for details):

http://<tarantool_host_ip:shard_port>/stat/list/1/99

The same command on the console is as such:

curl <tarantool_host_ip:shard_port>/stat/list/1/99 \| jq

You can also list gallery names by using a direct request to Tarantool:

echo 'box.space.galleries:select()' | tarantoolctl connect <tarantool_host_
→˓ip:shard_port>

106 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

Note that if there is a large number of shards in the system, chances are that a randomly taken shard does not
contain all the existing galleries. In this case, just list galleries on several shards.

9.3.2 Add Face

POST /:ver/faces/add/:name

Parameters in body:

JSON-encoded array of faces with the following fields:

• "id": face id in the gallery, uint64_t,

• "facen": raw feature vector, base64,

• "meta": face metadata, dictionary.

Returns:

• HTTP 200 and empty body on success.

• HTTP 404 if a gallery with the given name doesn’t exist.

• HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/add/testgal' --data '
[

{
"id": 9223372036854776000,
"facen": "qgI3vZRv/z...NpO9MdHavW1WuT0=",
"meta": {

"cam_id": "223900",
"person_name": "Mary Ostin",

}
}

]

Response

HTTP/1.1 200 Ok
Content-length: 1234
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

9.3. Direct API Requests to Tarantool 107

FindFace Enterprise Server, Release 4.0.3

9.3.3 Remove Face

POST /v2/faces/delete/:name

Parameters in body:

JSON-encoded array of face ids to be removed

Returns:

• HTTP 200 and empty body on success.

• HTTP 404 if a face with the given id is not found in the gallery.

• HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/delete/testgal' --data '[1, 4, 922, 3]'

Response

HTTP/1.1 200 Ok
Content-length: 111
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

9.3.4 Face Search

POST /v2/faces/search/:name

Parameters in body:

JSON-encoded search request with the following fields:

• limit: maximum number of faces in the response.

• sort: sorting order. Pass one of the following values: id: increasing order by id, -id: decreasing order by id,
-score: decreasing order by face similarity (only if you search for faces with similar feature vectors).

• filter (filters): * facen: (optional) search for faces with similar feature vectors. Pass a dictionary with
the following fields: data: raw feature vector, base64; score: range of similarity between faces [threshold
similarity; 1], where 1 is 100% match. * id and meta/<meta_key>: search by face id and metastring
content. To set this filter, use the following operators:

– range: range of values, only for numbers.

– set: id or metastring must contain at least one value from a given set, for numbers and strings.

108 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

– subset: id or metastring must include all values from a given subset, for numbers and strings.

– like: by analogy with like in SQL requests: only ‘aa%’, ‘aa%’, and ‘%aa%’ are supported. Only for
strings set[string]. In the case of set[string], the filter will return result if at least one value meets the filter
condition.

– ilike: by analogy with like but case-insensitive, only for strings set[string].

Returns:

• JSON-encoded array with faces on success. The value in the X-search-stat header indicates whether the
fast index was used for the search: with_index or without_index.

Note: Fast index is not used in API v2.

• HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/testgal/search' --data '
{

"limit": 2,
"sort": {

"score": -1
},
"filter": {

"facen": {
"data": "qgI3vZRv/z0BQTk9rcirOyZrNpO9MdHavW1WuT0=",
"score": [0.75, 1]

},
"id": {

"range": [9223372036854000000, 9223372036854999000]
},
"meta": {

"person_id": {
"range": [444, 999]

},
"cam_id": {

"set": ["12767", "8632", "23989"]
}

}
}

}'

Response

HTTP/1.1 200 Ok
Content-length: 1234
X-search-stat: without_index
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)

(continues on next page)

9.3. Direct API Requests to Tarantool 109

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

Connection: keep-alive

{
"results": [
{

"facen": " qgI3vZRv/z0BQTk9rcirOyZrNpO9MdHavW1WuT0=",
"meta": {

"timestamp": 0,
"photo_hash": "",
"person_id": 777,
"cam_id": "8632"

},
"score": 0.9964,
"id": 9223372036854776000

}
]

}

9.3.5 Edit Face Metadata and Feature Vector

POST /v2/faces/update/:name

Parameters in body:

JSON-encoded array with faces with the following fields:

• "id": face id, uint64_t.

• "facen": (optional) new feature vector, base64. If omitted or passed as null, the relevant field in the database
won’t be updated.

• "meta": dictionary with metadata to be updated. If some metastring is omitted or passed as null, the relevant
field in the database won’t be updated.

Returns:

• HTTP 200 and dictionary with all face parameters, including not updated, on success.

• HTTP 404 and error description if a face with the given id doesn’t exist.

• HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/update/sandbox' --data '[{"id":1,"facen
→˓":null,"meta":{"m:timestamp":1848}}]'

110 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

Response

HTTP/1.1 200 Ok
Content-length: 151
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"meta":{"m:timestamp":1848,"normalized_id":"1_b9pkrf00mjt6h1vmq1kg.png","m:cam_id":
→˓"a9f7a973-f07e-469d-a3bd-41ddd510b26f","feat":"{\"score\":0.123}"}, "id":1, ... }

9.3.6 List Galleries

POST /v2/galleries/list

Returns:

JSON-encoded array with galleries with the following fields: name: gallery name, faces: number of faces in a
gallery.

Example

Request

curl -D - -s -X POST http://localhost:8001/v2/galleries/list

Response

HTTP/1.1 200 Ok
Content-length: 42
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{
"results": [
{

"name": "testgal",
"faces": 2

}
]

}

9.3.7 Get Gallery Info

POST /v2/galleries/get/:name

9.3. Direct API Requests to Tarantool 111

FindFace Enterprise Server, Release 4.0.3

Returns:

• HTTP 200 and dictionary with gallery parameters on success.

• HTTP 404 and error description if a gallery with the given name doesn’t exist.

• HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s -X POST http://localhost:8001/v2/galleries/get/testgal

HTTP/1.1 200 Ok
Content-length: 11
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"faces":2}

9.3.8 Create Gallery

POST /v2/galleries/add/:name

Returns:

• HTTP 200 and empty body on success.

• with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -X POST -s 'http://localhost:8001/v2/galleries/add/123'

Response

HTTP/1.1 409 Conflict
Content-length: 57
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"error":{"message":"gallery already exists","code":409}}

112 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

9.3.9 Remove Gallery

POST /v2/galleries/delete/:name

Returns:

• HTTP 200 and empty on success.

• with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -X POST -s 'http://localhost:8001/v2/galleries/delete/123'

Response

HTTP/1.1 204 No content
Content-length: 0
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

9.4 Hacks for findface-tarantool-server

In this section:

• Additional Configuration Parameters

• Soft Deletion Mode

• Tarantool Replication

9.4.1 Additional Configuration Parameters

To configure interaction between findface-sf-api and Tarantool, specify additional parameters in the 3rd argument of
the FindFace.start section in the findface-tarantool-server configuration file:

sudo vi /etc/tarantool/instances.enabled/FindFace.lua

FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", additional
→˓parameter 1, ..., additional parameter N})

Example:
FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", facen_size =
→˓576, log_requests = false})

9.4. Hacks for findface-tarantool-server 113

FindFace Enterprise Server, Release 4.0.3

Additional parameters:

Parame-
ter

Default
value

Description

log_requests true Enable request logging (/var/log/tarantool/FindFace.log).
facen_size 576 Feature vector size, subject to the neural network model in use. Before editing this pa-

rameter, be sure to consult our experts by support@ntechlab.com.
search_threads1 Number of threads for fast index search.
replica-
tion

nil Only for a replica. Master instance IP address.

soft_delete_modefalse Enable the soft deletion mode, when the faces are not removed from the fast index, but
hidden in search results.

9.4.2 Soft Deletion Mode

Tarantool supports the soft deletion mode, when the faces are not removed from the fast index, but hidden in search
results. We recommend you to enable this mode due to the following benefits:

• Tarantool starting time linearly depends on the number of faces removed from the Indexed space (fast index).
If the soft deletion mode is on, the faces are not physically removed from the fast index, so face deletion doesn’t
affect the starting time.

• Fast index search quality also depends on the number of physically removed faces. It doesn’t sink in the soft
deletion mode.

To enable the soft deletion mode, edit the FindFace.start section as follows:

FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", soft_delete_
→˓mode = true})

9.4.3 Tarantool Replication

Replication allows multiple Tarantool instances to work on copies of the same face database. The database copies
are kept in sync because each instance can communicate its changes to all the other instances. Tarantool supports
master-slave replication. You can add and delete data only by using the master instance. Slave instances (aka replicas)
are read-only, i.e., can be used only for searching and consulting data.

To learn how to deploy a Tarantool replica set, refer to the Tarantool official documentation.

To start a created replica for the first time, do the following:

1. Start the master instance.

2. In the replica configuration file, specify the IP address and the listening port of the master instance.

FindFace.start("127.0.0.1", 48001, {replication = "127.0.0.1:33001"})

3. Copy the latest snapshot (.snap) of the master instance into the memtx_dir directory of the replica.

--Directory to store data
memtx_dir = '/opt/ntech/var/lib/tarantool/default/snapshots'

4. Copy the master instance logs into the wal_dir directory of the replica.

114 Chapter 9. Advanced Features

mailto:support@ntechlab.com
https://tarantool.org/en/doc/1.7/singlehtml.html#document-doc/1.7/book/replication/index

FindFace Enterprise Server, Release 4.0.3

--Directory to store data
wal_dir = '/opt/ntech/var/lib/tarantool/default/xlogs'

5. Start the replica. You can start as many replicas affiliated with the same master instance as needed.

Important: Before enabling the fast index for the master instance :use_index("/path/to/<index>.
idx"), copy the index file (<index>.idx) to the same path on its replica. Then perform use_index on the
master instance.

