

dwave-system

dwave-system is a basic API for easily incorporating the D-Wave system as a
sampler in the
D-Wave Ocean software stack [https://docs.ocean.dwavesys.com/en/stable/overview/stack.html],
directly or through Leap [https://cloud.dwavesys.com/leap/]‘s cloud-based
hybrid solvers. It includes DWaveSampler, a dimod sampler that accepts and
passes system parameters such as system identification and authentication down
the stack, LeapHybridSampler, for Leap’s hybrid solvers, and other. It also
includes several useful composites—layers of pre- and post-processing—that
can be used with DWaveSampler to handle minor-embedding,
optimize chain strength, etc.

Documentation

	Date

	Nov 15, 2021

Note

This documentation is for the latest version of
dwave-system [https://github.com/dwavesystems/dwave-system].
Documentation for the version currently installed by
dwave-ocean-sdk [https://github.com/dwavesystems/dwave-ocean-sdk]
is here: dwave-system [https://docs.ocean.dwavesys.com/en/stable/docs_system/sdk_index.html].

	Introduction

	Reference Documentation

Code

	Source [https://github.com/dwavesystems/dwave-system]

	Installation

	License

D-Wave's Ocean Software

	Ocean Home [https://ocean.dwavesys.com/]

	Ocean Documentation [https://docs.ocean.dwavesys.com]

	Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]

D-Wave

	D-Wave [https://www.dwavesys.com]

	Leap [https://cloud.dwavesys.com/leap/]

	D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/index.html]

Introduction

dwave-system enables easy incorporation of the D-Wave system as a sampler [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Sampler]
in either a hybrid quantum-classical solution, using
LeapHybridSampler(), for example, or
dwave-hybrid [https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/sdk_index.html] samplers such as
KerberosSampler [https://docs.ocean.dwavesys.com/en/stable/docs_hybrid/reference/reference.html#hybrid.reference.kerberos.KerberosSampler], or directly using
DWaveSampler().

Note

For applications that require detailed control on communication with the remote
compute resource (a D-Wave QPU or Leap’s hybrid solvers), see
dwave-cloud-client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html].

D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/index.html] describes
D-Wave quantum computers and Leap [https://cloud.dwavesys.com/leap/] hybrid solvers,
including features, parameters, and properties. It also provides guidance
on programming the D-Wave system, including how to formulate problems and configure parameters.

Example

This example solves a small example of a known graph problem, minimum
vertex cover [https://en.wikipedia.org/wiki/Vertex_cover]. It uses the NetworkX
graphic package to create the problem, Ocean’s dwave_networkx [https://docs.ocean.dwavesys.com/en/stable/docs_dnx/sdk_index.html]
to formulate the graph problem as a BQM [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-BQM], and dwave-system’s
DWaveSampler() to use a D-Wave system as the sampler.
dwave-system’s EmbeddingComposite() handles mapping
between the problem graph to the D-Wave system’s numerically indexed qubits,
a mapping known as minor-embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embedding].

>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> from dwave.system import DWaveSampler, EmbeddingComposite
...
>>> s5 = nx.star_graph(4) # a star graph where node 0 is hub to four other nodes
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> print(dnx.min_vertex_cover(s5, sampler))
[0]

Reference Documentation

	Samplers
	DWaveSampler

	DWaveCliqueSampler

	LeapHybridSampler

	LeapHybridCQMSampler

	LeapHybridDQMSampler

	Composites
	CutOffs

	Embedding

	Reverse Anneal

	Embedding
	Generators

	Utilities

	Diagnostics

	Chain Strength

	Chain-Break Resolution

	Exceptions

	Classes

	Utilities
	dwave.system.utilities.common_working_graph

	Warnings

Samplers

A sampler [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Sampler] accepts a problem in binary quadratic model [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-binary-quadratic-model] (BQM) or
discrete quadratic model [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-discrete-quadratic-model] (DQM) format and returns variable assignments.
Samplers generally try to find minimizing values but can also sample from
distributions defined by the problem.

	DWaveSampler

	DWaveCliqueSampler

	LeapHybridSampler

	LeapHybridCQMSampler

	LeapHybridDQMSampler

These samplers are non-blocking: the returned SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet] is constructed
from a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object that is resolved on the first
read of any of its properties; for example, by printing the results. Your code can
query its status with the done() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.done.html#dimod.SampleSet.done] method or ensure resolution
with the resolve() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.resolve.html#dimod.SampleSet.resolve] method.

Other Ocean packages provide additional samplers; for example,
dimod [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/sdk_index.html] provides samplers for testing
your code.

DWaveSampler

	
class DWaveSampler(failover=False, retry_interval=- 1, **config)

	A class for using the D-Wave system as a sampler for binary quadratic models.

You can configure your solver [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Solver] selection and usage by setting parameters,
hierarchically, in a configuration file, as environment variables, or
explicitly as input arguments. For more information, see
D-Wave Cloud Client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html]
get_solvers() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers]. By default, online
D-Wave systems are returned ordered by highest number of qubits.

Inherits from dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler] and dimod.Structured [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Structured].

	Parameters

	
	failover (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=False) – Switch to a new QPU in the rare event that the currently connected
system goes offline. Note that different QPUs may have different
hardware graphs and a failover will result in a regenerated
nodelist, edgelist, properties and
parameters.

	retry_interval (number, optional, default=-1) – The amount of time (in seconds) to wait to poll for a solver in
the case that no solver is found. If retry_interval is negative
then it will instead propogate the SolverNotFoundError to the
user.

	**config – Keyword arguments passed to dwave.cloud.client.Client.from_config() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config].

Note

Prior to version 1.0.0, DWaveSampler used the base client,
allowing non-QPU solvers to be selected.
To reproduce the old behavior, instantiate DWaveSampler with
client='base'.

Examples

This example submits a two-variable Ising problem mapped directly to two
adjacent qubits on a D-Wave system. qubit_a is the first qubit in
the QPU’s indexed list of qubits and qubit_b is one of the qubits
coupled to it. Other required parameters for communication with the system, such
as its URL and an autentication token, are implicitly set in a configuration file
or as environment variables, as described in
Configuring Access to D-Wave Solvers [https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html].
Given sufficient reads (here 100), the quantum
computer should return the best solution, \({1, -1}\) on qubit_a and
qubit_b, respectively, as its first sample (samples are ordered from
lowest energy).

