
DataScience.com Platform
Documentation Documentation

Release 4.2.1

DataScience.com Team

Nov 13, 2018

Contents

1 Account Setup 3
1.1 Git Configuration . 3

1.1.1 Managing Git Provider Connections . 3
1.1.2 GitHub Authentication . 4
1.1.3 Bitbucket Authentication . 4
1.1.4 GitLab Authentication . 6

1.1.4.1 GitLab Enterprise v9 and Higher . 6
1.1.4.2 Gitlab Enterprise v7 and v8 . 7

1.2 Kerberos Authentication . 7
1.2.1 Kerberos Keytab . 7
1.2.2 Kerberos Username and Password . 7

1.3 MapR Authentication . 7
1.3.1 MapR Ticketing . 8
1.3.2 MapR Username and Password . 8

1.4 Collaborators and Permissions . 8
1.4.1 User Permissions . 8
1.4.2 Project Permissions . 9
1.4.3 Teams . 9

1.5 Global Environment Variables . 9
1.5.1 Environment Variables . 9
1.5.2 Global Environment Variables . 10

1.6 Platform Configuration . 12
1.6.1 Introduction . 12
1.6.2 Instance Footprint . 12

1.6.2.1 Production . 12
1.6.2.1.1 3 Master Nodes . 12
1.6.2.1.2 2 Postgres Nodes . 12
1.6.2.1.3 Worker Nodes . 12

1.6.3 Host Requirements . 12
1.6.4 Supported Operating Systems . 13

1.6.4.1 .deb Distributions . 13
1.6.4.2 .rpm Distributions . 13

1.6.5 Supported Browsers . 13
1.6.6 Additional Software . 13
1.6.7 Email Integration . 13
1.6.8 Port Configuration . 13

i

1.6.9 Git Providers . 14
1.6.10 Limits . 15
1.6.11 Optional Supported Integrations . 15

2 Version Control 17
2.1 Version Control . 17

2.1.1 File Previews . 17
2.1.2 Git Actions in the Platform . 18

3 Projects 21
3.1 Create a Project . 21

3.1.1 Create a project . 21
3.2 Navigation . 22

3.2.1 Navigating projects . 22
3.3 Project Collaborators . 22
3.4 Project Environment Variables . 23

3.4.1 Environment Variables . 23
3.4.2 Project Environment Variables . 23

3.5 Best Practices: Migrating Existing Work . 24
3.5.1 Moving Existing GitHub/GitLab/Bitbucket Repositories on the Platform 24
3.5.2 Copying Files from Your Local Environment into a Project 24
3.5.3 Migrating Work That is Not in a Version-Controlled Repository 26
3.5.4 Warnings . 26
3.5.5 References . 26

4 Environments 27
4.1 Environments and Dependencies . 27

4.1.1 Introduction . 27
4.1.2 Browsing Environments . 27

4.1.2.1 List page . 27
4.1.2.2 Details Page . 27

4.1.3 Launching Environments . 29
4.1.4 Adding Additional Requirements . 29

4.2 Environment Management . 29
4.2.1 Introduction . 29
4.2.2 Background . 31
4.2.3 What is an Environment? . 31

4.2.3.1 Base Environments . 31
4.2.3.1.1 The Default Base Environment . 31
4.2.3.1.2 Customized Base Environments . 33

4.2.3.2 User Environments . 33
4.2.4 How to Create Environments . 33

4.2.4.1 Before You Begin . 33
4.2.4.2 Default Base . 33
4.2.4.3 Custom Base . 35
4.2.4.4 Hadoop Base . 36
4.2.4.5 Create a User Environment . 38

4.2.5 DataScience.com Standard Example Environments . 39
4.3 Compute Resources . 41

4.3.1 On-demand Compute Resources for VPC Installations . 42
4.3.2 Tag Management for On-Demand Resources . 42

4.4 Using Spark on the Platform . 43
4.4.1 Jupyter . 43
4.4.2 RStudio . 44

ii

4.4.3 Zeppelin . 44
4.4.4 Spark Usage . 44

4.4.4.1 Sparkmagic . 44
4.4.4.2 Spark in RStudio . 44

4.5 Best Practices: Choosing the Right Container Size . 44
4.5.1 Strategic Resource Allocation . 45
4.5.2 Code Best Practices . 45

4.6 Best Practices: Using Dependency Files . 46
4.6.1 What are Dependency Files? . 46
4.6.2 How to Create Dependency Files in a Jupyter Session . 46

4.6.2.1 Creating a pip Dependency File in a Jupyter Python Session 46
4.6.2.2 Creating a Dependency File in an R Jupyter Session 47
4.6.2.3 Apt Dependency Files . 47

4.6.3 Using Dependency Files on the Platform . 48
4.6.3.1 In a Jupyter, RStudio, or Zeppelin Session . 48
4.6.3.2 When Deploying an API . 48
4.6.3.3 When Scheduling a Run . 48

4.6.4 General Tips and Best Practices . 48
4.6.5 Additional References on Dependency Files . 48

5 Working in a Session 51
5.1 Launch a Session . 51
5.2 Notes on Using Zeppelin . 52
5.3 Sync Changes . 53

5.3.1 Git Commands Behind the Scenes . 55
5.4 Shut Down a Session . 55

6 Data Connection Examples 57
6.1 AWS Redshift . 57

6.1.1 Python . 57
6.1.1.1 Usage Example . 58

6.1.2 R . 58
6.1.2.1 Usage Example . 59

6.2 AWS S3 . 59
6.2.1 Python . 60

6.2.1.1 Usage Example . 62
6.2.2 R . 62

6.2.2.1 Usage Example . 65
6.3 MySQL . 65

6.3.1 Python . 65
6.3.1.1 Usage Example . 67

6.3.2 R . 67
6.3.2.1 Usage Example . 68

6.4 Google BigQuery . 69
6.4.1 Python . 69

6.4.1.1 Usage Example . 70
6.4.2 R . 70

6.4.2.1 Usage Example . 71
6.5 SAP-HANA . 71

7 Scripts and Scheduled Runs 73
7.1 Run a Script . 73
7.2 The Run Details Page . 73
7.3 Schedule a Run . 73

iii

7.3.1 Custom Schedules . 75
7.4 Schedule Details Page . 76

8 Reports 77
8.1 Publish a Report . 77

8.1.1 Run and Publish a Report . 77
8.1.2 Preparing an .rmd (R Markdown) File for Publishing . 79

8.2 View and Manage a Report . 80
8.3 Report Versions . 80

8.3.1 Publishing a New Version from Within a Report . 80
8.3.2 Publishing a New Version from the Action Button . 81

8.4 Delete a Version . 81

9 R Shiny Dashboards 85
9.1 Publish a dashboard . 85

9.1.1 Running a Directory . 85
9.2 View and manage a dashboard . 86

10 Deploy APIs 89
10.1 Overview . 89

10.1.1 Deploy an API . 89
10.1.2 Call an API . 91
10.1.3 Manage an API . 91

10.2 Best Practices: Deploying an API . 92
10.2.1 Building the API Script . 92

10.2.1.1 The Deploy Timeout . 92
10.2.1.2 Pickling vs. Training . 93
10.2.1.3 Choosing a Response Type for a Deployed API 93

10.2.2 Deploying the API . 94
10.2.2.1 Document Your Model or Function with a README 94

10.2.3 Submitting Requests to Your API . 94
10.2.3.1 Send More Records and Fewer Requests . 96
10.2.3.2 Run APIs on Larger Containers to Improve Response Times 96
10.2.3.3 Use Resource Pool over On-Demand for Faster Builds 96
10.2.3.4 Prototyping to Production: Developing Internal Standards 97

10.2.4 Dependencies . 97
10.2.4.1 Python Libraries . 97
10.2.4.2 R Libraries . 97
10.2.4.3 APT . 97

10.2.5 Examples . 98
10.2.5.1 Model . 98
10.2.5.2 Client . 98

11 Appendix 101
11.1 Dockerfile Basics and Best Practices . 101

11.1.1 Best Practices . 101
11.1.2 Dockerfile Basics . 102

11.1.2.1 Dockerfile Supported Instructions . 102
11.1.2.1.1 RUN Command . 102
11.1.2.1.2 SHELL Instruction . 102
11.1.2.1.3 COPY Instruction . 103
11.1.2.1.4 ADD Instruction . 103
11.1.2.1.5 ENV Instruction . 103

11.1.2.2 Instructions Not Allowed . 103
11.1.2.2.1 ARG Instruction . 103

iv

11.1.2.2.2 FROM Instruction . 103
11.1.2.2.3 CMD Instruction . 103
11.1.2.2.4 ENTRYPOINT Instruction . 103
11.1.2.2.5 EXPOSE Instruction . 104
11.1.2.2.6 VOLUME Instruction . 104

11.1.3 Context Files . 104
11.1.4 Putting It All Together . 104

11.1.4.1 Example 1: Building a Conda Python 2.7 Environment with ML and Stats Depen-
dencies . 104

11.1.4.1.1 A Conda Base Dockerfile: . 104
11.1.4.1.2 Example User Environment Dockerfile: 104

11.1.4.2 Example 2: Installing R Dependencies (rJava) . 105
11.1.4.2.1 A Base Dockerfile for rJava Dependencies: 105

11.2 Enabling Hadoop and Spark . 106
11.2.1 Introduction . 106
11.2.2 Hadoop Cluster Configuration . 106

11.2.2.1 Enabling Hadoop (Optional) . 107
11.2.2.1.1 Optional Files . 107

11.2.2.2 Enabling Hive (Optional) . 107
11.2.2.2.1 Required Files . 107
11.2.2.2.2 Optional Files . 107
11.2.2.2.3 Tez . 108

11.2.2.3 Enabling Spark . 108
11.2.2.3.1 Required Files . 108

11.2.3 Building a Hadoop-Enabled Environment . 108
11.2.3.1 Build a Hadoop-Enabled Environment . 108
11.2.3.2 MapR Ticketing . 109
11.2.3.3 Kerberos Authentication . 109

11.2.4 Other Providers . 109
11.3 Git Provider Integration . 110

11.3.1 Introduction . 110
11.3.2 Supported Providers . 110
11.3.3 GitHub OAuth Integration . 110

11.3.3.1 Create a GitHub OAuth Application . 110
11.3.3.2 Connect to Your GitHub OAuth Application . 110

11.3.4 Bitbucket Integration . 111
11.3.5 GitLab Integration . 111
11.3.6 Manually Editing Providers in Postgres . 111

12 Release Notes 113
12.1 Version 5.0.0 - December 8, 2017 (Preview) . 113

12.1.1 Features . 113
12.1.1.1 Platform interface design update . 113
12.1.1.2 Zeppelin as an Interactive Session tool . 113
12.1.1.3 Built-in Cloudera Hadoop Support for Hive and Spark 113
12.1.1.4 Kerberos authentication via keytab upload . 113
12.1.1.5 Run and Publish reports . 113

12.2 Version 4.2.2 - October 4, 2017 . 114
12.2.1 Features . 114

12.2.1.1 Select files to sync . 114
12.2.1.2 Resource Management for Users . 114

12.3 Version 4.1.1 - September 20, 2017 . 114
12.3.1 Features . 114

12.3.1.1 Built-in MapR Hadoop support for Hive and Spark 114

v

12.4 Version 4.0.1 - September 6, 2017 . 114
12.4.1 Features . 114

12.4.1.1 Environment Management . 114
12.4.1.2 Sync and Shutdown from Jupyter sessions . 114
12.4.1.3 File path autocomplete . 115
12.4.1.4 Enhanced Platform availability . 115
12.4.1.5 Single Sign On with SAML 2.0 . 115

12.5 Version 3.9.1 - August 23, 2017 . 115
12.5.1 Features . 115

12.5.1.1 Report Versioning . 115
12.5.1.2 User-supplied custom tagging for Amazon EC2 on-demand resources 115

12.6 Version 3.8.1 - August 9, 2017 . 115
12.6.1 Enhancements . 115

12.7 Version 3.7.1 - July 26, 2017 . 115
12.7.1 Features . 116

12.7.1.1 R Shiny dashboards deployable to the Outputs page 116
12.7.1.2 Resource Management Dashboard . 116

12.8 Version 3.6.1 - July 13, 2017 . 116
12.8.1 Features . 116

12.8.1.1 H2O.ai Dependency Collection . 116
12.8.2 Enhancements . 116

12.8.2.1 Enhanced Support for Internet Explorer 11 . 116
12.8.2.2 Shortcut links for returning to interactive sessions in progress 116

12.9 Version 3.5.1 - June 28, 2017 . 116
12.9.1 Features . 116

12.9.1.1 Administrator-configured compute resources sizes 116
12.9.1.2 Various user experience and usability enhancements 117

12.10 Version 3.4.1 - June 15, 2017 . 117
12.10.1 Features . 117

12.10.1.1 Curated Dependency Collections . 117
12.10.1.2 Multiple language kernels available in Jupyter sessions 117

12.11 Version 3.3.1 - June 7, 2017 . 117
12.11.1 Features . 117

12.11.1.1 GitHub Enterprise and GitLab Enterprise integrations 117
12.11.1.2 Global Environment Variables . 117
12.11.1.3 On-demand compute resources in AWS VPCs . 118
12.11.1.4 LDAP . 118

12.12 Version 3.2.1 - May 31, 2017 . 118
12.12.1 Features . 118

12.12.1.1 Bitbucket.org and GitLab.com integrations . 118
12.12.1.2 RStudio . 118
12.12.1.3 Publish RMarkdown HTML docs . 118

12.13 Version 3.1.1 - May 4, 2017 . 118
12.13.1 Features . 118

12.13.1.1 Projects . 118
12.13.1.2 GitHub integration . 119
12.13.1.3 Secret management . 119
12.13.1.4 Launch Jupyter Interactive sessions . 119
12.13.1.5 Publish Reports . 119
12.13.1.6 Deploy APIs . 119
12.13.1.7 Run scripts . 119
12.13.1.8 Schedule Runs . 119

13 Tutorials and Examples 121

vi

13.1 Learning Modules . 121
13.1.1 Use Shiny on the DataScience.com Platform . 121
13.1.2 Connect Tableau to Model APIs on the DataScience.com Platform 121

13.2 Examples . 122
13.2.1 How to Create and Deploy a Shiny App . 122

13.2.1.1 Loading the Data . 122
13.2.1.2 Defining the UI Components . 123
13.2.1.3 Defining the Server Component . 123
13.2.1.4 Running the App . 124
13.2.1.5 Publishing the App . 124

13.2.2 Using a Deployed API . 125
13.2.2.1 Business Use Case . 125
13.2.2.2 Training the Model . 125
13.2.2.3 Fitting the Model . 128
13.2.2.4 Saving the Model . 128
13.2.2.5 Deploying the Model . 128
13.2.2.6 Calling the API . 131
13.2.2.7 Saving the Output . 132

13.2.3 Deploying a Network Intrusion Prediction API . 132
13.2.4 Deploying an XGBoost Model . 137

13.2.4.1 The Business Use Case . 137
13.2.4.2 Loading the Data and Training the Model . 137
13.2.4.3 Deploying the Model . 138
13.2.4.4 Conclusion . 140

14 How to Read These Docs 143

15 Just Getting Started with the Platform? 145

vii

viii

DataScience.com Platform Documentation Documentation, Release 4.2.1

The DataScience.com Platform combines the tools, libraries, and languages your team loves with the infrastructure
and workflows your organization needs. The Platform combines three key components:

• Infrastructure - systems tasks (like spawning servers) are abstracted and handled automatically so data scien-
tists can focus on the substance of their work

• Tools - open source tools (like Jupyter, R Shiny, or modeling libraries) that data scientists need are integrated
into a centralized place

• Workflow - automation for tasks, collaboration, and communication that let data science teams effectively
deliver on their mission

Contents 1

DataScience.com Platform Documentation Documentation, Release 4.2.1

2 Contents

CHAPTER 1

Account Setup

As an individual user, you’ll set up your Git provider credentials and (optionally) authenticate with your Hadoop data
lake. This section outlines steps to get those integrations connected.

1.1 Git Configuration

Every analysis that runs on the Platform, from Jupyter sessions to Model APIs, uses code stored in a Git repository
(commonly referred to as a “repo”). Actions like runs, APIs, and sessions all start from a specific version (called a
“commit”) of the repo, letting you maintain a transparent record of your process.

It’s good to understand the basics of Git before using the DataScience.com Platform. This page of resources curated
by GitHub is a good start.

Note: There is a one-to-one relationship between projects on the platform and Git repositories. Once you’ve con-
nected a repo to a project, your team may not connect it to any other project. This rule keeps each project’s analyses
closely tied to changes in the source code so others can retrace your steps.

The Platform supports Git repositories hosted on GitHub (including GitHub Enterprise), Bitbucket (including Bit-
bucket Server), and GitLab (both Community and Enterprise). You’ll use your credentials for these Git providers to
work with repos directly in the DataScience.com Platform.

Before your team can authenticate with a Git provider, an Admin should follow the instructions in the Git Provider
Integration docs.

1.1.1 Managing Git Provider Connections

After an Admin has registered a Git provider with DataScience.com, you can connect your account with the following
steps:

1. On the DataScience.com Platform, click on your avatar in the upper right-hand corner, click Settings, and
navigate to the Git Integrations tab.

3

https://help.github.com/articles/git-and-github-learning-resources/

DataScience.com Platform Documentation Documentation, Release 4.2.1

2. Click Add Authentication and search for providers registered by your Administrator.

3. Complete the form with your Git provider account information.

Your registered Git connections appear on this Git Integrations page. From this list, you can edit connections via the
button on the right. To remove a connection from the list, hover over that connection and a Remove option will appear.

Disconnecting from your provider means that the Platform will clear out your authentication information (tokens,
passwords, etc.) from its secure storage. Removing your your authentication won’t cause anything to be lost on the
Platform, but you will no longer be able to see files or launch analyses in your projects that were connected with that
Git provider.

1.1.2 GitHub Authentication

The GitHub integration uses GitHub’s OAuth features to connect your account. On the DataScience.com Platform,
you’ll only have to click the Connect button in the GitHub integration form to sign in and approve access.

You’ll be prompted to enter your GitHub username and password. Once you’re successfully connected, you’ll be
redirected back to the Platform.

1.1.3 Bitbucket Authentication

The Bitbucket integration uses Bitbucket’s App Passwords feature to grant repo access. A Bitbucket App Password is
just like your account password but meant for other apps to control Bitbucket on your behalf.

Start by creating a Bitbucket App Password inside the Bitbucket web app. Visit Bitbucket Settings > App Passwords
and select Create an App Password. Give the app password a name and select the following permissions:

Account: Email + Read

4 Chapter 1. Account Setup

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.1. Git Configuration 5

DataScience.com Platform Documentation Documentation, Release 4.2.1

Team membership: Read

Projects: Read

Repositories: Read + Write

After you create an App Password on Bitbucket and copy it from the pop-up window, you’ll no longer be able to view
the password on Bitbucket. Keep this password safe by immediately copying it over to the DataScience.com Platform.

With your Bitbucket App Password copied, go to the DataScience.com Platform and click on your avatar in the upper
right-hand corner to reveal Settings > Git Integrations. Click Add Credentials, search for your Bitbucket integration,
and enter your user name, email, and app password.

You can find your Bitbucket username in the Bitbucket app by visiting your account settings. For more information
on Bitbucket App Passwords, see their docs.

1.1.4 GitLab Authentication

1.1.4.1 GitLab Enterprise v9 and Higher

The GitLab integration uses GitLab’s Access Tokens feature to grant repo access. A GitLab Access Token is just like
your account password but meant for other apps to control GitLab on your behalf.

Start by creating a GitLab Access Token inside the GitLab web app. Visit User Settings > Access Tokens. Give the
app password a name, select api and read_user under Scopes, then click Create Personal Access Token.

After you create a token on GitLab and copy it from the confirmation screen, you’ll no longer be able to view it on
GitLab. Keep this token safe by immediately copying it over to the DataScience.com Platform.

With your GitLab token copied, go to the DataScience.com Platform and via the avatar drop-down, visit Settings > Git
Integrations. Click Add Credentials, search for your GitLab integration, and enter your user name, email, and access
token.

6 Chapter 1. Account Setup

https://confluence.atlassian.com/bitbucket/app-passwords-828781300.html

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.1.4.2 Gitlab Enterprise v7 and v8

These versions only require your GitLab username and password to allow access to the GitLab repo. Creating Access
Tokens is not necessary.

1.2 Kerberos Authentication

Users have the option to authenticate via Kerberos with their Kerberos keytabs or username/password. With the
Kerberos integration enabled, all of your analysis containers will automatically authenticate as your user-specific
Kerberos principal.

1.2.1 Kerberos Keytab

To authenticate via Kerberos, visit Settings > Authentication, enter your username, and upload your own keytab file.
With your keytab uploaded, each new analysis you launch will be authenticated through Kerberos.

1.2.2 Kerberos Username and Password

Alternatively, you can enter your Kerberos username and password in Settings > Authentication.

1.3 MapR Authentication

Users have the option to authenticate to MapR via ticketing or username/password. With your MapR credentials stored
securely on the Platform, each new analysis you launch will be authenticated with the cluster.

1.2. Kerberos Authentication 7

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.3.1 MapR Ticketing

The MapR Ticket integration lets you automatically authenticate with your MapR cluster in any analysis launched
on the Platform. To configure the MapR Ticket integration, visit Settings > Authentication, then enter your MapR
username and upload your own MapR Ticket.

1.3.2 MapR Username and Password

Alternatively, you can enter your MapR cluster username and password in Settings > Authentication.

1.4 Collaborators and Permissions

1.4.1 User Permissions

There are three levels of permissions on the Platform:

• Admin: Has access to all projects, can create other Admins, and can shutdown/manage any user-created analysis
processes (e.g. a Jupyter session)

• Standard: May be invited to projects as owners, editors, or viewers

• Read-Only: May only be invited to projects as viewers

If you’re an Admin, you can add and remove users by visiting the Administration menu in the top navigation bar. Click
on the Users & Teams tab.

8 Chapter 1. Account Setup

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.4.2 Project Permissions

By default, when you create a project you will be the only one who can see or change it. It will not appear in the
Projects list for anyone else. To give others access, visit the Project Settings tab and click Invite Collaborators.

When you add a collaborator to a project, you’ll assign one of three permission levels. The following actions are
available to each level:

Action Own Edit View
View outputs Yes Yes Yes
View activity Yes Yes Yes
View files Yes Yes No
Launch containers (runs; sessions; APIs; etc.) Yes Yes No
Edit environment variables Yes Yes No
Invite collaborators with Read access Yes Yes No
Invite collaborators with Edit access Yes Yes No
Invite collaborators with Own access Yes No No

Warning: Admin users have full access to all projects, regardless of whether they have been added as a collab-
orator. Read-Only users can only have View permission to a project, regardless of what permission they’ve been
given by the project owner.

1.4.3 Teams

You can group teammates into teams and add them as collaborators to projects all at once with the same permission
level. To create a team, visit Administration > Users & Teams and click Add New under the Teams section.

You can visit a team by clicking on the team name. From this page, you can add or remove members and edit the team
information:

If you’re added to a project as an individual and through a team invite, you’ll get the most specific permission level
first, followed by the highest permission level. For example, if you’re given View permission to a project and you’re
on a team with Edit permissions, you’ll have View permission. If you’re on two teams added to a project, one with
View and the other with Edit permission, you’ll have Edit permissions.