Tip: Delete obsolete index files on the replica to avoid unnecessary index transitions, should the master instance and
replica be heavily out of sync.

Tip: To synchronize the master instance and replica, you can also copy the latest master snapshot to the replica.

9.5 Real-time Face Liveness Detection

To spot fake faces and prevent photo attacks, use the integrated 2D anti-spoofing system that distinguishes a live face
from a face image. Due to the analysis of not one, but a number of frames, the algorithm captures any changes in a
facial expression and skin texture. This ensures that it is a live person in front of a camera and eliminates the possibility
of fraud using images on paper or mobile device screens.

The liveness detector estimates a face liveness with a certain level of confidence and returns the confidence score along
with a binary result real/fake, depending on the pre-defined liveness threshold.

To enable the face liveness detector, do the following:

1. Open the findface-video-worker configuration file. In the liveness –> fnk parameter, specify the
path to the face liveness detector model as shown below.

sudo vi /etc/findface-video-worker-cpu.ini

[liveness]
#------------------------------
path to liveness fnk
fnk = /usr/share/findface-data/models/faceattr/liveness.v3.cpu.fnk

sudo vi /etc/findface-video-worker-gpu.ini

[liveness]
#------------------------------
path to liveness fnk
fnk = /usr/share/findface-data/models/faceattr/liveness.v3.gpu.fnk

2. Restart findface-video-worker.

sudo systemctl restart findface-video-worker-cpu
sudo systemctl restart findface-video-worker-gpu

9.5. Real-time Face Liveness Detection 115

FindFace Enterprise Server, Release 4.0.3

Once the face liveness detector enabled, the findface-video-worker service will be posting face liveness data
to findface-facerouter in the liveness key of the detectorParams dictionary. To process a face due to
its liveness, write a plugin.

9.6 Multiple Video Cards Usage

Should you have several video cards installed on a physical server, you can create additional
findface-extraction-api-gpu or findface-video-worker-gpu instances and distribute them
across the video cards, one instance per card.

In this section:

• Allocate findface-video-worker-gpu to Additional Video Card

9.6.1 Allocate findface-video-worker-gpu to Additional Video Card

To create an additional findface-video-worker-gpu instance and allocate it to a different video card, do the
following:

1. Display the findface-video-worker-gpu primary service status by executing:

sudo systemctl status findface-video-worker-gpu.service

2. Find the full path to the service in the line Loaded: loaded (/lib/systemd/system/
findface-video-worker-gpu.service; enabled; vendor preset: enabled. It is
findface-video-worker-gpu.service in our example (name may vary). Create a copy of the ser-
vice under a new name.

sudo cp /lib/systemd/system/findface-video-worker-gpu.service /lib/systemd/system/
→˓findface-video-worker-gpu2.service`

3. In the same manner, create a copy of the primary service configuration file under a new name.

sudo cp /etc/findface-video-worker-gpu.ini /etc/findface-video-worker-gpu2.ini

4. Open the just created configuration file and actualize the video card number to use.

sudo vim /etc/findface-video-worker-gpu2.ini

cuda device number
device_number = 1

5. Open the new service and actualize the configuration file to use by specifying the just created one.

sudo vim /lib/systemd/system/findface-video-worker-gpu2.service

ExecStart=/usr/bin/findface-video-worker-gpu --config /etc/findface-video-worker-
→˓gpu2.ini

6. Reload the systemd daemon to apply the changes.

116 Chapter 9. Advanced Features

FindFace Enterprise Server, Release 4.0.3

sudo systemctl daemon-reload

7. Enable the new service autostart.

sudo systemctl enable findface-video-worker-gpu2.service

Created symlink from /etc/systemd/system/multi-user.target.wants/findface-video-
→˓worker-gpu2.service to /lib/systemd/system/findface-video-worker-gpu2.service

8. Launch the new service.

sudo systemctl start findface-video-worker-gpu2.service

9. Check the both findface-video-worker-gpu services status.

sudo systemctl status findface-video-worker-* | grep -i 'Active:' -B 3

findface-video-worker-gpu2.service - findface-video-worker-gpu daemon
Loaded: loaded (/lib/systemd/system/findface-video-worker-gpu2.service; enabled;

→˓ vendor preset: enabled)
Active: active (running) since Thu 2019-07-18 10:32:02 MSK; 1min 11s ago

...

findface-video-worker-gpu.service - findface-video-worker-gpu daemon
Loaded: loaded (/lib/systemd/system/findface-video-worker-gpu.service; enabled;

→˓vendor preset: enabled)
Active: active (running) since Mon 2019-07-15 15:18:33 MSK; 2 days ago

9.7 Face Features Recognition

Subject to your needs, you can enable automatic recognition of such face features as gender, age, emotions, glasses,
and/or beard. This functionality can be activated on both GPU- and CPU-accelerated video face detectors.

To enable automatic recognition of face features, open the /etc/findface-extraction-api configuration
file and enable relevant recognition models: gender, age, emotions, glasses3, and/or beard. Be sure to choose
the right acceleration type for each model, matching the acceleration type of findface-extraction-api:
CPU or GPU. Be aware that findface-extraction-api on CPU can work only with CPU-models, while
findface-extraction-api on GPU supports both CPU- and GPU-models.

sudo vi /etc/findface-extraction-api.ini

models:
age: faceattr/age.v1.cpu.fnk
emotions: faceattr/emotions.v1.cpu.fnk
face: face/grapefruit_480.cpu.fnk
gender: faceattr/gender.v2.cpu.fnk
beard: faceattr/beard.v0.cpu.fnk
glasses3: faceattr/glasses3.v0.cpu.fnk

The following models are available:

Note: You can find face features recognition models at /usr/share/findface-data/models/faceattr/.

9.7. Face Features Recognition 117

FindFace Enterprise Server, Release 4.0.3

ls /usr/share/findface-data/models/faceattr/
age.v1.cpu.fnk age.v1.gpu.fnk beard.v0.cpu.fnk beard.v0.gpu.fnk emotions.v1.cpu.
→˓fnk emotions.v1.gpu.fnk gender.v2.cpu.fnk gender.v2.gpu.fnk glasses3.v0.cpu.fnk
→˓ glasses3.v0.gpu.fnk liveness.v3.gpu.fnk

Face fea-
ture

Accelera-
tion

Configuration file parameter

face (biome-
try)

CPU face: face/grapefruit_480.cpu.fnk face: face/
grapefruit_160.cpu.fnk

GPU face: face/grapefruit_480.gpu.fnk face: face/
grapefruit_160.gpu.fnk

age CPU age: faceattr/age.v1.cpu.fnk
GPU age: faceattr/age.v1.gpu.fnk

gender CPU gender: faceattr/gender.v2.cpu.fnk
GPU gender: faceattr/gender.v2.gpu.fnk

emotions CPU emotions: faceattr/emotions.v1.cpu.fnk
GPU emotions: faceattr/emotions.v1.gpu.fnk

glasses3 CPU glasses3: faceattr/glasses3.v0.cpu.fnk
GPU glasses3: faceattr/glasses3.v0.gpu.fnk

beard CPU beard: faceattr/beard.v0.cpu.fnk
GPU beard: faceattr/beard.v0.gpu.fnk

Tip: To disable a recognition model, simply pass an empty value to a relevant parameter. Do not remove the parameter
itself as in this case the system will be searching for the default model.

models:
gender: ""
age: ""
emotions: ""

Restart findface-extraction-api.

sudo systemctl restart findface-extraction-api

118 Chapter 9. Advanced Features

CHAPTER 10

Maintenance and Troubleshooting

10.1 Checking Component Status

Check the status of components once you have encountered a system problem.

Component Command to view service status
findface-extraction-api sudo systemctl status findface-extraction-api.service
findface-sf-api sudo systemctl status findface-sf-api.service
findface-facerouter sudo systemctl status findface-facerouter.service
findface-tarantool-server sudo systemctl status tarantool@FindFace.service
findface-video-manager sudo systemctl status findface-video-manager.service
findface-video-worker-cpu sudo systemctl status findface-video-worker-cpu.service
findface-video-worker-gpu sudo systemctl status findface-video-worker-gpu.service
findface-ntls sudo systemctl status findface-ntls
etcd sudo systemctl status etcd.service
NginX sudo systemctl status nginx.service
memcached sudo systemctl status memcached.service

10.2 Analyze Log Files

Log files provide a complete record of each FindFace Enterprise Server component activity. Consulting logs is one of
the first things you should do to identify a cause for any system problem.

119

mailto:tarantool@FindFace.service

FindFace Enterprise Server, Release 4.0.3

Component Command to view log
findface-extraction-api sudo tail -f /var/log/syslog | grep extraction-api
findface-sf-api sudo tail -f /var/log/syslog | grep sf-api
findface-facerouter sudo tail -f /var/log/syslog | grep facerouter
findface-tarantool-server sudo tail -f /var/log/tarantool/FindFace.log
findface-video-manager sudo tail -f /var/log/syslog | grep video-manager
findface-video-worker-* sudo tail -f /var/log/syslog | grep video-worker
findface-ntls sudo tail -f /var/log/syslog | grep ntls
etcd sudo tail -f /var/log/syslog | grep etcd

10.3 Troubleshoot Licensing and findface-ntls

When troubleshooting licensing and findface-ntls (see licensing), the first step is to retrieve the licensing infor-
mation and findface-ntls status. You can do so by sending an API request to findface-ntls. Necessary
actions are then to be undertaken, subject to the response content.