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
...
>>> qubit_a = sampler.nodelist[0]
>>> qubit_b = next(iter(sampler.adjacency[qubit_a]))
>>> sampleset = sampler.sample_ising({qubit_a: -1, qubit_b: 1},
... {},
... num_reads=100)
>>> sampleset.first.sample[qubit_a] == 1 and sampleset.first.sample[qubit_b] == -1
True

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

Properties

For parameters and properties of D-Wave systems, see
D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html].

	DWaveSampler.properties

	D-Wave solver properties as returned by a SAPI query.

	DWaveSampler.parameters

	D-Wave solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and values are lists of properties in properties for each key.

	DWaveSampler.nodelist

	List of active qubits for the D-Wave solver.

	DWaveSampler.edgelist

	List of active couplers for the D-Wave solver.

	DWaveSampler.adjacency

	Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets of all adjacent nodes for each key node.

	DWaveSampler.structure

	Structure of the structured sampler formatted as a namedtuple, Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist, edgelist and adjacency attributes.

Methods

	DWaveSampler.sample(bqm[, warnings])

	Sample from the specified binary quadratic model.

	DWaveSampler.sample_ising(h, *args, **kwargs)

	Sample from an Ising model using the implemented sample method.

	DWaveSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

	DWaveSampler.validate_anneal_schedule(...)

	Raise an exception if the specified schedule is invalid for the sampler.

	DWaveSampler.to_networkx_graph()

	Converts DWaveSampler's structure to a Chimera or Pegasus NetworkX graph.

DWaveCliqueSampler

	
class DWaveCliqueSampler(*, failover: bool [https://docs.python.org/3/library/functions.html#bool] = False, retry_interval: numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number] = - 1, **config)

	A sampler for solving clique binary quadratic models on the D-Wave system.

This sampler wraps
find_clique_embedding() [https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/reference/clique_embedding.html#minorminer.busclique.find_clique_embedding] to generate embeddings
with even chain length. These embeddings work well for dense
binary quadratic models. For sparse models, using
EmbeddingComposite with DWaveSampler is preferred.

Configuration such as solver [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Solver] selection is similar to that of
DWaveSampler.

	Parameters

	
	failover (optional, default=False) – Switch to a new QPU in the rare event that the currently connected
system goes offline. Note that different QPUs may have different
hardware graphs and a failover will result in a regenerated
nodelist, edgelist, properties and
parameters.

	retry_interval (optional, default=-1) – The amount of time (in seconds) to wait to poll for a solver in
the case that no solver is found. If retry_interval is negative
then it will instead propogate the SolverNotFoundError to the
user.

	**config – Keyword arguments, as accepted by DWaveSampler

Examples

This example creates a BQM based on a 6-node clique (complete graph),
with random \(\pm 1\) values assigned to nodes, and submits it to
a D-Wave system. Parameters for communication with the system, such
as its URL and an autentication token, are implicitly set in a
configuration file or as environment variables, as described in
Configuring Access to D-Wave Solvers [https://docs.ocean.dwavesys.com/en/stable/overview/sapi.html].

>>> from dwave.system import DWaveCliqueSampler
>>> import dimod
...
>>> bqm = dimod.generators.ran_r(1, 6)
...
>>> sampler = DWaveCliqueSampler()
>>> sampler.largest_clique_size > 5
True
>>> sampleset = sampler.sample(bqm, num_reads=100)

Properties

	DWaveCliqueSampler.largest_clique_size

	The maximum number of variables that can be embedded.

	DWaveCliqueSampler.qpu_linear_range

	Range of linear biases allowed by the QPU.

	DWaveCliqueSampler.qpu_quadratic_range

	Range of quadratic biases allowed by the QPU.

	DWaveCliqueSampler.properties

	A dict containing any additional information about the sampler.

	DWaveCliqueSampler.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

	DWaveCliqueSampler.target_graph

	The QPU topology.

Methods

	DWaveCliqueSampler.largest_clique()

	The clique embedding with the maximum number of source variables.

	DWaveCliqueSampler.sample(bqm[, chain_strength])

	Sample from the specified binary quadratic model.

	DWaveCliqueSampler.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	DWaveCliqueSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

LeapHybridSampler

	
class LeapHybridSampler(**config)

	A class for using Leap’s cloud-based hybrid BQM solvers.

Leap’s quantum-classical hybrid BQM solvers are intended to solve arbitrary
application problems formulated as binary quadratic models (BQM).

You can configure your solver [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Solver] selection and usage by setting parameters,
hierarchically, in a configuration file, as environment variables, or
explicitly as input arguments, as described in
D-Wave Cloud Client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html].

dwave-cloud-client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud]’s
get_solvers() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers] method filters solvers you have
access to by solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
category=hybrid and supported_problem_type=bqm. By default, online
hybrid BQM solvers are returned ordered by latest version.

The default specification for filtering and ordering solvers by features is
available as default_solver property. Explicitly specifying a
solver in a configuration file, an environment variable, or keyword
arguments overrides this specification. See the example below on how to
extend it instead.

	Parameters

	**config – Keyword arguments passed to dwave.cloud.client.Client.from_config() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config].

Examples

This example builds a random sparse graph and uses a hybrid solver to find a
maximum independent set.

>>> import dimod
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import numpy as np
>>> from dwave.system import LeapHybridSampler
...
>>> # Create a maximum-independent set problem from a random graph
>>> problem_node_count = 300
>>> G = nx.random_geometric_graph(problem_node_count, radius=0.0005*problem_node_count)
>>> qubo = dnx.algorithms.independent_set.maximum_weighted_independent_set_qubo(G)
>>> bqm = dimod.BQM.from_qubo(qubo)
...
>>> # Find a good solution
>>> sampler = LeapHybridSampler()
>>> sampleset = sampler.sample(bqm)

This example specializes the default solver selection by filtering out
bulk BQM solvers. (Bulk solvers are throughput-optimal for heavy/batch
workloads, have a higher start-up latency, and are not well suited for
live workloads. Not all Leap accounts have access to bulk solvers.)

>>> from dwave.system import LeapHybridSampler
...
>>> solver = LeapHybridSampler.default_solver
>>> solver.update(name__regex=".*(?<!bulk)$") # name shouldn't end with "bulk"
>>> sampler = LeapHybridSampler(solver=solver)
>>> sampler.solver
BQMSolver(id='hybrid_binary_quadratic_model_version2')

Properties

	LeapHybridSampler.properties

	Solver properties as returned by a SAPI query.

	LeapHybridSampler.parameters

	Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and values are lists of properties in properties for each key.

	LeapHybridSampler.default_solver

	

Methods

	LeapHybridSampler.sample(bqm[, time_limit])

	Sample from the specified binary quadratic model.