1.5 Global Environment Variables

1.5.1 Environment Variables

You can configure environment variables both for projects and globally on the Platform. These key-value pairs are
kept in encrypted storage and injected into your analysis at runtime. The primary purpose of this feature is to help you
avoid checking sensitive information (like a database password) into your Git repo.

You can use these environment variables like you would in any other analysis. For example, if you create an environ-
ment variable on the Platform with key REDSHIFT_PASSWORD and value im_secure, you can run the following
example in Python:

import os
print os.environ['REDSHIFT_PASSWORD']
>>> im_secure

1.5. Global Environment Variables 9

DataScience.com Platform Documentation Documentation, Release 4.2.1

There are a few rules to remember when using environment variables:

• Environment variables are injected once into your analysis when you launch it. You must shut down and re-
launch any analyses to access new variables.

• If you need to edit an existing environment variable, you must delete it and create a new one.

• If a global environment variable and a project environment variable share the same key, the project environment
variable will take precedence.

1.5.2 Global Environment Variables

Admins can create global environment variables and assign them to users or teams. To create a global environment
variable, navigate to Settings from the top right avatar drop-down and click Environment Variables. Click Add New
and fill in the key, value, description, and users that can access this variable.

Warning: If you don’t assign a global environment variable to any Users, it will be shared with all Users on the
Platform by default.

After creating a global environment variable, you can manage access to it by hovering over its row in the table and
selecting the View Details button. button. From this page, click Edit to add new Users. To remove a User, hover over
the User’s row and click the Remove button that appears.

Any User with the standard role can see the list of global environment variables but cannot create or delete global
environment variables.

For information about Project Environment variables, see the Projects section.

10 Chapter 1. Account Setup

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.5. Global Environment Variables 11

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.6 Platform Configuration

1.6.1 Introduction

This short guide provides a brief overview of the key Platform specs. These are useful to know for the Users of the
Platform.

Each installation is unique and comes with its own constraints. Double check with your IT department for any differ-
ences that could exist between this guide and your custom installation.

1.6.2 Instance Footprint

1.6.2.1 Production

In a production instance, the DataScience.com Platform requires the following minimum number of servers or nodes.
Note that it’s crucial for the sake of both stability and security to separate the nodes that run the core Platform services
from the nodes that host user workloads.

1.6.2.1.1 3 Master Nodes

These run the core components of the Platform, split evenly across the three nodes in a leaderless cluster. In the case
that one or more nodes fails, the remaining node(s) will take on the additional load of the failed Master.

These hosts should meet or exceed the minimum requirements in the Host Requirements section below.

1.6.2.1.2 2 Postgres Nodes

The two Postgres nodes consist of a master database and a stand-by database. In cloud installations, these can be one
redundant managed database, such as what AWS RDS offers.

The hosts for these nodes should meet or exceed the requirements in the Databases section below.

1.6.2.1.3 Worker Nodes

User workloads are hosted on separate Worker nodes for increased stability and security. The number of Worker nodes
and their sizing depends on the number of Platform users and how many resources you plan to allocate for each.

For instances of the Platform that are hosted on Amazon AWS, we also support on-demand instances for user work-
loads.

1.6.3 Host Requirements

Per host:

• RAM: 32GB

• CPU: 8 core

• Disk Space: 300GB

12 Chapter 1. Account Setup

DataScience.com Platform Documentation Documentation, Release 4.2.1

1.6.4 Supported Operating Systems

(64-bit distributions)

1.6.4.1 .deb Distributions

• Debian 9 (kernel 4.9+)

• Ubuntu 16.04 (kernel 4.4+)

1.6.4.2 .rpm Distributions

• Fedora 24 (kernel 4.11+)

• Red Hat Enterprise Linux 7.3 (kernel 3.10.0-514+)

• CentOS 7.3 (kernel 3.10.0-514+)

1.6.5 Supported Browsers

The DataScience.com Platform relies on native flexbox support, which requires the following minimum versions:

• Apple Safari 10+

• Google Chrome 49+

• Microsoft Edge 14+

• Microsoft Internet Explorer 11+ (partial support; there are some known issues with flexbox)

• Mozilla Firefox 51+

• Opera 43+

1.6.6 Additional Software

The installation script for the DataScience.com Platform will automatically install the correct version of docker-engine;
please ensure this version is not overwritten by other configuration management tools.

• docker 17.06-ce+

1.6.7 Email Integration

The Datascience.com Platform requires an email server to send invitations and collaboration notifications. You will
need an SMTP server address, port, username, password, and “From” address. Please see your System Administrator
for more details.

1.6.8 Port Configuration

The following ports should be opened between the specified sources and destinations. “Administrative IP(s)” refers to
the IP(s) from which Systems Administrators will need to access the instance. “User IP(s)” refers to the IP(s) from
which users of the DataScience.com Platform will be accessing the application.

1.6. Platform Configuration 13

DataScience.com Platform Documentation Documentation, Release 4.2.1

Caution: LDAP and SMTP Ports

For integrations such as LDAP and SMTP, we’ve provided the most commonly used ports. Please confirm these
ports with your Service Administrator(s).

Port Usage Source(s) Destina-
tion(s)

25 Unencrypted SMTP traffic Master node SMTP server
80 HTTP (redirects to HTTPS) Administrative IP(s) & User

IP(s)
Master node

389 (op-
tional)

Non-SSL LDAP traffic Master node LDAP server

443 HTTPS Administrative IP(s) & User
IP(s)

Master node

465 Encrypted SMTP traffic Master node SMTP server
636 (op-
tional)

SSL LDAP traffic Master node LDAP server

2376 Docker remote socket Master node All nodes
2377 Docker Swarm API All nodes All nodes
5000 Logstash ingress All nodes Master node
5432 Postgres traffic Master & Core nodes Postgres

endpoint
7946 Docker Swarm All nodes All nodes
8080 HTTP (redirects to HTTPS) Administrative IP(s) & User

IP(s)
Master node

8085 GitHub OAuth authentication DS Docker Event
Listener

github.com & All nodes All nodes

8300-8302 Consul All nodes All nodes
8500 Consul All nodes All nodes
8600 Consul All nodes All nodes
8686 Darkroom All nodes All nodes
8800 Admin Console Administrative IP(s) Master node
8830 Acquiesce All nodes All nodes
8899 Graphite & Statsd All nodes Master node
9870 - 9880 Cluster management All nodes All nodes
32768-
61000

Proxy routing to containers Master node All nodes

Important: Connecting to data sources

In addition to the above, please ensure that routes are open between the DataScience.com Platform and whatever data
sources you plan to connect.

1.6.9 Git Providers

In order to create projects in the DataScience.com Platform, you must integrate with a Git provider. We currently
support the following:

• GitHub.com

14 Chapter 1. Account Setup

DataScience.com Platform Documentation Documentation, Release 4.2.1

• GitHub Enterprise 2.9+

• Bitbucket.org

• GitLab.com

• GitLab Enterprise 7+

1.6.10 Limits

File upload/download limit: 200MB

Google Compute Engine and SMTP: GCE does not currently support the use of standard SMTP servers. They do,
however, offer support for their own Gmail service as well as several third party providers, including SendGrid.

1.6.11 Optional Supported Integrations

LDAP & Active Directory

If you use LDAP or Active Directory to manage users in your organization, your System Administrator can configure
your Datascience.com Platform to use this integration to set up users and permissions. Optionally, when LDAP or
Active Directory is enabled, you can also enable Single Sign-On.

On-Demand Compute Resources

If your Datascience.com Platform runs on Amazon AWS, your System Administrator can configure some or all of
your services to run ad-hoc. This can save costs and resources.

3rd Party Logging

The Datascience.com Platform currently has optional integrations with Loggly and Datadog. If you use either of these
for logging or monitoring, your System Administrator can add your API keys to the Platform to send data to these
services.

1.6. Platform Configuration 15

https://sendgrid.com/

DataScience.com Platform Documentation Documentation, Release 4.2.1

16 Chapter 1. Account Setup

CHAPTER 2

Version Control

The Platform is integrated with third-party version control services like GitHub, GitLab, and Bitbucket. Learn how to
use version control on the Platform in this section.

2.1 Version Control

2.1.1 File Previews

You can browse the files in a project’s Git repo on the Files tab in the project menu. On this tab, you can navigate
through folders and preview files. Jupyter Notebooks (.ipynb), Markdown files (.md), and images (.jpg, .png, .gif) are
rendered as HTML for easy previewing.

Warning: To ensure a fast and responsive app experience, data files (.csv, .tsv, .pkl, .hdf, .npy) and any other file
larger than 1MB can’t be previewed.

Files in a project repo are identified by their branch and commit. Above every list of files or file preview on the Files
tab, you’ll find a branch selector and a commit (represented by a short commit SHA). Any actions you take on the
project, like publishing a report or launching an interactive session, will be associated to this branch and commit.

The Files tab is meant to be a lightweight way to preview files. To manage branches, explore the Git log, or take any
other more advanced actions on your Git repo, use any of the following tools:

• Git command line

• A Git GUI client

• Tools included in the GitHub, Bitbucket, or GitLab web apps

17

https://git-scm.com/downloads
https://git-scm.com/downloads/guis

DataScience.com Platform Documentation Documentation, Release 4.2.1

2.1.2 Git Actions in the Platform

Every process launched in the Platform, from Jupyter sessions to Model APIs, uses the code you select from your Git
repo. When your analysis launches, the Docker container running it has Git configured with your credentials. From
any running process, you could run commands such as git status just as you would on your own computer.

In interactive sessions (like Jupyter, RStudio, and Zeppelin), you don’t have to run Git commands yourself. Instead,
the Session Sync feature lets you save changes back to your Git remote from the browser without needing the Git
command line interface. For detailed instructions on Session Sync, see the Working in a Session section.

18 Chapter 2. Version Control

DataScience.com Platform Documentation Documentation, Release 4.2.1

2.1. Version Control 19

DataScience.com Platform Documentation Documentation, Release 4.2.1

20 Chapter 2. Version Control

CHAPTER 3

Projects

All work in the Platform is organized into projects. When you first log in, you will land on the All Projects page,
which displays all projects in your instance that you have access to. You can return to this page from anywhere by
clicking the DataScience.com logo in the top left corner of any page.

3.1 Create a Project

3.1.1 Create a project

To create a new project, click New Project in the top right of the Projects page and follow these steps:

1. Choose your Git provider - Start by selecting the Git remote where you’ve stored your code. If you haven’t
already done so, connect to your Git provider before starting this step (see the Git Configuration docs for more).

2. Select a repo - Use the search bar to find and select the Git repo that will back your project. Remember that a
repo may only back one project at a time.

3. Write a name and description - Your project must have a unique name (no longer than 55 characters) and
description (no longer than 140 characters). Both can be edited later.

4. Invite collaborators - You may add teammates to your project and select their permission level (see Collabo-
rators and Access Control for more).

5. Choose public or private project - If you select Public, all users of your instance will be able to view your
project.

6. Click “Create Project”

21

DataScience.com Platform Documentation Documentation, Release 4.2.1

3.2 Navigation

3.2.1 Navigating projects

Use the projects menu bar on the top of the screen to switch between the five main sections of every project:

• Overview - View a summary of your project, including its activity feed, important documents such as the project
README, and the connected repo. See what active sessions you have for the project or any scheduled runs.

• Outputs - Access the collection of reports, APIs, and dashboards in your project.

• Activity - See a log of completed, running, and scheduled jobs.

• Files - List and preview all files in your project.

• Settings - View and edit project-level settings in the General, Collaborators, or Environment variables tabs.

3.3 Project Collaborators

The Platform lets you control exactly who can see or edit your work. By default, when you create a project you will
be the only one who can see or change it. It will not appear in the All Projects list for anyone else. To give others
access, you must add them as collaborators in your project’s settings.

When you add a collaborator, you can choose one of three permission levels: View, Edit, and Own. The list of available
actions for each permission level is listed in the Collaborators and Access Control section.

22 Chapter 3. Projects

DataScience.com Platform Documentation Documentation, Release 4.2.1

3.4 Project Environment Variables

3.4.1 Environment Variables

You can configure environment variables both for projects and globally on the Platform. These key-value pairs are
kept in encrypted storage and injected into your analysis at runtime. The primary purpose of this feature is to help you
avoid checking sensitive information (like a database password) into your Git repo.

You can use these environment variables like you would in any other analysis. For example, if you create an environ-
ment variable on the Platform with key REDSHIFT_PASSWORD and value im_secure, you can run the following
example in Python:

import os
print os.environ['REDSHIFT_PASSWORD']
>>> im_secure

There are a few rules to remember when using environment variables:

• Environment variables are injected once into your analysis when you launch it. You must shut down and re-
launch any analyses to access new variables.

• If you need to edit an existing environment variable, you must delete it and create a new one.

• If a global environment variable and a project environment variable share the same key, the project environment
variable will take precedence.

3.4.2 Project Environment Variables

If you have Own or Edit permission, you can add and remove project environment variables. You can find project
environment variables on the project Settings tab under Environment Variables. Remember that if you have a global
and project environment variable with the same name, only the global variable will be available in your analysis.

For information on Global Environment Variables, see our Account Setup documentation.

3.4. Project Environment Variables 23

DataScience.com Platform Documentation Documentation, Release 4.2.1

3.5 Best Practices: Migrating Existing Work

In this article you will learn how to migrate existing work onto the Platform. There are three different example cases:

• Case 1: You want to move existing GitHub/GitLab/Bitbucket repositories onto the Platform

• Case 2: You want to copy files from your local environment into an existing project on the Platform

• Case 3: Your work is not in a version-controlled repository. Where do you start?

3.5.1 Moving Existing GitHub/GitLab/Bitbucket Repositories on the Platform

This is the easiest case. Make sure that under Settings (accessible via your avatar drop-down in the top right) you have
your Git provider credentials in place.

Once you have verified your credentials, go back to the Projects page, click New Project, choose your Git provider,
and enter the name of the repo you want to migrate to the Platform.

3.5.2 Copying Files from Your Local Environment into a Project

If you have a written notebook or a script on your laptop and you want to move those files into an existing project,
there are two methods you may follow:

• Method 1: Clone the repository of the project on your machine, git add the files, git commit them and
push your branch to remote. Open a session on the Platform under that project and you should see that the
new files are accessible in your project.

• Method 2: You can add files to your project by using the Upload button within your Jupyter session.

If you have multiple files that you want to move to an existing project, create a file archive (tar) and upload it to the
Platform. From a Python Jupyter notebook, enter the following command to unpack the file:

24 Chapter 3. Projects

DataScience.com Platform Documentation Documentation, Release 4.2.1

3.5. Best Practices: Migrating Existing Work 25

DataScience.com Platform Documentation Documentation, Release 4.2.1

!tar -xvf filename.tar

If you have compressed the file with gzip, you can unpack and decompress the file with a single command:

!tar -xjvf filename.tar.gz

3.5.3 Migrating Work That is Not in a Version-Controlled Repository

In this case, you have files in a folder either locally or in a remote environment that is not version-controlled.

3.5.4 Warnings

• Avoid copying or moving large data files in your project. If your team is using the cloud, put these files on a
shared file system such as Amazon AWS S3 or Microsoft Azure Blob. The Docker containers are of finite size
and you don’t want to version control large data files. Github, for example, has a file size limit of 100MB. Keep
your repository under 1GB in size.

3.5.5 References

• An introduction to the Git command line interface (CLI)

• An introduction to the Bitbucket command line interface (CLI)

26 Chapter 3. Projects

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://help.github.com/articles/what-is-my-disk-quota/
https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
https://bitbucket.org/zhemao/bitbucket-cli

CHAPTER 4

Environments

Every analysis on the DataScience.com Platform runs in an isolated container, much in the same way your laptop is
isolated from your teammates’ laptops. But, the key difference on the Platform is that containers are reproducible,
sharable, and can be tailored to many different workflows.

The configurable elements of services are: environments and dependencies (the software you access in your analysis),
compute resources (the RAM and CPUs available to the analysis), and environment variables (encrypted passwords
and other configuration information available at runtime).

4.1 Environments and Dependencies

4.1.1 Introduction

Environments are customized, pre-installed collections of dependencies and packages that can be created by Admins
and distributed to Users on the DataScience.com Platform.

4.1.2 Browsing Environments

4.1.2.1 List page

To learn more about what environments are available in your instance, navigate to the Environments page in the menu
bar at the top of the page. On this page, you will see all of the environments in your instance and what tools are
available for each of them. For more details, you can click on an environment card.

4.1.2.2 Details Page

On the Overview page for each environment, you can see a description, README provided by your Platform Admin,
and the list of installed dependencies. This list is searchable.

On the Build Logs tab, you can see and download the installation logs created during the building process.

27

DataScience.com Platform Documentation Documentation, Release 4.2.1

28 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

Lastly, the Dockerfile tab displays the commands that were used to create this environment.

4.1.3 Launching Environments

To run analyses or create outputs on the Platform, you can launch Docker containers to host your work. When
spawning containers, you can configure the environment that you want to run. Choose an environment from the
dropdown menu. Only environments that are available for your tool will be available to select and run.

4.1.4 Adding Additional Requirements

When configuring your container, you can specify additional requirements to install at runtime by clicking the Add
Requirements button on the action modals. Depending on the language selected, you’ll find forms for pip, R (which
runs install.packages("...")), and apt dependencies. When you include a list (in text file format) of
packages for these installers, the Platform will install them before running your code.

Warning: If you are using the Conda package manager, supplying pip dependencies via Add Requirements is not
currently supported. With Conda-based environments, avoid pip-only dependencies where possible. If this is not
an option, install the required pip dependencies during environment building.

Notice that the form above points to a text file called requirements.txt. While you can call that file anything
you want, it must be formatted as a different package name on each line. The apt-get and R installers accept
only package names and will install the latest stable version. The pip installer accepts either package name or a
version-locked name, as in the example below:

install locked version of plotly
plotly==2.0.12
install latest version of seaborn
seaborn

For pip only, the comments in the example above are valid syntax.

4.2 Environment Management

4.2.1 Introduction

Environments are customized, pre-installed collections of dependencies and packages that can be created by Admins
and distributed to Users on the DataScience.com Platform. Users require environments to be built in order to do work

4.2. Environment Management 29

DataScience.com Platform Documentation Documentation, Release 4.2.1

30 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

on the Platform. Therefore, it is critical that an Admin create environments during the installation process. Additional
environments can be built anytime thereafter.

In this guide, you will learn how to build environments on behalf of Users.

4.2.2 Background

The DataScience.com Platform uses Docker to containerize workloads on your instance. Docker containers allow
Users to spin up isolated work environments that have all of the software needed for their analysis pre-installed. A
Docker container is a running instance created from a Docker Image. Docker Images are immutable files that define
the runtime of containers. When a user runs a script or launches a Jupyter session on the Platform, they are running
a Docker Image that is stored in an internal Docker Registry. The Environments feature allows Admin users to create
their own Docker Images and submit them to the Docker Registry by writing a Dockerfile within the Platform interface.

If you are unfamiliar with Docker and Dockerfiles, check out Docker’s documentation for more details. Please also
refer to our Dockerfile Basics and Best Practices documentation for several example Dockerfiles and best practices.

4.2.3 What is an Environment?

An environment is defined by a Dockerfile and is associated with metadata such as name, description, and a README.
There are two categories of environments: Base and User.

On the DataScience.com Platform, all environments except for the Default Base environment must inherit from a pre-
existing Base environment. All Base environments can be expanded in Base and User environments that inherit from
it. On the other hand, User environments cannot be be used to seed other environments.

It is convenient to envision these relationships as an inheritance tree. Default Base is the root node of this tree.
Any Base or User environments that are subsequently built are nodes branching off of it, with User nodes always
representing leaf nodes. In this analogy, the main difference between Base and User environments is that the former
can become parent nodes while the latter can only be a child node of a Base environment (i.e., a leaf).

4.2.3.1 Base Environments

A Base environment contains many of the fundamental packages that are necessary for a DataScience.com Platform
container to run and connect to data in your Instance. There are three types of Base environments: Default, Custom,
and Hadoop-enabled.

4.2.3.1.1 The Default Base Environment

The Default Base environment initializes the tree and must be built first. This environment is provided by Data-
Science.com; it contains the software that ensures containers will spawn and function successfully on the Platform.
You cannot modify this environment’s Dockerfile, but you can extend it when you create custom or Hadoop Base
environments.

Warning: The Default Base environment cannot be edited or deleted.

4.2. Environment Management 31

DataScience.com Platform Documentation Documentation, Release 4.2.1

32 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.2.3.1.2 Customized Base Environments

Base environments can be customized to include the common languages and dependencies that you want to be readily
available across environments. Custom Base environments can be created from each other by extending with Docker-
file commands.

4.2.3.2 User Environments

A User environment is an image that is launchable in projects on the DataScience.com Platform, as they contain the
tooling that is needed for User actions (launch a Jupyter/RStudio/Zeppelin session, run/schedule a script, publish an
application, deploy an API). This is an additional place where the Dockerfile can be extended with customization.

4.2.4 How to Create Environments

4.2.4.1 Before You Begin

Prior to creating environments, please heed the following best practices to ensure a successful build:

• Do not build multiple environments (Base or User) concurrently.

• Please set up a Git repository to store Docker and context files used to build environments. This practice will not
only make iteration and troubleshooting much easier, but also will enable tracking of an environment’s history.
Add the commit number and repo URL to the description for an environment.

• Environments should not be rebuilt frequently to ensure that Platform users have consistent, standardized
workspaces. We recommend testing and updating versions of packages, languages, libraries, drivers, and tools
once a year.

• To keep the frequency of updates low, we do not recommend that you rebuild environments to add small numbers
of packages. The additional packages can be installed within an end user’s session at runtime instead.

• If you want to replace an existing environment, build the new environment first and test it fully to ensure it
performs as expected. Do this before deleting the older environment to be replaced.

• Before adding new packages to your environment, test the installation in a Jupyter, RStudio, or Zeppelin session
first. This will allow you to identify any additional dependencies that may be needed for that package.

• If you are replacing the version of Python or R that comes with the Default Base environment (e.g. you want
Python 3.6 or R 3.4.2), set up a Custom Base that has a minimal installation of the new version (few dependencies
present) and then expand upon this Custom Base with the desired dependencies (e.g. comprehensive package
list or Hadoop dependencies).

4.2.4.2 Default Base

After installation is complete, navigate to the Environments page via the Environments link in the menu bar at the top
of the page.

When you arrive on this page for the first time, you will see a button that allows you to create the first environment:
the Default Base Environment. When you click Add Environment, the build process will be kicked off.

On the next page, you will be able to see the logs from the Docker build process. This should take a few minutes to
complete. Once complete, click Confirm & Save. You can now use this as the basis for other environments and extend
it as needed.

4.2. Environment Management 33

DataScience.com Platform Documentation Documentation, Release 4.2.1

34 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

Once the Default environment is created, you can continue to customize your Base environment (recommended). At
this stage, it is a good practice to create Base environments with the languages (and their versions), package managers,
drivers, and common packages used by your organization.

4.2.4.3 Custom Base

To create a custom Base environment, click Add Environment > Base Environment on the Environments screen.

Give your new environment a name and description, and upload a README that tells your users a little more about
how to use the environment and its intended purpose. Then, select Custom Dockerfile.

Choose another Base environment that you want to extend in the FROM selection. This custom Base environment
will have all the dependencies present in the environment that it is inheriting FROM. When you are finished with this
custom Base environment, you will see it in this dropdown for future customization.