Tip: Please do not hesitate to contact our experts on troubleshooting by info@ntechlab.com.

10.3.1 Retrieve Licensing Information

To retrieve the FindFace Enterprise Server licensing information and findface-ntls status, execute on the
findface-ntls host console:

curl http://localhost:3185/license.json -s | jq

The response will be given in JSON. One of the most significant parameters is last_updated. It indicates in
seconds how long ago the local license has been checked for the last time.

Interpret the last_updated value as follows:

• [0, 5] — everything is alright.

• (5, 30] — there may be some problems with connection, or with the local drive where the license file is stored.

• (30; 120] — almost certainly something bad happened.

• (120; ∞) — the licensing source response has been timed out. Take action.

• "valid": false: connection with the licensing source was never established.

curl http://localhost:3185/license.json -s | jq
{

"name": "NTLS",
"time": 1520844897,
"type": "offline (extended)",
"license_id": "001278983",
"generated": 487568400,
"last_updated": 4,
"valid": {
"value": true,
"description": ""

(continues on next page)

120 Chapter 10. Maintenance and Troubleshooting

mailto:info@ntechlab.com

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

},
"source": "/ntech/license/001278983.lic",
"limits": [
{

"type": "time",
"name": "end",
"value": 25343

},
{

"type": "number",
"name": "faces",
"value": 90071,
"current": 230258

},
{

"type": "number",
"name": "cameras",
"value": 9007,
"current": 3

},
{

"type": "number",
"name": "extraction_api",
"value": 900,
"current": 8

},
{

"type": "boolean",
"name": "gender",
"value": true

},
{

"type": "boolean",
"name": "age",
"value": true

},
{

"type": "boolean",
"name": "emotions",
"value": true

},
{

"type": "boolean",
"name": "fast-index",
"value": true

}
],
"services": [
{

"name": "video-worker",
"ip": "127.0.0.1:58970"

},
{

"name": "FindFace-tarantool",
"ip": "127.0.0.1:58978"

},
{

(continues on next page)

10.3. Troubleshoot Licensing and findface-ntls 121

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"name": "findface-extraction-api",
"ip": "127.0.0.1:52376"

}
]

}

10.4 Automatic Tarantool Recovery

If your system architecture doesn’t imply uninterrupted availability of Tarantool servers, it is recommended to enable
automatic database recovery. In this case, each time an error occurs while reading a snapshot or xlog file, Tarantool
will skip invalid records, read as much data as possible, and re-build the file.

To enable automatic database recovery, do the following:

Note: You have to repeat the following instructions on each Tarantool shard.

1. Open a shard configuration file.

sudo vi /etc/tarantool/instances.enabled/<shard_001>.lua

2. Uncomment force_recovery = true.

box.cfg{

force_recovery = true,
}

3. Restart the shard.

sudo systemctl restart tarantool@<shard_001>.service

122 Chapter 10. Maintenance and Troubleshooting

CHAPTER 11

Appendices

11.1 Neural Network Models

Here you can see a summary for Ntech Lab neural networks which are currently in use in FindFace Enterprise Server:

Note: The CPU and GPU benchmark setup is the following:

• CPU: Intel® Core™ i7-5930K CPU @ 3.50GHz × 12

• GPU: GeForce GTX 1080

Type Name Facen size, bytes CPU, FPS GPU, FPS
Face biometrics face/elderberry_160 160 5.78 204.98

face/elderberry_576.r2 576 1.86 60.62
face/grapefruit_160 160 6.01 191.43
face/grapefruit_480 480 1.93 64.97

Gender recognition faceattr/gender.v2 N/A 15.01 523.22
Age recognition faceattr/age.v1 N/A 14.99 529.35
Emotions recognition faceattr/emotions.v1 N/A 10.99 235.59
Country recognition faceattr/countries47.v1 N/A 14.97 532.53

11.2 Components in Depth

11.2.1 findface-extraction-api

The findface-extraction-api service uses neural networks to detect a face in an image, extract face biometric
data (feature vector), and recognize gender, age, emotions, and other features.

It interfaces with the findface-sf-api service as follows:

123

FindFace Enterprise Server, Release 4.0.3

• Gets original images with faces and normalized face images.

• Returns the coordinates of the face bounding box, and (optionally) feature vector, face feature data, should these
data be requested by findface-sf-api.

Tip: You can use HTTP API to directly access findface-extraction-api.

Functionality:

• face detection in an original image (with return of the bbox coordinates),

• face normalization,

• feature vector extraction from a normalized image,

• gender/age/emotions/country recognition.

The findface-extraction-api service can be based on CPU (installed from the
findface-extraction-api package) or GPU (installed from the findface-extraction-api-gpu
package). For both CPU- and GPU-accelerated services, configuration is done through the /etc/
findface-extraction-api.ini configuration file. Its content varies subject to the acceleration type.

CPU-service configuration file:

allow_cors: false
detector_instances: 0
dlib:

model: /usr/share/findface-data/normalizer.dat
options:
adjust_threshold: 0
upsample_times: 1

extractors:
instances: 1
max_batch_size: 16
models:
age: ""
beard: ""
emotions: ""
face: face/grapefruit_480.cpu.fnk
gender: ""
glasses3: ""
liveness: ""

models_root: /usr/share/findface-data/models
fetch:

enabled: true
size_limit: 10485760

license_ntls_server: 127.0.0.1:3133
listen: 127.0.0.1:18666
max_dimension: 6000
nnd:

model: /usr/share/nnd/nnd.dat
options:
max_face_size: .inf
min_face_size: 30
o_net_thresh: 0.9
p_net_max_results: 0
p_net_thresh: 0.5

(continues on next page)

124 Chapter 11. Appendices

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

r_net_thresh: 0.5
scale_factor: 0.79

quality_estimator: true
quality_estimator_model: /usr/share/nnd/quality_estimator_v2.dat

ticker_interval: 5000

GPU-service configuration file:

listen: 127.0.0.1:18666
dlib:

model: /usr/share/findface-data/normalizer.dat
options:
adjust_threshold: 0
upsample_times: 1

nnd:
model: /usr/share/nnd/nnd.dat
quality_estimator: true
quality_estimator_model: /usr/share/nnd/quality_estimator_v2.dat
options:
min_face_size: 30
max_face_size: .inf
scale_factor: 0.7900000214576721
p_net_thresh: 0.5
r_net_thresh: 0.5
o_net_thresh: 0.8999999761581421
p_net_max_results: 0

detector_instances: 0
extractors:

models_root: /usr/share/findface-data/models
max_batch_size: 3
instances: 2
models:
age: ""
beard: ""
emotions: ""
face: face/grapefruit_480.gpu.fnk
gender: ""
glasses3: ""
liveness: ""

cache_dir:
gpu_device: 0

license_ntls_server: 172.17.46.26:3133
fetch:

enabled: true
size_limit: 10485760

max_dimension: 6000
allow_cors: false
ticker_interval: 5000

When configuring findface-extraction-api (on CPU or GPU), refer to the following parameters:

11.2. Components in Depth 125

FindFace Enterprise Server, Release 4.0.3

Pa-
rame-
ter

Description

nnd ->
quality_estimator

Enables face quality estimation. In this case, findface-extraction-api returns a face quality
score in the detection_score field. Interpret the quality score further in analytics. Upright faces in
frontal position are considered the best quality. They result in values around 0, mostly negative (such as
-0.00067401276, for example). Inverted faces and large face angles are estimated with negative values
some -5 and less.

nnd ->
min_face_size

The minimum size of a face (bbox) guaranteed to be detected. The larger the value, the less resources
required for face detection.

nnd ->
max_face_size

The minimum size of a face (bbox) guaranteed to be detected.

license_ntls_serverThe ntls license server IP address and port.
gpu_device(Only for GPU) The number of the GPU device used by findface-extraction-api-gpu.
models
->
instances

The number of neural network instances (and, consequently, the number of simultaneously processed
requests) that are loaded into RAM by findface-extraction-api. Specify the number of in-
stances from your license. The default value (0) means that this number is equal to the number of CPU
cores. This parameter severely affects RAM consumption.

fetch
->
enabled

Enables fetching images from the Internet.

fetch
->
size_limit

The maximum size of an Internet image to be fetched.