	LeapHybridSampler.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	LeapHybridSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

	LeapHybridSampler.min_time_limit(bqm)

	Return the minimum time_limit accepted for the given problem.

LeapHybridCQMSampler

	
class LeapHybridCQMSampler(**config)

	A class for using Leap’s cloud-based hybrid CQM solvers.

Leap’s quantum-classical hybrid CQM solvers are intended to solve
application problems formulated as
constrained quadratic models (CQM) [https://docs.ocean.dwavesys.com/en/stable/concepts/cqm.html#cqm-sdk].

You can configure your solver [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Solver] selection and usage by setting parameters,
hierarchically, in a configuration file, as environment variables, or
explicitly as input arguments, as described in
D-Wave Cloud Client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html].

dwave-cloud-client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud]’s
get_solvers() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers] method filters solvers you have
access to by solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
category=hybrid and supported_problem_type=cqm. By default, online
hybrid CQM solvers are returned ordered by latest version.

	Parameters

	**config – Keyword arguments passed to dwave.cloud.client.Client.from_config() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config].

Examples

This example solves a simple problem of finding the rectangle with the
greatest area when the perimeter is limited. In this example, the
perimeter of the rectangle is set to 8 (meaning the largest area is for
the \(2X2\) square).

A CQM is created that will have two integer variables, \(i, j\), each
limited to half the maximum perimeter length of 8, to represent the
lengths of the rectangle’s sides:

>>> from dimod import ConstrainedQuadraticModel, Integer
>>> i = Integer('i', upper_bound=4)
>>> j = Integer('j', upper_bound=4)
>>> cqm = ConstrainedQuadraticModel()

The area of the rectangle is given by the multiplication of side \(i\)
by side \(j\). The goal is to maximize the area, \(i*j\). Because
D-Wave samplers minimize, the objective should have its lowest value when
this goal is met. Objective \(-i*j\) has its minimum value when
\(i*j\), the area, is greatest:

>>> cqm.set_objective(-i*j)

Finally, the requirement that the sum of both sides must not exceed the
perimeter is represented as constraint \(2i + 2j <= 8\):

>>> cqm.add_constraint(2*i+2*j <= 8, "Max perimeter")
'Max perimeter'

Instantiate a hybrid CQM sampler and submit the problem for solution by
a remote solver provided by the Leap quantum cloud service:

>>> from dwave.system import LeapHybridCQMSampler
>>> sampler = LeapHybridCQMSampler()
>>> sampleset = sampler.sample_cqm(cqm)
>>> print(sampleset.first)
Sample(sample={'i': 2.0, 'j': 2.0}, energy=-4.0, num_occurrences=1,
... is_feasible=True, is_satisfied=array([True]))

The best (lowest-energy) solution found has \(i=j=2\) as expected,
a solution that is feasible because all the constraints (one in this
example) are satisfied.

Properties

	LeapHybridCQMSampler.properties

	Solver properties as returned by a SAPI query.

	LeapHybridCQMSampler.parameters

	Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and values are lists of properties in properties for each key.

Methods

	LeapHybridCQMSampler.sample_cqm(cqm[, ...])

	Sample from the specified constrained quadratic model.

	LeapHybridCQMSampler.min_time_limit(cqm)

	Return the minimum time_limit accepted for the given problem.

LeapHybridDQMSampler

	
class LeapHybridDQMSampler(**config)

	A class for using Leap’s cloud-based hybrid DQM solvers.

Leap’s quantum-classical hybrid DQM solvers are intended to solve arbitrary
application problems formulated as discrete quadratic models (DQM).

You can configure your solver [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Solver] selection and usage by setting parameters,
hierarchically, in a configuration file, as environment variables, or
explicitly as input arguments, as described in
D-Wave Cloud Client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html].

dwave-cloud-client [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/sdk_index.html#sdk-index-cloud]’s
get_solvers() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.get_solvers.html#dwave.cloud.client.Client.get_solvers] method filters solvers you have
access to by solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
category=hybrid and supported_problem_type=dqm. By default, online
hybrid DQM solvers are returned ordered by latest version.

The default specification for filtering and ordering solvers by features is
available as default_solver property. Explicitly specifying a
solver in a configuration file, an environment variable, or keyword
arguments overrides this specification. See the example in LeapHybridSampler
on how to extend it instead.

	Parameters

	**config – Keyword arguments passed to dwave.cloud.client.Client.from_config() [https://docs.ocean.dwavesys.com/en/stable/docs_cloud/reference/generated/dwave.cloud.client.Client.from_config.html#dwave.cloud.client.Client.from_config].

Examples

This example solves a small, illustrative problem: a game of
rock-paper-scissors. The DQM has two variables representing two hands,
with cases for rock, paper, scissors. Quadratic biases are set to
produce a lower value of the DQM for cases of variable my_hand
interacting with cases of variable their_hand such that the former
wins over the latter; for example, the interaction of rock-scissors is
set to -1 while scissors-rock is set to +1.

>>> import dimod
>>> from dwave.system import LeapHybridDQMSampler
...
>>> cases = ["rock", "paper", "scissors"]
>>> win = {"rock": "scissors", "paper": "rock", "scissors": "paper"}
...
>>> dqm = dimod.DiscreteQuadraticModel()
>>> dqm.add_variable(3, label='my_hand')
'my_hand'
>>> dqm.add_variable(3, label='their_hand')
'their_hand'
>>> for my_idx, my_case in enumerate(cases):
... for their_idx, their_case in enumerate(cases):
... if win[my_case] == their_case:
... dqm.set_quadratic('my_hand', 'their_hand',
... {(my_idx, their_idx): -1})
... if win[their_case] == my_case:
... dqm.set_quadratic('my_hand', 'their_hand',
... {(my_idx, their_idx): 1})
...
>>> dqm_sampler = LeapHybridDQMSampler()
...
>>> sampleset = dqm_sampler.sample_dqm(dqm)
>>> print("{} beats {}".format(cases[sampleset.first.sample['my_hand']],
... cases[sampleset.first.sample['their_hand']]))
rock beats scissors

Properties

	LeapHybridDQMSampler.properties

	Solver properties as returned by a SAPI query.

	LeapHybridDQMSampler.parameters

	Solver parameters in the form of a dict, where keys are keyword parameters accepted by a SAPI query and values are lists of properties in properties for each key.

	LeapHybridDQMSampler.default_solver

	

Methods

	LeapHybridDQMSampler.sample_dqm(dqm[, ...])

	Sample from the specified discrete quadratic model.

	LeapHybridDQMSampler.min_time_limit(dqm)

	Return the minimum time_limit accepted for the given problem.

dwave.system.samplers.DWaveSampler.properties

	
property DWaveSampler.properties

	D-Wave solver properties as returned by a SAPI query.