In the Dockerfile text area, enter Dockerfile commands for installation of your intended packages. Refer to our
Dockerfile Basics and Best Practices documentation for more information about how to write Dockerfiles in the
DataScience.com Platform. There are a few restrictions on the commands that you can enter in this area:

• No FROM

• No ENTRYPOINT

• No CMD

• No EXPOSE

4.2. Environment Management 35

DataScience.com Platform Documentation Documentation, Release 4.2.1

• No absolute paths

• No tool installation

In the next step, you can upload a .tar file that contains any context files that you reference in your Dockerfile. A
common context file to include in the .tar is a text file of requirements that lists all packages that will be installed.

When your new Base environment is customized to your specifications, you are ready to move on to the build step. In
this next page you can see the logs from the installation process. It’s important to check these logs for any errors or
skipped package installations. If the build does not complete to your satisfaction, click Cancel & Discard to start over.
When you are satisfied with your build, click Confirm & Save to make it available.

Your new Base Environment is now available and you can see more detailed information about it by clicking on its
listing or card in the Environments page.

4.2.4.4 Hadoop Base

In order to enable Hadoop and Spark connectivity for users on the Platform, there must be an available Hadoop-
enabled environment. To create a Hadoop Base environment, click Add Environment > Base Environment on the
Environments screen.

Give your new environment a name and description, and upload a README to inform your users about your environ-
ment and how to use it. Then, select Install Hadoop Dependencies.

Choose another Base environment that you want to extend in the FROM selection. This new Hadoop Base environment
will have all the dependencies present in the environment that it is inheriting FROM. When you are finished with this
custom Base environment, you will see it in this drop-down for future customization.

36 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.2. Environment Management 37

DataScience.com Platform Documentation Documentation, Release 4.2.1

Select your Hadoop distribution provider and version number in the drop-down form fields. Once you’ve made your
selection, you can enable the frameworks that your users require such as Spark, Hive, and Impala by selecting the
version number from the drop-downs. If you wish to disable any of these frameworks, select Disabled.

Once you have made your selection appropriately, you can kick off the build. While the environment is building,
you can see the logs to observe progress and any errors. You can cancel the build at any time by clicking Cancel &
Discard. When the build is complete, you can click Confirm & Save to make it available. When a Base environment is
available, you will be able to build other Base and User environments from it to add tools and further customizations.

4.2.4.5 Create a User Environment

To make tools available to the users of your instance, create a User environment by selecting Add Environment > User
Environment on the Environments page.

38 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

As with the Base environment, enter a name, description, and README that will help your users understand what is
included in this environment and its intended use.

As with custom Dockerfile Base environments, you can select a Base environment to extend and add additional com-
mands in the Dockerfile text area. Use the Upload TAR button to submit context files referenced in your Dockerfile.

Next you must select the tool environments that you want to build to make available to users. In general, it’s good to
build as many of these as makes sense for the packages you’ve installed. For example, if your environment contains
only Python 3 and various Python packages, it makes sense to build Jupyter, Deployed API, and Script Run but not
RStudio or Shiny for RStudio. If your environment has a mixture of both Python and R packages, it makes sense to
build all available tools. Any tools not selected at this stage can be added once the environment has been built.

Once you are satisfied with your environment’s specifications, click Next Step: Build to move on to the build step
where you can observe the installation logs and the tool building progress.

Click Cancel & Discard to start over; click Confirm & Save to make the environment available to Users. Once this is
complete, Users will be able to launch these tools within their projects. See the user documentation on Environments
and Dependencies for more information.

4.2.5 DataScience.com Standard Example Environments

During the installation process, your Admin will have built the DataScience.com Standard Example Base and User
environments. These environments have Python 2.7 and R 3.3.3.

The DataScience.com Standard Example Base environment inherits from the Default Base Environment and expands
upon it with a selection of popular Python and R data science packages that we have curated. In turn, the Data-
Science.com Standard Example User one inherits from its namesake base environment and has all the Platform tools
enabled. Please refrain from deleting or modifying these environments. They have been designed to be fully compat-
ible with all user onboarding, engagement, and education materials that we will provide. If these environments are
modified in any way, we are unable to guarantee that these materials will be able to run successfully.

4.2. Environment Management 39

DataScience.com Platform Documentation Documentation, Release 4.2.1

40 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.3 Compute Resources

Before any analysis, you’ll have the option to select your compute resource. This option specifies the RAM and CPUs
available to your analysis. For example, if you chose 16 GB/2 CPU from the Compute Resource dropdown, you’ll
have 16 GB of RAM and 2 CPUs available to your analysis.

These standard resource sizes represent available space on the servers that your admin provisioned to run the Platform.
These long-lived servers are often referred to as the “standing pool.” Since these servers are always on and ready to
accept a new analysis, you can expect your analysis to launch in a matter of seconds.

When clusters start to fill up with requests for resources, some of the compute resource options will become unavail-
able. This will be indicated by a warning icon next to that resource option. In such a scenario, you could either request
your administrator to increase the standing pool resources by adding nodes to the cluster, wait for services to end
and resources to free up, or use on-demand compute resources (if this feature is enabled for your installation). Such
on-demand compute resources are the topic of the next section.

4.3. Compute Resources 41

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.3.1 On-demand Compute Resources for VPC Installations

Warning: The following feature is applicable only to Amazon Web Services (AWS) installations.

Installations on Amazon Web Services (AWS) may take advantage of on-demand compute. In the image below, there
are a number of AWS EC2 instance sizes available. When you choose one of the on-demand options, the Platform
will create a new EC2 instance and run your analysis on it. When your analysis is finished, the Platform will destroy
the EC2 instance and you’ll only be billed (by AWS) for the time you used it.

Creating brand new EC2 instances can take several minutes to start and you will see a run status of Provisioning:
Creating followed by Provisioning: Queued while the server is being created.

4.3.2 Tag Management for On-Demand Resources

AWS allows metadata to be assigned to EC2 instances via tags. Tags are useful for resource categorization, tracking,
and management. See more information in the Amazon documentation.

The DataScience.com Platform allows users to pass in custom tags via project-level environment variables. To add a
custom tag, navigate to the Settings tab in a project and click Environment Variables in the left bar. Enter a variable
with the key ON_DEMAND_TAG. The value of this key should be a semi-colon-separated list of key-value pairs that
are separated by a comma.

As an on-demand instance is provisioned, the value tied to the project variable with the key ON_DEMAND_TAG will
be passed into the EC2 metadata tag.

Note: Amazon has a number of restrictions for tags. Consult their documentation for more information.

42 Chapter 4. Environments

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions

DataScience.com Platform Documentation Documentation, Release 4.2.1

Warning: Duplicate tags cause provisioning error

Tags with duplicate keys will be de-duplicated based on the first key that is received.

Be sure that each key in your environment variable’s value appears only once. Additionally, ensure that your admin
has not added other fixed tags with any of the same keys as your custom tags.

4.4 Using Spark on the Platform

The DataScience.com Platform includes an Apache Spark integration. Users can connect to a pre-configured remote
Spark cluster via Jupyter and RStudio.

Warning: Cloudera Spark 1.6 does not support Python 3.6.

4.4.1 Jupyter

Spark integration for Jupyter is supported via the following Sparkmagic kernels:

• Spark (Scala)

• PySpark (Python 2)

• PySpark3 (Python 3)

• SparkR (R)

DataScience.com Platform Jupyter notebooks connect to Spark using Livy, an open source REST interface for inter-
acting with Apache Spark. Livy runs in an embedded mode in our integration and connects to Spark via cluster mode.
Connecting to Spark via cluster mode means that each Spark session driver will run on the remote Spark cluster.

4.4. Using Spark on the Platform 43

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.4.2 RStudio

RStudio support uses the sparklyr or the sparkr library.

4.4.3 Zeppelin

Spark support is built into Zeppelin via the Spark interpreter. See the Zeppelin documentation on this interpreter for
more information.

Note: For workflows that expect low latency (e.g. deployed APIs or Shiny applications), we do not recommend
querying directly against your data source with Spark, as the query response times can be significant. Instead, you
could use Spark within an Interactive Session to write pre-queried data to another location for use in a deployed API
or Shiny application.

4.4.4 Spark Usage

4.4.4.1 Sparkmagic

Sparkmagic has a great introduction on usage here.

A full list of Spark configurations for Spark on YARN can be found here. These are configurable via the
%%configure Sparkmagic JSON object’s conf key/value property.

4.4.4.2 Spark in RStudio

You can find documentation on how to access Spark via the Sparklyr library from RStudio here.

Note: We recommend users launch at least a 2GB/1 CPU compute resource for Spark sessions.

4.5 Best Practices: Choosing the Right Container Size

In this article, we discuss how to allocate resources for Docker containers running on the DataScience.com Platform.
If you’re new to Docker containers, please see Docker’s documentation for a helpful overview. For the purposes of
this article, all you need to know is container resource allocation.

All DataScience.com Platform services (launching a session, running a script, scheduling a job, deploying a model,
etc.) run on containers. Containers are sandboxed environments running on your on-premise infrastructure or in the
cloud. When you launch a service on the Platform, a new container is created on one of your host machines. You can
specify the maximum amount of memory and CPU that the service is allowed to use on the host.

Though services running on the same host are isolated from each other, they all share the host’s CPU and memory. If
too many resource-intensive containers are competing on the same host, the following may occur:

• Services may slow down or error out.

• You may be unable to launch new services on the host.

44 Chapter 4. Environments

http://zeppelin.apache.org/docs/0.7.2/interpreter/spark.html
https://github.com/jupyter-incubator/sparkmagic/blob/master/examples/Spark%20Kernel.ipynb
https://spark.apache.org/docs/latest/running-on-yarn.html#spark-properties
http://spark.rstudio.com
https://docs.docker.com/

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.5.1 Strategic Resource Allocation

To avoid complications, it’s important to allocate resources for your containers strategically. You want to ensure that
your container runs with enough resources to run your code and you want to write code that requires as few resources
as possible.

To determine the CPU and memory requirements of your code, use the following profiling tools:

• memory_profiler for memory usage in Python

• psutil for CPU usage in Python

• profr, profviz and RStudio profiler for memory usage in R

• top or htop for memory and CPU usage or any script

To determine the amount of resources available in your environment, Admin users can view the DataScience.com
Platform Resources page, accessible through the avatar dropdown.

To avoid overutilizing resources:

• Schedule jobs at off-peak times.

• Terminate and close unused models and sessions.

• (If enabled) use on-demand resources when few resources are available.

4.5.2 Code Best Practices

To reduce the footprint of your code, here are some tips:

• Use out-of-core tools when working with large datasets, such as dask for Python or BigMemory for R.

• Use sparse matrices when working with sparse data.

• Use batch training when possible.

• Delete used objects and object references to enable garbage collection.

• Employ vectorization techniques whenever possible (available through libraries like pandas and NumPy).

• Make use of libraries that implement efficient data structures and algorithms and avoid manually implementing
machine learning algorithms unless necessary.

• Omit useless variables from learning algorithms and models. Use feature selection algorithms to successfully
subset your feature space.

• Generally speaking, use Python 3 instead of Python 2. Python 3 contains several optimizations over Python 2.

• Use generators when possible to avoid holding iterables in memory.

• If reusing a model, load serialized objects in lieu of retraining, or initialize models with pretrained weights.

• Cache intermediary results.

• Only import what you need. For example: in Python, if you’re just using a single function from a large library,
just import the function.

• Push numerical calculations to more efficient languages like C/C++ or FORTRAN (see Cython, Rcpp).

4.5. Best Practices: Choosing the Right Container Size 45

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.6 Best Practices: Using Dependency Files

4.6.1 What are Dependency Files?

If you are installing packages during a session (either via pip or install.packages), read this article on creating
and using dependency files.

In a nutshell, dependency files contain a list of the libraries and packages installed in a project environment. It’s
good practice to keep dependency files for each project you have, regardless of whether you are using our pre-built
dependency collections.

Dependency files are very handy when you want to re-create the environment in which you developed your model,
whether on the Platform or on your laptop. Dependency files are necessary to create the environment of your deployed
API or scheduled run. This is especially true if you install extra packages during a session.

The Platform currently supports dependency files for (i) pip (Python), (ii) R, and (iii) apt.

4.6.2 How to Create Dependency Files in a Jupyter Session

4.6.2.1 Creating a pip Dependency File in a Jupyter Python Session

The easiest way to create a complete dependency file in a Python project is to use the !pip freeze command
in a Jupyter notebook session. As you work in your Jupyter session, you will likely install packages. Run the pip
freeze command when you are ready to either close your session or deploy your model (don’t forget to Sync!). We
show the command in the snapshot below.

In the image, you can see that all packages have a == sign. This denotes the specific version of the package installed
in your environment. When you use a pip requirements file to install these libraries in a new environment, you can
always relax the constraint == by using the >=, >, <, and <= signs. Below is an example with the Python library
pandas:

pandas==0.15.2 # exact version match.
pandas>=0.15.2 # any versions of pandas greater or equal to 0.15.2
pandas # install the most recent version of 'pandas' available on `pypi <pypi.python.
→˓org/pypi>`__

46 Chapter 4. Environments

DataScience.com Platform Documentation Documentation, Release 4.2.1

You can find more on the topic of pip requirements file format in pip documentation.

4.6.2.2 Creating a Dependency File in an R Jupyter Session

In R sessions, you can get a list of the installed packages by calling installed.packages() in a notebook cell.
The snapshot below displays how you can do this within a Jupyter session. Note that for R, the Platform installer will
only accept the package names in the dependency file and will install the latest stable version.

Make sure you (i) list one package per line and (ii) do not include the version number.

4.6.2.3 Apt Dependency Files

In addition to the pip and R package managers, you can also create a dependency file for apt. Apt stands for
Advanced Package Tool and is a set of tools for managing Debian packages. (Note that the Platform runs the
Debian OS). If you want to install apt dependencies, we recommend listing these dependencies in a file called
requirements_apt.txt. You can do so directly in the Platform by opening a new text file in a Jupyter session.
For R, the apt installer will install the latest stable version of each package listed in requirements_apt.txt
file.

The format of the requirements_apt.txt file is the same as for the R package manager: (i) list one package per
line and (ii) do not include the package version.

Here’s an example of the content of a short requirements_apt.txt file:

r-base libreadline-dev gfortran

4.6. Best Practices: Using Dependency Files 47

https://pip.readthedocs.io/en/1.1/requirements.html
https://www.debian.org/

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.6.3 Using Dependency Files on the Platform

In the previous section you learned how to create dependency files. Now you will learn why you should use these
dependency files and how you can use them in your workflow.

4.6.3.1 In a Jupyter, RStudio, or Zeppelin Session

Dependency files are particularly useful when you are migrating work on the Platform. Let’s suppose you have
developed a model on your laptop and you want to move it onto the Platform. Reproducing your laptop Python
environment on the Platform is easy if you captured the dependencies via pip freeze. Just run the following
command on the Platform in a notebook cell:

!pip install -r requirements_python.txt

The packages on the Platform will match the ones you have used in your local/dev environment.

Dependency files are very useful when creating (or re-creating) an environment. In an R Session, you can also install
many packages from a requirements_r.txt file. In a Jupyter notebook cell, run the following command where
the file requirements_r.txt was created previously:

packageList <- read.csv('requirements_r.txt', header=FALSE, col.names=c('packages'))
packageList <- as.vector(packageList[,])
lapply(packageList, install.packages(packageList), character.only=T)

The same three commands can be executed within an RStudio session.

4.6.3.2 When Deploying an API

When deploying your model as a REST API, it is important that the API environment matches the one you used to
develop the model. You achieve this by using dependency files. In the snapshot below we show where to put the names
of the dependency files in the Deploy an API window.

4.6.3.3 When Scheduling a Run

The same idea applies when scheduling a run. In the snapshot below you can see where the requirements files can be
inserted.

4.6.4 General Tips and Best Practices

• Put your requirements in the top level folder of your project.

• Add the installer suffix to your dependency file names. For example: requirements_pip.txt ,
requirements_r.txt and requirements_apt.txt.

4.6.5 Additional References on Dependency Files

• pip: A thorough introduction to Python pip requirements files

• apt: Intro to apt and apt-get

48 Chapter 4. Environments

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://help.ubuntu.com/community/AptGet/Howto

DataScience.com Platform Documentation Documentation, Release 4.2.1

4.6. Best Practices: Using Dependency Files 49

DataScience.com Platform Documentation Documentation, Release 4.2.1

50 Chapter 4. Environments

CHAPTER 5

Working in a Session

Sessions combine interactive data science tools with packages and compute resources. Sessions are perfect for iterative
analytical work, such as exploratory data analysis or feature engineering. The Platform currently supports Jupyter,
RStudio, and Zeppelin.

When you launch a session, you may select from the the default set of environments created by your administrator.
You can install additional libraries once inside a session, just like you would on a regular laptop (for example, using
pip in Python). To learn more, see the Environments section.

The DataScience.com Platform currently supports three interactive session tools:

• Jupyter: Jupyter is a staple in the Python open source data community, but has kernels for R and many other
languages. For more resources, see the Project Jupyter community page.

• RStudio: RStudio is a fully-featured development environment primarily for R programmers. The Data-
Science.com Platform supports the open source version of RStudio. For more information, see their docs.

• Zeppelin: Zeppelin is an interactive notebook tool from Apache with support for multiple languages, including
Spark and SQL. For more information, see their website.

5.1 Launch a Session

To start a session, select Launch a Session from the project actions drop-down in the upper right, then configure the
following options:

• Branch: Determine the branch of your repo that you’ll work on. The files from the most recent commit on your
branch will be available in the session.

• Name: Opt whether to name the session to help you keep track of multiple concurrent sessions.

• Tool: Choose an interactive tool to use in your session: Jupyter, RStudio, or Zeppelin.

• Compute Resource: Select from a list of machine sizes specified by your Administrator.

• Environment: Choose a set of pre-installed libraries. For more on environments, see the Environments and
Dependencies page .

51

http://jupyter.org/community.html
https://support.rstudio.com/hc/en-us/categories/200035113-Documentation
http://http://zeppelin.apache.org/

DataScience.com Platform Documentation Documentation, Release 4.2.1

• Additional Requirements: Install additional dependencies at runtime from a text file. For more on additional
requirements, see the Environments and Dependencies page.

You can navigate back to a running session from your project’s Activity tab, or from the Running Resources menu
next to your avatar drop-down, shown here:

5.2 Notes on Using Zeppelin

For Zeppelin sessions, you will additionally be prompted to specify the Notes Directory. This is the directory where
all of your notebooks will be synced in your project repository. Zeppelin will automatically save your notebook
contents as a .json file in a directory with a randomly generated name. To keep your repository clean and organized,
we recommend making a dedicated directory to house all of your Zeppelin notebooks.

In a Zeppelin session, you will have access to multiple language interpreters. The following interpreters are automati-
cally installed in the DataScience.com Platform Zeppelin tool:

• Spark (includes Spark, Scala, pySpark, sparkR, SQL)

• Shell

• JDBC (includes Hive)

• Python

• HDFS

• Markdown

Warning: The Zeppelin Spark interpreter running in yarn-client mode is not supported with Cloudera and Spark
v1.6. Only local mode is supported.

52 Chapter 5. Working in a Session

DataScience.com Platform Documentation Documentation, Release 4.2.1

Warning: For Zeppelin sessions, you must use a compute resource with at least 1 GB of memory.

5.3 Sync Changes

Just like traditional Git workflows on a personal computer, sessions clone from a branch, changes are staged (automat-
ically by the Sync menu), and then you push your changes with a commit message back to the Git remote.

After you’ve made some changes to your files in a session, you can save them by syncing back to the Git repo. From
the top Platform chrome bar in your session, click the Sync Changes button.

On the Sync menu, you’ll see which files have been added, deleted, or modified. Using the checkboxes, you can select
which files you would like to sync. You can enter an optional commit message and then sync your changes back to the
Git repo.

Warning: Be mindful of file sizes. Most Git providers have size limits for files you can store. For exam-
ple, GitHub limits files to 100MB. Also, the DataScience.com Platform web app has a upload/download limit of
200MB, which affects downloading files from the Jupyter file browser.

If the file changes you’ve made don’t conflict with changes your team has made since you started your session, the
Platform will push all your files as a new commit to the active branch.

If there are conflicts, you’ll have two choices:

• Cancel: This option reverts your Git status back to the moment you hit Sync. You may keep working and
manually resolve conflicts using the Jupyter or RStudio file editors.

• Create Branch: This option creates a new branch and pushes your changes to that branch. The parent of the
branch will be the commit that was originally loaded into your Session.

5.3. Sync Changes 53

DataScience.com Platform Documentation Documentation, Release 4.2.1

54 Chapter 5. Working in a Session

DataScience.com Platform Documentation Documentation, Release 4.2.1

5.3.1 Git Commands Behind the Scenes

Below are the exact commands that run for each Sync feature.

Loading the Sync menu:

git status

Sync action:

git add .
git commit -m <message you provide>
git fetch
git merge <branch you chose when launching> --no-commit --no-ff

Cancelling a sync after a conflict:

git reset

Creating a new branch after a conflict:

git branch <name you provide>

5.4 Shut Down a Session

A session will run and consume compute resources until you stop it. To shut down a session, click the Shutdown
button in the top Platform chrome bar in your session.

Warning: You can’t recover unsaved changes from a session after shutting down. If you want to save the work
you have done, make sure to sync your files before shutting down.

5.4. Shut Down a Session 55

DataScience.com Platform Documentation Documentation, Release 4.2.1

56 Chapter 5. Working in a Session

CHAPTER 6

Data Connection Examples

This section shows some common data connections used on the Platform. We provide examples in both Python
and R (when available). This is by no means an exhaustive list and we add new examples regularly. If you’d
like to connect the DataScience.com Platform to a data source where no example is provided, please contact suc-
cess@datascience.com.

6.1 AWS Redshift

This section shows how to connect Amazon Web Services (AWS) Redshift as a data source on the Platform.

6.1.1 Python

Platform Kernels: Python 2,3
Libraries: psycopg2==2.7.1, pandas==0.20.3

We adopt the psycopg2 client library to connect to
postgresdb like redshift:
import psycopg2
import os
import pandas as pd

def RS_postgres_query(query_str, creds):
"""A sample query to validate the working of the db connection.

Parameters

query_str: string
A string which contains the query you want to run.

creds: dict

57

mailto:success@datascience.com
mailto:success@datascience.com

DataScience.com Platform Documentation Documentation, Release 4.2.1

Contains your RS/Postgres credentials. The dictionary should have
five keys : "DATABASE_NAME", "REDSHIFT_PG_PORT", "REDSHIFT_PG_PASSWORD",
"REDSHIFT_PG_USER", "REDSHIFT_HOST". Those should be stored
as environment variables (os.envion[]) on the platform.

Returns

A pandas dataframe with the results of the query.

