
qbsolv Documentation

D-Wave Systems Inc

Dec 21, 2021

Contents

1 Example 3

2 Documentation 5

Python Module Index 15

Index 17

i

ii

qbsolv Documentation

A decomposing solver that finds a minimum value of a large quadratic unconstrained binary optimization (QUBO)
problem by splitting it into pieces. The pieces are solved using a classical solver running the tabu algorithm. qbsolv
also enables configuring a D-Wave system as the solver.

Note: Access to a D-Wave system must be arranged separately.

Contents 1

qbsolv Documentation

2 Contents

CHAPTER 1

Example

from dwave_qbsolv import QBSolv
Q = {(0, 0): 1, (1, 1): 1, (0, 1): 1}
response = QBSolv().sample_qubo(Q)
print("samples=" + str(list(response.samples())))
print("energies=" + str(list(response.data_vectors['energy'])))

3

qbsolv Documentation

4 Chapter 1. Example

CHAPTER 2

Documentation

2.1 Introduction

Divide-and-conquer and dynamic programming algorithms have a rich history in computer science for problems with
large numbers of variables. Many hard problems that can benefit from quantum computers are too large to map
directly to a QPU. To solve a problem with more variables than the available number of qubits, we break the problem
into subproblems, solve the subproblems, and then reconstruct an answer to the original problem from the subproblem
solutions.

qbsolv is one such decomposing solver. It provides two interfaces:

• Command Line Interface (CLI)

The tabu algorithm is executed on the problem which is divided into subproblems of several dozen variables
each.

• Python Interface

The Python interface provides a QBSolv class wrapper for the qbsolv C code. A dimod sampler can be substi-
tuted for the default tabu algorithm.

For a description of the algorithm and implementation, see Partitioning Optimization Problems for
Hybrid Classical/Quantum Execution.

For a description of the tabu search algorithm, see Tabu search.

2.1.1 Example

This example sends 30-variable sub-problems of a 500-variable QUBO to the dwave-neal sampler to be incorporated
into the tabu results run in the main loop of qbsolv.

>>> from dwave_qbsolv import QBSolv
>>> import neal
>>> import itertools
>>> import random

(continues on next page)

5

https://en.wikipedia.org/wiki/Tabu_search

qbsolv Documentation

(continued from previous page)

...
>>> qubo_size = 500
>>> subqubo_size = 30
>>> Q = {t: random.uniform(-1, 1) for t in itertools.product(range(qubo_size),
→˓repeat=2)}
>>> sampler = neal.SimulatedAnnealingSampler()
>>> response = QBSolv().sample_qubo(Q, solver=sampler, solver_limit=subqubo_size)
>>> print("energies=" + str(list(response.data_vectors['energy']))) # doctest: +SKIP
energies=[-2800.794817495185]

2.2 Reference Documentation

2.2.1 Command Line Interface

Use the following command with its options to run qbsolv from a terminal.

qbsolv -i infile [-o outfile] [-m] [-T] [-n] [-S SubMatrix] [-w]
[-h] [-a algorithm] [-v verbosityLevel] [-V] [-q] [-t seconds]

Description

qbsolv executes a quadratic unconstrained binary optimization (QUBO) problem represented in a file. It returns
bit-vector results that minimizes—or optionally, maximizes—the value of the objective function represented by the
QUBO. The problem is represented in QUBO(5) file format.

The QUBO input problem is not limited to the graph size or connectivity of a sampler, for example the D-Wave system.

Options are as follows:

-i infile
Name of the file for the input QUBO. This option is mandatory.

-o outfile
Optional output filename.
Default is the standard output.

-a algorithm
Optional selection for the outer loop algorithm. Default is o.
'o' for original qbsolv method. Submatrix based upon change in energy.
'p' for path relinking. Submatrix based upon differences of solutions

-m
Optional selection of finding the maximum instead of the minimum.

-T target
Optional argument target value of the objective function. Stops execution when

→˓found.
-t timeout

Optional timeout value. Stops execution when the elapsed CPU time equals or
exceeds it. Timeout is only checked after completion of the main
loop. Other halt values such as 'target' and 'repeats' halt before 'timeout'.
Default value is 2592000.0.

-n repeats
Optional number of times the main loop of the algorithm is repeated with
no change in optimal value found before stopping.
Default value is 50.

-S subproblemSize
(continues on next page)

6 Chapter 2. Documentation

qbsolv Documentation

(continued from previous page)

Optional size of the sub-problems into which the QUBO is decomposed.
If no "-S 0" or "-S" argument is present, uses the size specified in the
embedding file found in the workspace set up by DW. If no DW environment is
established, value defaults to 47 and uses the tabu solver on subproblems.
If a value is specified, subproblems based on that size are solved with the
tabu solver.

-w
If present, the QUBO matrix and result are printed in .csv format.

-h
If present, prints the help or usage message for qbsolv and exits without

→˓execution.
-v verbosityLevel

Optional setting of the verbosity of output. The default verbosityLevel of
0 outputs the number of bits in the solution, the solution,
and the energy of the solution. A verbosityLevel of 1 outputs the same
information for multiple solutions, if found. A verbosityLevel of 2
also outputs more detailed information at each step of the algorithm. The
information increases for verbosity levels of up to 4.