Solver properties are dependent on the selected D-Wave solver and subject to change;
for example, new released features may add properties.
D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html]
describes the parameters and properties supported on the D-Wave system.

Examples

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.properties
{'anneal_offset_ranges': [[-0.2197463755538704, 0.03821687759418928],
 [-0.2242514597680286, 0.01718456460967399],
 [-0.20860153999435985, 0.05511969218508182],
Snipped above response for brevity

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.samplers.DWaveSampler.parameters

	
property DWaveSampler.parameters

	D-Wave solver parameters in the form of a dict, where keys are
keyword parameters accepted by a SAPI query and values are lists of properties in
properties for each key.

Solver parameters are dependent on the selected D-Wave solver and subject to change;
for example, new released features may add parameters.
D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html]
describes the parameters and properties supported on the D-Wave system.

Examples

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.parameters
{'anneal_offsets': ['parameters'],
 'anneal_schedule': ['parameters'],
 'annealing_time': ['parameters'],
 'answer_mode': ['parameters'],
 'auto_scale': ['parameters'],
 # Snipped above response for brevity

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.samplers.DWaveSampler.nodelist

	
property DWaveSampler.nodelist

	List of active qubits for the D-Wave solver.

Examples

Node list for one D-Wave 2000Q system (output snipped for brevity).

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.nodelist
[0, 1, 2, ...

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.samplers.DWaveSampler.edgelist

	
property DWaveSampler.edgelist

	List of active couplers for the D-Wave solver.

Examples

Coupler list for one D-Wave 2000Q system (output snipped for brevity).

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> sampler.edgelist
[(0, 4), (0, 5), (0, 6), (0, 7), ...

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.samplers.DWaveSampler.adjacency

	
property DWaveSampler.adjacency

	Adjacency structure formatted as a dict, where
keys are the nodes of the structured sampler and values are sets of all
adjacent nodes for each key node.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, set [https://docs.python.org/3/library/stdtypes.html#set]]

dwave.system.samplers.DWaveSampler.structure

	
property DWaveSampler.structure

	Structure of the structured sampler formatted as a
namedtuple, Structure(nodelist, edgelist, adjacency),
where the 3-tuple values are the nodelist, edgelist
and adjacency attributes.

dwave.system.samplers.DWaveSampler.sample

	
DWaveSampler.sample(bqm, warnings=None, **kwargs)

	Sample from the specified binary quadratic model.

	Parameters

	
	bqm (BinaryQuadraticModel) – The binary quadratic model. Must match nodelist and
edgelist.

	warnings (WarningAction, optional) – Defines what warning action to take, if any. See
Warnings. The default behaviour is to
ignore warnings.

	**kwargs – Optional keyword arguments for the sampling method, specified per solver in
parameters. D-Wave System Documentation’s
solver guide [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html]
describes the parameters and properties supported on the D-Wave system.

	Returns

	Sample set constructed from a (non-blocking)
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object.
In it this sampler also provides timing information in the info
field as described in the D-Wave System Documentation’s
QPU Timing Information from SAPI [https://docs.dwavesys.com/docs/latest/c_qpu_timing.html#qpu-sapi-qpu-timing].

	Return type

	SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

This example submits a two-variable Ising problem mapped directly to two
adjacent qubits on a D-Wave system. qubit_a is the first qubit in
the QPU’s indexed list of qubits and qubit_b is one of the qubits
coupled to it. Given sufficient reads (here 100), the quantum
computer should return the best solution, \({1, -1}\) on qubit_a and
qubit_b, respectively, as its first sample (samples are ordered from
lowest energy).

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
...
>>> qubit_a = sampler.nodelist[0]
>>> qubit_b = next(iter(sampler.adjacency[qubit_a]))
>>> sampleset = sampler.sample_ising({qubit_a: -1, qubit_b: 1},
... {},
... num_reads=100)
>>> sampleset.first.sample[qubit_a] == 1 and sampleset.first.sample[qubit_b] == -1
True

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

dwave.system.samplers.DWaveSampler.sample_ising

	
DWaveSampler.sample_ising(h, *args, **kwargs)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.samplers.DWaveSampler.sample_qubo

	
DWaveSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.samplers.DWaveSampler.validate_anneal_schedule

	
DWaveSampler.validate_anneal_schedule(anneal_schedule)

	Raise an exception if the specified schedule is invalid for the sampler.

	Parameters

	anneal_schedule (list [https://docs.python.org/3/library/stdtypes.html#list]) – An anneal schedule variation is defined by a series of pairs of floating-point
numbers identifying points in the schedule at which to change slope. The first
element in the pair is time t in microseconds; the second, normalized persistent
current s in the range [0,1]. The resulting schedule is the piecewise-linear curve
that connects the provided points.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the schedule violates any of the conditions listed below.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the sampler does not accept the anneal_schedule parameter or
 if it does not have annealing_time_range or max_anneal_schedule_points
 properties.

As described in
D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html],
an anneal schedule must satisfy the following conditions:

	Time t must increase for all points in the schedule.

	For forward annealing, the first point must be (0,0) and the anneal fraction s must
increase monotonically.

	For reverse annealing, the anneal fraction s must start and end at s=1.

	In the final point, anneal fraction s must equal 1 and time t must not exceed the
maximum value in the annealing_time_range property.

	The number of points must be >=2.

	The upper bound is system-dependent; check the max_anneal_schedule_points property.
For reverse annealing, the maximum number of points allowed is one more than the
number given by this property.

Examples

This example sets a quench schedule on a D-Wave system.

>>> from dwave.system import DWaveSampler
>>> sampler = DWaveSampler()
>>> quench_schedule=[[0.0, 0.0], [12.0, 0.6], [12.8, 1.0]]
>>> DWaveSampler().validate_anneal_schedule(quench_schedule)
>>>

dwave.system.samplers.DWaveSampler.to_networkx_graph

	
DWaveSampler.to_networkx_graph()

	Converts DWaveSampler’s structure to a Chimera or Pegasus NetworkX graph.

	Returns

	Either an (m, n, t) Chimera lattice or a Pegasus lattice of size m.

	Return type

	networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

Examples

This example converts a selected D-Wave system solver to a graph
and verifies it has over 2000 nodes.