"""
conn = psycopg2.connect(**creds)
return pd.read_sql(query_str, conn)

6.1.1.1 Usage Example

Platform Kernels: Python 2,3
Libraries: psycopg2==2.7.1, pandas==0.20.3

import psycopg2
import os
import pandas as pd
from redshift_postgres import RS_postgres_query

Put the access credentials to the database in your environment variables
into a dictionary.
creds = dict(database=os.environ['DATABASE_NAME'],

port=os.environ['REDSHIFT_PG_PORT'],
password=os.environ['REDSHIFT_PG_PASSWORD'],
user=os.environ['REDSHIFT_PG_USER'],
host=os.environ['REDSHIFT_PG_HOST'])

results_df = RS_postgres_query("""SELECT * FROM my_table""", creds)

6.1.2 R

THIS IS NOT WORKING IN JUPYTER NOTEBOOKS

options(repos=structure(c(CRAN="https://cran.cnr.berkeley.edu/")))

#install.packages("RPostgreSQL")
require("RPostgreSQL")

query_redshift <- function(conn, query){
#' Queries redshift database with specified query
#'
#' Parameters
#' ----------
#'
#' conn: connection object
#'
#' query: string

58 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

#' SQL query to run

df_postgres <- dbGetQuery(conn, query)
return(df_postgres)

}

6.1.2.1 Usage Example

main <- function(){

Make sure these are installed before running the code snippet below

Install RJava
#!sudo apt-get update
#!sudo apt-get -y install default-jre
#!sudo apt-get -y install default-jdk
#!R CMD javareconf
#!sudo apt-get -y install r-cran-rjava

Install driver for Postgres
#!sudo apt-get -y install libpq-dev

#install.packages("RPostgreSQL")
require("RPostgreSQL")

loads the PostgreSQL driver
drv <- dbDriver("PostgreSQL")

creates a connection to the postgres / redshift database
conn <- dbConnect(drv,

dbname = Sys.getenv("RS_DB"),
host = Sys.getenv("RS_HOST"),
port = Sys.getenv("RS_PORT"),
user = Sys.getenv("RS_USER"),
password = Sys.getenv("RS_PASSWORD"))

define SQL query
query = "SELECT * FROM pg_catalog.pg_tables;"

query redshift database
df_postgres = query_redshift(conn, query)
print(df_postgres)

}

6.2 AWS S3

This section shows how to connect Amazon Web Services (AWS) S3 as a data source on the Platform.

6.2. AWS S3 59

DataScience.com Platform Documentation Documentation, Release 4.2.1

6.2.1 Python

Platform Kernels: Python 2,3
Libraries: boto3==1.4.4

import boto3
import os

def s3_ls(bucket_name, path, creds):
"""List contents of an S3 bucket specified in prefix 'path'

Parameters

bucket_name: string
Name of the bucket of interest

path: string
Prefix of interest. Do not include a "/" to start.
e.g. for s3://a-bucket/folderA/ => path = "folderA/"

creds: dict
Contains your AWS S3 credentials. The dictionary should have
two keys : "S3_ACCESS_KEY" and "secret_key". Those should be stored
as environment variables (os.envion[]) on the platform.

Returns

A list of the files

"""
s3_client = boto3.client(service_name='s3',

aws_access_key_id=creds["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=creds["AWS_SECRET_ACCESS_KEY"])

if path != '' and path[-1] != '/':
path += '/'

files = []
directories = []

try:
for fname in s3_client.list_objects(Bucket=bucket_name, Prefix=path)['Contents

→˓']:

if '/' not in fname['Key'].replace(path, ''):
files.append(fname['Key'].replace(path, ''))

elif fname['Key'].replace(path, '').split('/')[0] + '/' not in
→˓directories:

directories.append(fname['Key'].replace(path, '').split('/')[0] + '/')

except KeyError:
return('Directory Not Found')

return(directories + files)

60 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

def s3_pull_file(bucket_name, filepath, local_dir, creds):
"""Pull a file (any format) from S3 into the platform environment

After the file has been pulled in,
it can be read into Python using the usual methods (e.g. open())

Parameters

bucket_name: string
Name of the bucket of interest

filepath: string
File prefix of interest. Do not include a "/" to start.
e.g. for s3://a-bucket/folderA/file.dat => filepath = "folderA/file.dat"

local_dir: string
Local path where you want to store the file.
e.g. local_dir = 'tmp_storage/file_tmp.dat'

creds: dict
Contains your AWS S3 credentials. The dictionary should have
two keys : "S3_ACCESS_KEY" and "S3_SECRET_KEY". Those should be stored
as environment variables (os.envion[]) on the platform.

"""

s3_client = boto3.client(service_name='s3',
aws_access_key_id=creds["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=creds["AWS_SECRET_ACCESS_KEY"])

local values:
local_filename = os.path.basename(local_dir)
local_dirname = os.path.dirname(local_dir)

if not os.path.exists(local_dirname):
os.makedirs(local_dirname)

Download the file
s3_client.download_file(Bucket=bucket_name, Key=filepath, Filename=local_dir)

print("Your file is now available at {}".format(local_dir))

def s3_push_file(bucket_name, local_filepath, s3_filepath, creds):
"""Push a file from the platform environment into S3

Parameters

bucket_name: string
Name of the bucket of interest

local_filepath: string
Local filepath of the file of interest (e.g. "/home/jupyter/data/filea.dat")

s3_filepath: string

6.2. AWS S3 61

DataScience.com Platform Documentation Documentation, Release 4.2.1

prefix of the file to be stored on s3 (e.g. "docs/filea.dat")

creds: dict
Contains your AWS S3 credentials. The dictionary should have
two keys : "S3_ACCESS_KEY" and "S3_SECRET_KEY". Those should be stored
as environment variables (os.envion[]) on the platform.

"""
s3_client = boto3.client(service_name='s3',

aws_access_key_id=creds["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=creds["AWS_SECRET_ACCESS_KEY"])

try:
s3_client.upload_file(local_filepath, bucket_name, s3_filepath)
print("Uploaded to " + "s3://" + bucket_name + "/" + s3_filepath)

except BaseException as e:
print("Upload error for " + local_filepath)
print(str(e))

6.2.1.1 Usage Example

Platform Kernels: Python 2,3
Libraries: boto3==1.4.4

import boto3
import os
from s3 import s3_ls, s3_pull_file, s3_push_file

Usage example:
creds = {"AWS_ACCESS_KEY_ID": os.environ["AWS_ACCESS_KEY_ID"],

"AWS_SECRET_ACCESS_KEY": os.environ["AWS_SECRET_ACCESS_KEY"]}
bucket_name = os.environ["S3_BUCKETNAME"]
home_path = os.path.expanduser('~')

List the content of bucket
list_of_files = s3_ls(bucket_name, "prefix1/", creds)

Pull A file from S3:
s3_pull_file(bucket_name, 'prefix1/README', "{0}/tmp/README".format(home_path), creds)

Push A file to S3:
s3_push_file(bucket_name, "{0}/tmp/README".format(home_path), "prefix2/README", creds)

6.2.2 R

Platform Kernels: R3
Libraries: aws.s3==0.3.3, utils=3.3.2

library('aws.s3')
library('utils')

62 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

set_S3_keys <- function(YOUR_ACCESS_KEY, YOUR_SECRET_KEY) {
#' Sets the credentials as environment variables.
#'
#' ALL aws.s3 functions will look for your keys as environment variables
#' by default
#'
#' Parameters
#' ----------
#'
#' YOUR_ACCESS_KEY: string
#' AWS S3 access key
#'
#' YOUR_SECRET_KEY: string
#' AWS S3 secret key

Sys.setenv('AWS_ACCESS_KEY_ID' = YOUR_ACCESS_KEY,
'AWS_SECRET_ACCESS_KEY' = YOUR_SECRET_KEY)

}

s3_ls <- function(bucket_name, path){
#' List contents of an S3 bucket specified in prefix 'path'
#'
#' Parameters
#' ----------
#'
#' bucket_name: string
#' Name of the bucket of interest
#'
#' path: string
#' Prefix of interest. Do not include a "/" to start.
#' e.g. for s3://a-bucket/folderA/ => path = "folderA/"
#'
#' Returns
#' -------
#'
#' A list of the files

return(get_bucket(bucket_name, prefix = path))
}

s3_import_data <- function(bucket_name, filepath, read_func=NULL){
#' Pull and import a file from S3 into memory
#'
#'
#' Parameters
#' ----------
#'
#' bucket_name: string
#' Name of the bucket of interest
#'
#' filepath: string
#' File prefix of interest. Do not include a "/" to start.
#' e.g. for s3://a-bucket/folderA/file.dat => filepath = "folderA/file.dat"
#'
#' read_func: function
#' Define the function used to import the data. Determined by object file type.
#' Example readers:
#' - writes an RData (default)

6.2. AWS S3 63

DataScience.com Platform Documentation Documentation, Release 4.2.1

#' - read.csv (csv)
#' - read.table (text)
#' - read.xls (excel)
#' - read.mtp (minitab)
#' - read.spss (spss)
#'

if (is.null(read_func)){

Save an RData object to s3
return(s3load(object = filepath, bucket = bucket_name))

} else {

Use write_func to save to s3
return(s3read_using(FUN = read_func,

object = filepath,
bucket = bucket_name))

}
}

s3_export_data <- function(data, bucket_name, filepath, write_func=NULL){
#' Push a object in memory to S3
#'
#'
#' Parameters
#' ----------
#'
#' data: object
#' Variable containing data to push to S3
#'
#' bucket_name: string
#' Name of the bucket of interest
#'
#' filepath: string
#' File prefix of interest. Do not include a "/" to start.
#' e.g. for s3://a-bucket/folderA/file.dat => filepath = "folderA/file.dat"
#'
#' read_func: function
#' Define the function used to import the data. Determined by object file type.
#' Example readers:
#' - writes an RData (default)
#' - write.csv (csv)
#' - write.table (text)

if (is.null(write_func)){

Save an RData object to s3
s3save(data, bucket = bucket_name, object = filepath)

} else {

Use write_func to save to s3
s3write_using(data,

FUN = write_func,
object = filepath,
bucket = bucket_name)

}
}

64 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

6.2.2.1 Usage Example

main <- function() {

The name of the bucket of interest:
bucket_name <- Sys.getenv("S3_BUCKETNAME")

set_S3_keys(YOUR_ACCESS_KEY = Sys.getenv("AWS_ACCESS_KEY_ID"),
YOUR_SECRET_KEY = Sys.getenv("AWS_SECRET_ACCESS_KEY"))

List the content of a bucket with a specified prefix:
s3_ls(bucket_name, path = 'prefix1/')

Importing

Pull a text file from S3:
s3_import_data(bucket_name, 'prefix1/data.txt', read_func=read.table)

Pull a csv file from S3:
s3_import_data(bucket_name, 'prefix1/data.csv', read_func=read.csv)

Pull RData file from S3:
s3_import_data(bucket_name, 'prefix1/data.RData')

Exporting

data <- "README"

Push a txt file to S3:
s3_export_data(data, bucket_name, 'prefix2/data.txt', write_func=write.table)

Push a csv file to S3
s3_export_data(data, bucket_name, 'prefix2/data.csv', write_func=write.csv)

Push a RData file to S3:
s3_export_data(data, bucket_name, 'prefix2/data.RData')

}

6.3 MySQL

This section shows how to connect MySQL as a data source on the Platform.

6.3.1 Python

Platform Kernels: Python 2,3
Libraries: sqlalchemy==1.1.11, MySQLdb==1.2.5, pandas==0.20.3

Make sure these are installed before running the code snippet below :
#!sudo apt-get -y install libmysqlclient-dev
#!pip install MySQL-python
#!pip install sqlalchemy

from sqlalchemy import create_engine

6.3. MySQL 65

DataScience.com Platform Documentation Documentation, Release 4.2.1

import MySQLdb as mdb
import pandas as pd

def pull_data_from_mysqldb(query, creds):
"""Given a SQL query and a connection object, this function
returns a pandas dataframe with the results of the query.

Parameters

query: string
SQL query of interest

creds: dict
Contains your mysql database credentials. The dictionary should have
four keys : "MYSQL_HOST", "MYSQL_USER", "MYSQL_PASSWD", "MYSQL_DB".
Those should be stored as environment variables (os.envion[])
on the platform.

Returns

a pandas dataframe with the results of the query.

"""
Establishing a connection object to the MySQL Database
conn = mdb.connect(creds['MYSQL_HOST'], creds['MYSQL_USER'],

creds['MYSQL_PASSWD'], creds['MYSQL_DB'])
return pd.read_sql(query, conn)

def insert_data_into_mysqldb(dataframe, creds, table, mode='append'):
"""Either appends, replace or fail the content of a dataframe
to a MySQL table.

Parameters

dataframe: pandas dataframe
Dataframe of interest

creds: dict
Credentials to access the MySQL database.

table: string
Table in database that you would like to modify

mode: string
Database writing. Possible values are :

- fail: if table exists, do nothing
- replace: of table exists, drop it, recreate it, and insert dat
- append: if table exists, insert data. Create table if does not exist.
see pandas.DataFrame.to_sql() for more info.

"""

66 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

Define string for creating engine
eng_str = 'mysql+mysqldb://{0}:{1}@{2}/{3}'.format(creds['MYSQL_USER'],

creds['MYSQL_PASSWD'],
creds['MYSQL_HOST'],
creds['MYSQL_DB'])

engine = create_engine(eng_str, echo=False)

dataframe.to_sql(name='{}'.format(table),
con=engine, if_exists=mode, index=False)

6.3.1.1 Usage Example

Platform Kernels: Python 2,3
Libraries: sqlalchemy==1.1.11, MySQLdb==1.2.5, pandas==0.20.3

Make sure these are installed before running the code snippet below :
#!sudo apt-get -y install libmysqlclient-dev
#!pip install MySQL-python
#!pip install sqlalchemy

from sqlalchemy import create_engine
import MySQLdb as mdb
import pandas as pd

from mysql import pull_data_from_mysqldb, insert_data_into_mysqldb

Usage Example :

Put in the credentials in a dictionary:
creds = dict(MYSQL_HOST=os.environ['MYSQL_HOST'],

MYSQL_USER=os.environ['MYSQL_USER'],
MYSQL_PASSWD=os.environ['MYSQL_PASSWD'],
MYSQL_DB=os.environ['MYSQL_DB'])

Pull data from a MySQL database:
data = pull_data_from_mysqldb("SELECT * FROM my_table", creds)

Define dataframe to append
df = pd.DataFrame({'customer_id': [1, 2, 3, 4, 5],

'height': [2, 3, 4, 5, 6]})

Push a dataframe to a MySQL database:

insert_data_into_mysqldb(df, creds, 'my_table', mode='replace')

6.3.2 R

Platform Kernels: R3
Libraries: RMySQL==0.10.13, DBI==0.6-1

Install MySQL
#!sudo apt-get -y update
#!sudo apt-get -y install libmysqlclient-dev

6.3. MySQL 67

DataScience.com Platform Documentation Documentation, Release 4.2.1

Install and import RMySQL
install.packages("RMySQL")

library(RMySQL)
RMySQL_0.10.13 DBI_0.6-1

readFromSQL <- function(conn, query) {
Read from a MySQL database and returns the results
of the query as a dataframe.
#
Args:
query: String containing the SQL query.
conn: connection object from dbConnect()
#
Returns:
dataframe with the results of the query.
#
resultsDataframe <- dbGetQuery(conn = conn, statement = query)
return(resultsDataframe)

}

writeToSQL <- function(conn, tableName, dataframe, mode='append') {
Write to a SQL database table the dataframe.
#
Args:
dataframe: dataframe you want to write to a table.
tableName: name of the table you want to write the data to.
conn: connection object from dbConnect()
mode: write mode. Values are :
- overwrite: Overwrite an existing table.
- append: Append to an exisiting table.
#
if(mode=='overwrite'){

dbWriteTable(conn = conn, name = tableName, value = dataframe, overwrite =
→˓TRUE)

} else if(mode=='append'){
dbWriteTable(conn = conn, name = tableName, value = dataframe, append = TRUE)

} else
print('Wrong choice of mode. Values are overwrite or append.')

}

6.3.2.1 Usage Example

main <- function(){

Install and import RMySQL
install.packages("RMySQL")

library(RMySQL)

Set up the connection object:
conn = dbConnect(MySQL(),

user=Sys.getenv("MYSQL_USER"),
password=Sys.getenv("MYSQL_PASSWD"),

68 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

host=Sys.getenv("MYSQL_HOST"),
dbname=Sys.getenv("MYSQL_DB"))

Read from a MySQL database table:
dataframeResults <- readFromSQL(conn, "SELECT * FROM my_table")

Write a dataframe to a MySQL database table:
writeToSQL(conn, "my_table", dataframeResults , mode='overwrite')

Close connection
dbDisconnect(conn)
}

6.4 Google BigQuery

This section shows how to connect to Google BigQuery as a data source on the Platform.

6.4.1 Python

Platform Kernels: Python 2,3
Snippet Libraries: google.cloud.bigquery==0.26.0, pandas==0.20.3

Installation/upgrade of google.cloud.bigquery :
!pip install --upgrade google-cloud-bigquery

import os
import pandas as pd
from google.cloud import bigquery
from google.cloud.bigquery import SchemaField

def pull_data_from_bigquery(query_string):
""" Pull data using Google BigQuery.

Parameters

query_string: string
Your BigQuery query string.

Returns

Pandas DataFrame with the results of the query.

Note:
Assumes the following environment variables

- GOOGLE_CLOUD_PROJECT set to the BigQuery Project ID
- GOOGLE_CLOUD_CRED_PATH set to GCloud credential JSON file

"""
More details here : https://google-cloud-python.readthedocs.io/en/latest/core/

→˓modules.html

6.4. Google BigQuery 69

DataScience.com Platform Documentation Documentation, Release 4.2.1

client = bigquery.Client.from_service_account_json(os.environ['GOOGLE_CLOUD_CRED_
→˓PATH'])

query = bigquery.query.QueryResults(query_string, client)
query.run()
assert query.complete, 'Query not completed'
dat = query.fetch_data()
df = pd.DataFrame(dat.query_result.rows,

columns=[x.name for x in dat.query_result.schema])

return df

6.4.1.1 Usage Example

from bigquery import pull_data_from_bigquery

Usage example:

In your environment file:
export GOOGLE_CLOUD_PROJECT='your-project-id'
export GOOGLE_CLOUD_CRED_PATH='path/to/credentials/file.json'

query = """SELECT year, month, day, weight_pounds
FROM [publicdata:samples.natality]
LIMIT 5"""

results = pull_data_from_bigquery(query)

6.4.2 R

RUN this in ** RStudio **

Platform Kernels: RStudio
Snippet Libraries: bigrquery==0.3.0, dplyr==0.5.0
#
For more details on bigrquery, go to :
https://github.com/rstats-db/bigrquery

install the libraries :
install.packages("dplyr")
install.packages("bigrquery")
install.packages('httpuv')

library("bigrquery")

queryBigQuery <- function(project, queryString) {
Query BigQuery and returns the results of the query
as a data.frame.
#
Args:
project: project ID
queryString: BigQuery query string
#
Returns:
dataframe of the query results.

70 Chapter 6. Data Connection Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

#
queryResults <- query_exec(queryString, project=project)

return(queryResults)
}

6.4.2.1 Usage Example

main <- function(){
Usage Example:

library("bigrquery")

Authenticate based on JSON token
set_service_token(Sys.getenv('GOOGLE_CLOUD_CRED_PATH'))

Use your project ID here
project <- Sys.getenv('GOOGLE_CLOUD_PROJECT') # put your project ID here

Querying BigQuery's public datasets :
queryString <- "SELECT year, month, day, weight_pounds FROM [publicdata:samples.
→˓natality] LIMIT 5"

queryResults <- queryBigQuery(project, queryString)
}

6.5 SAP-HANA

Yes, you can freely query SAP HANA. You can use HANA Studio as well as the Python ODBC bridge to access
SAP HANA data within our Platform. You may also query SAP HANA data using R or Scala. These connection
methods, packages, and resources can be built into a standardized, reusable environment making HANA data access
quick, simple, and reliable.

6.5. SAP-HANA 71

DataScience.com Platform Documentation Documentation, Release 4.2.1

72 Chapter 6. Data Connection Examples

CHAPTER 7

Scripts and Scheduled Runs

Like other features on the Platform (Sessions, APIs, etc.), you can run scripts in isolated containers with dedicated
server resources. The Runs and Scheduled Runs features let you execute code, view logs, and collect outputs.

Warning: Spark scripts and scheduled runs are not supported in Platform version 5.0.

7.1 Run a Script

There are two ways to run a script. You can either navigate to a file’s preview page and click the Run button in the
top right, or use the Run a Script option in the Actions menu. Select the script to run by typing the path to the file and
use the autocomplete feature. Configure the script run by choosing hardware size, language, environment, and a repo
branch.

You can check the status of your run in the Run Details page. This can be reached by clicking on the run from the
Activity tab of the project.

7.2 The Run Details Page

The Run Details page shows the configuration of the container that ran the script, as well as the process’s Standard
Out and Standard Error. Standard Out will display anything that was printed by the script to stdout. Standard Error
shows anything printed by the script to stderr.

7.3 Schedule a Run

You can schedule scripts to run at regular intervals. To schedule a script, pick the Schedule a Run option from the
Actions menu and select the file you wish to schedule. You’ll find the same environment configuration options here,
with the addition of the schedule timing.

73

DataScience.com Platform Documentation Documentation, Release 4.2.1

74 Chapter 7. Scripts and Scheduled Runs

DataScience.com Platform Documentation Documentation, Release 4.2.1

To specify how often the script should run, you can choose from a set of standard options (hourly, daily, weekly,
monthly) or specify a custom schedule.

7.3.1 Custom Schedules

Aside from the Hourly, Daily, Weekly, and Monthly options, you can define a custom cron syntax schedule.

The custom schedule syntax can have five or six arguments separated by spaces. Each argument corresponds to the
following:

• Seconds (optional): 0-59 (e.g., 10 would run 10 seconds after the start of a minute)

• Minutes: 0-59

• Hours: 0-23

• Day of Month: 1-31

• Months: 0-11 (note that January is 0)

• Day of Week: 0-6 (note that Sunday is 0)

Leaving out seconds will default to running at 0 seconds. You can also replace any of the arguments with *, which
means run no matter what the value is. For example, 30 15 10 5 1 * will run at 10:15 am and 30 seconds, on
February 5th, no matter what day of the week.

You can also use commas to specify lists of values, dashes to specify ranges, and slashes to specify increments. See
below for more examples or check the official documentation on node-cron.

• 30 15 10 5 1 * - Run at 10:15:30 am on February 5th, no matter what day of the week

• 30 15 10 5 1 2 - Run at 10:15:30 am on February 5th, but only if it is a Tuesday

• 0 0 * 0-3 6 - Run at midnight on every Saturday in January through April

• 0 0 * 2,4 6 - Run at midnight on every Saturday in March and July

7.3. Schedule a Run 75

https://github.com/kelektiv/node-cron

DataScience.com Platform Documentation Documentation, Release 4.2.1

• 0 */30 15 * * - Run every 30 minutes on the 15th of every month, no matter what day of the week

7.4 Schedule Details Page

You can reach a job’s Schedule Details page from the Activity feed. This page shows you all past runs (with links
to the Run Details pages), and lets you edit the frequency of the job. To edit anything other than the frequency (e.g.,
the hardware for the container), you need to create a new job. You may also stop all future runs for the job from the
Schedule Details page.

76 Chapter 7. Scripts and Scheduled Runs

CHAPTER 8

Reports

Reports make sharing results easy and let you avoid copy/pasting charts into emails or slides. With a single click, you
can present your text, code, and charts from notebooks and then easily share with others in your company by sending
them a link.

