

[image: EvalML Logo]

What is EvalML?

EvalML is an AutoML library that builds, optimizes, and evalutes machine learning pipelines using domain-specific objective functions.

Combined with Featuretools [https://featuretools.featurelabs.com] and Compose [https://compose.featurelabs.com], EvalML can be used to create end-to-end machine learning solutions for classification and regression problems.

Quick Start

[1]:

import evalml

Load Data

First, we load in the features and outcomes we want to use to train our model

[2]:

X, y = evalml.demos.load_breast_cancer()

Configure search

EvalML has many options to configure the pipeline search. At the minimum, we need to define an objective function. For simplicity, we will use the F1 score in this example. However, the real power of EvalML is in using domain-specific objective functions or building your own.

[3]:

clf = evalml.AutoClassifier(objective="f1",
 max_pipelines=5)

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set

[4]:

X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_size=.2)

When we call .fit(), the search for the best pipeline will begin.

[5]:

clf.fit(X_train, y_train)

* Beginning pipeline search *

Optimizing for F1. Greater score is better.

Searching up to 5 pipelines.
Possible model types: random_forest, linear_model, xgboost

✔ XGBoost Classifier w/ One Hot Encod... 0%| | Elapsed:00:00
✔ XGBoost Classifier w/ One Hot Encod... 20%|██ | Elapsed:00:00
✔ Random Forest Classifier w/ One Hot... 40%|████ | Elapsed:00:05
✔ XGBoost Classifier w/ One Hot Encod... 60%|██████ | Elapsed:00:06
✔ Logistic Regression Classifier w/ O... 80%|████████ | Elapsed:00:13
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:00:13

✔ Optimization finished

See Pipeline Rankings

After the search is finished we can view all of the pipelines searched, ranked by score. Internally, EvalML performs cross validation to score the pipelines. If it notices a high variance across cross validation folds, it will warn you.

[6]:

clf.rankings

[6]:

 Install

Install

EvalML is available for Python 3.5+. It can be installed by running the following command.:

pip install evaml --extra-index-url https://install.featurelabs.com/<license>/

 Objective Functions

Objective Functions

The objective function is what EvalML maximizes (or minimizes) as it completes the pipeline search. As it gets feedback from building pipelines, it tunes the hyperparameters to build an optimized models. Therefore, it is critical to have an objective function that captures the how the model’s predictions will be used in a business setting.

List of Available Objective Functions

Most AutoML libraries optimize for generic machine learning objective functions. Frequently, the scores produced by the generic machine learning objective diverage from how the model will be evaluated in the real world.

In EvalML, we can train and optimize the model for a specific problem by optimizing a domain-specific objectives functions or by defining our own custom objective function.

Currently, EvalML has two domain specific objective functions with more being developed. For more information on these objective functions click on the links below.

	Fraud Detection

	Lead Scoring

Build your own objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective to optimize requires thinking through the decisions or actions that will be taken using the model and assigning the cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a custom objective function. Read more here.

 Building a Fraud Prediction Model with EvalML

Building a Fraud Prediction Model with EvalML

In this demo, we will build an optimized fraud prediction model using EvalML. To optimize the pipeline, we will set up an objective function to minimize the percentage of total transaction value lost to fraud. At the end of this demo, we also show you how introducing the right objective during the training is over 4x better than using a generic machine learning metric like AUC.

[1]:

import evalml
from evalml.objectives import FraudCost

Configure “Cost of Fraud”

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for the cost of fraud. These parameters are

	retry_percentage - what percentage of customers will retry a transaction if it is declined?

	interchange_fee - how much of each successful transaction do you collect?

	fraud_payout_percentage - the percentage of fraud will you be unable to collect

	amount_col - the column in the data the represents the transaction amount

Using these parameters, EvalML determines attempt to build a pipeline that will minimize the financial loss due to fraud.

[2]:

fraud_objective = FraudCost(
 retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount',
)

Search for best pipeline

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set

[3]:

X, y = evalml.demos.load_fraud()

 Number of Features
Boolean 1
Categorical 6
Numeric 5

Number of training examples: 99992

Labels
False 84.82%
True 15.18%
Name: fraud, dtype: object

EvalML natively supports one-hot encoding. Here we keep 1 out of the 6 categorical columns to decrease computation time.

[4]:

X = X.drop(['datetime', 'expiration_date', 'country', 'region', 'provider'], axis=1)
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(X, y, test_size=0.2, random_state=0)

print(X.dtypes)

card_id int64
store_id int64
amount int64
currency object
customer_present bool
lat float64
lng float64
dtype: object

Because the fraud labels are binary, we will use AutoClassifier. When we call .fit(), the search for the best pipeline will begin.

[5]:

clf = evalml.AutoClassifier(objective=fraud_objective,
 additional_objectives=['auc', 'recall', 'precision'],
 max_pipelines=5)

clf.fit(X_train, y_train)

* Beginning pipeline search *

Optimizing for Fraud Cost. Lower score is better.

Searching up to 5 pipelines.
Possible model types: linear_model, random_forest, xgboost

✔ XGBoost Classifier w/ One Hot Encod... 0%| | Elapsed:00:24
✔ XGBoost Classifier w/ One Hot Encod... 20%|██ | Elapsed:00:51
✔ Random Forest Classifier w/ One Hot... 40%|████ | Elapsed:02:49
✔ XGBoost Classifier w/ One Hot Encod... 60%|██████ | Elapsed:03:15
✔ Logistic Regression Classifier w/ O... 80%|████████ | Elapsed:03:47
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:03:47

✔ Optimization finished

View rankings and select pipeline

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the fraud detection objective we defined

[6]:

clf.rankings

[6]:

 Custom Objective Functions

Custom Objective Functions

Often times, the objective function is very specific to the use-case or business problem. To get the right objective to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data.

Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a custom objective function.

How to Create a Objective Function

To create a custom objective function, we must define 2 functions

	The “objective function”: this function takes the predictions, true labels, and any other information about the future and returns a score of how well the model performed.

	The “decision function”: this function takes prediction probabilities that were output from the model and a threshold and returns a prediction.

To evaluate a particular model, EvalML automatically finds the best threshold to pass to the decision function to generate predictions and then scores the resulting predictions using the objective function. The score from the objective function determines which set of pipeline hyperparameters EvalML will try next.

To give a concrete example, let’s look at how the fraud detection objective function is built.