>>> from dwave.system import DWaveSampler
...
>>> sampler = DWaveSampler()
>>> g = sampler.to_networkx_graph()
>>> len(g.nodes) > 2000
True

dwave.system.samplers.DWaveCliqueSampler.largest_clique_size

	
property DWaveCliqueSampler.largest_clique_size: int [https://docs.python.org/3/library/functions.html#int]

	The maximum number of variables that can be embedded.

dwave.system.samplers.DWaveCliqueSampler.qpu_linear_range

	
property DWaveCliqueSampler.qpu_linear_range: Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Range of linear biases allowed by the QPU.

dwave.system.samplers.DWaveCliqueSampler.qpu_quadratic_range

	
property DWaveCliqueSampler.qpu_quadratic_range: Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Range of quadratic biases allowed by the QPU.

dwave.system.samplers.DWaveCliqueSampler.properties

	
property DWaveCliqueSampler.properties: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A dict containing any additional information about the sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.samplers.DWaveCliqueSampler.parameters

	
property DWaveCliqueSampler.parameters: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A dict where keys are the keyword parameters accepted by the sampler
methods and values are lists of the properties relevent to each parameter.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.samplers.DWaveCliqueSampler.target_graph

	
property DWaveCliqueSampler.target_graph: networkx.classes.graph.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

	The QPU topology.

dwave.system.samplers.DWaveCliqueSampler.largest_clique

	
DWaveCliqueSampler.largest_clique()

	The clique embedding with the maximum number of source variables.

	Returns

	The clique embedding with the maximum number of source
variables.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.samplers.DWaveCliqueSampler.sample

	
DWaveCliqueSampler.sample(bqm, chain_strength=None, **kwargs)

	Sample from the specified binary quadratic model.

	Parameters

	
	bqm (BinaryQuadraticModel) – Any binary quadratic model with up to
largest_clique_size variables. This BQM is embedded
using a clique embedding.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required
chain strength for each variable. Callables should accept the BQM
and embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	**kwargs – Optional keyword arguments for the sampling method, specified
per solver in parameters.
D-Wave System Documentation’s
solver guide [https://docs.dwavesys.com/docs/latest/doc_solver_ref.html]
describes the parameters and properties supported on the D-Wave
system. Note that auto_scale is not supported by this
sampler, because it scales the problem as part of the embedding
process.

	Returns

	Sample set constructed from a (non-blocking)
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object.

	Return type

	SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

dwave.system.samplers.DWaveCliqueSampler.sample_ising

	
DWaveCliqueSampler.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.samplers.DWaveCliqueSampler.sample_qubo

	
DWaveCliqueSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.samplers.LeapHybridSampler.properties

	
property LeapHybridSampler.properties: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Solver properties as returned by a SAPI query.

Solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridSampler.parameters

	
property LeapHybridSampler.parameters: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Solver parameters in the form of a dict, where keys are
keyword parameters accepted by a SAPI query and values are lists of properties in
properties for each key.

Solver parameters [https://docs.dwavesys.com/docs/latest/c_solver_parameters.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridSampler.default_solver

	
LeapHybridSampler.default_solver = {'order_by': '-properties.version', 'supported_problem_types__contains': 'bqm'}

	

dwave.system.samplers.LeapHybridSampler.sample

	
LeapHybridSampler.sample(bqm, time_limit=None, **kwargs)

	Sample from the specified binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model.

	time_limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum run time, in seconds, to allow the solver to work on the
problem. Must be at least the minimum required for the number of
problem variables, which is calculated and set by default.

min_time_limit()
calculates (and describes) the minimum time for your problem.

	**kwargs – Optional keyword arguments for the solver, specified in
parameters.

	Returns

	Sample set constructed from a (non-blocking)
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object.

	Return type

	SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

This example builds a random sparse graph and uses a hybrid solver to
find a maximum independent set.

>>> import dimod
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import numpy as np
...
>>> # Create a maximum-independent set problem from a random graph
>>> problem_node_count = 300
>>> G = nx.random_geometric_graph(problem_node_count, radius=0.0005*problem_node_count)
>>> qubo = dnx.algorithms.independent_set.maximum_weighted_independent_set_qubo(G)
>>> bqm = dimod.BQM.from_qubo(qubo)
...
>>> # Find a good solution
>>> sampler = LeapHybridSampler()
>>> sampleset = sampler.sample(bqm)

dwave.system.samplers.LeapHybridSampler.sample_ising

	
LeapHybridSampler.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.samplers.LeapHybridSampler.sample_qubo

	
LeapHybridSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.samplers.LeapHybridSampler.min_time_limit

	
LeapHybridSampler.min_time_limit(bqm)

	Return the minimum time_limit accepted for the given problem.

The minimum time for a hybrid BQM solver is specified as a piecewise-linear
curve defined by a set of floating-point pairs, the minimum_time_limit
field under properties.
The first element in each pair is the number of problem variables; the
second is the minimum required time. The minimum time for any number of
variables is a linear interpolation calculated on two pairs that represent
the relevant range for the given number of variables.

Examples

For a solver where
LeapHybridSampler().properties[“minimum_time_limit”] returns
[[1, 0.1], [100, 10.0], [1000, 20.0]], the minimum time for a
problem 50 variales is 5 seconds (the linear interpolation of the
first two pairs that represent problems with between 1 to 100
variables).

dwave.system.samplers.LeapHybridCQMSampler.properties

	
property LeapHybridCQMSampler.properties: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Solver properties as returned by a SAPI query.

Solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridCQMSampler.parameters

	
property LeapHybridCQMSampler.parameters: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Solver parameters in the form of a dict, where keys
are keyword parameters accepted by a SAPI query and values are lists of
properties in
properties for each
key.

Solver parameters [https://docs.dwavesys.com/docs/latest/c_solver_parameters.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridCQMSampler.sample_cqm

	
LeapHybridCQMSampler.sample_cqm(cqm: dimod.constrained.ConstrainedQuadraticModel [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/constrained.html#dimod.ConstrainedQuadraticModel], time_limit: Optional[float [https://docs.python.org/3/library/functions.html#float]] = None, **kwargs)

	Sample from the specified constrained quadratic model.

	Parameters

	
	cqm (dimod.ConstrainedQuadraticModel [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/constrained.html#dimod.ConstrainedQuadraticModel]) – Constrained quadratic model (CQM).

	time_limit (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum run time, in seconds, to allow the solver to work on the
problem. Must be at least the minimum required for the problem,
which is calculated and set by default.

min_time_limit()
calculates (and describes) the minimum time for your problem.

	**kwargs – Optional keyword arguments for the solver, specified in
parameters.

	Returns

	Sample set constructed from a (non-blocking)
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object.