You will also have to enable recognition models for face features such as gender, age, emotions, glasses3, and/or beard,
subject to your needs. Be sure to choose the right acceleration type for each model, matching the acceleration type of
findface-extraction-api: CPU or GPU. Be aware that findface-extraction-api on CPU can work
only with CPU-models, while findface-extraction-api on GPU supports both CPU- and GPU-models.

models:
age: faceattr/age.v1.cpu.fnk
emotions: faceattr/emotions.v1.cpu.fnk
face: face/grapefruit_480.cpu.fnk
gender: faceattr/gender.v2.cpu.fnk
beard: faceattr/beard.v0.cpu.fnk
glasses3: faceattr/glasses3.v0.cpu.fnk

The following models are available:

126 Chapter 11. Appendices

FindFace Enterprise Server, Release 4.0.3

Face fea-
ture

Accelera-
tion

Configuration file parameter

face (biome-
try)

CPU face: face/grapefruit_480.cpu.fnk face: face/
grapefruit_160.cpu.fnk

GPU face: face/grapefruit_480.gpu.fnk face: face/
grapefruit_160.gpu.fnk

age CPU age: faceattr/age.v1.cpu.fnk
GPU age: faceattr/age.v1.gpu.fnk

gender CPU gender: faceattr/gender.v2.cpu.fnk
GPU gender: faceattr/gender.v2.gpu.fnk

emotions CPU emotions: faceattr/emotions.v1.cpu.fnk
GPU emotions: faceattr/emotions.v1.gpu.fnk

glasses3 CPU glasses3: faceattr/glasses3.v0.cpu.fnk
GPU glasses3: faceattr/glasses3.v0.gpu.fnk

beard CPU beard: faceattr/beard.v0.cpu.fnk
GPU beard: faceattr/beard.v0.gpu.fnk

Tip: To disable a recognition model, simply pass an empty value to a relevant parameter. Do not remove the parameter
itself as in this case the system will be searching for the default model.

models:
gender: ""
age: ""
emotions: ""

11.2.2 findface-sf-api

The findface-sf-api service implements HTTP API for the FindFace core main functionality such as face detec-
tion and face recognition (the mentioned functions themselves are provided by findface-extraction-api‘). It interfaces
with the biometric database powered by Tarantool via the findface-tarantool-server service, as well as with
findface-extraction-api (provides face detection and face recognition) and findface-upload (provides
a storage for original images and FindFace core artifacts).

To detect a face in an image, you need to send the image as a file or URL in an API request to findface-sf-api.
The findface-sf-api will then redirect the request to findface-extraction-api for face detection and
recognition.

Tip: You can also directly access findface-extraction-api.

If there is a configured video face detection module in the system, findface-sf-api also interfaces with the
findface-facerouter service. It receives data of detected in video faces along with processing directives
from findface-facerouter, and then executes the received directives, for example, saves faces into a specific
database gallery.

Functionality:

• HTTP API implementation (face detection and face recognition methods, performed via
findface-extraction-api).

• saving face data to the biometric database (performed via findface-tarantool-server),

11.2. Components in Depth 127

FindFace Enterprise Server, Release 4.0.3

• saving original images, face thumbnails and normalized face images to an NginX-powered web server (via
findface-upload).

• provides interaction between all the FindFace core components.

cache:
inmemory:
size: 16384

memcache:
nodes:
- 127.0.0.1:11211
timeout: 100ms

redis:
addr: localhost:6379
db: 0
network: tcp
password: ''
timeout: 5s

type: memcache
extraction-api:

extraction-api: http://127.0.0.1:18666
timeouts:
connect: 5s
idle_connection: 10s
overall: 35s
response_header: 30s

limits:
allow-return-facen: false
body-image-length: 33554432
deny-networks: 127.0.0.0/8,192.168.0.0/16,10.0.0.0/8,::1/128,fe00::/8
url-length: 4096

listen: 127.0.0.1:18411
normalized-storage:

enabled: true
s3:
access-key: ''
bucket-name: ''
endpoint: ''
operation-timeout: 30
public-url: ''
region: ''
secret-access-key: ''
secure: true

type: webdav
webdav:
timeouts:

connect: 5s
idle_connection: 10s
overall: 35s
response_header: 30s

upload-url: http://127.0.0.1:3333/uploads/
storage-api:

max-idle-conns-per-host: 20
shards:
- master: http://127.0.0.1:8101/v2/
slave: ''

- master: http://127.0.0.1:8102/v2/
slave: ''

(continues on next page)

128 Chapter 11. Appendices

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

timeouts:
connect: 5s
idle_connection: 10s
overall: 35s
response_header: 30s

When configuring findface-sf-api, refer to the following parameters:

Parameter Description
extraction-api ->
extraction-api

IP address of the findface-extraction-api host.

storage-api -> shards
-> master

IP address of the findface-tarantool-server master shard.

storage-api -> shards
-> slave

IP address of the findface-tarantool-server replica shard.

limits ->
body-image-length

The maximum size of an image in an API request, bytes.

upload_url WebDAV NginX path to send original images, thumbnails and normalized face
images to the findface-upload service.

11.2.3 findface-tarantool-server

The findface-tarantool-server service provides interaction between the findface-sf-api service and
the Tarantool-based biometric database in the following way:

Tip: See Tarantool official documentation for details.

• From findface-sf-api, findface-tarantool-server receives data, such as information of de-
tected in video faces, to write into the biometric database.

• By request from findface-sf-api, findface-tarantool-server performs database searches and
returns search results.

To increase search speed, multiple findface-tarantool-server shards can be created on each Tarantool host.
Their running concurrently leads to a remarkable increase in performance (70x-100x).

Functionality:

• saving face data to the biometric database,

• database search,

• implementation of direct API requests to the database (see Direct API Requests to Tarantool).

The findface-tarantool-server configuration is done through the /etc/tarantool/instances.
enabled/<*>.lua configuration file. In a cluster environment, configuration has to be done for each shard.

--
-- Please, read the tarantool cfg doc:
-- https://tarantool.org/doc/reference/configuration/index.html#box-cfg-params
--

box.cfg{
--port to listen, direct tarantool access

(continues on next page)

11.2. Components in Depth 129

https://tarantool.io/en/

FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

--Only need for admin operations
--THIS IS NOT PORT YOU NEED FOR facenapi/sf-api
listen = '127.0.0.1:33001',

--Directory to store data
vinyl_dir = '/opt/ntech/var/lib/tarantool/shard-001',
work_dir = '/opt/ntech/var/lib/tarantool/shard-001',
memtx_dir = '/opt/ntech/var/lib/tarantool/shard-001/snapshots',
wal_dir = '/opt/ntech/var/lib/tarantool/shard-001/xlogs',

--Maximum mem usage in bytes
memtx_memory = 200 * 1024 * 1024,

checkpoint_interval = 3600*4,
checkpoint_count = 3,

--uncomment only if you know what you are doing!!! and don't forget box.snapshot()
-- wal_mode = 'none',

--if true, tarantool tries to continue if there is an error while reading a
→˓snapshot/xlog files: skips invalid records, reads as much data as possible and re-
→˓builds the file

-- force_recovery = true,
}

pcall(function() box.schema.user.grant('guest', 'execute,read,write', 'universe') end)

dofile("/etc/ffsecurity/tnt_schema.lua")

-- host,port to bind for http server
-- this is what you need for facenapi
FindFace = require("FindFace")
FindFace.start("127.0.0.1", 8101, {

license_ntls_server="127.0.0.1:3133",
facen_size=480,
meta_scheme = meta_scheme

})

When configuring findface-tarantool-server, refer to the following parameters:

Pa-
rame-
ter

Description

memtx_memoryMaximum RAM that can be used by a Tarantool shard. Set in bytes, depending on the number of faces
the shard handles. Consult our experts by support@ntechlab.com before setting this parameter.

force_recoveryEnables automatic database recovery. In this case, each time an error occurs while reading a snapshot or
xlog file, Tarantool will skip invalid records, read as much data as possible, and re-build the file.

license_ntls_serverIP address and port of the findface-ntls license server.
facen_sizeFeature vector size. Before editing this parameter, be sure to consult NTechLab experts.
meta_schemeA database structure to store the face recognition results. The structure is created as a set of fields.

Describe each field with the following parameters: id: field id; name: field name, must be the same
as the name of a relevant face parameter; field_type: data type; default: field default value, if a
default value exceeds ‘1e14 – 1’, use a string data type to specify it, for example, "123123.." instead
of 123123...

130 Chapter 11. Appendices

mailto:support@ntechlab.com

FindFace Enterprise Server, Release 4.0.3

The default database structure is passed from /etc/ffsecurity/tnt_schema.lua to the meta_scheme
parameter if FindFace Enterprise Server is installed from the installer. If it is installed from the apt repository, you will
have to manually set it via the configuration file.

11.2.4 findface-upload

The findface-upload component is an NginX-based web server used as a storage for original images, thumbnails
and normalized face images which it receives from the findface-sf-api component.

By default the original images, thumbnails and normalized images are stored at /var/lib/ffupload/uploads/
.

The findface-upload component is automatically configured upon installation. Custom configuration is not
supported.

11.2.5 findface-facerouter

The findface-facerouter service sets processing directives for faces detected in video. The directives are set
through custom plugins.

The findface-facerouter service accepts a face bbox and normalized image along with the original image and
other data (for example, the detection date and time) from the findface-video-worker service. In general,
findface-facerouter allows you to apply arbitrary face processing directives, including directly sending faces
to a partner application. In the basic configuration, findface-facerouter is pre-configured to redirect faces to
findface-sf-api for further processing, but you will still have to set processing directives by creating a plugin.

Functionality:

• sets processing directives for faces detected in video,

• redirects faces detected in video to findface-sf-api or other service (including a third-party application)
for further processing.