[1]:

from evalml.objectives.objective_base import ObjectiveBase

class FraudCost(ObjectiveBase):
 """Score the percentage of money lost of the total transaction amount process due to fraud"""
 name = "Fraud Cost"
 needs_fitting = True
 greater_is_better = False
 uses_extra_columns = True
 fit_needs_proba = True
 score_needs_proba = False

 def __init__(self, retry_percentage=.5, interchange_fee=.02,
 fraud_payout_percentage=1.0, amount_col='amount', verbose=False):
 """Create instance of FraudCost

 Args:
 retry_percentage (float): what percentage of customers will retry a transaction if it
 is declined? Between 0 and 1. Defaults to .5

 interchange_fee (float): how much of each successful transaction do you collect?
 Between 0 and 1. Defaults to .02

 fraud_payout_percentage (float): how percentage of fraud will you be unable to collect.
 Between 0 and 1. Defaults to 1.0

 amount_col (str): name of column in data that contains the amount. defaults to "amount"
 """
 self.retry_percentage = retry_percentage
 self.interchange_fee = interchange_fee
 self.fraud_payout_percentage = fraud_payout_percentage
 self.amount_col = amount_col
 super().__init__(verbose=verbose)

 def decision_function(self, y_predicted, extra_cols, threshold):
 """Determine if transaction is fraud given predicted probabilities,
 dataframe with transaction amount, and threshold"""

 transformed_probs = (y_predicted * extra_cols[self.amount_col])
 return transformed_probs > threshold

 def objective_function(self, y_predicted, y_true, extra_cols):
 """Calculate amount lost to fraud given predictions, true values, and dataframe
 with transaction amount"""

 # extract transaction using the amount columns in users data
 transaction_amount = extra_cols[self.amount_col]

 # amount paid if transaction is fraud
 fraud_cost = transaction_amount * self.fraud_payout_percentage

 # money made from interchange fees on transaction
 interchange_cost = transaction_amount * (1 - self.retry_percentage) * self.interchange_fee

 # calculate cost of missing fraudulent transactions
 false_negatives = (y_true & ~y_predicted) * fraud_cost

 # calculate money lost from fees
 false_positives = (~y_true & y_predicted) * interchange_cost

 loss = false_negatives.sum() + false_positives.sum()

 loss_per_total_processed = loss / transaction_amount.sum()

 return loss_per_total_processed

 Setting up pipeline search

Setting up pipeline search

Designing the right machine learning pipeline and picking the best parameters is a time-consuming process that relies on a mix of data science intuition as well as trial and error. EvalML streamlines the process of selecting the best modeling algorithms and parameters, so data scientists can focus their energy where it is most needed.

How it works

EvalML selects and tunes machine learning pipelines built of numerous steps. This includes encoding categorical data, missing value imputation, feature selection, feature scaling, and finally machine learning. As EvalML tunes pipelines, it uses the objective function selected and configured by the user to guide its search.

At each iteration, EvalML uses cross-validation to generate an estimate of the pipeline’s performances. If a pipeline has high variance across cross-validation folds, it will provide a warning. In this case, the pipeline may not perform reliably in the future.

EvalML is designed to work well out of the box. However, it provides numerous methods for you to control the search described below.

Selecting problem type

EvalML supports both classification and regression problems. You select your problem type by importing the appropriate class.

[1]:

import evalml

[2]:

evalml.AutoClassifier()

[2]:

<evalml.models.auto_classifier.AutoClassifier at 0x11d782750>

[3]:

evalml.AutoRegressor()

[3]:

<evalml.models.auto_regressor.AutoRegressor at 0x11d792950>

Setting the Objective Function

The only required parameter to start searching for pipelines is the objective function. Most domain-specific objective functions require you to specify parameters based on your business assumptions. You can do this before you initialize your pipeline search. For example

[4]:

from evalml.objectives import FraudCost

fraud_objective = FraudCost(
 retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount'
)

evalml.AutoClassifier(objective=fraud_objective)

[4]:

<evalml.models.auto_classifier.AutoClassifier at 0x11d7abf50>

Evaluate on Additional Objectives

Additional objectives can be scored on during the evaluation process. To add another objective, use the additional_objectives parameter in AutoClassifier or AutoRegressor. The results of these additional objectives will then appear in the results of describe_pipeline.

[5]:

from evalml.objectives import FraudCost

fraud_objective = FraudCost(
 retry_percentage=.5,
 interchange_fee=.02,
 fraud_payout_percentage=.75,
 amount_col='amount'
)

evalml.AutoClassifier(objective='AUC', additional_objectives=[fraud_objective])

[5]:

<evalml.models.auto_classifier.AutoClassifier at 0x11d7b3e50>

Selecting Model Types

By default, all model types are considered. You can control which model types to search with the model_types parameters

[6]:

clf = evalml.AutoClassifier(objective="f1",
 model_types=["random_forest"])

you can see the possible pipelines that will be searched after initialization

[7]:

clf.possible_pipelines

[7]:

[evalml.pipelines.classification.random_forest.RFClassificationPipeline]

you can see a list of all supported models like this

[8]:

evalml.list_model_types("binary") # `binary` for binary classification and `multiclass` for multiclass classification

[8]:

[<ModelTypes.LINEAR_MODEL: 'linear_model'>,
 <ModelTypes.XGBOOST: 'xgboost'>,
 <ModelTypes.RANDOM_FOREST: 'random_forest'>]

[9]:

evalml.list_model_types("regression")

[9]:

[<ModelTypes.LINEAR_MODEL: 'linear_model'>,
 <ModelTypes.RANDOM_FOREST: 'random_forest'>]

Limiting Search Time

You can limit the search time by specifying a maximum number of pipelines and/or a maximum amount of time. EvalML won’t build new pipelines after the maximum time has passed or the maximum number of pipelines have been built. If a limit is not set, then a maximum of 5 pipelines will be built.

The maximum search time can be specified as a integer in seconds or as a string in seconds, minutes, or hours.

[10]:

evalml.AutoClassifier(objective="f1",
 max_time=60)

evalml.AutoClassifier(objective="f1",
 max_time="1 minute")

[10]:

<evalml.models.auto_classifier.AutoClassifier at 0x11d74c250>

To start, EvalML samples 10 sets of hyperparameters chosen randomly for each possible pipeline. Therefore, we recommend setting max_pipelines at least 10 times the number of possible pipelines.

[11]:

n_possible_pipelines = len(evalml.AutoClassifier(objective="f1").possible_pipelines)

[12]:

evalml.AutoClassifier(objective="f1",
 max_time=60,
 max_pipelines=n_possible_pipelines*10)

[12]:

<evalml.models.auto_classifier.AutoClassifier at 0x11d7ce750>

Control Cross Validation

EvalML cross-validates each model it tests during its search. By default it uses 3-fold cross-validation. You can optionally provide your own cross-validation method.

[13]:

from sklearn.model_selection import StratifiedKFold

clf = evalml.AutoClassifier(objective="f1",
 cv=StratifiedKFold(5))

 Exploring search results

Exploring search results

After finishing a pipeline search, we can inspect the results. First, let’s build a search of 10 different pipelines to explore.

[1]:

import evalml

X, y = evalml.demos.load_breast_cancer()

clf = evalml.AutoClassifier(objective="f1",
 max_pipelines=10)

clf.fit(X, y)

* Beginning pipeline search *

Optimizing for F1. Greater score is better.