	Return type

	SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in LeapHybridCQMSampler.

dwave.system.samplers.LeapHybridCQMSampler.min_time_limit

	
LeapHybridCQMSampler.min_time_limit(cqm: dimod.constrained.ConstrainedQuadraticModel [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/constrained.html#dimod.ConstrainedQuadraticModel]) → float [https://docs.python.org/3/library/functions.html#float]

	Return the minimum time_limit accepted for the given problem.

dwave.system.samplers.LeapHybridDQMSampler.properties

	
property LeapHybridDQMSampler.properties: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Solver properties as returned by a SAPI query.

Solver properties [https://docs.dwavesys.com/docs/latest/c_solver_properties.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridDQMSampler.parameters

	
property LeapHybridDQMSampler.parameters: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Solver parameters in the form of a dict, where keys
are keyword parameters accepted by a SAPI query and values are lists of
properties in
properties for each
key.

Solver parameters [https://docs.dwavesys.com/docs/latest/c_solver_parameters.html]
are dependent on the selected solver and subject to change.

dwave.system.samplers.LeapHybridDQMSampler.default_solver

	
LeapHybridDQMSampler.default_solver = {'order_by': '-properties.version', 'supported_problem_types__contains': 'dqm'}

	

dwave.system.samplers.LeapHybridDQMSampler.sample_dqm

	
LeapHybridDQMSampler.sample_dqm(dqm, time_limit=None, compress=False, compressed=None, **kwargs)

	Sample from the specified discrete quadratic model.

	Parameters

	
	dqm (dimod.DiscreteQuadraticModel [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/quadratic.html#dimod.DiscreteQuadraticModel]) – Discrete quadratic model (DQM).

Note that if dqm is a dimod.CaseLabelDQM [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/quadratic.html#dimod.CaseLabelDQM], then
map_sample() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.CaseLabelDQM.map_sample.html#dimod.CaseLabelDQM.map_sample] will need to be used to
restore the case labels in the returned sample set.

	time_limit (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum run time, in seconds, to allow the solver to work on the
problem. Must be at least the minimum required for the number of
problem variables, which is calculated and set by default.

min_time_limit()
calculates (and describes) the minimum time for your problem.

	compress (binary, optional) – Compresses the DQM data when set to True. Use if your problem
somewhat exceeds the maximum allowed size. Compression tends to
be slow and more effective on homogenous data, which in this
case means it is more likely to help on DQMs with many identical
integer-valued biases than ones with random float-valued biases,
for example.

	compressed (binary, optional) – Deprecated; please use compress instead.

	**kwargs – Optional keyword arguments for the solver, specified in
parameters.

	Returns

	Sample set constructed from a (non-blocking)
Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]-like object.

	Return type

	SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in LeapHybridDQMSampler.

dwave.system.samplers.LeapHybridDQMSampler.min_time_limit

	
LeapHybridDQMSampler.min_time_limit(dqm)

	Return the minimum time_limit accepted for the given problem.

The minimum time for a hybrid DQM solver is specified as a
piecewise-linear curve defined by a set of floating-point pairs,
the minimum_time_limit field under
properties.
The first element in each pair is a combination of the numbers of
interactions, variables, and cases that reflects the “density” of
connectivity between the problem’s variables;
the second is the minimum required time. The minimum time for any
particular problem size is a linear interpolation calculated on
two pairs that represent the relevant range for the given problem.

Examples

For a solver where
LeapHybridDQMSampler().properties[“minimum_time_limit”] returns
[[1, 0.1], [100, 10.0], [1000, 20.0]], the minimum time for a
problem of “density” 50 is 5 seconds (the linear interpolation of the
first two pairs that represent problems with “density” between 1 to
100).

Composites

dimod composites that provide layers of pre- and
post-processing (e.g., minor-embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embedding]) when using the D-Wave system:

	CutOffs

	CutOffComposite

	PolyCutOffComposite

	Embedding

	AutoEmbeddingComposite

	EmbeddingComposite

	FixedEmbeddingComposite

	LazyFixedEmbeddingComposite

	TilingComposite

	VirtualGraphComposite

	Reverse Anneal

	ReverseBatchStatesComposite

	ReverseAdvanceComposite

Other Ocean packages provide additional composites; for example,
dimod [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/sdk_index.html] provides composites that operate
on the problem (e.g., scaling values), track inputs and outputs for debugging,
and other useful functionality relevant to generic samplers.

CutOffs

Prunes the binary quadratic model (BQM) submitted to the child sampler by retaining
only interactions with values commensurate with the sampler’s precision.

CutOffComposite

	
class CutOffComposite(child_sampler, cutoff, cutoff_vartype=Vartype.SPIN, comparison=<built-in function lt>)

	Composite to remove interactions below a specified cutoff value.

Prunes the binary quadratic model (BQM) submitted to the child sampler by
retaining only interactions with values commensurate with the sampler’s
precision as specified by the cutoff argument. Also removes variables
isolated post- or pre-removal of these interactions from the BQM passed
on to the child sampler, setting these variables to values that minimize
the original BQM’s energy for the returned samples.

	Parameters

	
	sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – A dimod sampler.

	cutoff (number) – Lower bound for absolute value of interactions. Interactions
with absolute values lower than cutoff are removed. Isolated variables
are also not passed on to the child sampler.

	cutoff_vartype (Vartype/str/set, default=’SPIN’) – Variable space to execute the removal in. Accepted input values:

	Vartype.SPIN, 'SPIN', {-1, 1}

	Vartype.BINARY, 'BINARY', {0, 1}

	comparison (function, optional) – A comparison operator for comparing interaction values to the cutoff
value. Defaults to operator.lt() [https://docs.python.org/3/library/operator.html#operator.lt].

Examples

This example removes one interaction, 'ac': -0.7, before embedding
on a D-Wave system. Note that the lowest-energy sample for the embedded problem
is {'a': 1, 'b': -1, 'c': -1} but with a large enough number of samples
(here num_reads=1000), the lowest-energy solution to the complete BQM is
likely found and its energy recalculated by the composite.

>>> import dimod
>>> sampler = DWaveSampler(solver={'qpu': True})
>>> bqm = dimod.BinaryQuadraticModel({'a': -1, 'b': 1, 'c': 1},
... {'ab': -0.8, 'ac': -0.7, 'bc': -1},
... 0,
... dimod.SPIN)
>>> CutOffComposite(AutoEmbeddingComposite(sampler), 0.75).sample(bqm,
... num_reads=1000).first.energy
-3.5

Properties

	CutOffComposite.child

	The child sampler.

	CutOffComposite.children

	List of child samplers that that are used by this composite.

	CutOffComposite.properties

	A dict containing any additional information about the sampler.

	CutOffComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

Methods

	CutOffComposite.sample(bqm, **parameters)

	Cut off interactions and sample from the provided binary quadratic model.

	CutOffComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

	CutOffComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

PolyCutOffComposite

Prunes the polynomial submitted to the child sampler by retaining
only interactions with values commensurate with the sampler’s precision.

	
class PolyCutOffComposite(child_sampler, cutoff, cutoff_vartype=Vartype.SPIN, comparison=<built-in function lt>)

	Composite to remove polynomial interactions below a specified cutoff value.

Prunes the binary polynomial submitted to the child sampler by retaining
only interactions with values commensurate with the sampler’s precision as
specified by the cutoff argument. Also removes variables isolated post-
or pre-removal of these interactions from the polynomial passed on to the
child sampler, setting these variables to values that minimize the
original polynomial’s energy for the returned samples.

	Parameters

	
	sampler (dimod.PolySampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.PolySampler]) – A dimod binary polynomial sampler.

	cutoff (number) – Lower bound for absolute value of interactions. Interactions
with absolute values lower than cutoff are removed. Isolated variables
are also not passed on to the child sampler.

	cutoff_vartype (Vartype/str/set, default=’SPIN’) – Variable space to do the cutoff in. Accepted input values:

	Vartype.SPIN, 'SPIN', {-1, 1}

	Vartype.BINARY, 'BINARY', {0, 1}

	comparison (function, optional) – A comparison operator for comparing the interaction value to the cutoff
value. Defaults to operator.lt() [https://docs.python.org/3/library/operator.html#operator.lt].

Examples

This example removes one interaction, 'ac': 0.2, before submitting
the polynomial to child sampler ExactSolver [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/samplers.html#dimod.reference.samplers.ExactSolver].

>>> import dimod
>>> sampler = dimod.HigherOrderComposite(dimod.ExactSolver())
>>> poly = dimod.BinaryPolynomial({'a': 3, 'abc':-4, 'ac': 0.2}, dimod.SPIN)
>>> PolyCutOffComposite(sampler, 1).sample_poly(poly).first.sample['a']
-1

Properties

	PolyCutOffComposite.child

	The child sampler.

	PolyCutOffComposite.children

	List of child samplers that that are used by this composite.

	PolyCutOffComposite.properties

	A dict containing any additional information about the sampler.

	PolyCutOffComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

Methods

	PolyCutOffComposite.sample_poly(poly, **kwargs)

	Cutoff and sample from the provided binary polynomial.

	PolyCutOffComposite.sample_hising(h, J, **kwargs)

	Sample from a higher-order Ising model.

	PolyCutOffComposite.sample_hubo(H, **kwargs)

	Sample from a higher-order unconstrained binary optimization problem.

Embedding

Minor-embed [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embed] a problem BQM [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-BQM] into a D-Wave system.

Embedding composites for various types of problems and application.
For example:

	EmbeddingComposite for a problem with arbitrary structure that likely
requires hueristic embedding.

	AutoEmbeddingComposite can save unnecessary embedding for
problems that might have a structure similar to the child sampler.

	LazyFixedEmbeddingComposite can benefit applications that
resubmit a BQM with changes in some values.

AutoEmbeddingComposite

	
class AutoEmbeddingComposite(child_sampler, **kwargs)

	Maps problems to a structured sampler, embedding if needed.

This composite first tries to submit the binary quadratic model directly
to the child sampler and only embeds if a
dimod.exceptions.BinaryQuadraticModelStructureError [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/exceptions.html#dimod.exceptions.BinaryQuadraticModelStructureError] is raised.

	Parameters

	
	child_sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – Structured dimod sampler, such as a
DWaveSampler().

	find_embedding (function, optional) – A function find_embedding(S, T, **kwargs) where S and T
are edgelists. The function can accept additional keyword arguments.
Defaults to minorminer.find_embedding().

	kwargs – See the EmbeddingComposite class for additional keyword
arguments.

Properties

	AutoEmbeddingComposite.child

	The child sampler.

	AutoEmbeddingComposite.parameters

	Parameters in the form of a dict.

	AutoEmbeddingComposite.properties

	Properties in the form of a dict.

Methods

	AutoEmbeddingComposite.sample(bqm, **parameters)

	Sample from the provided binary quadratic model.

	AutoEmbeddingComposite.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	AutoEmbeddingComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

EmbeddingComposite

	
class EmbeddingComposite(child_sampler, find_embedding=<function find_embedding>, embedding_parameters=None, scale_aware=False, child_structure_search=<function child_structure_dfs>)

	Maps problems to a structured sampler.

Automatically minor-embeds a problem into a structured sampler such as a
D-Wave system. A new minor-embedding is calculated each time one of its
sampling methods is called.

	Parameters

	
	child_sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – A dimod sampler, such as a DWaveSampler, that accepts
only binary quadratic models of a particular structure.

	find_embedding (function, optional) – A function find_embedding(S, T, **kwargs) where S and T
are edgelists. The function can accept additional keyword arguments.
Defaults to minorminer.find_embedding().

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as
keyword arguments.

	scale_aware (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=False) – Pass chain interactions to child samplers that accept an ignored_interactions
parameter.

	child_structure_search (function, optional) – A function child_structure_search(sampler) that accepts a sampler
and returns the dimod.Structured.structure [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/generated/dimod.Structured.structure.html#dimod.Structured.structure].
Defaults to dimod.child_structure_dfs().

Examples

>>> from dwave.system import DWaveSampler, EmbeddingComposite
...
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> h = {'a': -1., 'b': 2}
>>> J = {('a', 'b'): 1.5}
>>> sampleset = sampler.sample_ising(h, J, num_reads=100)
>>> sampleset.first.energy
-4.5

Properties

	EmbeddingComposite.child

	The child sampler.

	EmbeddingComposite.parameters

	Parameters in the form of a dict.

	EmbeddingComposite.properties

	Properties in the form of a dict.

	EmbeddingComposite.return_embedding_default

	Defines the default behaviour for sample()'s return_embedding kwarg.

	EmbeddingComposite.warnings_default

	Defines the default behavior for sample()'s warnings kwarg.

Methods

	EmbeddingComposite.sample(bqm[, ...])

	Sample from the provided binary quadratic model.

	EmbeddingComposite.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	EmbeddingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

FixedEmbeddingComposite

	
class FixedEmbeddingComposite(child_sampler, embedding=None, source_adjacency=None, **kwargs)

	Maps problems to a structured sampler with the specified minor-embedding.