8.1 Publish a Report

You can publish the following file types as a Report:

• .ipynb

• .md

• .html (e.g. from RStudio’s knit function)

There are two ways to publish a Report:

1.) From a file preview page for the file you wish to publish, click the Publish button above the file content.

2.) Use the Publish a Report option in the quick actions dropdown. On the publishing menu displayed,
fill in the path of your file, select Create a New Report option and give the Report a title and description.

8.1.1 Run and Publish a Report

You can also run a notebook and publish it as a Report in one step. On the Publish Report screen, select the Run and
Publish radio button option. Two additional drop-down boxes for selecting compute resources and environment will
appear.

Select the resource size and environment for running the notebook and click Publish. This will create an instance of
the selected size and environment and run the notebook.

Your Report will now be visible under project Outputs:

77

DataScience.com Platform Documentation Documentation, Release 4.2.1

78 Chapter 8. Reports

DataScience.com Platform Documentation Documentation, Release 4.2.1

8.1.2 Preparing an .rmd (R Markdown) File for Publishing

R Markdown files only save their outputs (like charts and tables) in a running RStudio session rather than saving
outputs to the .rmd file. To publish an R Markdown document as a Report on the Platform, first convert it to an HTML
document inside your RStudio session.

From RStudio, run the R Markdown file from top to bottom, loading all the charts, tables, or other outputs into the
view. You can then either use the “Knit to HTML” button in the .rmd window header or, in the RStudio console, run
the following command:

rmarkdown::render('my-analysis.Rmd')

At minimum, the header of the R Markdown should set the output type as HTML. Here’s an example header:

title: "My Analysis"
output: html_document

Sync the resulting HTML file to the project’s repository. Then, from the Files tab or the quick actions drop-down,
publish the HTML file as a Report.

To control whether your audience sees the code for each cell of an R Markdown document, use the echo option, as
shown in the R Markdown documentation. For example, to prevent code from making it into the Report, structure
your code cells like this:

Here's where my analysis gets interesting.

'''{r echo=FALSE}
plot(some_data)
'''

8.1. Publish a Report 79

http://rmarkdown.rstudio.com/authoring_rcodechunks.html

DataScience.com Platform Documentation Documentation, Release 4.2.1

8.2 View and Manage a Report

Visit your Report from the project Outputs page. On the Report page, you can remove a Report with the Delete button,
located above the Report content.

Before sharing a link to a Report with teammates, first make sure they’re a member of the project. The View permission
level is appropriate for teammates who are visiting a project just to review your Reports.

8.3 Report Versions

Report versions allow you to make changes to an existing report. Instead of creating a whole new report, you can
choose to simply bump up the version number of that report. This is particularly useful when data is being updated
and you want to re-run the notebook and update the charts.

When looking at the Report itself, you can see the version list in the Version menu on the left. Here you can switch
between different Report versions. You can also publish a new version of the Report by clicking on Publish New
Version. There are two ways to create a new version of a Report, discussed in more detail in the following sections.

8.3.1 Publishing a New Version from Within a Report

Exemplified in the preceding snapshot, the first way to create a new version of a Report is to go in the Report itself
and click New Report Version. As a result, the following window will appear:

Double check the branch and commit ID. Make sure they are the ones you want to capture in your new Report version.
If you go back to the Report, you should see that Version 2 is the one being used.

80 Chapter 8. Reports

DataScience.com Platform Documentation Documentation, Release 4.2.1

8.3.2 Publishing a New Version from the Action Button

You can also use the action button to add a version to an existing Report. Choose the Publish a Report option. Within
that window, choose your branch and select the option stating “Add a version to an existing report.” Write the path of
your notebook and enter the name of your Report. After clicking Publish, a new version of your Report will appear.

8.4 Delete a Version

You can also delete a version of your Report. In your Report, choose the version you want to delete from the menu
on the left and click Delete Version on the upper right corner of the Report version. A box confirming the choice will
appear:

To delete all versions of the Report, choose More Options from the menu on the left and then click the Delete button.
This will delete all versions of the Report and the Report itself.

8.4. Delete a Version 81

DataScience.com Platform Documentation Documentation, Release 4.2.1

82 Chapter 8. Reports

DataScience.com Platform Documentation Documentation, Release 4.2.1

8.4. Delete a Version 83

DataScience.com Platform Documentation Documentation, Release 4.2.1

84 Chapter 8. Reports

CHAPTER 9

R Shiny Dashboards

Shiny by RStudio is a framework for turning R code into interactive dashboards. On the DataScience.com Platform,
Shiny dashboards are deployed in dedicated containers and are accessible through a project’s Outputs page.

9.1 Publish a dashboard

To publish a Shiny Application, select Publish a Shiny App from the actions menu in the upper right of the page and
enter the following information to complete configuration:

• Name and description: Enter your app’s name (limit 55 characters) and description (limit 140 characters).
These will be displayed on the project’s Output page to help users find your app.

• Branch and App Path: See Running a Directory below for more information.

• Compute Resource: Select the size of the hardware where your app will be hosted.

• Environment and Additional Requirements: Determine the environment and any additional dependencies
that are needed for your app to run.

• Commit message: Enter a short message to help identify this version of the app.

9.1.1 Running a Directory

Shiny dashboards are served out of a directory in your project that contains all the files the dashboard needs to run.

To deploy a Shiny dashboard, specify a folder in your project with all of your Shiny app code, including the dashboard’s
entry-point file. Use the convention app.R for this entry-point file, which is where the core logic of the app lives.
You may use a single entry-point file to build your dashboard or break it out into modules.

Warning: You must specify a directory, not a .R file when publishing a Shiny dashboard. Your dashboard won’t
have access to any files or folders higher in the project tree than the one you specified when publishing.

85

https://shiny.rstudio.com/articles/modules.html

DataScience.com Platform Documentation Documentation, Release 4.2.1

You can publish a new version of an existing dashboard by visiting that dashboard’s page on the Outputs tab, then
clicking the New App Version button on left menu panel. In this form, you can enter a new directory for your app code
and include a message to let teammates know what changed.

9.2 View and manage a dashboard

Shiny dashboards are viewable through the project Outputs tab. From this page, you can browse, publish, and delete
versions of a dashboard. To share a dashboard in full-screen mode, use the Open in a new tab option above the
dashboard content.

86 Chapter 9. R Shiny Dashboards

DataScience.com Platform Documentation Documentation, Release 4.2.1

To share a link to a Shiny dashboard with a teammate, first invite them to the project.

You can find the deployed status of a dashboard under the versions menu on the left panel. Your dashboard is healthy
when its status, shown just below the dasboard, is In Progress: Running. If your application code has errors,
the version status will change to In Progress: Error.

You can delete versions of your dashboard by selecting More Options on the left panel and clicking on the Delete
button. Deleting the last version of a dashboard deletes the entire dashboard page.

9.2. View and manage a dashboard 87

DataScience.com Platform Documentation Documentation, Release 4.2.1

88 Chapter 9. R Shiny Dashboards

CHAPTER 10

Deploy APIs

The Model APIs feature let you you turn Python and R models into API endpoints that can be called by any app or
service that can make web requests. APIs open up your models to real-time, integrated use cases. For example, a
Model API could power a customer-facing app or back an internal dashboard at your company.

10.1 Overview

10.1.1 Deploy an API

Warning: Deploying Spark models as APIs is not currently supported in Platform version 5.0.

When you deploy an API, a dedicated service is created with your project code and dependencies, and you specify the
script and function that powers the endpoint. Your model will accept JSON object payloads as inputs; those values
are passed to your function, and then the results are returned back to the requestor. For example, if you deployed this
function:

def addXY(x, y):
return x + y

then calling the API with {'x':2,'y':3} will return 5.

To deploy a model API, select Deploy an API from the actions menu in the upper right-hand corner below your avatar.
Enter the following information to complete configuration:

• Name and description: Enter your API’s name (limit 55 characters) and description (limit 140 characters).
These will be displayed on the project’s Output page to help users find your API.

• Branch: Indicate the branch of your repo that will be loaded into the deployed API’s container. The entire repo
will be loaded into the container, not just the file to be deployed.

• Model path: Enter the name of the file that contains the function to be deployed.

89

DataScience.com Platform Documentation Documentation, Release 4.2.1

• Language: Select the language that the model is written in.

• Compute Resource: Choose the size of the hardware where your API will be deployed.

• Environment and Additional Requirements: Determine the environment and any additional dependencies
that are needed for your model to run.

• The function: Fill in the specific function (which must be in the file you chose above) that you wish to deploy.
This function will take inputs from each incoming API request.

• Example data: Once your API is deployed, it will have an API page where users can view information about it.
That page includes a section for trying sample data and seeing what the API would return with those inputs. If
you supply example data in this step, it will be populated in the sample data section of your API page by default.
Your sample data must be a valid JSON object.

• Commit message: A short message to help identify this version of the API.

Warning: When you deploy a script, the file must be in the root of the project. Deploying files in sub-folders is
currently not supported.

Warning: Per good engineering practices, ensure there are no spaces in your file or folder names.

Warning: Your function’s output is converted to JSON, so only data types and structures that can be “JSONified”
may be returned. Complex data structures like NumPy arrays should be converted to lists using the my_array.
tolist() function. In addition, NumPy data types such as numpy.float64 and others should be con-

90 Chapter 10. Deploy APIs

DataScience.com Platform Documentation Documentation, Release 4.2.1

verted to the native Python equivalents. For example, convert a NumPy float to a Python native type with
float(my_numpy_float).

10.1.2 Call an API

Once you have deployed an API, you can see information about it on its API page (in the project Outputs tab). On this
page, you can run a sample call or find snippets for testing the API endpoint from your own code.

Copy/paste one of the cURL, node.js, or Python snippets your own code or command line to call the model.

In the code snippets, you’ll find an API access token, which acts as a limited-access password to your endpoint. Share
this token only with those you wish to call your API.

10.1.3 Manage an API

From the API page you can undeploy API versions. This action will shut down the container running the model. You
can re-deploy later, which will re-create the container.

You may delete an API version, which shuts down the container and deletes the API image from the Platform’s
database. You may not undo a delete, but you may redeploy the same code after deleting a version.

To delete all versions of a Model API, visit the More Options tab on the API page.

10.1. Overview 91

DataScience.com Platform Documentation Documentation, Release 4.2.1

10.2 Best Practices: Deploying an API

Deploying a function or model as an API can help encapsulate data science work and expose it to other team members
and applications. APIs can be used to do the following:

• Provide predictions as a microservice to a larger application.

• Provide inputs to visualization software like Tableau or Bokeh.

• Serve as a means of sharing your model with other analysts and data scientists.

This guide provides best practices for deploying APIs on the DataScience.com Platform.

10.2.1 Building the API Script

10.2.1.1 The Deploy Timeout

When you a deploy an API in the Platform, the following actions occur:

• A container is provisioned with the set specifications.

• The source files are included on the container.

• All dependencies indicated in requirements files will be installed via pip, install.packages, and
apt-get.

• A webserver will be launched on the container.

• A number of workers or processes will be launched.

• Each of the workers will execute your script.

The web server uses a parameter called a timeout, which is set to 30 seconds. Any worker that is unresponsive for a
period longer than the timeout is shut down. Thus, if the code in the API function takes longer than the timeout, the
API will fail. Currently, the timeout cannot be configured. Before deploying your API, you can try running the script

92 Chapter 10. Deploy APIs

DataScience.com Platform Documentation Documentation, Release 4.2.1

in a Platform Session to determine whether your code takes too long to execute. We recommend that the API function
be as fast and lightweight as possible to minimize API response times.

10.2.1.2 Pickling vs. Training

You can include a model in your deploy script either by training a model in the script or by loading a serialized, pre-
trained model. We generally recommend that you load serialized models in the model script rather than train a model.
Loading a serialized model will result in faster build times and help avoid timeout issues.

For introductions to serializing data (pickling), see these articles written for Python and R.

Training a model within a deploy script:

In Python:

model = RandomForestClassifier()
model.fit(X, y)

def my_predict(data):
return {'predictions': model.predict(data)}

In R:

model <- lm(‘y ~ x’, df)

my_predict <- function(data){
return(model, data)
}

Loading a serialized model within a deploy script:

In Python:

import pickle

with open(model_path) as model_file:
model = pickle.load(model_file)

def predict(data):
return {'predictions': model.predict(data)}

In R:

model <- readRDS(model_path)
my_predict <- function(data){

return(model, data)
}

Pickled models can either be stored as part of the project repository, and therefore tied to version control, or can be
stored in a remote file storage system like Amazon S3.

Some users prefer to keep the training process in the deploy script to promote reproducibility and transparency. The
tradeoff to this is slower deployment.

10.2.1.3 Choosing a Response Type for a Deployed API

Once your model is deployed, every result it returns is converted to JSON before being sent over HTTP to the client.
Anything the model returns must be a data structure that can be converted to JSON. Responses should be limited to

10.2. Best Practices: Deploying an API 93

http://www.diveintopython3.net/serializing.html
http://www.fromthebottomoftheheap.net/2012/04/01/saving-and-loading-r-objects/

DataScience.com Platform Documentation Documentation, Release 4.2.1

combinations of strings, floats, integers, lists, or dictionaries.

For examples of how to transform common data structures into acceptable formats, see the table below. The leftmost
column represents a given data structure in a particular language. The middle column represents how to transform the
data structure to be JSON-friendly. “N/A” denotes that there is not an obvious means of conversion. “OK” denotes
the data structure does not need to be transformed.

Original Structure JSON-Friendly Transformation Language
dict OK Python
numpy.ndarray x.tolist() Python
list OK Python
str OK Python
pandas.Series x.to_dict() Python
pandas.DataFrame x.to_dict() Python
list as.matrix(as.data.frame(x)) R
data.frame as.matrix(x) R
character OK R
double OK R
matrix OK R

10.2.2 Deploying the API

10.2.2.1 Document Your Model or Function with a README

Documentation can help ensure that stakeholders and model consumers understand your model. Some things you may
want to record include:

• Request signatures: Provide examples of what types of requests are valid. Describe the potential source(s) of
the requested data.

• Response signatures: Provide examples of what the API returns so consumers know how to integrate results into
their applications.

• A description of the model: As you and your organization accumulate more APIs, it will become difficult to
recall the mechanics and details of every API. Including comments and metadata about training data, algorithms,
hyperparameters, training time, etc. will help expedite onboarding, enable other team members to understand
previous work, and make it easier to diagnose and improve the model in the future.

• A latency estimate: If other team members are going to be calling your model, it may be helpful to indicate how
long your model takes to return responses. This will help ensure that model consumers can evaluate whether the
model is fast enough for their application.

• Release notes: Any time the model is updated, either by retraining it, changing the request/response signatures,
or changing the source code/choice of algorithm(s), it is important to update the documentation with details of
the change. This will help avoid unintended errors and make it easier to revert to earlier versions if a rollback is
needed.

10.2.3 Submitting Requests to Your API

To submit a request to your API, you’ll need the API URL and its cookie string. You can find this data in the Versions
tab of your model, under the API Endpoint header, as shown below:

Below are examples of how to call your model API from R and Python.

94 Chapter 10. Deploy APIs

DataScience.com Platform Documentation Documentation, Release 4.2.1

10.2. Best Practices: Deploying an API 95

DataScience.com Platform Documentation Documentation, Release 4.2.1

Pass in a URL, a request body, specify the encoding, ignore SSL certs, and provide a cookie. Dictionaries are great
data types to use for the body as part of the request. The keys of the dictionary will be taken as the names of the
arguments of the deployed function.

In Python:

import requests

url = 'https://myenv.datascience.com/deploy/mymodel/'
cookies = {
'datascience-platform': 'my-cookie'
}
body = {
'data':data.tolist()
}
predict = requests.post(url,

cookies=cookies,
verify=False,
json=body)

In R:

library('httr')
body <- list(data=mydata)
request <- POST(url,

body = body,
encode = 'json',
config = config(ssl_verifypeer = 0L),
set_cookies("datascience-platform" = cookie_string)

)

10.2.3.1 Send More Records and Fewer Requests

If you are deploying an API to score requests, you can decrease the overall latency by sending more individual records
per request. Concretely:

requests.post(url, cookie=cookie, verify=False, json = [user_1, user2])

will typically outperform

requests.post(url, cookie=cookie, verify=False, json = [user_1])
requests.post(url, cookie=cookie, verify=False, json = [user_2])

This is subject to the memory limits of the container executing the deployed API.

10.2.3.2 Run APIs on Larger Containers to Improve Response Times

If your deployed API is resource-intensive and the container running the API is undersized, API latency will increase.
Besides working on reducing the resource load of your API, try deploying it on a container with larger resources. See
our article on allocating resources for containers for details.

10.2.3.3 Use Resource Pool over On-Demand for Faster Builds

If your organization’s environment supports on-demand containers, note that building on-demand containers requires
the additional step of provisioning resources, which can take several extra minutes. To avoid longer builds, run APIs

96 Chapter 10. Deploy APIs

DataScience.com Platform Documentation Documentation, Release 4.2.1

on your shared resource pool. This is particularly useful when prototyping.

10.2.3.4 Prototyping to Production: Developing Internal Standards

If your model or function is being consumed by other team members and/or applications, it’s important to note the
following best practices. Best practices for different teams and use cases will vary, but ideally everyone on a team
follows a common set of guidelines. These may include:

• Coding style guides, comments, and design patterns:

– To improve its readability, your code should be written clearly, be well-commented, and follow coherent
design patterns. See Google’s R style guide and PEP 8 for examples.

• Documentation:

– Documentation can help others understand the context of your work and provide instructions on how to use
it. Undocumented projects or models may fall into disuse after the original developer has left the project.

• Continuous Integration and Unit Testing:

– These processes can help ensure that your model or function is working as expected at all times for all
team members and applications. If you update the source code of your function, having an automated test
suite can help avoid unexpectedly breaking other applications.

• Profiling and Optimization:

– If others are consuming your API, it’s important to set an acceptable latency. You want to ensure that
expectations around latency are aligned. If you fall below this level, using memory and/or execution time
profilers can help identify bottlenecks so you can address them.

10.2.4 Dependencies

Whether deploying models in Python or in R, it is preferable to have installations captured in requirements files rather
than installing them directly in the model script. Once the deploy workers are built, the Platform will determine that
an unresponsive worker is dead after a period of time and will kill the worker. Installations, especially those made
using source files from the internet, do not take a defined amount of time so timeouts can occur if installations are part
of the worker runtime.

10.2.4.1 Python Libraries

You can list any packages your API requires in a requirements-py.txt file, and reference this file in the Deploy
Configuration page. These packages will be installed from PyPI as part of the build process once you deploy your
model. For details on Python requirements files, see the pip user guide.

10.2.4.2 R Libraries

List any R dependencies in a requirements-r.txt file. These packages must exist within the CRAN repository.
Note that package versions cannot be specified in R requirements files; when a package is specified, the latest stable
release will be installed. If you need to specify a version, you’ll need to install the package within the API script itself.

10.2.4.3 APT

Sometimes, especially when using certain R libraries, you will need dependencies on the Debian box running
your model. These packages can be installed via apt-get install. Apt dependencies can be listed in a
requirements-apt.txt file.

10.2. Best Practices: Deploying an API 97

https://google.github.io/styleguide/Rguide.xml
https://www.python.org/dev/peps/pep-0008/
https://pip.pypa.io/en/stable/user_guide/

DataScience.com Platform Documentation Documentation, Release 4.2.1

10.2.5 Examples

Below are examples of scripts you could deploy (the model) and scripts you could use to call the deployed model (the
client).

10.2.5.1 Model

In Python:

import numpy as np
from sklearn.linear_model import LinearRegression

dim = 3
N = 100
X = np.random.normal(0, 1, size = (N, dim))
beta = np.random.normal(0, 1, size = dim)
err = np.random.normal(0, 1, size = N)
y = np.dot(X, beta) + err
model = LinearRegression().fit(X, y)

def predict(data):
"""Function to be deployed"""
return model.predict(data).tolist()

In R:

dim <- 3
N <- 1000
beta <- rnorm(dim, mean = 0, sd = 1)
err <- rnorm(N, mean = 0, sd = 1)
X <- as.matrix(replicate(dim, rnorm(N, mean = 0, sd = 1)))
y <- as.matrix(X %*% cbind(beta) + err)

colnames(X) <- c('x1', 'x2', 'x3')
colnames(y) <- c('prediction')

df <- data.frame(cbind(X, y))

model <- lm("y ~ x1 + x2 + x3", df)

predictor <- function(data){
return(predict(model, data))

}

10.2.5.2 Client

In Python:

import requests
from functools import partial

cookies = { 'datascience-platform': 'my-cookie'}
url = 'https://myenv.datascience.com/deploy/mymodel/'
predict = partial(requests.post, url, cookies=cookies, verify=False)

def encode(data):

98 Chapter 10. Deploy APIs

DataScience.com Platform Documentation Documentation, Release 4.2.1

return {'data':data.tolist()}

x1 = np.random.normal(0, 1, size = (1, 3))

predict(json=encode(x1))

In R:

library('httr')
url <- 'https://myenv.datascience.com/deploy/mymodel/'
cookie_string <- 'my-cookie'
set_cookies("datascience-platform" = cookie_string)

encode <- function(data){
return(list(data=data))

}

predictor <- function(data){
response <- POST(url,

body = encode(data),
encode = 'json',
config = config(ssl_verifypeer = 0L))

return(content(response))
}

x1 <- as.matrix(replicate(3, rnorm(1, mean = 0, sd = 1)))

predictor(x1)

10.2. Best Practices: Deploying an API 99

DataScience.com Platform Documentation Documentation, Release 4.2.1

100 Chapter 10. Deploy APIs

CHAPTER 11

Appendix

Within this appendix, there is additional information related to articles in the For Users section of these docs. These
supplementary articles are intended to provide further insights and direction beyond basic User actions.

11.1 Dockerfile Basics and Best Practices

In this section, you will learn how to create custom Docker images for your team of data scientists.

In order to build Docker images that contain the tools and dependencies your team needs, you need to write instructions
in a Dockerfile, which is a text file that contains all the commands (in order) that need to be run to build the desired
image. If you are not familiar with Dockerfile, we recommend reading this Docker tutorial.

Prior to beginning, please review the following best practices and warnings for building environments on the Platform
with Dockerfiles.

11.1.1 Best Practices

• If you reference context files in your instructions, use relative paths, not absolute paths.

• Conda and R don’t play well together. If you intend to have R and Python cross dependencies, avoid using
Conda. Instead, install Python, R, and their respective libraries via pip, R and apt-get commands.

• Make sure that your Python and R interpreters are in your PATH. The version that is in your PATH will be
executed. If you have installed multiple versions of the Python interpreter (e.g. Python 2.7, Python 3.6), make
sure you activate the right one in your PATH. The same goes for R.

• We recommend having separate environments for Python 2 and 3.

• Take advantage of image “inheritance”. Build base images that could be used for other Base or User environ-
ments. Avoid creating images with very intricate sets of dependencies by breaking them into smaller images.
This will help with debugging.

• Review the build logs very carefully. Sometimes installation errors will occur, yet the image build could still be
successful.

101

https://docs.docker.com/engine/reference/builder/#format

DataScience.com Platform Documentation Documentation, Release 4.2.1

• Version lock packages and libraries via ==x.x.x whenever possible. This will maximize reproducibility and
consistency.

11.1.2 Dockerfile Basics

This section outlines the basics of writing Dockerfiles. For those who are already familiar with Dockerfile, you may
skip this section and proceed to the next one.