Searching up to 10 pipelines.
Possible model types: xgboost, random_forest, linear_model

✔ XGBoost Classifier w/ One Hot Encod... 0%| | Elapsed:00:00
✔ XGBoost Classifier w/ One Hot Encod... 10%|█ | Elapsed:00:00
✔ Random Forest Classifier w/ One Hot... 20%|██ | Elapsed:00:06
✔ XGBoost Classifier w/ One Hot Encod... 30%|███ | Elapsed:00:06
✔ Logistic Regression Classifier w/ O... 40%|████ | Elapsed:00:14
✔ XGBoost Classifier w/ One Hot Encod... 50%|█████ | Elapsed:00:14
✔ Logistic Regression Classifier w/ O... 60%|██████ | Elapsed:00:21
✔ XGBoost Classifier w/ One Hot Encod... 70%|███████ | Elapsed:00:22
✔ Logistic Regression Classifier w/ O... 80%|████████ | Elapsed:00:29
✔ Logistic Regression Classifier w/ O... 90%|█████████ | Elapsed:00:37
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:00:37

✔ Optimization finished

View Rankings

A summary of all the pipelines built can be returned as a dataframe. It is sorted by score. EvalML knows based on your objective function whether or not high or lower is better.

[2]:

clf.rankings

[2]:

 Avoiding Overfitting

Avoiding Overfitting

The ultimate goal of machine learning is to make accurate predictions on unseen data. EvalML aims to help you build a model that will perform as you expect once it is deployed in to the real world.

One of the benefits of using EvalML to build models is that it provides guardrails to ensure you are building pipelines that will perform reliably in the future. This page describes the various ways EvalML helps you avoid overfitting to your data.

[1]:

import evalml

Detecting Label Leakage

A common problem is having features that include information from your label in your training data. By default, EvalML will provide a warning when it detects this may be the case.

Let’s set up a simple example to demonstrate what this looks like

[2]:

import pandas as pd

X = pd.DataFrame({
 "leaked_feature": [6, 6, 10, 5, 5, 11, 5, 10, 11, 4],
 "leaked_feature_2": [3, 2.5, 5, 2.5, 3, 5.5, 2, 5, 5.5, 2],
 "valid_feature": [3, 1, 3, 2, 4, 6, 1, 3, 3, 11]
})

y = pd.Series([1, 1, 0, 1, 1, 0, 1, 0, 0, 1])

clf = evalml.AutoClassifier(
 max_pipelines=1,
 model_types=["linear_model"],
)

clf.fit(X, y)

* Beginning pipeline search *

Optimizing for Precision. Greater score is better.

Searching up to 1 pipelines.
Possible model types: linear_model

WARNING: Possible label leakage: leaked_feature, leaked_feature_2
✔ Logistic Regression Classifier w/ O... 0%| | Elapsed:00:07
✔ Logistic Regression Classifier w/ O... 100%|██████████| Elapsed:00:07

✔ Optimization finished

In the example above, EvalML warned about the input features leaked_feature and leak_feature_2, which are both very closely correlated with the label we are trying to predict. If you’d like to turn this check off, set detect_label_leakage=False.

The second way to find features that may be leaking label information is to look at the top features of the model. As we can see below, the top features in our model are the 2 leaked features.

[3]:

best_pipeline = clf.best_pipeline
best_pipeline.feature_importances

[3]:

 Regression Example

Regression Example

[1]:

import evalml
from evalml.demos import load_diabetes
from evalml.pipelines import PipelineBase, get_pipelines

X, y = evalml.demos.load_diabetes()

clf = evalml.AutoRegressor(objective="R2", max_pipelines=5)

clf.fit(X, y)

* Beginning pipeline search *

Optimizing for R2. Greater score is better.

Searching up to 5 pipelines.
Possible model types: linear_model, random_forest

✔ Random Forest Regressor w/ One Hot ... 0%| | Elapsed:00:05
✔ Random Forest Regressor w/ One Hot ... 20%|██ | Elapsed:00:09
✔ Linear Regressor w/ One Hot Encoder... 40%|████ | Elapsed:00:09
✔ Random Forest Regressor w/ One Hot ... 40%|████ | Elapsed:00:15
✔ Random Forest Regressor w/ One Hot ... 80%|████████ | Elapsed:00:21
✔ Random Forest Regressor w/ One Hot ... 100%|██████████| Elapsed:00:21

✔ Optimization finished

[2]:

clf.rankings

[2]:

 Changelog

Changelog

	Future Releases
	
	Enhancements

	Fixes

	Changes

	Documentation Changes

	Testing Changes

	v0.5.1 Nov. 15, 2019
	
	
	Enhancements
	
	Added basic outlier detection guardrail #151 [https://github.com/Featurelabs/evalml/pull/151]

	Added basic ID column guardrail #135 [https://github.com/Featurelabs/evalml/pull/135]

	Added support for unlimited pipelines with a max_time limit #70 [https://github.com/Featurelabs/evalml/pull/70]

	Updated .readthedocs.yaml to successfully build #188 [https://github.com/Featurelabs/evalml/pull/188]

	
	Fixes
	
	Removed MSLE from default additional objectives #203 [https://github.com/Featurelabs/evalml/pull/203]

	Fixed random_state passed in pipelines #204 [https://github.com/Featurelabs/evalml/pull/204]

	Fixed slow down in RFRegressor #206 [https://github.com/Featurelabs/evalml/pull/206]

	
	Changes
	
	Pulled information for describe_pipeline from pipeline’s new describe method #190 [https://github.com/Featurelabs/evalml/pull/190]

	Refactored pipelines #108 [https://github.com/Featurelabs/evalml/pull/108]

	Removed guardrails from Auto(*) #202 [https://github.com/Featurelabs/evalml/pull/202], #208 [https://github.com/Featurelabs/evalml/pull/208]

	
	Documentation Changes
	
	Updated documentation to show max_time enhancements #189 [https://github.com/Featurelabs/evalml/pull/189]

	Updated release instructions for RTD #193 [https://github.com/Featurelabs/evalml/pull/193]

	Added contributing instructions #213 [https://github.com/Featurelabs/evalml/pull/213]

	v0.5.0 Oct. 29, 2019
	
	
	Enhancements
	
	Added basic one hot encoding #73 [https://github.com/Featurelabs/evalml/pull/73]

	Use enums for model_type #110 [https://github.com/Featurelabs/evalml/pull/110]

	Support for splitting regression datasets #112 [https://github.com/Featurelabs/evalml/pull/112]

	Auto-infer multiclass classification #99 [https://github.com/Featurelabs/evalml/pull/99]

	Added support for other units in max_time #125 [https://github.com/Featurelabs/evalml/pull/125]

	Detect highly null columns #121 [https://github.com/Featurelabs/evalml/pull/121]

	Added additional regression objectives #100 [https://github.com/Featurelabs/evalml/pull/100]

	
	Fixes
	
	Reordered describe_pipeline #94 [https://github.com/Featurelabs/evalml/pull/94]

	Added type check for model_type #109 [https://github.com/Featurelabs/evalml/pull/109]

	Fixed s units when setting string max_time #132 [https://github.com/Featurelabs/evalml/pull/132]

	Fix objectives not appearing in API documentation #150 [https://github.com/Featurelabs/evalml/pull/150]