-V
If present, prints the version number of the qbsolv program and exits without

→˓execution.
-q

If present, prints the format of the QUBO file.
-r seed

Used to reset the seed for the random number generation.

2.2.2 Python Interface

Class

class QBSolv
Wraps the qbsolv C package for python.

Examples

This example uses the tabu search algorithm to solve a small Ising problem.

>>> h = {0: -1, 1: 1, 2: -1}
>>> J = {(0, 1): -1, (1, 2): -1}
>>> response = QBSolv().sample_ising(h, J)
>>> list(response.samples())
'[{0: 1, 1: 1, 2: 1}]'
>>> list(response.energies())
'[1.0]'

Methods

QBSolv.sample(bqm[, num_repeats, seed, . . .]) Sample low-energy states defined by a QUBO using qb-
solv.

2.2. Reference Documentation 7

qbsolv Documentation

dwave_qbsolv.QBSolv.sample

QBSolv.sample(bqm, num_repeats=50, seed=None, algorithm=None, verbosity=-1, timeout=2592000,
solver_limit=None, solver=None, target=None, find_max=False, **sample_kwargs)

Sample low-energy states defined by a QUBO using qbsolv.

Note: The qbsolv library being shared by all instances of this class is non-reentrant and not thread safe. The
GIL should not be released by this method until that is resolved.

Note: The default build of this library doesn’t have the dw library. To use solver=’dw’ this module must be
built from source with that library.

The parameter solver given to this method has several valid forms:

• String ‘tabu’ (default): sub problems are called via an internal call to tabu.

• String ‘dw’: sub problems are given to the dw library.

• Instance of a dimod sampler. The sample_qubo method is invoked.

• Callable that has the signature (qubo: dict, current_best: dict) and returns a result list/dictionary with the
new solution.

Parameters

• Q (dict) – A dictionary defining the QUBO. Should be of the form {(u, v): bias} where u,
v are variables and bias is numeric.

• num_repeats (int, optional) – Determines the number of times to repeat the main
loop in qbsolv after determining a better sample. Default 50.

• seed (int, optional) – Random seed. Default generated by random module.

• algorithm (int, optional) – Algorithm to use. Default is ENERGY_IMPACT. Al-
gorithm numbers can be imported from the module under the names ENERGY_IMPACT
and SOLUTION_DIVERSITY.

• verbosity (int, optional) – Prints more detail about qbsolv’s internal process as
this number increases.

• timeout (float, optional) – Number of seconds before routine halts. Default is
2592000.

• solver – Sampling method for qbsolv to use; see method description.

• solver_limit (int, optional) – Maximum number of variables in a sub problem.

• target (float, optional) – If given, qbsolv halts when a state with this energy value
or better is discoverd. Default is None.

• find_max (bool, optional) – Switches from searching for minimization to maxi-
mization. Default is False (minimization).

Returns Response

Examples

This example uses the tabu search algorithm to solve a small QUBO.

8 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

qbsolv Documentation

>>> Q = {(0, 0): 1, (1, 1): 1, (0, 1): 1}
>>> response = QBSolv().sample_qubo(Q)
>>> list(response.samples())
'[{0: 0, 1: 0}]'
>>> list(response.energies())
'[0.0]'

2.2.3 qbsolv Input File Format

A .qubo file contains data that describes an unconstrained quadratic binary optimization problem. It is an ASCII file
comprising four types of lines:

1. Comments defined by a “c” in column 1. Comments may appear anywhere in the file, and are ignored.

2. Program line defined by a “p” in the first column. A single program line must be the first non-comment line in
the file. The program line has six required fields separated by space(s), as in this example:

p qubo topology maxNodes nNodes nCouplers

where:

p Problem line sentinel.
qubo File type identifier.
topology String that identifies the topology of the problem and the
→˓specific

problem type. For an unconstrained problem, target is "0" or
"unconstrained." In future implementations, valid strings
might include "chimera128" or "chimera512" (among others).

maxNodes Number of nodes in the topology.
nNodes Number of nodes in the problem (nNodes <= maxNodes).

Each node has a unique number and must take a value in the
→˓range

{0 - (maxNodes-1)}. A duplicate node number is an error. Node
numbers need not be in order, and need not be contiguous.

nCouplers Number of couplers in the problem. Each coupler is a unique
→˓connection

between two different nodes. The maximum number of couplers is
→˓(nNodes)^2.

A duplicate coupler is an error.

3. nNodes clauses. Each clause is made up of three numbers, separated by one or more blanks. The first two
numbers must be integers and are the number for this node (repeated). The node number must be in range {0 ,
(maxNodes-1)}. The third value is the weight associated with the node. Weight may be an integer or float, and
can take on any positive or negative value, or be set to zero.

