

penaltymodel

One approach to solve a constraint satisfaction problem (CSP [https://en.wikipedia.org/wiki/Constraint_satisfaction_problem]) using an Ising model [https://en.wikipedia.org/wiki/Ising_model] or a QUBO [https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization], is to map each individual constraint in the CSP to a ‘small’ Ising model or QUBO. This mapping is called a penalty model.

Imagine that we want to map an AND clause to a QUBO. In other words, we want the solutions
to the QUBO (the solutions that minimize the energy) to be exactly the valid configurations
of an AND gate. Let \(z = AND(x_1, x_2)\).

Before anything else, let’s import that package we will need.

import penaltymodel
import dimod
import networkx as nx

Next, we need to determine the feasible configurations that we wish to target (by making the energy of these configuration in the binary quadratic low).
Below is the truth table representing an AND clause.

AND Gate

	\(x_1\)

	\(x_2\)

	\(z\)

	0

	0

	0

	0

	1

	0

	1

	0

	0

	1

	1

	1

The rows of the truth table are exactly the feasible configurations.

feasible_configurations = [{'x1': 0, 'x2': 0, 'z': 0},
 {'x1': 1, 'x2': 0, 'z': 0},
 {'x1': 0, 'x2': 1, 'z': 0},
 {'x1': 1, 'x2': 1, 'z': 1}]

At this point, we can get a penalty model

bqm, gap = pm.get_penalty_model(feasible_configurations)

However, if we know the QUBO, we can build the penalty model ourselves. We observe that for the equation:

\[E(x_1, x_2, z) = x_1 x_2 - 2(x_1 + x_2) z + 3 z + 0\]

We get the following energies for each row in our truth table.

[image: _images/73e56339931580fb66140286f509f05feec4552d.png]
 [https://user-images.githubusercontent.com/8395238/34234533-8da5a364-e5a0-11e7-9d9f-068b4ab3a0fd.png]We can see that the energy is minimized on exactly the desired feasible configurations. So we encode this energy function as a QUBO. We make the offset 0.0 because there is no constant energy offset.

qubo = dimod.BinaryQuadraticModel({'x1': 0., 'x2': 0., 'z': 3.},
 {('x1', 'x2'): 1., ('x1', 'z'): 2., ('x2', 'z'): 2.},
 0.0,
 dimod.BINARY)

We know from the table that our ground energy is \(0\), but we can calculate it using the qubo to check that this is true for the feasible configuration \((0, 1, 0)\).

ground_energy = qubo.energy({'x1': 0, 'x2': 1, 'z': 0})

The last value that we need is the classical gap. This is the difference in energy between the lowest infeasible state and the ground state.

[image: _images/39535f6b00820580890b61e6d198b5a8da0c5ed0.png]
 [https://user-images.githubusercontent.com/8395238/34234545-9c93e5f2-e5a0-11e7-8792-5777a5c4303e.png]With all of the pieces, we can now build the penalty model.

classical_gap = 1
p_model = pm.PenaltyModel.from_specification(spec, qubo, classical_gap, ground_energy)

	Reference Documentation

	Source [https://github.com/dwavesystems/penaltymodel]

Ocean Software

	Ocean Home [https://ocean.dwavesys.com/]

	Ocean Documentation [https://docs.ocean.dwavesys.com]

	Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]

D-Wave

	D-Wave [https://www.dwavesys.com]

	Leap [https://cloud.dwavesys.com/leap/]

	D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/index.html]

Reference Documentation

This package implements the generation and caching of penalty models.

The main function for penalty models is:

In addition to get_penalty_model(), there are some more advanced
interfaces available.