	
	Changes
	
	Reorganized tests #93 [https://github.com/Featurelabs/evalml/pull/93]

	Moved logging to its own module #119 [https://github.com/Featurelabs/evalml/pull/119]

	Show progress bar history #111 [https://github.com/Featurelabs/evalml/pull/111]

	Using cloudpickle instead of pickle to allow unloading of custom objectives #113 [https://github.com/Featurelabs/evalml/pull/113]

	Removed render.py #154 [https://github.com/Featurelabs/evalml/pull/154]

	
	Documentation Changes
	
	Update release instructions #140 [https://github.com/Featurelabs/evalml/pull/140]

	Include additional_objectives parameter #124 [https://github.com/Featurelabs/evalml/pull/124]

	Added Changelog #136 [https://github.com/Featurelabs/evalml/pull/136]

	
	Testing Changes
	
	Code coverage #90 [https://github.com/Featurelabs/evalml/pull/90]

	Added CircleCI tests for other Python versions #104 [https://github.com/Featurelabs/evalml/pull/104]

	Added doc notebooks as tests #139 [https://github.com/Featurelabs/evalml/pull/139]

	Test metadata for CircleCI and 2 core parallelism #137 [https://github.com/Featurelabs/evalml/pull/137]

	v0.4.1 Sep. 16, 2019
	
	
	Enhancements
	
	Added AutoML for classification and regressor using Autobase and Skopt #7 [https://github.com/Featurelabs/evalml/pull/7] #9 [https://github.com/Featurelabs/evalml/pull/9]

	Implemented standard classification and regression metrics #7 [https://github.com/Featurelabs/evalml/pull/7]

	Added logistic regression, random forest, and XGBoost pipelines #7 [https://github.com/Featurelabs/evalml/pull/7]

	Implemented support for custom objectives #15 [https://github.com/Featurelabs/evalml/pull/15]

	Feature importance for pipelines #18 [https://github.com/Featurelabs/evalml/pull/18]

	Serialization for pipelines #19 [https://github.com/Featurelabs/evalml/pull/19]

	Allow fitting on objectives for optimal threshold #27 [https://github.com/Featurelabs/evalml/pull/27]

	Added detect label leakage #31 [https://github.com/Featurelabs/evalml/pull/31]

	Implemented callbacks #42 [https://github.com/Featurelabs/evalml/pull/42]

	Allow for multiclass classification #21 [https://github.com/Featurelabs/evalml/pull/21]

	Added support for additional objectives #79 [https://github.com/Featurelabs/evalml/pull/79]

	
	Fixes
	
	Fixed feature selection in pipelines #13 [https://github.com/Featurelabs/evalml/pull/13]

	Made random_seed usage consistent #45 [https://github.com/Featurelabs/evalml/pull/45]

	
	Documentation Changes
	
	Documentation Changes

	Added docstrings #6 [https://github.com/Featurelabs/evalml/pull/6]

	Created notebooks for docs #6 [https://github.com/Featurelabs/evalml/pull/6]

	Initialized readthedocs EvalML #6 [https://github.com/Featurelabs/evalml/pull/6]

	Added favicon #38 [https://github.com/Featurelabs/evalml/pull/38]

	
	Testing Changes
	
	Added testing for loading data #39 [https://github.com/Featurelabs/evalml/pull/39]

	v0.2.0 Aug. 13, 2019
	
	
	Enhancements
	
	Created fraud detection objective #4 [https://github.com/Featurelabs/evalml/pull/4]

	v0.1.0 July. 31, 2019
	
	First Release

	
	Enhancements
	
	Added lead scoring objecitve #1 [https://github.com/Featurelabs/evalml/pull/1]

	Added basic classifier #1 [https://github.com/Featurelabs/evalml/pull/1]

	
	Documentation Changes
	
	Initialized Sphinx for docs #1 [https://github.com/Featurelabs/evalml/pull/1]

 Road Map

Road Map

There are numerous new features and functionality planned for EvalML, some of which are described below:

	Parallelize and distribute model search over cluster

	Export models to python code

	Ability to warm start from a previous pipeline search

	Instructions for adding your own modeling pipelines for EvalML to tune

	Add additional hyperparameter tuning methods

	Visualizations for understanding model search

 API Reference

API Reference

Demo Datasets

	load_fraud

	Load credit card fraud dataset.

	load_wine

	Load wine dataset.

	load_breast_cancer

	Load breast cancer dataset.

	load_diabetes

	Load diabetes dataset.

Preprocessing

	load_data

	Load features and labels from file(s).

	split_data

	Splits data into train and test sets.

Models

	AutoClassifier

	Automatic pipeline search for classification problems

	AutoRegressor

	Automatic pipeline search for regression problems

Model Types

	list_model_types

	List model type for a particular problem type

Pipelines

	get_pipelines

	Returns potential pipelines by model type

	save_pipeline

	Saves pipeline at file path

	load_pipeline

	Loads pipeline at file path

	RFClassificationPipeline

	Random Forest Pipeline for both binary and multiclass classification

	XGBoostPipeline

	XGBoost Pipeline for both binary and multiclass classification

	LogisticRegressionPipeline

	Logistic Regression Pipeline for both binary and multiclass classification

	RFRegressionPipeline

	Random Forest Pipeline for regression

Objective Functions

Domain Specific

	FraudCost

	Score the percentage of money lost of the total transaction amount process due to fraud

	LeadScoring

	Lead scoring

Classification

	F1

	F1 Score for binary classification

	F1Micro

	F1 Score for multiclass classification using micro averaging

	F1Macro

	F1 Score for multiclass classification using macro averaging

	F1Weighted

	F1 Score for multiclass classification using weighted averaging

	Precision

	Precision Score for binary classification

	PrecisionMicro

	Precision Score for multiclass classification using micro averaging

	PrecisionMacro

	Precision Score for multiclass classification using macro averaging

	PrecisionWeighted

	Precision Score for multiclass classification using weighted averaging

	Recall

	Recall Score for binary classification

	RecallMicro

	Recall Score for multiclass classification using micro averaging

	RecallMacro

	Recall Score for multiclass classification using macro averaging

	RecallWeighted

	Recall Score for multiclass classification using weighted averaging

	AUC

	AUC Score for binary classification

	AUCMicro

	AUC Score for multiclass classification using micro averaging

	AUCMacro

	AUC Score for multiclass classification using macro averaging

	AUCWeighted

	AUC Score for multiclass classification using weighted averaging

	LogLoss

	Log Loss for both binary and multiclass classification

	MCC

	Matthews correlation coefficient for both binary and multiclass classification

Regression

	R2

	Coefficient of determination for regression

	MAE

	Mean absolute error for regression

	MSE

	Mean squared error for regression

	MSLE

	Mean squared log error for regression

	MedianAE

	Median absolute error for regression

	MaxError

	Maximum residual error for regression

	ExpVariance

	Explained variance score for regression

Problem Types

	ProblemTypes

	Enum for type of machine learning problem: BINARY, MULTICLASS, or REGRESSION

	handle_problem_types

	Handles problem_type by either returning the ProblemTypes or converting from a str