The findface-facerouter configuration is done through a configuration file /etc/
findface-facerouter.py.

```# main.py options:

# debug = False
## debug - debug mode
# host = ''
## host - host to listen
# port = 18820
## port - port to listen
# sfapi_url = 'http://localhost:18411'
## sfapi_url - SF-API URL
# version = False
## version - print version

# plugin_dir.py options:

# plugin_dir = ''
## plugin_dir - Plugin directory for plugin_source='dir'

# abstract_define.py options:

# plugin_source = 'dir'

(continues on next page)

11.2. Components in Depth 131



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

## plugin_source - Plugin source (dir)

# log.py options:

# log_file_max_size = 100000000
## log_file_max_size - max size of log files before rollover
# log_file_num_backups = 10
## log_file_num_backups - number of log files to keep
# log_file_prefix = None
## log_file_prefix - Path prefix for log files. Note that if you are running
## multiple tornado processes, log_file_prefix must be different for each of
## them (e.g. include the port number)
# log_rotate_interval = 1
## log_rotate_interval - The interval value of timed rotating
# log_rotate_mode = 'size'
## log_rotate_mode - The mode of rotating files(time or size)
# log_rotate_when = 'midnight'
## log_rotate_when - specify the type of TimedRotatingFileHandler interval other
## options:('S', 'M', 'H', 'D', 'W0'-'W6')
# log_to_stderr = None
## log_to_stderr - Send log output to stderr (colorized if possible). By default
## use stderr if --log_file_prefix is not set and no other logging is
## configured.
# logging = 'info'
## logging - Set the Python log level. If 'none', tornado won't touch the
## logging configuration.

When configuring findface-facerouter, refer to the following parameters:

Parameter Description
sfapi_url IP address and port of the findface-sf-api host.
plugin_dir List of directories with plugins to define face processing directives.

11.2.6 Video face detection: findface-video-manager and
findface-video-worker

Note: The findface-video-worker is delivered in a CPU-accelerated (findface-video-worker-cpu)
and a GPU-accelerated (findface-video-worker-gpu) packages.

In this section:

• Functions of findface-video-manager

• Functions of findface-video-worker

• Configure Video Face Detection

• Jobs

132 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

Functions of findface-video-manager

The findface-video-manager service is the part of the video face detection module that is used for managing
the video face detection functionality.

The findface-video-manager service interfaces with findface-video-worker as follows:

• It supplies findface-video-worker with settings and the list of to-be-processed video streams. To do so,
it issues a so-called job, a video processing task that contains configuration settings and stream data.

• In a distributed system, it distributes video streams (jobs) across vacant findface-video-worker in-
stances.

Note: Configuration settings passed via jobs have priority over the findface-video-manager configuration
file.

The findface-video-mananger service functioning requires ETCD, third-party software that implements a
distributed key-value store for findface-video-manager. In the FindFace core, ETCD is used as a coordination
service, providing the video face detector with fault tolerance.

Functionality:

• allows for configuring video face detection parameters,

• allows for managing the list of to-be-processed video streams,

• implements video face detection management.

Functions of findface-video-worker

The findface-video-worker (on CPU/GPU) service is the part of the video face detection module, which
recognizes faces in video. It can work with both live streams and files, and supports most video formats and codecs
that can be decoded by FFmpeg.

The findface-video-worker service interfaces with the findface-video-manager and
findface-facerouter services as follows:

• By request, findface-video-worker gets a job with settings and the list of to-be-processed video streams
from findface-video-manager.

• The findface-video-worker posts extracted normalized face images, along with the full frames and
meta data (such as bbox, camera ID and detection time) to the findface-facerouter service for further
processing.

Functionality:

• detects faces in video,

• extracts normalized face images,

• searches for the best face snapshot,

• snapshot deduplication (only one snapshot per face detection event).

When processing video, findface-video-worker consequently uses the following algorithms:

• Motion detection. Used to reduce resource consumption. Only when the motion detector recognizes
motion of certain intensity that the face tracker can be triggered.

11.2. Components in Depth 133

https://www.ffmpeg.org/general.html#Supported-File-Formats_002c-Codecs-or-Features


FindFace Enterprise Server, Release 4.0.3

• Face tracking. The face tracker tracks, detects and captures faces in video. It can simultaneously be
working with several faces. It also searches for the best face snapshot, using an embedded neural network. After
the best face snapshot is found, it is posted to findface-facerouter.

The best face snapshot can be found in one of the following modes:

• Real-time

• Offline

Real-Time Mode

In the real-time mode, findface-video-worker posts a face immediately after it appears in the camera field of
view.

• If rt-perm=True, the face tracker searches for the best face snapshot within each time period equal to
rt-delay and posts it to findface-facerouter.

• If rt-perm=False, the face tracker searches for the best face snapshot dynamically:

1. First, the face tracker estimates whether the quality of a face snapshot exceeds a pre-defined threshold
value. If so, the snapshot is posted to findface-facerouter.

2. The threshold value increases after each post. Each time the face tracker gets a higher quality snapshot of
the same face, it is posted.

3. When the face disappears from the camera field of view, the threshold value resets to default.

By default, the real-time mode is disabled (realtime=false in the /etc/findface-video-manager.
conf file).

Offline Mode

The offline mode is less storage intensive than the real-time one as in this mode findface-video-worker posts
only one snapshot per track, but of the highest quality. In this mode, the face tracker buffers a video stream with a face
in it until the face disappears from the camera field of view. Then the face tracker picks up the best face snapshot from
the buffered video and posts it to findface-facerouter.

By default, the offline mode is enabled (overall=true in the /etc/findface-video-manager.conf file).

Configure Video Face Detection

The video face detector configuration is done through the following configuration files:

1. The findface-video-manager configuration file /etc/findface-video-manager.conf:

listen: 127.0.0.1:18810
etcd:
endpoints: 127.0.0.1:2379
dial_timeout: 3s

kafka:
enabled: false
endpoints: 127.0.0.1:9092

master:
lease_ttl: 10
self_url: 127.0.0.1:18811
self_url_http: 127.0.0.1:18811

rpc:

(continues on next page)

134 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

listen: 127.0.0.1:18811
heart_beat_timeout: 4s

router_url: http://127.0.0.1:18820/v0/frame
exp_backoff:
enabled: false
min_delay: 1s
max_delay: 1m0s
factor: 2
flush_interval: 2m0s

ntls:
enabled: false
url: http://127.0.0.1:3185/
update_interval: 1m0s

prometheus:
jobs_processed_duration_buckets:
- 1
- 30
- 60
- 500
- 1800
- 3600
- 21600
- .inf

job_scheduler_script: ''
stream_settings:
ffmpeg_params: []
md_threshold: 0.002
md_scale: 0.3
fd_frame_height: -1
uc_max_time_diff: 30
uc_max_dup: 3
uc_max_avg_shift: 10
det_period: 8
realtime: false
npersons: 4
disable_drops: false
tracker_threads: 4
parse_sei: false
image_arg: photo
additional_headers: []
additional_body: []
api_timeout: 15000
api_ssl_verify: true
post_uniq: true
min_score: -2
min_d_score: -1000
realtime_dly: 500
realtime_post_perm: false
rot: ''
roi: ''
draw_track: false
send_track: 0
min_face_size: 0
max_face_size: 0
overall: true
only_norm: false
max_candidates: 0

(continues on next page)

11.2. Components in Depth 135



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

jpeg_quality: 95
ffmpeg_format: ''

stream_settings_gpu:
play_speed: -1
filter_min_quality: -2
filter_min_face_size: 1
filter_max_face_size: 8192
normalized_only: false
jpeg_quality: 95
overall_only: true
use_stream_timestamp: false
ffmpeg_params: []
router_timeout_ms: 15000
router_verify_ssl: true
router_headers: []
router_body: []
start_stream_timestamp: 0
imotion_threshold: 0
rot: ''
roi: ''
realtime_post_interval: 1
realtime_post_every_interval: false
ffmpeg_format: ''
disable_drops: false

When configuring findface-video-manager, refer to the following parameters:

Option Description
router_url IP address and port of the findface-facerouter host to receive detected

faces from findface-video-worker. Default value: http://127.0.0.
1:18820/v0/frame.

etcd ->
endpoints

IP address and port of the etcd service. Default value: 127.0.0.1:2379.

ntls ->
enabled

If true, findface-video-manager will send a job to
findface-video-worker only if the total number of processed cam-
eras does not exceed the allowed number of cameras from the license. Default
value: false.

ntls -> url IP address and port of the findface-ntls host. Default value: http://127.
0.0.1:3185/.

You can also configure the following parameters:

Note: In the stream_settings(-gpu) section of the file, you will find settings common to all video
streams. Settings of a particular stream, passed in a job, have priority over those in the configuration file