Below is a description of all Dockerfile instructions currently supported for Base and User environments.

Warning: Each time a Dockerfile instruction is executed, it creates a layer. At present, a maximum of 127 layers
is allowed. You can minimize the number of layers by chaining shell commands and specifying dependencies
using requirements files (see the following sections).

11.1.2.1 Dockerfile Supported Instructions

11.1.2.1.1 RUN Command

The RUN command executes shell commands (/bin/sh -c by default on Linux systems). Here’s one example
installing the Python package gensim using the package manager Conda:

RUN conda install --yes -n python3 gensim

You can chain shell commands within RUN by adding && between each command. Use && \ to start a new line. For
example:

RUN conda install --yes -n python3 gensim && conda install --yes -n python2 gensim

OR

RUN conda install --yes -n python3 gensim && \
conda install --yes -n python2 gensim

You can run a variety of commands mostly related to package managers (pip, conda, apt) or others like wget or
curl.

Warning: If you are using the Conda package manager, avoid creating a Conda environment. Instead, update the
root environment with whatever dependencies you want to install.

As an example to the above warning, it would be best practice to run this: RUN conda env update -n root
--file environment.yml and avoid this: RUN conda env create -f environment.yml

11.1.2.1.2 SHELL Instruction

You can change the default shell using the SHELL command. This changes all subsequent RUN commands. Simply
add the following in your Dockerfile:

SHELL ["/bin/bash", "-c"]

This is an example where the bourne shell (bash) is used instead of the default.

102 Chapter 11. Appendix

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.1.2.1.3 COPY Instruction

The COPY instruction is implicit in the Upload TAR button. After selecting a local tarball file, the tarball is exploded
and all files will implicitly COPY to the Docker image. You do not need manually run COPY. All these supporting files
will be available for you to use in Dockerfile instructions. For example, the following line would use a .yml file from
the uploaded tarball:

RUN conda env update -n root --file environment.yml

11.1.2.1.4 ADD Instruction

The ADD instruction is similar to the COPY instruction. All files included in the tarball automatically COPY to the
Docker image with the Upload TAR button.

11.1.2.1.5 ENV Instruction

The ENV instruction allows you to set environment variables in the Docker image. For example:

ENV my_variable itsvalue
ENV my_variable="itsvalue"

11.1.2.2 Instructions Not Allowed

11.1.2.2.1 ARG Instruction

The ARG instruction is not allowed.

11.1.2.2.2 FROM Instruction

Although the FROM instruction is not allowed, it is generated implicitly when you select a base image to inherit from.
Thus, every Dockerfile on the Platform actually starts with a FROM statement. To make it easier to trace the lineage of
your environments, you can use comments to indicate the parent Base environment.

For example:

this is a dockerfile
FROM Default Base Environment

11.1.2.2.3 CMD Instruction

The CMD instruction is not allowed.

11.1.2.2.4 ENTRYPOINT Instruction

We do not allow custom ENTRYPOINT instructions at the present time.

11.1. Dockerfile Basics and Best Practices 103

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.1.2.2.5 EXPOSE Instruction

The EXPOSE instruction is not allowed for either Base or User environments.

11.1.2.2.6 VOLUME Instruction

We do not allow VOLUME instructions at the present time.

11.1.3 Context Files

When building environments, you may need to reference other files in your Dockerfile. Commonly, these files will
contain lists of dependencies that you want to add to your environment. You can supply these context files in a tarball
at build time using the Upload TAR button, which is located below the Enter Dockerfile field. During the environment
build process this tarball will be decompressed, thus exposing to Docker the context files it contained.

For example, you may want to specify a set of pip packages and CRAN libraries to install. You could create
requirements.txt for the former and cran.txt and install.R for the latter; in all cases, these filenames
are examples and can be modified. You then compress these files into a tarball, upload to the environments build page,
and reference them in your Dockerfile as follows:

Install python packages
RUN pip install -r requirements.txt

Install r packages from text file
cat cran.txt | awk '{system("/usr/bin/Rscript ./install.r "$1)}'

11.1.4 Putting It All Together

This section contains a few examples of Dockerfiles you can use in your workflow. The example starts with a base
image that installs the package manager Conda. This base image should be built from the default base image environ-
ment.

11.1.4.1 Example 1: Building a Conda Python 2.7 Environment with ML and Stats Dependencies

11.1.4.1.1 A Conda Base Dockerfile:

RUN wget --quiet https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.
→˓sh && \
/bin/bash Miniconda3-latest-Linux-x86_64.sh -f -b -p /opt/conda && \
rm Miniconda3-latest-Linux-x86_64.sh
ENV PATH /opt/conda/bin:$PATH

Note that Conda is located in /opt/conda/bin. It is added to the PATH in line 4. Also note that Miniconda3 is
installed. That implies that Python 3.6 is installed. To install Python 2.7, see the user environment below. Alternatively,
you can install Miniconda2.

11.1.4.1.2 Example User Environment Dockerfile:

This is an example of a user environment Dockerfile where a user would select the Conda base environment, activate
the Python 2.7 kernel, and install a series of packages with both Conda and pip package managers.

104 Chapter 11. Appendix

DataScience.com Platform Documentation Documentation, Release 4.2.1

RUN conda install python=2.7 && conda install numpy && \
conda install pandas && conda install scipy && pip install scikit-learn

Note that in this particular example, we don’t specify version numbers for the libraries listed above. As a result, the
most recent versions will be installed. Specifying version numbers is generally best practice.

The diagram below shows the inheritance structure of the different Docker images for this example:

In the User environment, do not forget to select the tools you want.

11.1.4.2 Example 2: Installing R Dependencies (rJava)

In this example, you’re creating a base image that contains all the dependencies needed to install rJava. In fact, you
install rJava as part of the last command of this Dockerfile.

11.1.4.2.1 A Base Dockerfile for rJava Dependencies:

RUN apt-get update && \
apt-get -y install default-jre && \
apt-get -y install default-jdk && \
apt-get -y install r-base && \
apt-get -y install r-base-dev

11.1. Dockerfile Basics and Best Practices 105

DataScience.com Platform Documentation Documentation, Release 4.2.1

RUN R CMD javareconf
RUN apt-get -y install r-cran-rjava

11.2 Enabling Hadoop and Spark

11.2.1 Introduction

The DataScience.com Platform provides seamless integration for Apache Hadoop, Hive, and Spark. The Platform will
connect to your data where it lives, so there is no need to move data or add/replace costly infrastructure. To enable
Hadoop, Hive, and Spark on your instance, you will need to follow a two-step process: (i) configure your Hadoop
cluster and (ii) build your Hadoop-enabled environments.

11.2.2 Hadoop Cluster Configuration

To configure your cluster, navigate to Administration in the top menu bar and click on the Hadoop Cluster tab. Select
your Hadoop provider from the dropdown list to begin.

Fill in the form with the cluster name, provider version, and additional security information. Then, choose to enable
Hadoop, Hive, and/or Spark by checking the respective boxes. When you choose to enable a certain framework, you
will be prompted to add additional information in the form of configuration files that you will upload into the form. In
this next section, you will learn how to locate and acquire these files.

Warning: Please gather configuration materials from edge nodes or client machines that have successfully con-
nected to the cluster. Cluster server notes may not have the proper configurations.

106 Chapter 11. Appendix

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.2.2.1 Enabling Hadoop (Optional)

11.2.2.1.1 Optional Files

core-site.xml, hdfs-site.xml, yarn-site.xml, mapred-site.xml, hadoop-env.sh

These files can be found in HADOOP_CONF_DIR. It is usually symbolically linked to /etc/hadoop/conf but
different distributions of Hadoop will lay them down in different places. Another common place for the actual files
will be under the installation directory at HADOOP_HOME/etc/hadoop. If the files are empty or just the files with
a .template suffix are present, it is not necessary to upload the files.

For more information, see Apache Hadoop’s documentation on Cluster Setup.

Note: Please note that some of the configuration options in portions of this documentation referring to services like
HDFS NameNode, YARN NodeManager, etc. will not affect the operation of the cluster, since these services will not
run inside a DataScience.com Hadoop-enabled environment. Instead, they will remain on the external Hadoop cluster
that the environment will connect to.

As of yet, we don’t override any Hadoop settings in the files that you upload, but we may override the settings in the
files you upload for other services to ensure your clients can connect from inside the DataScience.com Hadoop-enabled
environment. These settings will be outlined below.

11.2.2.2 Enabling Hive (Optional)

11.2.2.2.1 Required Files

hive-site.xml

11.2.2.2.2 Optional Files

hive-env.sh

These files can be found in HIVE_CONF_DIR. It is usually symbolically linked to /etc/hive/conf, but different
distributions of Hadoop will lay them down in different places. Another common place for the actual files will be
under the installation directory at HIVE_HOME/conf.

For more information, see Apache Hive’s documentation on Configuring Hive.

Note: Please note that hive-site.xml may have the Hive Metastore password present if you’re connecting
to Hive without any additional security authentication mechanism in place or if you take it from the server hosting
HiveServer(2).

We may override the following properties in hive-site.xml:

• hive.execution.engine

• hive.metastore.schema.verification

• hive.metastore.sasl.enabled

• hive.exec.scratchdir

11.2. Enabling Hadoop and Spark 107

https://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-ConfiguringHive

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.2.2.2.3 Tez

If Tez is enabled, we don’t currently support uploading Tez-specific configuration files. Instead, at runtime we inject
the appropriate configuration and properties to make sure the Tez jars are available on the HADOOP_CLASSPATH set
in hadoop-env.sh, and that the hive.execution.engine is set properly in hive-site.xml.

11.2.2.3 Enabling Spark

11.2.2.3.1 Required Files

spark-defaults.conf, spark-env.sh

These files can be found in $SPARK_HOME/conf. It is usually symbolically linked to /etc/spark/conf, but
different distributions of Hadoop or an end user installation of Spark may or may not have set this up. The below files
may not be actually be present in the configuration directory and only files with the .template suffix exist. In this
case, it is not necessary to upload them to the Environments UI.

For more information, see Apache Spark’s documentation on Spark Properties and Environment Variables.

We override the following values in spark-defaults.conf:

• spark.driver.extraJavaOptions

• spark.executor.extraJavaOptions

• spark.blockManager.port

• spark.driver.port

• spark.driver.blockManager.port

• spark.driver.bindAddress

• spark.driver.host

• spark.sql.warehouse.dir

Warning: Since Hive and Spark are on different development cycles, when Spark integrates with Hive on a
Hadoop cluster, it commonly uses a different configuration and is even packaged with a different version of Hive
than is installed on the cluster. If that is the case, it is necessary to upload a hive-site.xml specifically for
Spark. This should be found in $SPARK_HOME/conf as well.

11.2.3 Building a Hadoop-Enabled Environment

11.2.3.1 Build a Hadoop-Enabled Environment

Building a Hadoop-enabled environment is similar to building any Base environment, except all of the Dockerfile
commands for installation are form-field driven. Simply navigate to the Environments screen, select Add Environ-
ment > Base Environment, and choose the Install Hadoop Dependencies option. Once selected, choose your Hadoop
distribution as your provider, select your version, and build.

Currently, the DataScience.com Platform supports MapR versions 5.2.1 and 5.2.2 as well as Cloudera version 5.10.

For more information about building environments, see our Environment Management documentation.

After you have created an available Hadoop-enabled Base environment, create a User environment from this new Base
environment to enable your users to connect to the cluster.

108 Chapter 11. Appendix

https://spark.apache.org/docs/2.0.0/configuration.html#dynamically-loading-spark-properties
https://spark.apache.org/docs/2.0.0/configuration.html#environment-variables

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.2.3.2 MapR Ticketing

The DataScience.com Platform supports the use of user-level MapR Tickets to authenticate against your MapR cluster.
There is full support for MapR Ticket authentication across the Platform, including interactive sessions and ad hoc and
scheduled runs. To enable MapR Ticket authentication, select it as the Security option in the Cluster Configuration
setup. Any Users who want to authenticate to the cluster will need to upload their personal MapR Ticket to the
Platform. See the Account Setup documentation for more information.

11.2.3.3 Kerberos Authentication

The DataScience.com Platform supports Kerberos authentication to your Hadoop cluster for User workloads across
the Platform including interactive sessions and ad hoc and scheduled runs. To enable Kerberos authentication, select
it as the Security option in the Cluster Configuration setup. Any Users who want to authenticate to the cluster will
need to upload their personal Kerberos credentials to the Platform. See the Account Setup documentation for more
information.

11.2.4 Other Providers

Coming soon! First class support for EMR and Hortonworks are in development. Don’t see your provider? Contact
success@datascience.com.

11.2. Enabling Hadoop and Spark 109

mailto:success@datascience.com

DataScience.com Platform Documentation Documentation, Release 4.2.1

11.3 Git Provider Integration

11.3.1 Introduction

Connecting projects to your code repository allows users to easily interact with branches and files from inside the
Platform.

11.3.2 Supported Providers

• GitHub.com

• GitHub Enterprise 2.9+

• Bitbucket.org

• GitLab.com

• GitLab Enterprise 7+

11.3.3 GitHub OAuth Integration

Connecting the DataScience.com Platform to your GitHub repositories first requires an authentication integration. The
following steps show how to create a GitHub app and connect it to the DataScience.com Platform.

11.3.3.1 Create a GitHub OAuth Application

1. In the Settings tab of your GitHub organization, select OAuth Applications from the menu on the left.

2. Click the Register a new application button at the top right.

3. Fill out the form with the hostname that you used when you installed the Platform. The callback will be the
same hostname, with the path /oauth. When you are finished, click Register application.

4. After you click Register application, make a note of the Client ID and Client Secret, as you will need these later
in the integration process.

If you’d like to include an image for the GitHub Oauth Application, you may use this image.

11.3.3.2 Connect to Your GitHub OAuth Application

1. Inside the DataScience.com Platform, navigate to Administration in the top menu bar.

2. On the Admininistration screen, click the Git Providers tab.

3. Click Connect to a Git Provider. You will be prompted with the option to add GitHub.com or GitHub Enterprise.
Provide the Client ID and Client Secret you obtained when creating the OAuth application.

GitHub Entreprise

Note: When integrating with GitHub Enterprise, you will also be prompted for the URL and the API
URL. The URL will be the GitHub Enterprise instance you’re connecting to, and the API URL will
be the same URL appended with /api/v3. Example: URL: http://github.datascience.com API URL:
http://github.datascience.com/api/v3

110 Chapter 11. Appendix

https://cdn2.hubspot.net/hubfs/532045/Logos/DS_LogoVertical%20Colored%20.jpg
http://github.datascience.com
http://github.datascience.com/api/v3

DataScience.com Platform Documentation Documentation, Release 4.2.1

GitHub URL

Warning:

Do not append your organization name to the GitHub URLs in this section.

4. To connect your Platform account to GitHub, first navigate to your account’s Settings page using the drop-down
menu in the upper right-hand corner.

5. Click the Git Integrations tab, then click Add Authentication.

6. In the pop-up that appears, start typing the name of the Git provider you want to grant permissions to, then select
it.

7. Click Connect, and you will be taken to GitHub for authorization. Click Authorize application to continue and
you will be redirected back to the DataScience.com Platform.

11.3.4 Bitbucket Integration

The Bitbucket integration uses Bitbucket’s App Passwords feature to grant the DataScience.com Platform access to
your repositories. A Bitbucket App Password is just like your account password, but meant for other apps to control
Bitbucket on your behalf.

Each user must bring their own Bitbucket App Password over to the DataScience.com Platform.

To enable the Bitbucket integration, visit Settings > Git Providers, select your Bitbucket type from the list of provider
options, and fill in the details about your Bitbucket account.

11.3.5 GitLab Integration

How users authenticate with GitLab depends on the version of GitLab they’ll be connecting to. GitLab 7 and 8 use
passwords for authentication, while GitLab 9 and GitLab.com use access tokens.

Each user must bring their own GitLab access token over to the DataScience.com Platform. For end-user documenta-
tion on how to register a GitLab access token, see the Git Configuration section of our user documentation.

To enable the GitLab integration as an administrator, visit Settings > Git Providers. Select GitLab from the list of
provider options, then fill in the details about your GitLab account.

11.3.6 Manually Editing Providers in Postgres

1. To manually add providers in Postgres, first connect to the database endpoint using administrative credentials.
We recommend using psql for this.

2. Once you have authenticated to the endpoint, ensure that you’re connected to the ‘platform’ database. Then,
delete the provider you intend to modify or remove. To create or recreate a provider, return to the Data-
Science.com Platform settings page and go the the Git Providers tab.

Make sure to replace the following placeholder values with your own: {git_provider_id}

SELECT * FROM git_providers; - find the id of the provider
DELETE FROM git_providers WHERE id = {git_provider_id};

3. To verify that your providers have been modified correctly, run the following query: SELECT * from
git_providers;

11.3. Git Provider Integration 111

http://postgresguide.com/utilities/psql.html

DataScience.com Platform Documentation Documentation, Release 4.2.1

112 Chapter 11. Appendix

CHAPTER 12

Release Notes

12.1 Version 5.0.0 - December 8, 2017 (Preview)

The following release is a major feature update, which is available in preview for selected customers.

12.1.1 Features

12.1.1.1 Platform interface design update

• We’ve updated the look and feel of our interface to improve the workflow and interactions across the Platform.

12.1.1.2 Zeppelin as an Interactive Session tool

• Users can now launch Zeppelin sessions to explore their data via interactive data visualizations, pivot charts,
and forms with built-in support for multiple languages such as Spark and SQL.

12.1.1.3 Built-in Cloudera Hadoop Support for Hive and Spark

• For customers with Cloudera distributions of Hadoop, the DataScience.com Platform provides an easy form-
driven method of configuring the cluster connection and installing all of the necessary dependencies.

12.1.1.4 Kerberos authentication via keytab upload

• Users can upload their personal Kerberos credentials to connect securely to their external data sources.

12.1.1.5 Run and Publish reports

• Prior to creating a report version, users can opt to run their notebooks top to bottom and publish the output,
thereby streamlining the report workflow.

113

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.2 Version 4.2.2 - October 4, 2017

The following release is a minor feature update, ready for installation on the available release channel.

12.2.1 Features

12.2.1.1 Select files to sync

• This feature is previewed in this release. From inside a Jupyter session, a user can select a subset of their
modified files to sync to their project’s repository.

12.2.1.2 Resource Management for Users

• Users will be informed that their compute resource size selection is not available to select due to current resource
constraints on the cluster.

12.3 Version 4.1.1 - September 20, 2017

The following release is a minor feature update, ready for installation on the available release channel.

12.3.1 Features

12.3.1.1 Built-in MapR Hadoop support for Hive and Spark

• For customers with MapR distributions of Hadoop, the DataScience.com Platform provides an easy form-driven
method of configuring the cluster connection and installing all of the necessary dependencies.

12.4 Version 4.0.1 - September 6, 2017

The following release is a major feature update, ready for installation on the available release channel.

12.4.1 Features

12.4.1.1 Environment Management

• Admins can now create and distribute customized, pre-installed collections of dependencies and packages as
Environments to Users on the Platform.

12.4.1.2 Sync and Shutdown from Jupyter sessions

• It is no longer necessary to switch tabs between your work and your Session Details page to sync or shut down
your session.

114 Chapter 12. Release Notes

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.4.1.3 File path autocomplete

• Autocomplete your file path when running a script, publishing a report or app, or deploying an API

12.4.1.4 Enhanced Platform availability

• Improved availability of the Platform application, Load Balancer, and Database

12.4.1.5 Single Sign On with SAML 2.0

• Integrate with your SAML 2.0 provider for authentication

12.5 Version 3.9.1 - August 23, 2017

The following release is a minor feature update, available on the Stable release channel.

12.5.1 Features

12.5.1.1 Report Versioning

• Users can now create multiple versions of a report under the same URL.

• Users can also edit report version titles and descriptions.

12.5.1.2 User-supplied custom tagging for Amazon EC2 on-demand resources

• End Users can now input custom tagging to Amazon’s EC2 metadata when provisioning on-demand resources.

12.6 Version 3.8.1 - August 9, 2017

The following release is a minor feature update, available on the Stable release channel.

12.6.1 Enhancements

• Support for Gitlab version 7+ with API version 3

• Support for Redhat Enterprise Linux version 7.3

• Avatars with profile images

• Minor bug fixes and security enhancements

12.7 Version 3.7.1 - July 26, 2017

The following release is a minor feature update, available on the Stable release channel.

12.5. Version 3.9.1 - August 23, 2017 115

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.7.1 Features

12.7.1.1 R Shiny dashboards deployable to the Outputs page

• Users can now publish R Shiny applications to a dedicated Shiny server on the Platform, then share links to
applications with project collaborators and business stakeholders.

12.7.1.2 Resource Management Dashboard

• Admins can now manage all the server and Docker container resources running in the Platform: monitor RAM
and CPU usage, identify unhealthy servers or analyses, and shut down unwanted processes.

12.8 Version 3.6.1 - July 13, 2017

The following release is a minor feature update, available on the Stable release channel.

12.8.1 Features

12.8.1.1 H2O.ai Dependency Collection

• This dependency collection has H2O and its dependencies pre-installed to improve your AI capabilities

12.8.2 Enhancements

12.8.2.1 Enhanced Support for Internet Explorer 11

• Improved experience of operating the Platform on the latest version of Internet Explorer

12.8.2.2 Shortcut links for returning to interactive sessions in progress

• Navigate directly into your running Jupyter or RStudio session from the Currently Running dropdown

12.9 Version 3.5.1 - June 28, 2017

The following release is a minor feature update, available on the Stable release channel.

12.9.1 Features

12.9.1.1 Administrator-configured compute resources sizes

• From the Admin Console, Administrators of the Platform can now configure the compute resource size options
that are made available to Users of the Platform.

116 Chapter 12. Release Notes

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.9.1.2 Various user experience and usability enhancements

• Users can now name their sessions to distinguish them more easily from each other.

• On session shutdown, users will be alerted to any un-synced changes in the session to prevent unintentional loss
of work.

• On a Run Details page for any past run, users will have the option to “rerun” the script at the latest commit,
enabling users to quickly iterate while maintaining environment configurations.

12.10 Version 3.4.1 - June 15, 2017

The following release is a minor feature update, available on the Stable release channel.

12.10.1 Features

12.10.1.1 Curated Dependency Collections

• Get started quickly on difficult data science problems with new dependency collections. New dependency
collections now include the Standard set of packages as well as curated powerful packages for solving specific
data science problems.

– RStudio: Time Series

– Jupyter: Deep Learning, Bayesian Analysis, and NLP

12.10.1.2 Multiple language kernels available in Jupyter sessions

• Python 2.7, Python 3.5, and R 3.2 are available in each session.

12.11 Version 3.3.1 - June 7, 2017

The following release is a minor feature update, available on the Stable release channel.

12.11.1 Features

12.11.1.1 GitHub Enterprise and GitLab Enterprise integrations

• In addition to GitHub.com, Bitbucket.org, and GitLab.com, the latest release also supports the enterprise ver-
sions of GitHub and GitLab for version control, allowing you to base your projects off of work in those reposi-
tories.

12.11.1.2 Global Environment Variables

• Platform Admins can now set environment variables at the global level so that secrets needed across projects
can be set once and managed in one place. Each key-value pair can have User- and Team-level permissions,
ensuring control and security.