Tuners

	SKOptTuner

	Bayesian Optimizer

Guardrails

	detect_highly_null

	Checks if there are any highly-null columns in a dataframe.

	detect_label_leakage

	Check if any of the features are highly correlated with the target.

	detect_outliers

	Checks if there are any outliers in a dataframe by using first Isolation Forest to obtain the anomaly score of each index and then using IQR to determine score anomalies.

	detect_id_columns

	Check if any of the features are ID columns.

 evalml.demos.load_fraud

evalml.demos.load_fraud

	
class evalml.demos.load_fraud

	Load credit card fraud dataset. Binary classification problem

 evalml.demos.load_wine

evalml.demos.load_wine

	
class evalml.demos.load_wine

	Load wine dataset. Multiclass problem

 evalml.demos.load_breast_cancer

evalml.demos.load_breast_cancer

	
class evalml.demos.load_breast_cancer

	Load breast cancer dataset. Multiclass problem

 evalml.demos.load_diabetes

evalml.demos.load_diabetes

	
class evalml.demos.load_diabetes

	Load diabetes dataset. Regression problem

 evalml.preprocessing.load_data

evalml.preprocessing.load_data

	
class evalml.preprocessing.load_data

	Load features and labels from file(s).

	Parameters

	
	path (str) – path to file(s)

	index (str) – column for index

	label (str) – column for labels

	drop (list) – columns to drop

	verbose (bool) – whether to print information about features and labels

	Returns

	features and labels

	Return type

	DataFrame, Series

 evalml.preprocessing.split_data

evalml.preprocessing.split_data

	
class evalml.preprocessing.split_data

	Splits data into train and test sets.

	Parameters

	
	X (DataFrame) – features

	y (Series) – labels

	regression (bool) – if true, do not use stratified split

	test_size (float) – percent of train set to holdout for testing

	random_state (int) – seed for the random number generator

	Returns

	features and labels each split into train and test sets

	Return type

	DataFrame, DataFrame, Series, Series

 evalml.AutoClassifier

evalml.AutoClassifier

	
class evalml.AutoClassifier(objective=None, multiclass=False, max_pipelines=None, max_time=None, model_types=None, cv=None, tuner=None, detect_label_leakage=True, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, verbose=True)

	Automatic pipeline search for classification problems

Methods

	__init__

	Automated classifier pipeline search

	set_problem_type

	If there is an objective either:

 evalml.AutoClassifier.__init__

evalml.AutoClassifier.__init__

	
AutoClassifier.__init__(objective=None, multiclass=False, max_pipelines=None, max_time=None, model_types=None, cv=None, tuner=None, detect_label_leakage=True, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, verbose=True)

	Automated classifier pipeline search

	Parameters

	
	objective (Object) – the objective to optimize

	multiclass (bool) – If True, expecting multiclass data. By default: False.

	max_pipelines (int) – Maximum number of pipelines to search. If max_pipelines and
max_time is not set, then max_pipelines will default to max_pipelines of 5.

	max_time (int, str) – Maximum time to search for pipelines.
This will not start a new pipeline search after the duration
has elapsed. If it is an integer, then the time will be in seconds.
For strings, time can be specified as seconds, minutes, or hours.

	model_types (list) – The model types to search. By default searches over all
model_types. Run evalml.list_model_types(“classification”) to see options.

	cv – cross validation method to use. By default StratifiedKFold

	tuner – the tuner class to use. Defaults to scikit-optimize tuner

	detect_label_leakage (bool) – If True, check input features for label leakage and
warn if found. Defaults to true.

	start_iteration_callback (callable) – function called before each pipeline training iteration.
Passed two parameters: pipeline_class, parameters.

	add_result_callback (callable) – function called after each pipeline training iteration.
Passed two parameters: results, trained_pipeline.

	additional_objectives (list) – Custom set of objectives to score on.
Will override default objectives for problem type if not empty.

	random_state (int) – the random_state

	verbose (boolean) – If True, turn verbosity on. Defaults to True

 evalml.AutoClassifier.set_problem_type

evalml.AutoClassifier.set_problem_type

	
AutoClassifier.set_problem_type(objective, multiclass)

	
	If there is an objective either:
	
	Set problem_type to MULTICLASS if objective is only multiclass and multiclass is false

	Set problem_type to MUTLICLASS if multiclass is true

	Default to BINARY

 evalml.AutoRegressor

evalml.AutoRegressor

	
class evalml.AutoRegressor(objective=None, max_pipelines=None, max_time=None, model_types=None, cv=None, tuner=None, detect_label_leakage=True, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, verbose=True)

	Automatic pipeline search for regression problems

Methods

	__init__

	Automated regressors pipeline search

 evalml.AutoRegressor.__init__

evalml.AutoRegressor.__init__

	
AutoRegressor.__init__(objective=None, max_pipelines=None, max_time=None, model_types=None, cv=None, tuner=None, detect_label_leakage=True, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, verbose=True)

	Automated regressors pipeline search

	Parameters

	
	objective (Object) – the objective to optimize

	max_pipelines (int) – Maximum number of pipelines to search. If max_pipelines and
max_time is not set, then max_pipelines will default to max_pipelines of 5.

	max_time (int, str) – Maximum time to search for pipelines.
This will not start a new pipeline search after the duration
has elapsed. If it is an integer, then the time will be in seconds.
For strings, time can be specified as seconds, minutes, or hours.

	model_types (list) – The model types to search. By default searches over all
model_types. Run evalml.list_model_types(“regression”) to see options.

	cv – cross validation method to use. By default StratifiedKFold

	tuner – the tuner class to use. Defaults to scikit-optimize tuner

	detect_label_leakage (bool) – If True, check input features for label leakage and
warn if found. Defaults to true.

	start_iteration_callback (callable) – function called before each pipeline training iteration.
Passed two parameters: pipeline_class, parameters.

	add_result_callback (callable) – function called after each pipeline training iteration.
Passed two parameters: results, trained_pipeline.

	additional_objectives (list) – Custom set of objectives to score on.
Will override default objectives for problem type if not empty.

	random_state (int) – the random_state

	verbose (boolean) – If True, turn verbosity on. Defaults to True

 evalml.list_model_types

evalml.list_model_types

	
class evalml.list_model_types

	List model type for a particular problem type

	Parameters

	problem_types (ProblemType or str) – binary, multiclass, or regression

	Returns

	model_types, list of model types

 evalml.pipelines.get_pipelines

evalml.pipelines.get_pipelines

	
class evalml.pipelines.get_pipelines

	Returns potential pipelines by model type

	Parameters

	
	problem_type (ProblemTypes or str) – the problem type the pipelines work for.

	model_types (list[ModelTypes or str]) – model types to match. if none, return all pipelines

Returns

pipelines, list of all pipeline

 evalml.pipelines.save_pipeline

evalml.pipelines.save_pipeline

	
class evalml.pipelines.save_pipeline

	Saves pipeline at file path

	Parameters

	file_path (str) – location to save file

	Returns

	None

 evalml.pipelines.load_pipeline

evalml.pipelines.load_pipeline

	
class evalml.pipelines.load_pipeline

	Loads pipeline at file path

	Parameters

	file_path (str) – location to load file

	Returns

	Pipeline obj

 evalml.pipelines.RFClassificationPipeline

evalml.pipelines.RFClassificationPipeline

	
class evalml.pipelines.RFClassificationPipeline(objective, n_estimators, max_depth, impute_strategy, percent_features, number_features, n_jobs=-1, random_state=0)

	Random Forest Pipeline for both binary and multiclass classification

Methods

	__init__

	Machine learning pipeline made out of transformers and a estimator.

 evalml.pipelines.RFClassificationPipeline.__init__

evalml.pipelines.RFClassificationPipeline.__init__

	
RFClassificationPipeline.__init__(objective, n_estimators, max_depth, impute_strategy, percent_features, number_features, n_jobs=-1, random_state=0)

	Machine learning pipeline made out of transformers and a estimator.