(see Jobs).

CPU-
option

GPU-
option

Description

additional_bodyrouter_bodyAdditional body fields in a request body when posting a face: [“key =
value”]. Default value: body fields not specified.

Continued on next page

136 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

Table 1 – continued from previous page
CPU-
option

GPU-
option

Description

additional_headersrouter_headersAdditional header fields in a request when posting a face: [“key = value”].
Default value: headers not specified.

api_ssl_verifyrouter_verify_sslEnables a https certificate verification when
findface-video-worker and findface-facerouter in-
teract over https. Default value: true. If false, a self-signed certificate can
be accepted.

api_timeoutrouter_timeout_msTimeout for a findface-facerouter response to a
findface-video-worker API request, in milliseconds. If the
timeout has expired, the system will log an error. Default value: 15000.

disable_dropsdisable_dropsEnables posting all appropriate faces without drops. By default, if
findface-video-worker does not have enough resources to pro-
cess all frames with faces, it drops some of them. If this option is active,
findface-video-worker puts odd frames on the waiting list to pro-
cess them later. Default value: false.

draw_trackN/a Enables drawing a face motion track in a bbox. Default value: false.
fd_frame_heightN/a Video frame height for the face tracker, in pixels. Scale down in the case

of high resolution cameras, or close up faces, or if the CPU load is too
high, to reduce the system resources consumption. Make sure that the
scaled face size exceeds the min-face-size value. Default value: -1
(negative values corresponds to the original size). Optimal value to reduce
load: 640-720.

ffmpeg_formatffmpeg_formatPass FFMPEG format (mxg, flv, etc.) if it cannot be detected automatically.
ffmpeg_paramsffmpeg_paramsList of a video stream ffmpeg options with their values as a key=value

array: [“rtsp_transpotr=tcp”, .., “ss=00:20:00”]. Check out the FFmpeg
web site for the full list of options. Default value: options not specified.

image_argN/a Name of the argument containing a bbox with a face, in an API request.
Default value: photo.

jpeg_qualityjpeg_qualityQuality of an original frame JPEG compression, in percents. Default value:
95%.

max_face_sizefilter_max_face_sizeMaximum size of a face in pixels. Oversized faces are not posted. Default
value: 0 (filter disabled).

md_scale N/a Video frame scaling coefficient for the motion detector, relative to the orig-
inal size from 0 to 1. Scale down in the case of high resolution cameras,
or close up faces, or if the CPU load is too high, to reduce the system
resources consumption. Make sure that the scaled face size exceeds the
min-face-size value. Default value: 1 (original size).

md_thresholdimotion_thresholdMinimum motion intensity to be detected by the motion detector. The
threshold value is to be fitted empirically. Empirical units: zero and pos-
itive rational numbers. Milestones: 0 = detector disabled, 0.002 = default
value, 0.05 = minimum intensity is too high to detect motion.

min_scorefilter_min_qualityMinimum threshold value for a face image quality. A face is posted if it
has better quality. The threshold value is to be fitted empirically. Empirical
units: negative rational numbers to zero. Milestones: 0 = high quality
faces, -1 = good quality, -2 = satisfactory quality, -5 = face recognition
maybe inefficient. Default value: -2.

min_face_sizefilter_min_face_sizeMinimum size of a face in pixels. Undersized faces are not posted. Default
value: 0 (filter disabled).

Continued on next page

11.2. Components in Depth 137

https://trac.ffmpeg.org


FindFace Enterprise Server, Release 4.0.3

Table 1 – continued from previous page
CPU-
option

GPU-
option

Description

min_d_scoreN/a Maximum deviation of a face from its frontal position. A face is posted if
its deviation is less than this value. The deviation is to be fitted empirically.
Empirical units: negative rational numbers to zero. Milestones: -3.5 =
large face angles, face recognition may be inefficient, -2.5 = satisfactory
deviation, -0.05 = close to the frontal position, 0 = frontal face. Default
value: -1000.

npersons N/a Maximum number of faces simultaneously tracked by the face tracker.
This parameter severely affects performance. Default value: 4.

only_normnormalized_onlyEnable posting only normalized face images without full frames. Default
value: false.

overall overall_onlyEnables the offline mode for the best face search. Default value: true.
N/a play_speedIf less than zero, the speed is not limited. In other cases, the stream is read

with the given play_speed. Not applicable for live streams.
post_uniqN/a Enables face deduplication, i.e. posting only a certain num-

ber of faces belonging to one person, during a certain period of
time. In this case, if findface-video-worker posts a face to
findface-facerouter and then tracks another one within the time
period uc_max_time_diff, and the distance between the two faces
doesn’t exceed uc_max_avg_shift, findface-video-worker
estimates their similarity. If the faces are similar and the total number
of similar faces during the uc_max_time_diff period does not exceed
the number uc_max_dup, findface-video-worker posts the other
face. Otherwise, the other face is not posted. Default value: true.

realtime N/a Enables the real-time mode for the best face search. Default value: false.
realtime_dlyrealtime_post_intervalOnly for the real-time mode. If realtime_post_perm=True, de-

fines the time period in milliseconds within which the face tracker picks
up the best snapshot and posts it to findface-facerouter. If
realtime_post_perm=False, defines the minimum time period be-
tween 2 posts of the same face with increased quality. Default value: 500.

realtime_post_permrealtime_post_every_intervalOnly for the realtime mode. Post best snapshots obtained within each
realtime_dly time period. If false, search for the best snapshot dy-
namically and send snapshots in order of increasing quality. Default value:
false.

roi roi Enable posting faces detected only inside a region of interest WxH+X+Y.
Default value: region not specified.

rot rot Enables detecting and tracking faces only inside a clipping
rectangle WxH+X+Y. You can use this option to reduce
findface-video-worker load. Default value: rectangle not
specified.

send_trackN/a Enables posting a face motion track as array of the bbox center coordi-
nates. As the send_track value, specify the number of dots in the mo-
tion track. Default value: 0 (array not posted).

N/a start_stream_timestampAdd the specified number of seconds to timestamps from a stream.
tracker_threadsN/a Number of tracking threads for the face tracker. This value should be less

or equal to the npersons value. We recommend you to set them equal.
If the number of tracking threads is less than the maximum number of
tracked faces, resource consumption is reduced but so is the tracking speed.
Default value: 1.

Continued on next page

138 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

Table 1 – continued from previous page
CPU-
option

GPU-
option

Description

uc_max_time_diffN/a Only if post_uniq: true (face deduplication enabled). Maximum
time period in seconds during which a number of similar faces are consid-
ered as belonging to one person. Default value: 30.

uc_max_dupN/a Only if post_uniq: true (face deduplication enabled). Maximum
number of faces during the uc_max_time_diff period that is posted
for a person. Default value: 3.

uc_max_avg_shiftN/a Only if post_uniq: true (face deduplication enabled). Distance in
pixels within which a number of similar faces are considered as belonging
to one person. Default value: 10.

N/a use_stream_timestampIf true, retrieve and post timestamps from a video stream. If false, post the
actual date and time.

1. If you opt for the CPU-accelerated package findface-video-worker-cpu, use the /etc/
findface-video-worker-cpu.ini configuration file:

## read streams from file, do not use VideoManager
input =

## exit on first finished job, only when --input specified
exit_on_first_finished = false

## batch size
batch_size = 4

## http server port for metrics, 0=do not start server
metrics_port = 0

## resize scale, 1=do not resize
resize_scale = 1.000000

## maximum number of streams
capacity = 10

## command to obtain videomanager's grpc ip:port
mgr_cmd =

## videomanager grpc ip:port
mgr_static = 127.0.0.1:18811

## ntls server ip:port
ntls_addr = 127.0.0.1:3133

## debug: save faces to dir
save_dir =

## minimum face size
min_face_size = 60

## preinit detector for specified resolutions: "640x480;1920x1080"
resolutions =

## worker labels: "k=v;group=enter"
labels =

(continues on next page)

11.2. Components in Depth 139



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

## use timestamps from SEI packet
use_time_from_sei = false

#------------------------------
[streamer]
#------------------------------
## streamer server port, 0=disabled
port = 18999

## streamer url - how to access this worker on streamer_port
url = ws://127.0.0.1:18999/stream/

#------------------------------
[liveness]
#------------------------------
## path to liveness fnk
fnk =

## liveness threshold
threshold = 0.945000

## liveness internal algo param
interval = 1.000000

## liveness internal algo param
stdev_cnt = 1

#------------------------------
[send]
#------------------------------
## posting faces threads
threads = 8

## posting faces maximum queue size
queue_limit = 256

#------------------------------
[tracker]
#------------------------------
## max face miss duration, sec
miss_interval = 1.000000