4. nCouplers clauses. Each clause is made up of three numbers, separated by one or more blanks. The first two
numbers, (i and j), are the node numbers for this coupler and must be different integers, where (i < j).Each
number must be one of the nNodes valid node numbers (and thus in range {0, (maxNodes-1)}). The third value
is the strength associated with the coupler. Strength may be an integer or float, and can take on any positive or
negative value, but not zero. Every node must connect with at least one other node (thus must have at least one
coupler connected to it).

Here is a simple QUBO file example for an unconstrained QUBO with 4 nodes and 6 couplers. This example is
provided to illustrate the elements of a QUBO benchmark file, not to represent a real problem.

2.2. Reference Documentation 9

qbsolv Documentation

| <--- column 1
c
c This is a sample .qubo file
c with 4 nodes and 6 couplers
c
p qubo 0 4 4 6
c ------------------
0 0 3.4
1 1 4.5
2 2 2.1
3 3 -2.4
c ------------------
0 1 2.2
0 2 3.4
1 2 4.5
0 3 -2
1 3 4.5678
2 3 -3.22

2.3 Installation

2.3.1 Python

A wheel might be available for your system on PyPI. Source distributions are provided as well.

pip install dwave-qbsolv

Alternatively, you can build the library with setuptools.

pip install -r python/requirements.txt
python setup.py install

2.3.2 C

To build the C library use cmake to generate a build command for your system. On Linux the commands would be
something like this:

mkdir build; cd build
cmake ..
make

To build the command line interface turn the cmake option QBSOLV_BUILD_CMD on. The command line op-
tion for cmake to do this would be -DQBSOLV_BUILD_CMD=ON. To build the tests turn the cmake option QB-
SOLV_BUILD_TESTS on. The command line option for cmake to do this would be -DQBSOLV_BUILD_TESTS=ON.

2.4 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

10 Chapter 2. Documentation

http://www.apache.org/licenses/

qbsolv Documentation

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute

2.4. License 11

qbsolv Documentation

patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for

12 Chapter 2. Documentation

qbsolv Documentation

loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

2.5 Contributing to qbsolv

We, the qbsolv developers, expect a variety of contributions, from reporting of bugs or suggestions for examples or
tutorials to development of improvements or alternatives to qbsolv’s core algorithms. Here we describe how we plan
to interact with contributors making such contributions, though that plan will of course change as those contributions
occur.

2.5.1 Issues

Bugs or anomalies in the behavior of the tool, issues with its installation, requests for changes in documentation,
design and development issues, and feature requests will be tracked via GitHub’s Issues mechanism.

When reporting a bug, please provide the following info if appropriate:

• What are the steps to reproduce the bug? If possible, the simplest such set of steps is best.

• Does the bug still happen using the latest version?

• What qbsolv version and OS are you using?

2.5.2 Contributions

We believe that qbsolv will make the fastest progress to being a robust metaheuristic solver capable of quantum
acceleration by being widely used both by end-users solving problems and by metaheuristic algorithm developers
exploring new metaheuristic algorithms.

In general, you may want to think about starting your contributions gradually, using qbsolv and reporting any strengths
and weaknesses (e.g., bugs, documentation improvements) you encounter. This will help you build relationships with
the qbsolv developers. And don’t forget that contributions can be other than just code or documentation; creating an
example or a tutorial helps new users come up to speed and is often high value.

We expect to incorporate promising and proven algorithmic changes into the master code base. This wide use by
algorithm developers requires a balance between accepting changes and maintaining a stable tool for end-users. Over
time we expect to have processes for both building and regression testing (both correctness and performance) that we
will expect new changes to pass before being considered for inclusion.

2.5.3 Submitting A Contribution

For now, we accept a contribution as a Pull Request (PR) on GitHub, though this may change. Please follow these
steps:

• If your change is substantial, first create a feature request to start a discussion with the developers to ensure your
intent aligns with qbsolv plans.

2.5. Contributing to qbsolv 13

qbsolv Documentation

• A PR should have a clear purpose and do exactly one thing. This enables the rest of the process to be crisp.

• Each commit in PR should be an atomic change representing one step in development.

• As appropriate, please explain anything that is not obvious from the code; this could be in comments, commit
messages, or the PR description.

• Sign your patch via the sign-off line, often created by git commit -s. Your sign-off certifies that you wrote the
patch or otherwise have the right to pass it along as an open-source patch; see the full text of the certificate just
below. Your sign-off line might look like Signed-off-by: Abby Smith <abby.smith@mail.com> Please use your
real name, not a pseudonym. This project does not accept anonymous contributions.

2.5.4 License

qbsolv is licensed under the terms in LICENSE. By contributing to the project, you agree to the terms of the license
and to release your contribution under those terms.

2.6 Indices and tables

• genindex

• modindex

• search

• Glossary

14 Chapter 2. Documentation

mailto:abby.smith@mail.com
https://docs.python.org/3/glossary.html#glossary

Python Module Index

d
dwave_qbsolv, 7

15

qbsolv Documentation

16 Python Module Index

Index

D
dwave_qbsolv (module), 7

Q
QBSolv (class in dwave_qbsolv), 7

S
sample() (QBSolv method), 8

17

	Example
	Documentation
	Python Module Index
	Index