	Parameters

	
	objective (Object) – the objective to optimize

	component_list (list) – List of components in order

	random_state (int) – random seed/state

	n_jobs (int) – Number of jobs to run in parallel

 evalml.pipelines.XGBoostPipeline

evalml.pipelines.XGBoostPipeline

	
class evalml.pipelines.XGBoostPipeline(objective, eta, min_child_weight, max_depth, impute_strategy, percent_features, number_features, n_estimators=10, n_jobs=-1, random_state=0)

	XGBoost Pipeline for both binary and multiclass classification

Methods

	__init__

	Machine learning pipeline made out of transformers and a estimator.

 evalml.pipelines.XGBoostPipeline.__init__

evalml.pipelines.XGBoostPipeline.__init__

	
XGBoostPipeline.__init__(objective, eta, min_child_weight, max_depth, impute_strategy, percent_features, number_features, n_estimators=10, n_jobs=-1, random_state=0)

	Machine learning pipeline made out of transformers and a estimator.

	Parameters

	
	objective (Object) – the objective to optimize

	component_list (list) – List of components in order

	random_state (int) – random seed/state

	n_jobs (int) – Number of jobs to run in parallel

 evalml.pipelines.LogisticRegressionPipeline

evalml.pipelines.LogisticRegressionPipeline

	
class evalml.pipelines.LogisticRegressionPipeline(objective, penalty, C, impute_strategy, number_features, n_jobs=-1, random_state=0)

	Logistic Regression Pipeline for both binary and multiclass classification

Methods

	__init__

	Machine learning pipeline made out of transformers and a estimator.

 evalml.pipelines.LogisticRegressionPipeline.__init__

evalml.pipelines.LogisticRegressionPipeline.__init__

	
LogisticRegressionPipeline.__init__(objective, penalty, C, impute_strategy, number_features, n_jobs=-1, random_state=0)

	Machine learning pipeline made out of transformers and a estimator.

	Parameters

	
	objective (Object) – the objective to optimize

	component_list (list) – List of components in order

	random_state (int) – random seed/state

	n_jobs (int) – Number of jobs to run in parallel

 evalml.pipelines.RFRegressionPipeline

evalml.pipelines.RFRegressionPipeline

	
class evalml.pipelines.RFRegressionPipeline(objective, n_estimators, max_depth, impute_strategy, percent_features, number_features, n_jobs=-1, random_state=0)

	Random Forest Pipeline for regression

Methods

	__init__

	Machine learning pipeline made out of transformers and a estimator.

 evalml.pipelines.RFRegressionPipeline.__init__

evalml.pipelines.RFRegressionPipeline.__init__

	
RFRegressionPipeline.__init__(objective, n_estimators, max_depth, impute_strategy, percent_features, number_features, n_jobs=-1, random_state=0)

	Machine learning pipeline made out of transformers and a estimator.

	Parameters

	
	objective (Object) – the objective to optimize

	component_list (list) – List of components in order

	random_state (int) – random seed/state

	n_jobs (int) – Number of jobs to run in parallel

 evalml.objectives.FraudCost

evalml.objectives.FraudCost

	
class evalml.objectives.FraudCost(retry_percentage=0.5, interchange_fee=0.02, fraud_payout_percentage=1.0, amount_col='amount', verbose=False)

	Score the percentage of money lost of the total transaction amount process due to fraud

Methods

	__init__

	Create instance of FraudCost

	decision_function

	Determine if transaction is fraud given predicted probabilities, dataframe with transaction amount, and threshold

	objective_function

	Calculate amount lost to fraud given predictions, true values, and dataframe with transaction amount

 evalml.objectives.FraudCost.__init__

evalml.objectives.FraudCost.__init__

	
FraudCost.__init__(retry_percentage=0.5, interchange_fee=0.02, fraud_payout_percentage=1.0, amount_col='amount', verbose=False)

	Create instance of FraudCost

	Parameters

	
	retry_percentage (float) – what percentage of customers will retry a transaction if it
is declined? Between 0 and 1. Defaults to .5

	interchange_fee (float) – how much of each successful transaction do you collect?
Between 0 and 1. Defaults to .02

	fraud_payout_percentage (float) – how percentage of fraud will you be unable to collect.
Between 0 and 1. Defaults to 1.0

	amount_col (str) – name of column in data that contains the amount. defaults to “amount”

 evalml.objectives.FraudCost.decision_function

evalml.objectives.FraudCost.decision_function

	
FraudCost.decision_function(y_predicted, extra_cols, threshold)

	Determine if transaction is fraud given predicted probabilities,
dataframe with transaction amount, and threshold

 evalml.objectives.FraudCost.objective_function

evalml.objectives.FraudCost.objective_function

	
FraudCost.objective_function(y_predicted, y_true, extra_cols)

	Calculate amount lost to fraud given predictions, true values, and dataframe
with transaction amount

 evalml.objectives.LeadScoring

evalml.objectives.LeadScoring

	
class evalml.objectives.LeadScoring(true_positives=1, false_positives=-1, verbose=False)

	Lead scoring

Methods

	__init__

	Create instance.

	decision_function

	

	objective_function

	

 evalml.objectives.LeadScoring.__init__

evalml.objectives.LeadScoring.__init__

	
LeadScoring.__init__(true_positives=1, false_positives=-1, verbose=False)

	Create instance.