## overlap threshold
overlap_threshold = 0.250000

#------------------------------
[models]
#------------------------------
## path to detector fnk
detector = /usr/share/findface-data/models/facedet/mtcnn.cpu.fnk

## path to quality fnk
quality = /usr/share/findface-data/models/faceattr/quality.v0.cpu.fnk

## path to norm for quality fnk
norm_quality = /usr/share/findface-data/models/facenorm/ant.v2.cpu.fnk

(continues on next page)

140 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

## path to norm200 fnk, for face send
norm_200 = /usr/share/findface-data/models/facenorm/ant.v2.cpu.fnk

## path to norm_crop2x fnk, for face send
norm_crop2x = /usr/share/findface-data/models/facenorm/crop2x.v2_maxsize400.cpu.
→˓fnk

If you opt for the GPU-accelerated package findface-video-worker-gpu, use the /etc/
findface-video-worker-gpu.ini configuration file.

## cuda device number
device_number = 0

## old gpu detector models directory
models_dir = /usr/share/findface-gpudetector/models

## read streams from file, do not use VideoManager
input =

## exit on first finished job, only when --input specified
exit_on_first_finished = false

## batch size
batch_size = 8

## http server port for metrics, 0=do not start server
metrics_port =

## resize scale, 1=do not resize
resize_scale = 1.000000

## maximum number of streams
capacity = 30

## command to obtain videomanager's grpc ip:port
mgr_cmd =

## videomanager grpc ip:port
mgr_static = 127.0.0.1:18811

## ntls server ip:port
ntls_addr = 127.0.0.1:3133

## debug: save faces to dir
save_dir =

## minimum face size
min_face_size = 60

## preinit detector for specified resolutions: "640x480;1920x1080"
resolutions =

## worker labels: "k=v;group=enter"
labels =

## use timestamps from SEI packet

(continues on next page)

11.2. Components in Depth 141



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

use_time_from_sei = false

#------------------------------
[streamer]
#------------------------------
## streamer server port, 0=disabled
port = 18999

## streamer url - how to access this worker on streamer_port
url = ws://172.17.46.17:18999/stream/

#------------------------------
[liveness]
#------------------------------
## path to liveness fnk
fnk =

## liveness threshold
threshold = 0.945000

## liveness internal algo param
interval = 1.000000

## liveness internal algo param
stdev_cnt = 1

#------------------------------
[send]
#------------------------------
## posting faces threads
threads = 8

## posting faces maximum queue size
queue_limit = 256

#------------------------------
[tracker]
#------------------------------
## max face miss duration, sec
miss_interval = 1.000000

## overlap threshold
overlap_threshold = 0.250000

#------------------------------
[models]
#------------------------------
## path to detector fnk
detector =

## path to quality fnk
quality =

## path to norm for quality fnk
norm_quality =

## path to norm200 fnk, for face send
(continues on next page)

142 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

norm_200 = /usr/share/findface-data/models/facenorm/ant.v2.gpu.fnk

## path to norm_crop2x fnk, for face send
norm_crop2x = /usr/share/findface-data/models/facenorm/crop2x.v2_maxsize400.gpu.
→˓fnk

## path to cache directory
cache_dir =

#------------------------------
[video_decoder]
#------------------------------
## decode video on cpu
cpu = false

When configuring findface-video-worker (on CPU/GPU), refer to the following parameters:

CPU GPU Description
ntls-addr IP address and port of the findface-ntls host.
mgr-static IP address of the findface-video-manager host to provide

findface-video-worker with settings and the list of to-be-processed
streams.

capacity Maximum number of video streams to be processed by
findface-video-worker.

mgr-exec (Optional, instead of the mgr-static parameter) A script to describe dynamic
IP address of the findface-video-manager host.

labels Labels that determine processing directives to be applied by
findface-facerouter to the found faces.

N/a fnk Path to the face liveness detector.
input Process streams from file, ignoring stream data from

findface-video-manager.
exit_on_first_finished(Only if input is specified) Exit on the first finished job.
resize_scale Rescale video frames with the given coefficient.
save_dir (For debug) Save detected faces to the given directory.
min_face_size Minimum face size to be detected.
resolutions Preinitialize the findface-video-worker for specific resolutions to speed

up its performance.
N/a device_numberGPU device number to use.
N/a models_dirOld directory with GPU detector models. Otherwise, use the [models] section.
N/a cpu If necessary, decode video on CPU.

Jobs

The findface-video-manager service provides findface-video-worker with a so-called job, a video
processing task that contains configuration settings and stream data.

The content of a typical job is shown in the example below.

curl http://127.0.0.1:18810/job/1 | jq
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1771 100 1771 0 0 447k 0 --:--:-- --:--:-- --:--:-- 576k

(continues on next page)

11.2. Components in Depth 143



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

{
"id": "1",
"enabled": true,
"stream_url": "rtmp://restreamer.int.ntl/cams/openspace",
"labels": {},
"router_url": "http://172.17.46.13/video-detector/frame",
"single_pass": false,
"stream_settings": {
"ffmpeg_params": [],
"md_threshold": 0.002,
"md_scale": 0.3,
"fd_frame_height": -1,
"uc_max_time_diff": 30,
"uc_max_dup": 3,
"uc_max_avg_shift": 10,
"det_period": 8,
"realtime": false,
"npersons": 4,
"disable_drops": false,
"tracker_threads": 4,
"parse_sei": false,
"image_arg": "photo",
"additional_headers": [

"Authorization=Token b612396adc3a6dd71b82b5fe333a0a30"
],
"additional_body": [],
"api_timeout": 15000,
"api_ssl_verify": true,
"post_uniq": true,
"min_score": -2,
"min_d_score": -1000,
"realtime_dly": 500,
"realtime_post_perm": false,
"rot": "",
"roi": "",
"draw_track": false,
"send_track": 0,
"min_face_size": 0,
"max_face_size": 0,
"overall": true,
"only_norm": false,
"max_candidates": 0,
"jpeg_quality": 95,
"ffmpeg_format": ""

},
"stream_settings_gpu": {
"play_speed": -1,
"filter_min_quality": -2,
"filter_min_face_size": 1,
"filter_max_face_size": 8192,
"normalized_only": false,
"jpeg_quality": 95,
"overall_only": false,
"use_stream_timestamp": false,
"ffmpeg_params": [],
"router_timeout_ms": 15000,
"router_verify_ssl": true,

(continues on next page)

144 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"router_headers": [
"Authorization=Token b612396adc3a6dd71b82b5fe333a0a30"

],
"router_body": [],
"start_stream_timestamp": 0,
"imotion_threshold": 0,
"rot": "",
"roi": "",
"realtime_post_interval": 1,
"realtime_post_every_interval": false,
"ffmpeg_format": "",
"disable_drops": true

},
"status": "INPROGRESS",
"status_msg": "",
"statistic": {
"processed_duration": 14879,
"faces_posted": 777,
"faces_failed": 3,
"faces_not_posted": 1206,
"processing_fps": 18.816668,
"frames_dropped": 0,
"frames_processed": 0,
"frames_imotion_skipped": 0,
"decoding_soft_errors": 0,
"job_starts": 56

},
"restream_url": "",
"worker_id": "ffsec40_213ab8c0ed5d954e",
"version": "bl068taaa7tcafrfsmq0"

}

Each job has the following parameters:

• id: job id.

• enabled: active status.

• stream_url: URL/address of video stream/file to process.

• labels: tag(s) that will be used by the findface-facerouter component to find processing directives
for faces detected in this stream.

• single_pass: if true, disable restarting video processing upon error (by default, false).

• router_url: IP address and port of the findface-facerouter component to receive detected faces
from the findface-video-worker component for processing.

• stream_settings, stream_settings_gpu: video stream settings that duplicate those in the
findface-video-manager configuration file (while having priority over them).

• status: job status.

• status_msg: additional job status info.

• statistic: job progress statistics (progress duration, number of posted and not posted faces, processing fps,
the number of processed and dropped frames, job start time, etc.).

• worker_id: id of the findface-video-worker instance executing the job.

11.2. Components in Depth 145



FindFace Enterprise Server, Release 4.0.3

11.2.7 findface-ntls

The findface-ntls service is to be installed on a designated host to verify the FindFace license. For verification
purposes, findface-ntls uses one of the following sources:

• Ntech Lab global license center if you opt for the online licensing, direct or via a proxy server.

• USB dongle if you opt for the on-premise licensing.

Use the main web interface to manage findface-ntls:

• view the list of purchased features,

• view license limitations,

• upload a license file,

• view the list of currently active components.

The following components are licensable:

• findface-tarantool-server,

• findface-extraction-api,

• findface-video-manager,

• findface-video-worker.

Important: After connection between findface-ntls and a licensable component, or between
findface-ntls and the global license server is broken, you will have 6 hours to restore it before the licensable
components will be automatically stopped.

The findface-ntls configuration is done through a configuration file /etc/findface-ntls.cfg.

# Listen address of NTLS server where services will connect to.
# The format is IP:PORT
# Use 0.0.0.0:PORT to listen on all interfaces
# This parameter is mandatory and may occur multiple times
# if you need to listen on several specific interfaces or ports.
listen = 127.0.0.1:3133