12.10. Version 3.4.1 - June 15, 2017 117

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.11.1.3 On-demand compute resources in AWS VPCs

• For installations in customers’ Amazon VPCs, you can now control your cloud footprint and therefore your costs
by provisioning single-use compute resources for sessions, runs, and deployed APIs. From the Platform, spin
up an EC2 instance of your choosing, do your work, and shut it down when you no longer need that machine.

12.11.1.4 LDAP

• Admins can connect their company’s active directory user management system to the DataScience.com Plat-
form. LDAP-enabled environments use the specified active directory to authenticate users. Admins can manage
users in their referred central location.

12.12 Version 3.2.1 - May 31, 2017

The following release is a minor feature update, available on the Stable release channel.

12.12.1 Features

12.12.1.1 Bitbucket.org and GitLab.com integrations

• In addition to Github, the latest release also supports Bitbucket.org and GitLab.com for version control, allowing
you to base your projects off of work in those repositories.

12.12.1.2 RStudio

• In addition to Jupyter, users can launch RStudio interactive sessions where they can import pre-installed pack-
ages, use environment variables, and sync directly to their repository.

12.12.1.3 Publish RMarkdown HTML docs

• After creating analyses in RStudio, publish your findings for your teammates and colleagues as sharable, repro-
ducible reports.

12.13 Version 3.1.1 - May 4, 2017

The following release is a major feature update. It is now available as version 3.1.1.

12.13.1 Features

12.13.1.1 Projects

• Ensure visibility of your team’s work by organizing code, data, and outputs into projects. Centralize knowledge,
invite collaborators, and do work that is focused on solving the problems that impact your organization.

118 Chapter 12. Release Notes

DataScience.com Platform Documentation Documentation, Release 4.2.1

12.13.1.2 GitHub integration

• Version your shared code and watch your projects progress. Track decisions, milestones, and project lineage
over time, and never lose sight of your work again.

12.13.1.3 Secret management

• Avoid committing secrets to code by storing them as secure environment variables.

12.13.1.4 Launch Jupyter Interactive sessions

• Quickly spin up a Jupyter interactive session with support for Python 2, Python 3, and R.

12.13.1.5 Publish Reports

• Turn Jupyter notebooks, markdown documents, and other files from your project into reproducible reports that
can be shared across your organization.

12.13.1.6 Deploy APIs

• Deploy Python and R code behind a REST API to make it instantly available for integration with real-time
applications or dashboards.

12.13.1.7 Run scripts

• Run Python and R scripts from a web UI and share outputs across your team.

12.13.1.8 Schedule Runs

• Run code on a schedule to automate data science processes.

12.13. Version 3.1.1 - May 4, 2017 119

DataScience.com Platform Documentation Documentation, Release 4.2.1

120 Chapter 12. Release Notes

CHAPTER 13

Tutorials and Examples

This section contains supplementary information to help you work efficiently on the DataScience.com Platform. Pe-
ruse our collection of learning modules, tutorials, and examples for in-depth guidance and additional support.

13.1 Learning Modules

The following learning modules provide extensive support for users wishing to complete specified actions within the
DataScience.com Platform. Each module guides users through in-depth learning materials containing videos, screen-
shots, and written instructions. Navigate through the materials at your own pace and download the supplementary
templates and files to facilitate your own work. You can find best practices and/or FAQ sections at the end of each
module.

13.1.1 Use Shiny on the DataScience.com Platform

Using Shiny on the DataScience.com Platform: In this lesson, you’ll learn some of the basics of Shiny, including what
it is and what you can do with it. Specifically, you will learn how Shiny works on the DataScience.com Platform,
as well as the advantages to using the Platform to host your apps. Through the tutorials, you’ll have the opportunity
to build an example app based on a template we provide, and you’ll likewise learn how to produce some simple UI
variations to your app. Finally, you’ll learn how to publish your app on the DataScience.com Platform in order to
easily communicate your insights throughout your organization.

13.1.2 Connect Tableau to Model APIs on the DataScience.com Platform

Connect Tableau to the DataScience.com Platform: In this lesson, you’ll learn about another way you can use the tools
you love with the DataScience.com Platform. We’ll review everything you need to know to connect your Tableau
software to a deployed model in the Platform in order to retrieve and visualize predictions. We we will set up Tableau’s
Web Data Connector, which will route a request to our deployed model through Flask, an easy-to-set-up server. We’ll
also provide templates that correspond to our examples in order to enable you to set up your own connection with ease.

121

https://usingshiny.datascience.com/
https://connecttableau.datascience.com/

DataScience.com Platform Documentation Documentation, Release 4.2.1

13.2 Examples

13.2.1 How to Create and Deploy a Shiny App

Shiny by RStudio is a framework for turning R code into interactive dashboards. You can build RShiny apps on the
DataScience.com Platform within the familiar R or RStudio environment. RShiny app is a collection of .R scripts.
This quick tutorial shows how to build an interactive map with RShiny using a dataset on Uber pickups in New York
City. For a more extensive tutorial on this topic, visit the related Learning Module: Use Shiny on the DataScience.com
Platform

RShiny apps consist of two main components:

• Code to be executed by the server that will power the app

• Code defining the UI appearance.

These two components can be defined in separate .R files or combined in one app.R file. In this tutorial, you’ll see
an example of both components defined inside one app.R script. This script can also contain any data manipulations
needed.

13.2.1.1 Loading the Data

First, import libraries and set your color theme:

library(tidyr)
library(ggplot2)
library(scales)
library(mapproj)

Set plotting parameters and import color palettes
set_ds_theme = function() {
theme_update(panel.background = element_rect(fill = "white", colour = "grey50")

,plot.title = element_text(hjust = 0.5))

Color palette for continuous data
cont_ds_palette <<- c('#f7fbff', '#d7ecfd', '#3ba3f8', '#328bd5','#266aa2'

,'#000000')
cont_gradient <<- colorRampPalette(cont_ds_palette)

Palette for discrete/categorical data
cat_ds_palette <<- c("#3ba3f8", "#afb6bd", "#3eb642", "#6981ef",

"#b353b5", "#e66867")
}
set_ds_theme()

The data is stored on our public AWS S3 bucket. You can access this data with your own set of AWS keys. The data
is pulled in and the average number of Uber pickups by location and hour is calculated:

bucketName = "ds-site-static-assets"

s3load('s3://ds-site-static-assets/ds-examples/rshiny/Uber/data/processed_uber_nyc.
→˓RData',

bucket = bucketName,
key=Sys.getenv("AWS_ACCESS_KEY_ID"),
secret=Sys.getenv("AWS_SECRET_ACCESS_KEY"))

122 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

Precalculate mean pickups in each location by hour
locID_zone_dim <- unique(agg_data[, c("locationID", "zone")])
agg_data$hour <- as.numeric(agg_data$hour)
geo_pickups <- agg_data %>%

group_by(locationID, hour) %>%
summarize(mean_pickup = mean(pickups))

13.2.1.2 Defining the UI Components

Next, define the main UI components of the app. The goal is to display a heatmap of Uber pickups for NYC. To make
the map interactive, you can add a slider filter for changing the hour and a tooltip displaying location coordinates. All
of these components will be defined in the UI section:

Define UI for application that draws a heatmap
ui <- fluidPage(

Application title
titlePanel("Pickups by Hour")

Sidebar with a slider input for number of bins
, sidebarLayout(
sidebarPanel(

sliderInput("hour",
"Hour of day:",
min = 0,
max = 23,
value = 24)

)

Show a plot of the generated distribution
, mainPanel(

plotOutput("NYC_heatmap"
, height = 700
, width = 700
, hover = hoverOpts(id = "plot_hover"))

)
)
Tooltip
, fluidRow(column(width = 6

, verbatimTextOutput("tooltip")))
)

13.2.1.3 Defining the Server Component

Finally, define the server component. This will be a function that takes in an input from UI components and returns a
plotting output. Each output component corresponds to a chart or UI element. In this case, the app takes in the hour of
the day from slider as input and returns a heatmap plot. Another output returned is coordinate values for map tooltip.
Note that output names NYC_heatmap and tooltip get referenced in the UI component.

Finally, tell the app where to find server and UI components. This part can be omitted if the UI and server get defined
in two separate .R scripts.

Run the application
shinyApp(ui = ui, server = server)

13.2. Examples 123

DataScience.com Platform Documentation Documentation, Release 4.2.1

13.2.1.4 Running the App

All of the above snippets are combined in app.R script. To run the app, simply run this from same directory as app.R:

library(shiny)
runApp("app.R")

13.2.1.5 Publishing the App

Now the app is ready to be published as an Output. To publish, click on the Quick Actions button and select Publish a
Shiny App:

Give your app a name and a short description and click Continue:

124 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

Select your repo branch, app directory, compute resource size, and provide a commit message. Then click Publish:

Warning: You must specify a directory, not a .R file when publishing a Shiny dashboard.

Now your app is visible under Outputs. Users can view and interact with the app without having to start a new R
session:

13.2.2 Using a Deployed API

The purpose of this article is to show an example of a use case for a deployed API. An API can be used to automatically
score incoming data with a pre-trained deployed model.

13.2.2.1 Business Use Case

This article considers a major hotel chain as an example. The hotel chain uses customer reviews to identify potential
problems. The management wants to reduce time spent reading through large volumes of customer reviews. In this
case, the deployed API will take reviews as input and assign category labels. Labeled reviews can then be sorted,
summarized with a BI tool, and addressed by appropriate departments.

13.2.2.2 Training the Model

This example will use a technique called Topic Modeling (Latent Dirichlet Allocation, or LDA) to discover topics
mentioned in reviews. The algorithm will search through the review texts and summarize them in a handful of topics
as words and phrases that customers tend to use together. Training the model is done using the gensim Python library.
The first step is to read in the data:

Platform Kernel: python2
Libraries: boto==2.48.0, pandas==0.20.3, numpy==1.13.1, gensim==2.3.0, nltk==3.2.4,
→˓re==2.2.1, requests==2.18.3

13.2. Examples 125

DataScience.com Platform Documentation Documentation, Release 4.2.1

import os
import pandas as pd
import numpy
import string
import re
from gensim import corpora
from gensim.models import Phrases
from gensim.models.ldamodel import LdaModel
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer

utility functions for reading/writing to AWS S3
def get_bucket():

conn = S3Connection(access_key, secret_key)
return conn.get_bucket(env_name, validate=False)

def pull_file_from_s3(self, key, tmp_localdir=''):
s3_bucket = self.get_bucket()
payload = s3_bucket.get_key(key)
if not os.path.exists(os.path.dirname(tmp_localdir+key)):

os.makedirs(os.path.dirname(tmp_localdir+key))

local_file = payload.get_contents_to_filename(tmp_localdir+key)
print "Grabbed %s from S3. Local file %s is now available." % (key, tmp_

→˓localdir+key)

def write_obj_to_s3(obj, localpath, key) :
'''Write pickled object to s3. localpath should be the same as key.
The file will be written to localpath first and then transfered to s3
with key.

126 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

'''
if key != None :

name=key
else :

print('Specify an s3 key')
k=name.replace(' ','-')
print('Modified s3 key %'.format(k))
s3_key=Key(get_bucket())
s3_key.key=k
pickle.dump(obj,open(localpath,'wb'))
s3_key.set_contents_from_file(open(localpath,'r'))
print("Sent obj %s to S3 with key '%s'"%(localpath,k))
def pull_pickle_from_s3(key, tmp_localdir=''):
'''
Grab pickled object from s3
'''
local_path = tmp_localdir+key
local_dir = os.path.dirname(local_path)
if not os.path.exists(os.path.dirname(tmp_localdir+key)):

os.makedirs(os.path.dirname(tmp_localdir+key))

s3_bucket = get_bucket()
payload = s3_bucket.get_key(key)
local_file = payload.get_contents_to_filename(local_path)
print("Grabbed %s from S3. Local file %s is now available." % (key, key))
return pickle.load(open(local_path, 'rb'))

dir_path = 'my-path-to-s3/hotel_reviews.txt'
pull_file_from_s3(dir_path, tmp_localdir=' ')

f = open('../'+dir_path,'r')
raw=f.read()
f.close()

process the text file
lines = raw.splitlines() # split on lines and carriages

reviews = [line.strip('<Content>') for line in lines if '<Content>' in line]

Next, apply standard cleaning by removing bad characters and stop words, and applying stemming. Finally, the
gensim library is used to convert clean word tokens into a dictionary and bag-of-words corpus for modeling:

Utility functions for text processing
def default_clean(text):

'''
Removes default bad characters
'''
if not (pd.isnull(text)):

text = filter(lambda x: x in string.printable, text)
bad_chars = set(["@", "+", '
', '
', '/', "'", '"', '\', '(',')', '<p>

→˓',
'\n', '<', '>', '?', '#', ',', '.', '[',']', '%', '$', '&',

→˓';',
'!', ';', ':', '-', "*", "_", "=", "}", "{"])

for char in bad_chars:
text = text.replace(char, " ")

13.2. Examples 127

DataScience.com Platform Documentation Documentation, Release 4.2.1

text = re.sub('d+', "", text)

return text

def stop_and_stem(text, stemmer = PorterStemmer()):
'''
Removes stopwords and does stemming
'''
stoplist = stopwords.words('english')

text_stemmed = [[stemmer.stem(word) for word in document.lower().split()
if word not in stoplist] for document in text]

return text_stemmed

clean_reviews = [default_clean(d).lower() for d in reviews]
stemmed = stop_and_stem(clean_reviews)

clean up raw reviews and prepare dataset for model
numpy.random.seed(seed=44)
dictionary = corpora.Dictionary(stemmed)
corpus = [corpora_dict.doc2bow(t) for t in stemmed]

13.2.2.3 Fitting the Model

Now, fit the model with five topics. Note that usually the number of topics is chosen through optimizing some goodness
of fit metric such as topic coherence or log-perplexity.

number of topics
K=5

Run LDA model to extract topics
lda = LdaModel(corpus=corpus, id2 word=dictionary, num_topics=K, passes=10)

13.2.2.4 Saving the Model

Trained models can be saved in a serialized format on AWS S3 to be accessed by the API later:

Save the model
write_obj_to_s3(lda, 'lda_model', 'my-path-to-s3/lda_model')
write_obj_to_s3(dictionary, 'dictionary', 'my-path-to-s3/dictionary')

13.2.2.5 Deploying the Model

To deploy the trained model, write a function that takes in a review as input and produces a label or list of labels as
output. This function can use the serialized model we just trained and saved. The deploy function and any supporting
code should be saved in a .py script, which will get deployed behind an API. This deploy script is what will make
predictions when new data hits the API:

def pull_pickle_from_s3(key, tmp_localdir=''):
'''
Grab pickled object from s3

128 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

'''
local_path = tmp_localdir+key
local_dir = os.path.dirname(local_path)
if not os.path.exists(os.path.dirname(tmp_localdir+key)):

os.makedirs(os.path.dirname(tmp_localdir+key))

s3_bucket = get_bucket()
payload = s3_bucket.get_key(key)
local_file = payload.get_contents_to_filename(local_path)
print("Grabbed %s from S3. Local file %s is now available." % (key, key))
return pickle.load(open(local_path, 'rb'))

def max_topic(scored_list):
return max(scored_list, key=lambda item: item[1])[0]

read in the model
dictionary = pull_pickle_from_s3('my-path-to-s3/dictionary')
lda_model = pull_pickle_from_s3('my-path-to-s3/lda_model')

Main deploy function
def label_review(new_review):

'''
Take a new review as a list and assign it to one of the existing pre-trained

→˓topics
'''

topic labels
name_dict = {0: "Front Desk",

1: "Pool Feedback",
2: "Restaurant and Bar Service",
3: "Happy Customers",
4: "Complaints"}

transform text into the bag-of-words space
clean_review = [default_clean(d).lower() for d in new_review]
stemmed = stop_and_stem(clean_review)

Predict label
new_vector = [dictionary.doc2bow(t) for t in stemmed]

lda_vector = lda_model[new_vector]

id_ = map(max_topic, lda_vector)

print("Review Categories")
return map(name_dict.get, id_)

Now you are ready to deploy the model. Use the Deploy API option found under Quick Actions:

Provide information in each of the prompts:

Specify your branch, deploy script name, deploy function name, and example input. Remember to specify the depen-
dencies of your deployed function. This is done by clicking the Add Requirements option. Simply include the name
of your pip requirements file. deploy_requirements.txt lists all package dependencies needed for the deploy
function to run. It is recommended to put that file in the same folder as the deploy Python script.

The review topic model is now deployed behind an API. You can access all currently running APIs in the project

13.2. Examples 129

DataScience.com Platform Documentation Documentation, Release 4.2.1

130 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

Outputs tab of the Platform.

13.2.2.6 Calling the API

The batch of new incoming reviews can now be passed as an input to the API. The text below shows an example of a
raw review.

[We had a lovely stay ... The food is great but I wish there were more
choices ... The pool was too crowded for me, although the service
was perfect]
And a simple input construct to query the deployed model {"new_review":["we had a
→˓great day"]}

The call to the API needs a valid deployed model URL, cookie, and model input in JSON format. An example call is
already pre-written for you in the Versions tab:

Note that here we are passing a list of reviews to the API as a batch. The deploy function label_review will
process this input and return a list of output labels.

The request returns a string of labels as the response, stored in the variable body:

call the model API with reviews array
url = 'https://my.datascience.com/deploy/my-deployed-model-v1/'
body = requests.post(url,

json={"new_review": reviews},
cookies={'datascience-platform':

→˓'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
→˓eyJqdGkiOiI5OGQ4YzU5Mi1kNzFkLTQ4ZWEtYmVlNC0zYWFiNzNiNmFkYTQiLCJzZXJ2aWNlTmFtZSI6ImRlcGxveS10b3BpYy1tb2RlbGVyLWRlcGxveS0yOTMxNS12MSIsImlhdCI6MTUwMDQ4NjI3Mn0.
→˓LM5YemhQjkke342mbBaU171o'

})

labels = body.text.split(',')

13.2. Examples 131

DataScience.com Platform Documentation Documentation, Release 4.2.1

13.2.2.7 Saving the Output

Finally, we can store the reviews and labels on an AWS S3 location:

output to save to s3
out = zip(reviews, labels)

with open('../labeled_sample_reviews.txt', "w") as out_file:
out_file.write(str(out))

save to s3
write_obj_to_s3(out, 'labeled_reviews.txt', 'my_path_to_s3/labeled_reviews.txt')
print('Processed %s reviews'%len(reviews))

This process of reading, processing, and scoring new reviews can be run as a nightly scheduled job. The batch scoring
job can write the output to a data store used by your BI tools on a regular schedule. For example, reviews labeled by
the API can be powering a dashboard summarizing problematic reviews and displaying review category trends.

13.2.3 Deploying a Network Intrusion Prediction API

This example explores how to use the DataScience.com Platform to build a network intrusion detection system with
SMS alerts and a reporting front end.

A network intrusion attack is the use of a network that compromises its stability or security. There is a large variety of
actions on a network that could be considered as an intrusion. For example:

• A Denial of Service attack, in which the network is overwhelmed with requests, causing other services to become
unavailable.

• An attacker searching for hidden files for secrets or sensitive data.

You may look at the signatures of user behavior on a network and try to identify patterns that indicate an attack.

132 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

This example will use the 1999 KDD Cup dataset.

After some feature engineering, model testing, and evaluation, train a gradient boosting classifier, serialize the model
along with some metadata, and save it to the project:

from sklearn.model_selection import GridSearchCV
cv = GridSearchCV(

GradientBoostingClassifier(),
{
'min_samples_split':[2, 4, 8],
'max_depth':[2, 3, 4],
'max_features':[None, 'auto']

},
n_jobs=4

)

cv.fit(X_train, y_train)

model = {
'model':cv.best_estimator_,
'features': X_train.columns.values.tolist()

}

import pickle

with open('my-model', 'wb') as model_path:
pickle.dump(model, model_path)

With this model that can predict intrusions, we want to use it for a system that can:

• Read connections in real time and alert team members if an attack is detected.

• If an attack is detected, provide a report indicating why the model believes an attack is underway.

This tutorial will walk through the alert system. This system is a deployed model that, when connections are deter-
mined to be an intrusion, sends SMS messages to team members with a link to a report about the attack. The alert
builds a custom link by encoding feature values in the URL to the report application. The report application, deployed
on Heroku in this example, will use the values of the form to generate an explanation. Then SMS messages are sent
via the Twilio API. Here is the alert system:

my app, deploy this script
import os
import yaml
import gzip
import pickle
import os
import pandas as pd
import numpy as np
import sys
import json
from twilio.rest import Client

#read in Twilio credentials from environment variables
account_sid = os.environ['TWILIO_SID']
auth_token = os.environ['TWILIO_TOKEN']
client = Client(account_sid, auth_token)
from_number = os.environ['ALERT_SOURCE_NUMBER']
to_number = os.environ['ALERT_DST_NUMBER']

collect metadata about runtime to ensure pickle protocol

13.2. Examples 133

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.twilio.com/

DataScience.com Platform Documentation Documentation, Release 4.2.1

is correct, and paths to local dependencies are absolute.
PY_VERSION = sys.version_info.major
APP_PATH = os.path.dirname(os.path.abspath(__file__))

def alert(msg, to_number):
"""Uses the twilio API to send messages to a phone number"""
message = client.api.account.messages.create(to=to_number,

from_=from_number,
body=msg)

def scale_data(array):
"""Scales the data for the model"""
if len(array.shape) == 1:

return StandardScaler().fit_transform(array[:, np.newaxis])
else:

return StandardScaler().fit_transform(array)
def load_config(config_path):
"""Loads a configuration yml file"""
with open(config_path) as config_file:

config = yaml.load(config_file.read())
return config

def load_model(model_path):
"""Reads the serialized model"""
with open(model_path, 'rb') as model_file:

model = pickle.load(model_file)
return model

def load_data(data_path):
return pd.read_csv(data_path)

print("Files in APP", os.listdir(APP_PATH))

#Paths to local dependencies
MODEL_DIR = os.path.join(APP_PATH, 'models')
DATA_DIR = os.path.join(APP_PATH, 'data')
MODEL_PATH = os.path.join(MODEL_DIR, 'intruder-model-{}.pkl'.format(PY_VERSION))
DATA_PATH = os.path.join(DATA_DIR, 'intruder-data.csv')
CONFIG_PATH = os.path.join(APP_PATH, 'config.yml')
STATIC_DIR = os.path.join(APP_PATH, 'static')
INDEX_PAGE_PATH = os.path.join(STATIC_DIR, 'index.html')
FEATURES_PATH = os.path.join(MODEL_DIR, 'intruder-model-features-{}.pkl'.format(PY_
→˓VERSION))

load configuration file
config = load_config(CONFIG_PATH)
model is loaded from local file
model = load_model(MODEL_PATH)
load list of features
features = load_model(FEATURES_PATH)

classes = model.classes_.tolist()

class_pretty_names = {
'normal': "Normal Activity",
'u2r': "User to Root Attack",
"r2l":"Remote to Local Attack",
"probe":"Network Probe",
"dos":"Denial of Service Attack",

134 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

}

Send initial alert, indicating system is online
message = alert("Intruder alert system now online", to_number)

def get_url_from_row(row):
"""This function is used to take a connection (row of data), and build
a URL to our reporting app. The feature values will fill a form that the report

→˓uses to generate an explanation. This app is deployed on Heroku."""

base = 'https://secure-scrubland-78676.herokuapp.com/individual?'
args = 'src_bytesname={0}&src_dst_rationame={1}&logged_inname={2}&dst_bytesname=

→˓{3}&same_srv_ratename={4}&is_flag_S0name={5}&serror_ratename={6}&rerror_ratename={7}
→˓&srv_serror_ratename={8}&is_service_FTPname={9}&srv_countname={10}&countname={11}'.
→˓format(*row)

return base + args

def predict(connection):
""" The function to be deployed. We allow the user to manually set the
number to which we send SMS messages. The connection (row of data) is sent as the

→˓key-values in a dictionary, where keys indicate the feature name,
and values correspond to feature values."""

if 'alertnumber' in connection:
sent_to_number = connection['alertnumber']

else:
sent_to_number = to_number

row = [connection[feature] for feature in features]

prediction = model.predict(row)[0]

if prediction == 'normal':
return {'message': "Normal Activity"}

else:
inspect_url = get_url_from_row(list(row))

alert("{0} detected. To see why, go to {1}".format(class_pretty_
→˓names[prediction], inspect_url), sent_to_number)

return {'message': "{} detected, sending alert.".format(class_pretty_
→˓names[prediction])}

With the intruder alert system built and saved as intruder-predictor.py, deploy it on the DataScience.com
Platform (see our articles on Deploying APIs for more detailed instructions):

The function predict() takes data in JSON format. In the case above, we expect the data to have this particular
format:

{"connection": {"src_bytes": 1, "src_dst_ratio": 1, "logged_in": 1, "dst_bytes": 1,
→˓"same_srv_rate": 1, "is_flag_S0": 1, "serror_rate": 1, "rerror_rate": 10, "srv_
→˓serror_rate": 1, "is_service_FTP": 1, "srv_count": 1, "count": 1000, "srv_serror_
→˓rate": 1} }

With the model running, you may submit an example to ensure it’s working properly:

If the model detected an attack, an SMS will be sent with a report explaining the attack.