	Parameters

	
	label (int) – label to optimize threshold for

	true_positives (int) – reward for a true positive

	false_positives (int) – cost for a false positive. Should be negative.

 evalml.objectives.LeadScoring.decision_function

evalml.objectives.LeadScoring.decision_function

	
LeadScoring.decision_function(y_predicted, threshold)

	

 evalml.objectives.LeadScoring.objective_function

evalml.objectives.LeadScoring.objective_function

	
LeadScoring.objective_function(y_predicted, y_true)

	

 evalml.objectives.F1

evalml.objectives.F1

	
class evalml.objectives.F1(verbose=False)

	F1 Score for binary classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.F1.score

evalml.objectives.F1.score

	
F1.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.F1Micro

evalml.objectives.F1Micro

	
class evalml.objectives.F1Micro(verbose=False)

	F1 Score for multiclass classification using micro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.F1Micro.score

evalml.objectives.F1Micro.score

	
F1Micro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.F1Macro

evalml.objectives.F1Macro

	
class evalml.objectives.F1Macro(verbose=False)

	F1 Score for multiclass classification using macro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.F1Macro.score

evalml.objectives.F1Macro.score

	
F1Macro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.F1Weighted

evalml.objectives.F1Weighted

	
class evalml.objectives.F1Weighted(verbose=False)

	F1 Score for multiclass classification using weighted averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.F1Weighted.score

evalml.objectives.F1Weighted.score

	
F1Weighted.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.Precision

evalml.objectives.Precision

	
class evalml.objectives.Precision(verbose=False)

	Precision Score for binary classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.Precision.score

evalml.objectives.Precision.score

	
Precision.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.PrecisionMicro

evalml.objectives.PrecisionMicro

	
class evalml.objectives.PrecisionMicro(verbose=False)

	Precision Score for multiclass classification using micro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.PrecisionMicro.score

evalml.objectives.PrecisionMicro.score

	
PrecisionMicro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.PrecisionMacro

evalml.objectives.PrecisionMacro

	
class evalml.objectives.PrecisionMacro(verbose=False)

	Precision Score for multiclass classification using macro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.PrecisionMacro.score

evalml.objectives.PrecisionMacro.score

	
PrecisionMacro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.PrecisionWeighted

evalml.objectives.PrecisionWeighted

	
class evalml.objectives.PrecisionWeighted(verbose=False)

	Precision Score for multiclass classification using weighted averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.PrecisionWeighted.score

evalml.objectives.PrecisionWeighted.score

	
PrecisionWeighted.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.Recall

evalml.objectives.Recall

	
class evalml.objectives.Recall(verbose=False)

	Recall Score for binary classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.Recall.score

evalml.objectives.Recall.score

	
Recall.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.RecallMicro

evalml.objectives.RecallMicro

	
class evalml.objectives.RecallMicro(verbose=False)

	Recall Score for multiclass classification using micro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.RecallMicro.score

evalml.objectives.RecallMicro.score

	
RecallMicro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.RecallMacro

evalml.objectives.RecallMacro

	
class evalml.objectives.RecallMacro(verbose=False)

	Recall Score for multiclass classification using macro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.RecallMacro.score

evalml.objectives.RecallMacro.score

	
RecallMacro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.RecallWeighted

evalml.objectives.RecallWeighted

	
class evalml.objectives.RecallWeighted(verbose=False)

	Recall Score for multiclass classification using weighted averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.RecallWeighted.score

evalml.objectives.RecallWeighted.score

	
RecallWeighted.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.AUC

evalml.objectives.AUC

	
class evalml.objectives.AUC(verbose=False)

	AUC Score for binary classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.AUC.score

evalml.objectives.AUC.score

	
AUC.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.AUCMicro

evalml.objectives.AUCMicro

	
class evalml.objectives.AUCMicro(verbose=False)

	AUC Score for multiclass classification using micro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.AUCMicro.score

evalml.objectives.AUCMicro.score

	
AUCMicro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.AUCMacro

evalml.objectives.AUCMacro

	
class evalml.objectives.AUCMacro(verbose=False)

	AUC Score for multiclass classification using macro averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.AUCMacro.score

evalml.objectives.AUCMacro.score

	
AUCMacro.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.AUCWeighted

evalml.objectives.AUCWeighted

	
class evalml.objectives.AUCWeighted(verbose=False)

	AUC Score for multiclass classification using weighted averaging

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.AUCWeighted.score

evalml.objectives.AUCWeighted.score

	
AUCWeighted.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.LogLoss

evalml.objectives.LogLoss

	
class evalml.objectives.LogLoss(verbose=False)

	Log Loss for both binary and multiclass classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.LogLoss.score

evalml.objectives.LogLoss.score

	
LogLoss.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MCC

evalml.objectives.MCC

	
class evalml.objectives.MCC(verbose=False)

	Matthews correlation coefficient for both binary and multiclass classification

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MCC.score

evalml.objectives.MCC.score

	
MCC.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.R2

evalml.objectives.R2

	
class evalml.objectives.R2(verbose=False)

	Coefficient of determination for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.R2.score

evalml.objectives.R2.score

	
R2.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MAE

evalml.objectives.MAE

	
class evalml.objectives.MAE(verbose=False)

	Mean absolute error for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MAE.score

evalml.objectives.MAE.score

	
MAE.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MSE

evalml.objectives.MSE

	
class evalml.objectives.MSE(verbose=False)

	Mean squared error for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MSE.score

evalml.objectives.MSE.score

	
MSE.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MSLE

evalml.objectives.MSLE

	
class evalml.objectives.MSLE(verbose=False)

	Mean squared log error for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MSLE.score

evalml.objectives.MSLE.score

	
MSLE.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MedianAE

evalml.objectives.MedianAE

	
class evalml.objectives.MedianAE(verbose=False)

	Median absolute error for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MedianAE.score

evalml.objectives.MedianAE.score

	
MedianAE.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.MaxError

evalml.objectives.MaxError

	
class evalml.objectives.MaxError(verbose=False)

	Maximum residual error for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.MaxError.score

evalml.objectives.MaxError.score

	
MaxError.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.objectives.ExpVariance

evalml.objectives.ExpVariance

	
class evalml.objectives.ExpVariance(verbose=False)

	Explained variance score for regression

Methods

	score

	Calculate score from applying fitted objective to predicted values

 evalml.objectives.ExpVariance.score

evalml.objectives.ExpVariance.score

	
ExpVariance.score(y_predicted, y_true)

	Calculate score from applying fitted objective to predicted values

If a higher score is better than a lower score, set greater_is_better attribute to True

	Parameters

	
	y_predicted (list) – the predictions from the model. If needs_proba is True,
it is the probability estimates

	y_true (list) – the ground truth for the predictions.

	extra_cols (extra_cols) – any extra columns that are needed from training
data to fit. Only provided if uses_extra_columns is True.

	Returns

	score

 evalml.problem_types.ProblemTypes

evalml.problem_types.ProblemTypes

	
class evalml.problem_types.ProblemTypes

	Enum for type of machine learning problem: BINARY, MULTICLASS, or REGRESSION

 evalml.problem_types.handle_problem_types

evalml.problem_types.handle_problem_types

	
class evalml.problem_types.handle_problem_types

	Handles problem_type by either returning the ProblemTypes or converting from a str

	Parameters

	problem_types (str or ProblemTypes) – problem type that needs to be handled

	Returns

	ProblemTypes

 evalml.tuners.SKOptTuner

evalml.tuners.SKOptTuner

	
class evalml.tuners.SKOptTuner(space, random_state=0)

	Bayesian Optimizer

Methods

	__init__

	Initialize self.

	add

	

	propose

	

 evalml.tuners.SKOptTuner.__init__

evalml.tuners.SKOptTuner.__init__

	
SKOptTuner.__init__(space, random_state=0)

	Initialize self. See help(type(self)) for accurate signature.

 evalml.tuners.SKOptTuner.add

evalml.tuners.SKOptTuner.add

	
SKOptTuner.add(parameters, score)

	

 evalml.tuners.SKOptTuner.propose

evalml.tuners.SKOptTuner.propose

	
SKOptTuner.propose()

	

 evalml.guardrails.detect_highly_null

evalml.guardrails.detect_highly_null

	
class evalml.guardrails.detect_highly_null

	Checks if there are any highly-null columns in a dataframe.