Cache

Methods

	PenaltyModelCache.close

	

	PenaltyModelCache.insert_binary_quadratic_model

	

	PenaltyModelCache.insert_graph

	

	PenaltyModelCache.insert_penalty_model

	

	PenaltyModelCache.insert_sampleset

	

	PenaltyModelCache.iter_binary_quadratic_models

	

	PenaltyModelCache.iter_graphs

	

	PenaltyModelCache.iter_penalty_models

	

	PenaltyModelCache.iter_samplesets

	

	PenaltyModelCache.retrieve

	

Exceptions

	ImpossiblePenaltyModel

	

	MissingPenaltyModel

	

Utilities

	as_graph

	

Index

 [image: _images/penaltymodel.svg]
 [https://pypi.python.org/pypi/penaltymodel][image: _images/penaltymodel1.svg]
 [https://pypi.python.org/pypi/penaltymodel][image: _images/badge.svg]
 [https://codecov.io/gh/dwavesystems/penaltymodel][image: _images/cqfk8il1e4hgg7ih.svg]
 [https://ci.appveyor.com/project/dwave-adtt/penaltymodel][image: _images/penaltymodel2.svg]
 [https://circleci.com/gh/dwavesystems/penaltymodel]
penaltymodel

One approach to solve a constraint satisfaction problem (CSP [https://en.wikipedia.org/wiki/Constraint_satisfaction_problem]) using an Ising model [https://en.wikipedia.org/wiki/Ising_model] or a QUBO [https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization], is to map each individual constraint in the CSP to a ‘small’ Ising model or QUBO. This mapping is called a penalty model.

Imagine that we want to map an AND clause to a QUBO. In other words, we want the solutions
to the QUBO (the solutions that minimize the energy) to be exactly the valid configurations
of an AND gate. Let \(z = AND(x_1, x_2)\).

Before anything else, let’s import that package we will need.

import penaltymodel
import dimod
import networkx as nx

Next, we need to determine the feasible configurations that we wish to target (by making the energy of these configuration in the binary quadratic low).
Below is the truth table representing an AND clause.

AND Gate

	\(x_1\)

	\(x_2\)

	\(z\)

	0

	0

	0

	0

	1

	0

	1

	0

	0

	1

	1

	1

The rows of the truth table are exactly the feasible configurations.

feasible_configurations = [{'x1': 0, 'x2': 0, 'z': 0},
 {'x1': 1, 'x2': 0, 'z': 0},
 {'x1': 0, 'x2': 1, 'z': 0},
 {'x1': 1, 'x2': 1, 'z': 1}]

At this point, we can get a penalty model

bqm, gap = pm.get_penalty_model(feasible_configurations)

However, if we know the QUBO, we can build the penalty model ourselves. We observe that for the equation:

\[E(x_1, x_2, z) = x_1 x_2 - 2(x_1 + x_2) z + 3 z + 0\]

We get the following energies for each row in our truth table.

[image: _images/73e56339931580fb66140286f509f05feec4552d.png]
 [https://user-images.githubusercontent.com/8395238/34234533-8da5a364-e5a0-11e7-9d9f-068b4ab3a0fd.png]We can see that the energy is minimized on exactly the desired feasible configurations. So we encode this energy function as a QUBO. We make the offset 0.0 because there is no constant energy offset.

qubo = dimod.BinaryQuadraticModel({'x1': 0., 'x2': 0., 'z': 3.},
 {('x1', 'x2'): 1., ('x1', 'z'): 2., ('x2', 'z'): 2.},
 0.0,
 dimod.BINARY)

We know from the table that our ground energy is \(0\), but we can calculate it using the qubo to check that this is true for the feasible configuration \((0, 1, 0)\).

ground_energy = qubo.energy({'x1': 0, 'x2': 1, 'z': 0})

The last value that we need is the classical gap. This is the difference in energy between the lowest infeasible state and the ground state.

[image: _images/39535f6b00820580890b61e6d198b5a8da0c5ed0.png]
 [https://user-images.githubusercontent.com/8395238/34234545-9c93e5f2-e5a0-11e7-8792-5777a5c4303e.png]With all of the pieces, we can now build the penalty model.

classical_gap = 1
p_model = pm.PenaltyModel.from_specification(spec, qubo, classical_gap, ground_energy)

Installation

To install the core package:

pip install penaltymodel

License

Released under the Apache License 2.0

Contributing

Ocean’s contributing guide [https://docs.ocean.dwavesys.com/en/stable/contributing.html]
has guidelines for contributing to Ocean packages.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

_images/73e56339931580fb66140286f509f05feec4552d.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 penaltymodel

 		
 Reference Documentation

 		
 Cache

 		
 Methods

 		
 Exceptions

 		
 Utilities

_images/39535f6b00820580890b61e6d198b5a8da0c5ed0.png
:|» Invalid states

Valid states

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