# Directory with license files.
# NTLS use most recently generated one.
# Note: "recentness" of a license file is detected not by
# mtime/ctime but from its internal structure.
#
# This parameter is mandatory and must occur exactly once.
license-dir = /opt/ntech/license

# You can specify proxy which NTLS will use to access
# global license server. The syntax is the same that is used by curl.
# Proxy is optional
#proxy = http://192.168.1.1:12345

# This is bind address for NTLS web-interface.
# Note: there're no authorization or access restriction mechanisms
# in NTLS UI. If you need one, consider using nginx as proxy
# with .htaccess / ip-based ACLs.

(continues on next page)

146 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

# This parameter may be specified multiple times.
ui = 127.0.0.1:3185

When configuring findface-ntls, refer to the following parameters:

Parameter Description
listen IP address from which licensable services access findface-ntls. To allow access from any IP

address, use 0.0.0.0:3133.
license_dirDirectory to store a license file.
proxy (Optional) IP address and port of your proxy server.
ui IP address from which accessing the findface-ntls web interface must originate. To allow

access from any remote host, set “0.0.0.0”.

11.3 Installation File

FindFace Enterprise Server installation configuration is automatically saved to a file /tmp/
<findface-installer-*>.json. You can edit this file and use it to install FindFace Enterprise Server
on other hosts without having to answer the installation questions again.

Tip: See Install from Console Installer to learn more about the FindFace Enterprise Server installer.

Important: Be sure to remove fields *.config, exp_ip, and int_ip before installing FindFace Enterprise
Server on a host with a different IP address.

{
"ignore_lowmem": true,
"findface-security.config": {
"EXTERNAL_ADDRESS": "http://172.20.77.78"

},
"inter_ip.bind": "127.0.0.1",
"memcached.config": {
"listen_host": "127.0.0.1",
"max_memory": 1024,
"item_size": 16

},
"findface-video-worker.config": {
"FKVD_WRK_CAP": "10",
"FKVD_NTLS_ADDR": "127.0.0.1:3133",
"streamer": [

"port = 18999",
"url = ws://127.0.0.1:18999/stream/"

],
"FKVD_MGR_ADDR": "127.0.0.1:18811"

},
"ext_ip.bind": "0.0.0.0",
"findface-data.models": [
"./findface-data-age.v1-cpu_3.0.0_amd64.deb",
"./findface-data-age.v1-gpu_3.0.0_amd64.deb",
"./findface-data-beard.v0-cpu_3.0.0_amd64.deb",

(continues on next page)

11.3. Installation File 147



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"./findface-data-beard.v0-gpu_3.0.0_amd64.deb",
"./findface-data-grapefruit-160-cpu_3.0.0_amd64.deb",
"./findface-data-grapefruit-160-gpu_3.0.0_amd64.deb",
"./findface-data-grapefruit-480-cpu_3.0.0_amd64.deb",
"./findface-data-grapefruit-480-gpu_3.0.0_amd64.deb",
"./findface-data-emotions.v1-cpu_3.0.0_amd64.deb",
"./findface-data-emotions.v1-gpu_3.0.0_amd64.deb",
"./findface-data-gender.v2-cpu_3.0.0_amd64.deb",
"./findface-data-gender.v2-gpu_3.0.0_amd64.deb",
"./findface-data-glasses3.v0-cpu_3.0.0_amd64.deb",
"./findface-data-glasses3.v0-gpu_3.0.0_amd64.deb",
"./findface-data-liveness.v1-gpu_3.0.0_amd64.deb"

],
"findface-video-worker.variant": "cpu",
"inter_ip.advertised": "127.0.0.1",
"product": "security",
"findface-ntls.config": {
"NTLS_LISTEN": "127.0.0.1:3133",
"NTLS_LICENSE_DIR": "/opt/ntech/license",
"NTLS_LISTEN_UI": "127.0.0.1:3185"

},
"ext_ip.advertised": "172.20.77.78",
"tnt_instances": 2,
"findface-facerouter.config": {
"port": "18820",
"host": "127.0.0.1",
"plugin_source": "dir",
"plugin_dir": "/etc/findface-facerouter-plugins",
"sfapi_url": "http://127.0.0.1:18411"

},
"findface-sf-api.config": {
"storage-api": {

"shards": [
{
"slave": "",
"master": "http://127.0.0.1:8101/v2/"

},
{
"slave": "",
"master": "http://127.0.0.1:8102/v2/"

}
]

},
"listen": "127.0.0.1:18411",
"extraction-api": {

"extraction-api": "http://127.0.0.1:18666"
}

},
"type": "stand-alone",
"findface-extraction-api.variant": "cpu",
"findface-video-manager.config": {
"rpc": {

"listen": "127.0.0.1:18811"
},
"listen": "127.0.0.1:18810",
"master": {

"self_url": "127.0.0.1:18811",
(continues on next page)

148 Chapter 11. Appendices



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

"self_url_http": "127.0.0.1:18811"
},
"ntls": {

"url": "http://127.0.0.1:3185/",
"enabled": false

}
},
"components": [
"findface-data",
"memcached",
"etcd",
"redis",
"postgresql",
"findface-ntls",
"findface-extraction-api",
"findface-sf-api",
"findface-upload",
"findface-video-manager",
"findface-video-worker",
"findface-security",
"findface-tarantool-server"

],
"findface-tarantool-server.config": {
"shard-002": {

"TNT_LISTEN": "127.0.0.1:33002",
"TNT_DATA_DIR": "/opt/ntech/var/lib/tarantool/shard-002",
"TNT_META_SCHEME": "meta_scheme",
"TNT_FF_LISTEN_PORT": "8102",
"TNT_FF_LISTEN_IP": "127.0.0.1",
"TNT_EXTRA_LUA": "\ndofile(\"/etc/ffsecurity/tnt_schema.lua\")\n",
"TNT_FF_NTLS": "127.0.0.1:3133"

},
"shard-001": {

"TNT_LISTEN": "127.0.0.1:33001",
"TNT_DATA_DIR": "/opt/ntech/var/lib/tarantool/shard-001",
"TNT_META_SCHEME": "meta_scheme",
"TNT_FF_LISTEN_PORT": "8101",
"TNT_FF_LISTEN_IP": "127.0.0.1",
"TNT_EXTRA_LUA": "\ndofile(\"/etc/ffsecurity/tnt_schema.lua\")\n",
"TNT_FF_NTLS": "127.0.0.1:3133"

}
},
"findface-extraction-api.config": {
"extractors": {

"instances": 1,
"models": {

"emotions": "",
"age": "",
"gender": "",
"face": "face/grapefruit_480.cpu.fnk"

}
},
"nnd": {

"quality_estimator": true
},
"listen": "127.0.0.1:18666",
"license_nils_server": "127.0.0.1:3133"

(continues on next page)

11.3. Installation File 149



FindFace Enterprise Server, Release 4.0.3

(continued from previous page)

}
}

To automatically install FindFace Enterprise Server on another host without answering the installation questions, use
the following command:

sudo ./findface-security-2.1.0-server-3.1.0.run -f /tmp/<findface-installer-*>.json

150 Chapter 11. Appendices



Python Module Index

f
facerouter.plugin, 84

n
ntech.sfapi_client.client, 86
ntech.sfapi_client.filters, 89
ntech.sfapi_client.gallery, 87

o
objects, 85

151



FindFace Enterprise Server, Release 4.0.3

152 Python Module Index



Index

Symbols
__init__() (ntech.sfapi_client.filters.Detection

method), 90
__init__() (ntech.sfapi_client.filters.Face method),

91

A
add() (ntech.sfapi_client.gallery.Gallery method), 87

B
BBox (class in objects), 85

C
Client (class in ntech.sfapi_client.client), 86
create() (ntech.sfapi_client.gallery.Gallery method),

88

D
delete() (ntech.sfapi_client.gallery.Gallery method),

88
detect() (ntech.sfapi_client.client.Client method), 86
Detection (class in ntech.sfapi_client.filters), 90
drop() (ntech.sfapi_client.gallery.Gallery method), 88

F
Face (class in ntech.sfapi_client.filters), 91
facerouter.plugin (module), 84
Filter (class in ntech.sfapi_client.filters), 89

G
Gallery (class in ntech.sfapi_client.gallery), 87
gallery() (ntech.sfapi_client.client.Client method),

87
get() (ntech.sfapi_client.gallery.Gallery method), 88
gte() (ntech.sfapi_client.filters.Id class method), 89
gte() (ntech.sfapi_client.filters.Meta class method), 90

I
Id (class in ntech.sfapi_client.filters), 89

L
list() (ntech.sfapi_client.gallery.Gallery method), 87
lte() (ntech.sfapi_client.filters.Id class method), 89
lte() (ntech.sfapi_client.filters.Meta class method), 90

M
Meta (class in ntech.sfapi_client.filters), 90

N
ntech.sfapi_client.client (module), 86
ntech.sfapi_client.filters (module), 89
ntech.sfapi_client.gallery (module), 87

O
objects (module), 85
objects.DetectFace (class in objects), 85
objects.DetectResponse (class in objects), 85
objects.Face (class in objects), 86
objects.FaceId (class in objects), 86
objects.ListResponse (class in objects), 86
oneof() (ntech.sfapi_client.filters.Id class method), 89
oneof() (ntech.sfapi_client.filters.Meta class method),

90

P
Plugin (class in facerouter.plugin), 84
preprocess(), 82
preprocess() (facerouter.plugin.Plugin method), 84
process(), 83
process() (facerouter.plugin.Plugin method), 85

S
serialize() (ntech.sfapi_client.filters.Filter method),

89
sfapi_client.SFApiMalformedResponseError

(class in ntech.sfapi_client.filters), 92
sfapi_client.SFApiRemoteError (class in

ntech.sfapi_client.filters), 91
shutdown(), 84

153



FindFace Enterprise Server, Release 4.0.3

shutdown() (facerouter.plugin.Plugin method), 85
subset() (ntech.sfapi_client.filters.Meta class

method), 90

U
update() (ntech.sfapi_client.gallery.Gallery method),

89

154 Index


	Get Started
	Architecture
	Architectural Elements
	Single- and Multi-Host Deployment
	CPU- and GPU-acceleration

	System Requirements
	Basic Configuration

	Licensing Principles
	Deploy FindFace Enterprise Server
	Install from Console Installer
	Install Step-by-Step
	Test Requests
	Fast Index
	Additional findface-video-worker deployment on remote hosts
	Neural Network Models Installation
	Guide to Typical Cluster Installation
	Fully Customized Installation

	Biometric API
	How to Use Biometric API
	Biometric API Methods

	Video Face Detection API
	How to Use Video Face Detection API
	Video Face Detection API Methods

	Set Face Processing Directives
	Configure findface-facerouter to Use Plugins
	Basics
	Classes and Methods
	Examples

	Advanced Features
	Direct API requests to findface-extraction-api
	Shard Galleries Statistics
	Direct API Requests to Tarantool
	Hacks for findface-tarantool-server
	Real-time Face Liveness Detection
	Multiple Video Cards Usage
	Face Features Recognition

	Maintenance and Troubleshooting
	Checking Component Status
	Analyze Log Files
	Troubleshoot Licensing and findface-ntls
	Automatic Tarantool Recovery

	Appendices
	Neural Network Models
	Components in Depth
	Installation File

	Python Module Index
	Index