	Parameters

	
	X (DataFrame) – features

	percent_threshold (float) – Require that percentage of null values to be considered “highly-null”, defaults to .95

	Returns

	A dictionary of features with column name or index and their percentage of null values

 evalml.guardrails.detect_label_leakage

evalml.guardrails.detect_label_leakage

	
class evalml.guardrails.detect_label_leakage

	Check if any of the features are highly correlated with the target.

Currently only supports binary and numeric targets and features

	Parameters

	
	X (pd.DataFrame) – The input features to check

	y (pd.Series) – the labels

	threshold (float) – the correlation threshold to be considered leakage. Defaults to .95

	Returns

	leakage, dictionary of features with leakage and corresponding threshold

 evalml.guardrails.detect_outliers

evalml.guardrails.detect_outliers

	
class evalml.guardrails.detect_outliers

	Checks if there are any outliers in a dataframe by using first Isolation Forest to obtain the anomaly score
of each index and then using IQR to determine score anomalies. Indices with score anomalies are considered outliers.

	Parameters

	X (DataFrame) – features

	Returns

	A set of indices that may have outlier data.

 evalml.guardrails.detect_id_columns

evalml.guardrails.detect_id_columns

	
class evalml.guardrails.detect_id_columns

	Check if any of the features are ID columns.
Currently performs these simple checks:

	column name is “id”

	column name ends in “_id”

	column contains all unique values (and is not float / boolean)

	Parameters

	
	X (pd.DataFrame) – The input features to check

	threshold (float) – the probability threshold to be considered an ID column. Defaults to 1.0

	Returns

	A dictionary of features with column name or index and their probability of being ID columns

 Index

Index

 _
 | A
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | O
 | P
 | R
 | S
 | X

_

 	
 	__init__() (evalml.AutoClassifier method)

 	(evalml.AutoRegressor method)

 	(evalml.objectives.FraudCost method)

 	(evalml.objectives.LeadScoring method)

 	(evalml.pipelines.LogisticRegressionPipeline method)

 	(evalml.pipelines.RFClassificationPipeline method)

 	(evalml.pipelines.RFRegressionPipeline method)

 	(evalml.pipelines.XGBoostPipeline method)

 	(evalml.tuners.SKOptTuner method)

A

 	
 	add() (evalml.tuners.SKOptTuner method)

 	AUC (class in evalml.objectives)

 	AUCMacro (class in evalml.objectives)

 	
 	AUCMicro (class in evalml.objectives)

 	AUCWeighted (class in evalml.objectives)

 	AutoClassifier (class in evalml)

 	AutoRegressor (class in evalml)

D

 	
 	decision_function() (evalml.objectives.FraudCost method)

 	(evalml.objectives.LeadScoring method)

 	detect_highly_null (class in evalml.guardrails)

 	
 	detect_id_columns (class in evalml.guardrails)

 	detect_label_leakage (class in evalml.guardrails)

 	detect_outliers (class in evalml.guardrails)

E

 	
 	ExpVariance (class in evalml.objectives)

F

 	
 	F1 (class in evalml.objectives)

 	F1Macro (class in evalml.objectives)

 	
 	F1Micro (class in evalml.objectives)

 	F1Weighted (class in evalml.objectives)

 	FraudCost (class in evalml.objectives)

G

 	
 	get_pipelines (class in evalml.pipelines)

H

 	
 	handle_problem_types (class in evalml.problem_types)

L

 	
 	LeadScoring (class in evalml.objectives)

 	list_model_types (class in evalml)

 	load_breast_cancer (class in evalml.demos)

 	load_data (class in evalml.preprocessing)

 	load_diabetes (class in evalml.demos)

 	
 	load_fraud (class in evalml.demos)

 	load_pipeline (class in evalml.pipelines)

 	load_wine (class in evalml.demos)

 	LogisticRegressionPipeline (class in evalml.pipelines)

 	LogLoss (class in evalml.objectives)

M

 	
 	MAE (class in evalml.objectives)

 	MaxError (class in evalml.objectives)

 	MCC (class in evalml.objectives)

 	
 	MedianAE (class in evalml.objectives)

 	MSE (class in evalml.objectives)

 	MSLE (class in evalml.objectives)

O

 	
 	objective_function() (evalml.objectives.FraudCost method)

 	(evalml.objectives.LeadScoring method)

P

 	
 	Precision (class in evalml.objectives)

 	PrecisionMacro (class in evalml.objectives)

 	PrecisionMicro (class in evalml.objectives)

 	
 	PrecisionWeighted (class in evalml.objectives)

 	ProblemTypes (class in evalml.problem_types)

 	propose() (evalml.tuners.SKOptTuner method)

R

 	
 	R2 (class in evalml.objectives)

 	Recall (class in evalml.objectives)

 	RecallMacro (class in evalml.objectives)

 	
 	RecallMicro (class in evalml.objectives)

 	RecallWeighted (class in evalml.objectives)

 	RFClassificationPipeline (class in evalml.pipelines)

 	RFRegressionPipeline (class in evalml.pipelines)

S

 	
 	save_pipeline (class in evalml.pipelines)

 	score() (evalml.objectives.AUC method)

 	(evalml.objectives.AUCMacro method)

 	(evalml.objectives.AUCMicro method)

 	(evalml.objectives.AUCWeighted method)

 	(evalml.objectives.ExpVariance method)

 	(evalml.objectives.F1 method)

 	(evalml.objectives.F1Macro method)

 	(evalml.objectives.F1Micro method)

 	(evalml.objectives.F1Weighted method)

 	(evalml.objectives.LogLoss method)

 	(evalml.objectives.MAE method)

 	(evalml.objectives.MCC method)

 	(evalml.objectives.MSE method)

 	(evalml.objectives.MSLE method)

 	(evalml.objectives.MaxError method)

 	(evalml.objectives.MedianAE method)

 	(evalml.objectives.Precision method)

 	(evalml.objectives.PrecisionMacro method)

 	(evalml.objectives.PrecisionMicro method)

 	(evalml.objectives.PrecisionWeighted method)

 	(evalml.objectives.R2 method)

 	(evalml.objectives.Recall method)

 	(evalml.objectives.RecallMacro method)

 	(evalml.objectives.RecallMicro method)

 	(evalml.objectives.RecallWeighted method)

 	
 	set_problem_type() (evalml.AutoClassifier method)

 	SKOptTuner (class in evalml.tuners)

 	split_data (class