13.2. Examples 135

DataScience.com Platform Documentation Documentation, Release 4.2.1

136 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

13.2.4 Deploying an XGBoost Model

In this article, you will learn how to deploy an XGBoost model on the Platform.

This example will utilize the Lending Club dataset from Kaggle to illustrate how you can use the Platform’s deployed
API functionality. The purpose of the model is to identify the loans that are going to default. It’s a classification
problem for which XGBoost is well-suited.

In a nutshell, XGBoost is a distributed gradient boosting library. XGBoost provides a parallel tree boosting algorithm
that is quite fast. For more details about XGBoost, visit XGBoost documentation.

13.2.4.1 The Business Use Case

Lending Club is a peer-to-peer online lending platform where individuals can get approved for loans. These loans are
broken down in $25 notes that can be purchased by investors on the Lending Club platform.

Before purchasing notes, investors have access to a variety of information about the loan (such as loan purpose,
amount, interest rate, etc.) and the credit history of the borrower (income, delinquencies, home ownership, number of
credit lines opened, etc.). The purpose of the model in this example is to predict the probability that a given loan will
default before reaching maturity. Investors can then avoid these bad notes and focus on the ones less likely to default.

13.2.4.2 Loading the Data and Training the Model

In a Jupyter notebook (Python 2 session) on the Platform, start by loading and training the model.

First load the data from the public S3 bucket. Use the function s3_pull_file() that we defined in this Connect
to Data Sources page. Put in your AWS keys that are stored in your project environment variables. You will also need
these libraries:

Platform Kernels: Python 2,3
Snippet Libraries: xgboost==0.6, boto3==1.4.4, pandas==0.20.3

import xgboost as xgb
import sys
import boto3
import os
import pickle as pkl
import pandas as pd

Next, load the data in this cell:

s3_creds={'access_key': os.environ['YOUR_AWS_ACCESS_KEY'],
'secret_key': os.environ['YOUR_AWS_SECRET_KEY']}

s3_pull_file('ds-site-static-assets', 'ds-examples/loan-risk/data/demo_data.p', './
→˓demo_data.p', s3_creds)
loan_data = pkl.load(open('demo_data.p', 'rb'))

We’ve already manipulated the data and performed one-hot encoding of the categorical features. You can explore the
training feature dataset and response variables by executing the following cell:

print(loan_data['X_train'].head())
print(loan_data['y_train'])

For simplicity, make the assumption that you have found the best hyperparameters of your model. Then, train the
XGBoost model with the best set of hyperparameters:

13.2. Examples 137

https://github.com/dmlc/xgboost
https://www.kaggle.com/wendykan/lending-club-loan-data
https://xgboost.readthedocs.io/en/latest/

DataScience.com Platform Documentation Documentation, Release 4.2.1

train_data = xgb.DMatrix(loan_data['X_train'], label=loan_data['y_train'])
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, train_data, num_round)

Now, test the predict function with the first ten entries of the training set:

tmp_test_data = xgb.DMatrix(loan_data['X_train'].head(10))
preds = bst.predict(tmp_test_data)
preds

The results you should see are as follows:

array([0.25122303, 0.4519583 , 0.25122303, 0.15333922, 0.1026786 ,
0.15333922, 0.1026786 , 0.25122303, 0.25122303, 0.25122303],
dtype=float32)

You’ve now trained an XGBoost model and are able to use its predict() function on a loan dataset. That mimics
what would happen in production: you get information about the loan and you want to predict the default probability
with a pre-trained model.

Next, serialize the model and write it to disk using the pickle library. The model is converted into a byte stream that
can be read by the load() method of the pickle library.

let's write to disk a serialized version of our xgboost model:
pkl.dump(bst, open('xgb_model.pkl','wb'))

The model is saved to disk.

13.2.4.3 Deploying the Model

In a script file we called xgboost_model_api.py, we wrote the function api_predict(data) we want to
deploy (see below). Remember that the data that is being passed as an argument to the function is in JSON format.
That is why we perform a conversion from JSON to dataframe.

Content of the file 'xgboost_model_api.py'

import xgboost as xgb
import pandas as pd
import os
import sys
import pickle as pkl

Let's load the pickled xgboost model:
xgb_model_api = pkl.load(open('xgb_model.pkl','rb'))

def api_predict(data):
"""This function takes the loan data in a JSON format
and returns the probability of default based on an XGBoost
model.

Parameters

loan_data: JSON data structure containing the loan data.

Returns

138 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

A dictionary with the default probabilities. The keys correspond to the
loan IDs.
"""

Conversion to a data frame :
json_2_df = pd.DataFrame.from_dict(data,orient='index')

Re-order the columns to match the column order of the training dataset.
This is important. Internally xgboost transform your dataset into the
libsvm data format. This format takes the index of the feature and associates
a value to the index value. It's a sparse data format. Consequently, preserving
feature order is important.
json_2_df = json_2_df[[u'loan_amnt', u'int_rate', u'dti', u'annual_inc', u'delinq_

→˓2yrs',
u'open_acc', u'revol_util', u'term_ 36 months', u'term_ 60 months',
u'purpose_car', u'purpose_credit_card', u'purpose_debt_consolidation',
u'purpose_educational', u'purpose_home_improvement', u'purpose_house',
u'purpose_major_purchase', u'purpose_medical', u'purpose_moving',
u'purpose_other', u'purpose_renewable_energy',
u'purpose_small_business', u'purpose_vacation', u'purpose_wedding',
u'addr_state_AK', u'addr_state_AL', u'addr_state_AR', u'addr_state_AZ',
u'addr_state_CA', u'addr_state_CO', u'addr_state_CT', u'addr_state_DC',
u'addr_state_DE', u'addr_state_FL', u'addr_state_GA', u'addr_state_HI',
u'addr_state_IA', u'addr_state_ID', u'addr_state_IL', u'addr_state_IN',
u'addr_state_KS', u'addr_state_KY', u'addr_state_LA', u'addr_state_MA',
u'addr_state_MD', u'addr_state_ME', u'addr_state_MI', u'addr_state_MN',
u'addr_state_MO', u'addr_state_MS', u'addr_state_MT', u'addr_state_NC',
u'addr_state_ND', u'addr_state_NE', u'addr_state_NH', u'addr_state_NJ',
u'addr_state_NM', u'addr_state_NV', u'addr_state_NY', u'addr_state_OH',
u'addr_state_OK', u'addr_state_OR', u'addr_state_PA', u'addr_state_RI',
u'addr_state_SC', u'addr_state_SD', u'addr_state_TN', u'addr_state_TX',
u'addr_state_UT', u'addr_state_VA', u'addr_state_VT', u'addr_state_WA',
u'addr_state_WI', u'addr_state_WV', u'addr_state_WY',
u'home_ownership_ANY', u'home_ownership_MORTGAGE',
u'home_ownership_NONE', u'home_ownership_OTHER', u'home_ownership_OWN',
u'home_ownership_RENT']]

loan_data_dmatrix = xgb.DMatrix(json_2_df)
Here we are using the predict() method of the XGBoost model to predict
default on the data passed to the api_predict() function.
res = xgb_model_api.predict(loan_data_dmatrix)

return { "{}".format(loan_id):result for result,loan_id in zip(res.tolist(),json_
→˓2_df.index.values.tolist()) }

The function api_predict() takes data in JSON format. In the case above, we expect the data to have this
particular format:

{"data":
{"107265":{"loan_amnt":14000.0,"int_rate":17.57,"dti":21.6,"annual_inc":82000.0,
→˓"delinq_2yrs":1.0,"open_acc":24.0,"revol_util":43.8,"term_
36 months":1,"term_ 60
months":0,"purpose_car":0,"purpose_credit_card":0,"purpose_debt_consolidation":1,
→˓"purpose_educational":0,"purpose_home_improvement":0,"purpose_house":0,
"purpose_major_purchase":0,"purpose_medical":0,"purpose_moving":0,"purpose_other":0,
→˓"purpose_renewable_energy":0,"purpose_small_business":0,

13.2. Examples 139

DataScience.com Platform Documentation Documentation, Release 4.2.1

"purpose_vacation":0,"purpose_wedding":0,"addr_state_AK":0,"addr_state_AL":0,"addr_
→˓state_AR":0,"addr_state_AZ":1,"addr_state_CA":0,
"addr_state_CO":0,"addr_state_CT":0,"addr_state_DC":0,"addr_state_DE":0,"addr_state_FL
→˓":0,"addr_state_GA":0,"addr_state_HI":0,
"addr_state_IA":0,"addr_state_ID":0,"addr_state_IL":0,"addr_state_IN":0,"addr_state_KS
→˓":0,"addr_state_KY":0,"addr_state_LA":0,
"addr_state_MA":0,"addr_state_MD":0,"addr_state_ME":0,"addr_state_MI":0,"addr_state_MN
→˓":0,"addr_state_MO":0,"addr_state_MS":0,
"addr_state_MT":0,"addr_state_NC":0,"addr_state_ND":0,"addr_state_NE":0,"addr_state_NH
→˓":0,"addr_state_NJ":0,"addr_state_NM":0,
"addr_state_NV":0,"addr_state_NY":0,"addr_state_OH":0,"addr_state_OK":0,"addr_state_OR
→˓":0,"addr_state_PA":0,"addr_state_RI":0,
"addr_state_SC":0,"addr_state_SD":0,"addr_state_TN":0,"addr_state_TX":0,"addr_state_UT
→˓":0,"addr_state_VA":0,"addr_state_VT":0,
"addr_state_WA":0,"addr_state_WI":0,"addr_state_WV":0,"addr_state_WY":0,"home_
→˓ownership_ANY":0,"home_ownership_MORTGAGE":1,
"home_ownership_NONE":0,"home_ownership_OTHER":0,"home_ownership_OWN":0,"home_
→˓ownership_RENT":0}}}

The value of the key “data” is the data structure our function is expecting. The index of the data frame will be the keys
of the “data” dictionary (orient=index).

If there are any dependencies that are not part of the environment, you can create a pip dependency file to capture any
libraries needed to deploy your model. Name this file api_requirements.txt and put it in the top level folder
of your project. In this case, XGBoost and pandas are needed outside the standard dependency collection. Our file
thus contains the following dependencies:

xgboost>=0.6
pandas>=0.20.3

These packages need to be installed on the REST API Docker container for your model to work. After that step is
done, make sure you Sync your work with remote GitHub. This will generate a new commit ID containing the latest
changes.

You’re now ready to deploy the model as a REST API! The first step in this process is to go to Deploy an API from
the Quick Actions button.

Below is a screenshot of the filled out Deploy form. Specify the Python script file you used (xgboost_model_api.
py) as well as the name of the function you want to deploy (api_predict()). You can select the compute resource
size and the environment needed for your script. You can also provide an example of a dataset you want to pass to the
API. In this case, you may use the example mentioned above.

The last step is to specify the dependencies, if any, of your deployed function. This can be done by clicking the Add
Requirements option. Include the name of your pip or apt requirements file. We recommend putting that file in the
same folder as the Python script containing your deployed function.

Click Deploy and your function has now been deployed as a REST API.

Next, take a look at the Versions tab of your API. An example snapshot is below.

13.2.4.4 Conclusion

You now have a deployed function that predicts the default probability of a loan available on the Lending Club plat-
form. You can use this API endpoint in a variety of applications. We show three different ways to call this API using
cURL, Python, and Node.

A colleague can call your model within their Python code or a front-end web developer can call the API using Node
and create a web-based app that allows institutional investors to select loans to purchase.

140 Chapter 13. Tutorials and Examples

DataScience.com Platform Documentation Documentation, Release 4.2.1

13.2. Examples 141

DataScience.com Platform Documentation Documentation, Release 4.2.1

How to Create and Deploy a Shiny App: Shiny by RStudio is a framework for turning R code into interactive dash-
boards. You can build RShiny apps on the DataScience.com Platform within the familiar R or RStudio environment.
This quick tutorial shows how to build an interactive map with RShiny using a dataset on Uber pickups in New York
City.

Using a Deployed API: The purpose of this article is to show an example of a use case for a deployed API. An API
can be used to automatically score incoming data with a pre-trained deployed model. In this article, the deployed API
will take hotel reviews as input and assign category labels. Labeled reviews can then be sorted, summarized with a BI
tool, and addressed by appropriate departments.

Deploying a Network Intrusion Prediction API: This example explores how to use the DataScience.com Platform to
build a network intrusion detection system with SMS alerts and a reporting front end.

Deploying an XGBoost Model: In this article, you will learn how to deploy an XGBoost model on the Platform to
predict loan repayment default in peer-to-peer lending platforms. This example will utilize the Lending Club dataset
from Kaggle to illustrate how you can use the Platform’s deployed API functionality.

142 Chapter 13. Tutorials and Examples

CHAPTER 14

How to Read These Docs

In the User docs, you’ll learn how to set up an account and launch different types of analyses across the Platform.

143

DataScience.com Platform Documentation Documentation, Release 4.2.1

144 Chapter 14. How to Read These Docs

CHAPTER 15

Just Getting Started with the Platform?

If you’re just starting out on the Platform, consider going through the onboarding videos and exercises contained in
our self-guided learning module. This curated tour of the Platform covers all the key features for data scientist users.
To request access, contact success@datascience.com.

145

mailto:success@datascience.com

	Account Setup
	Git Configuration
	Managing Git Provider Connections
	GitHub Authentication
	Bitbucket Authentication
	GitLab Authentication
	GitLab Enterprise v9 and Higher
	Gitlab Enterprise v7 and v8

	Kerberos Authentication
	Kerberos Keytab
	Kerberos Username and Password

	MapR Authentication
	MapR Ticketing
	MapR Username and Password

	Collaborators and Permissions
	User Permissions
	Project Permissions
	Teams

	Global Environment Variables
	Environment Variables
	Global Environment Variables

	Platform Configuration
	Introduction
	Instance Footprint
	Production
	3 Master Nodes
	2 Postgres Nodes
	Worker Nodes

	Host Requirements
	Supported Operating Systems
	.deb Distributions
	.rpm Distributions

	Supported Browsers
	Additional Software
	Email Integration
	Port Configuration
	Git Providers
	Limits
	Optional Supported Integrations

	Version Control
	Version Control
	File Previews
	Git Actions in the Platform

	Projects
	Create a Project
	Create a project

	Navigation
	Navigating projects

	Project Collaborators
	Project Environment Variables
	Environment Variables
	Project Environment Variables

	Best Practices: Migrating Existing Work
	Moving Existing GitHub/GitLab/Bitbucket Repositories on the Platform
	Copying Files from Your Local Environment into a Project
	Migrating Work That is Not in a Version-Controlled Repository
	Warnings
	References

	Environments
	Environments and Dependencies
	Introduction
	Browsing Environments
	List page
	Details Page

	Launching Environments
	Adding Additional Requirements

	Environment Management
	Introduction
	Background
	What is an Environment?
	Base Environments
	The Default Base Environment
	Customized Base Environments

	User Environments

	How to Create Environments
	Before You Begin
	Default Base
	Custom Base
	Hadoop Base
	Create a User Environment

	DataScience.com Standard Example Environments

	Compute Resources
	On-demand Compute Resources for VPC Installations
	Tag Management for On-Demand Resources

	Using Spark on the Platform
	Jupyter
	RStudio
	Zeppelin
	Spark Usage
	Sparkmagic
	Spark in RStudio

	Best Practices: Choosing the Right Container Size
	Strategic Resource Allocation
	Code Best Practices

	Best Practices: Using Dependency Files
	What are Dependency Files?
	How to Create Dependency Files in a Jupyter Session
	Creating a pip Dependency File in a Jupyter Python Session
	Creating a Dependency File in an R Jupyter Session
	Apt Dependency Files

	Using Dependency Files on the Platform
	In a Jupyter, RStudio, or Zeppelin Session
	When Deploying an API
	When Scheduling a Run

	General Tips and Best Practices
	Additional References on Dependency Files

	Working in a Session
	Launch a Session
	Notes on Using Zeppelin
	Sync Changes
	Git Commands Behind the Scenes

	Shut Down a Session

	Data Connection Examples
	AWS Redshift
	Python
	Usage Example

	R
	Usage Example

	AWS S3
	Python
	Usage Example

	R
	Usage Example

	MySQL
	Python
	Usage Example

	R
	Usage Example

	Google BigQuery
	Python
	Usage Example

	R
	Usage Example

	SAP-HANA

	Scripts and Scheduled Runs
	Run a Script
	The Run Details Page
	Schedule a Run
	Custom Schedules

	Schedule Details Page

	Reports
	Publish a Report
	Run and Publish a Report
	Preparing an .rmd (R Markdown) File for Publishing

	View and Manage a Report
	Report Versions
	Publishing a New Version from Within a Report
	Publishing a New Version from the Action Button

	Delete a Version

	R Shiny Dashboards
	Publish a dashboard
	Running a Directory

	View and manage a dashboard

	Deploy APIs
	Overview
	Deploy an API
	Call an API
	Manage an API

	Best Practices: Deploying an API
	Building the API Script
	The Deploy Timeout
	Pickling vs. Training
	Choosing a Response Type for a Deployed API

	Deploying the API
	Document Your Model or Function with a README

	Submitting Requests to Your API
	Send More Records and Fewer Requests
	Run APIs on Larger Containers to Improve Response Times
	Use Resource Pool over On-Demand for Faster Builds
	Prototyping to Production: Developing Internal Standards

	Dependencies
	Python Libraries
	R Libraries
	APT

	Examples
	Model
	Client

	Appendix
	Dockerfile Basics and Best Practices
	Best Practices
	Dockerfile Basics
	Dockerfile Supported Instructions
	RUN Command
	SHELL Instruction
	COPY Instruction
	ADD Instruction
	ENV Instruction

	Instructions Not Allowed
	ARG Instruction
	FROM Instruction
	CMD Instruction
	ENTRYPOINT Instruction
	EXPOSE Instruction
	VOLUME Instruction

	Context Files
	Putting It All Together
	Example 1: Building a Conda Python 2.7 Environment with ML and Stats Dependencies
	A Conda Base Dockerfile:
	Example User Environment Dockerfile:

	Example 2: Installing R Dependencies (rJava)
	A Base Dockerfile for rJava Dependencies:

	Enabling Hadoop and Spark
	Introduction
	Hadoop Cluster Configuration
	Enabling Hadoop (Optional)
	Optional Files

	Enabling Hive (Optional)
	Required Files
	Optional Files
	Tez

	Enabling Spark
	Required Files

	Building a Hadoop-Enabled Environment
	Build a Hadoop-Enabled Environment
	MapR Ticketing
	Kerberos Authentication

	Other Providers

	Git Provider Integration
	Introduction
	Supported Providers
	GitHub OAuth Integration
	Create a GitHub OAuth Application
	Connect to Your GitHub OAuth Application

	Bitbucket Integration
	GitLab Integration
	Manually Editing Providers in Postgres

	Release Notes
	Version 5.0.0 - December 8, 2017 (Preview)
	Features
	Platform interface design update
	Zeppelin as an Interactive Session tool
	Built-in Cloudera Hadoop Support for Hive and Spark
	Kerberos authentication via keytab upload
	Run and Publish reports

	Version 4.2.2 - October 4, 2017
	Features
	Select files to sync
	Resource Management for Users

	Version 4.1.1 - September 20, 2017
	Features
	Built-in MapR Hadoop support for Hive and Spark

	Version 4.0.1 - September 6, 2017
	Features
	Environment Management
	Sync and Shutdown from Jupyter sessions
	File path autocomplete
	Enhanced Platform availability
	Single Sign On with SAML 2.0

	Version 3.9.1 - August 23, 2017
	Features
	Report Versioning
	User-supplied custom tagging for Amazon EC2 on-demand resources

	Version 3.8.1 - August 9, 2017
	Enhancements

	Version 3.7.1 - July 26, 2017
	Features
	R Shiny dashboards deployable to the Outputs page
	Resource Management Dashboard

	Version 3.6.1 - July 13, 2017
	Features
	H2O.ai Dependency Collection

	Enhancements
	Enhanced Support for Internet Explorer 11
	Shortcut links for returning to interactive sessions in progress

	Version 3.5.1 - June 28, 2017
	Features
	Administrator-configured compute resources sizes
	Various user experience and usability enhancements

	Version 3.4.1 - June 15, 2017
	Features
	Curated Dependency Collections
	Multiple language kernels available in Jupyter sessions

	Version 3.3.1 - June 7, 2017
	Features
	GitHub Enterprise and GitLab Enterprise integrations
	Global Environment Variables
	On-demand compute resources in AWS VPCs
	LDAP

	Version 3.2.1 - May 31, 2017
	Features
	Bitbucket.org and GitLab.com integrations
	RStudio
	Publish RMarkdown HTML docs

	Version 3.1.1 - May 4, 2017
	Features
	Projects
	GitHub integration
	Secret management
	Launch Jupyter Interactive sessions
	Publish Reports
	Deploy APIs
	Run scripts
	Schedule Runs

	Tutorials and Examples
	Learning Modules
	Use Shiny on the DataScience.com Platform
	Connect Tableau to Model APIs on the DataScience.com Platform

	Examples
	How to Create and Deploy a Shiny App
	Loading the Data
	Defining the UI Components
	Defining the Server Component
	Running the App
	Publishing the App

	Using a Deployed API
	Business Use Case
	Training the Model
	Fitting the Model
	Saving the Model
	Deploying the Model
	Calling the API
	Saving the Output

	Deploying a Network Intrusion Prediction API
	Deploying an XGBoost Model
	The Business Use Case
	Loading the Data and Training the Model
	Deploying the Model
	Conclusion

	How to Read These Docs
	Just Getting Started with the Platform?