	Parameters

	
	child_sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – Structured dimod sampler such as a D-Wave system.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict][hashable, iterable], optional) – Mapping from a source graph to the specified sampler’s graph (the
target graph).

	source_adjacency (dict [https://docs.python.org/3/library/stdtypes.html#dict][hashable, iterable]) – Deprecated. Dictionary to describe source graph as {node:
{node neighbours}}.

	kwargs – See the EmbeddingComposite class for additional keyword
arguments. Note that find_embedding and embedding_parameters
keyword arguments are ignored.

Examples

To embed a triangular problem (a problem with a three-node complete graph,
or clique) in the Chimera topology, you need to chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain] two
qubits. This example maps triangular problems to a composed sampler
(based on the unstructured ExactSolver [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/samplers.html#dimod.reference.samplers.ExactSolver])
with a Chimera unit-cell structure.

>>> import dimod
>>> import dwave_networkx as dnx
>>> from dwave.system import FixedEmbeddingComposite
...
>>> c1 = dnx.chimera_graph(1)
>>> embedding = {'a': [0, 4], 'b': [1], 'c': [5]}
>>> structured_sampler = dimod.StructureComposite(dimod.ExactSolver(),
... c1.nodes, c1.edges)
>>> sampler = FixedEmbeddingComposite(structured_sampler, embedding)
>>> sampler.edgelist
[('a', 'b'), ('a', 'c'), ('b', 'c')]

Properties

	FixedEmbeddingComposite.properties

	Properties in the form of a dict.

	FixedEmbeddingComposite.parameters

	Parameters in the form of a dict.

	FixedEmbeddingComposite.children

	List containing the structured sampler.

	FixedEmbeddingComposite.child

	The child sampler.

	FixedEmbeddingComposite.nodelist

	Nodes available to the composed sampler.

	FixedEmbeddingComposite.edgelist

	Edges available to the composed sampler.

	FixedEmbeddingComposite.adjacency

	Adjacency structure for the composed sampler.

	FixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a namedtuple, Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist, edgelist and adjacency attributes.

Methods

	FixedEmbeddingComposite.sample(bqm, **parameters)

	Sample the binary quadratic model.

	FixedEmbeddingComposite.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	FixedEmbeddingComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

LazyFixedEmbeddingComposite

	
class LazyFixedEmbeddingComposite(child_sampler, find_embedding=<function find_embedding>, embedding_parameters=None, scale_aware=False, child_structure_search=<function child_structure_dfs>)

	Maps problems to the structure of its first given problem.

This composite reuses the minor-embedding found for its first given problem
without recalculating a new minor-embedding for subsequent calls of its
sampling methods.

	Parameters

	
	child_sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – Structured dimod sampler.

	find_embedding (function, default=:func:minorminer.find_embedding) – A function find_embedding(S, T, **kwargs) where S and T
are edgelists. The function can accept additional keyword arguments.
The function is used to find the embedding for the first problem
solved.

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as keyword
arguments.

Examples

>>> from dwave.system import LazyFixedEmbeddingComposite, DWaveSampler
...
>>> sampler = LazyFixedEmbeddingComposite(DWaveSampler())
>>> sampler.nodelist is None # no structure prior to first sampling
True
>>> __ = sampler.sample_ising({}, {('a', 'b'): -1})
>>> sampler.nodelist # has structure based on given problem
['a', 'b']

Properties

	LazyFixedEmbeddingComposite.parameters

	Parameters in the form of a dict.

	LazyFixedEmbeddingComposite.properties

	Properties in the form of a dict.

	LazyFixedEmbeddingComposite.nodelist

	Nodes available to the composed sampler.

	LazyFixedEmbeddingComposite.edgelist

	Edges available to the composed sampler.

	LazyFixedEmbeddingComposite.adjacency

	Adjacency structure for the composed sampler.

	LazyFixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a namedtuple, Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist, edgelist and adjacency attributes.

Methods

	LazyFixedEmbeddingComposite.sample(bqm, ...)

	Sample the binary quadratic model.

	LazyFixedEmbeddingComposite.sample_ising(h, ...)

	Sample from an Ising model using the implemented sample method.

	LazyFixedEmbeddingComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

TilingComposite

	
class TilingComposite(sampler, sub_m, sub_n, t=4)

	Composite to tile a small problem across a structured sampler.

Enables parallel sampling on Chimera or Pegasus structured samplers of
small problems. The small problem should be defined on a Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera]
graph of dimensions sub_m, sub_n, t, or minor-embeddable to
such a graph.

Notation CN refers to a Chimera graph consisting of an NxN grid of unit
cells, where each unit cell is a bipartite graph with shores of size t.
The D-Wave 2000Q QPU supports a C16 Chimera graph: its 2048 qubits are
logically mapped into a 16x16 matrix of unit cells of 8 qubits (t=4).
See also :func:dwave_networkx.chimera_graph

Notation PN referes to a Pegasus graph consisting of a 3x(N-1)x(N-1) grid
of cells, where each unit cell is a bipartite graph with shore of size t,
supplemented with odd couplers (see nice_coordinate definition). The
Advantage QPU supports a P16 Pegasus graph: its qubits may be mapped to a
3x15x15 matrix of unit cells, each of 8 qubits. This code supports tiling of
Chimera-structured problems, with an option of additional odd-couplers,
onto Pegasus. See also :func:dwave_networkx.pegasus_graph .

A problem that can be minor-embedded in a single chimera unit cell, for
example, can therefore be tiled across the unit cells of a D-Wave 2000Q as
16x16 duplicates (or Advantage as 3x15x15 duplicates), subject to solver
yield. This enables up to 256 (625) parallel samples per read.

	Parameters

	
	sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – Structured dimod sampler such as a
DWaveSampler().

	sub_m (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of Chimera unit cell rows required for
minor-embedding a single instance of the problem.

	sub_n (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of Chimera unit cell columns required for
minor-embedding a single instance of the problem.

	t (int [https://docs.python.org/3/library/functions.html#int], optional, default=4) – Size of the shore within each Chimera unit
cell.

Examples

This example submits a two-variable QUBO problem representing a logical
NOT gate to a D-Wave system. The QUBO—two nodes with biases of -1 that
are coupled with strength 2—needs only any two coupled qubits and so is
easily minor-embedded in a single unit cell.
Composite TilingComposite tiles it multiple times for parallel solution:
the two nodes should typically have opposite values.

>>> from dwave.system import DWaveSampler, EmbeddingComposite
>>> from dwave.system import TilingComposite
...
>>> qpu_2000q = DWaveSampler(solver={'topology__type': 'chimera'})
>>> sampler = EmbeddingComposite(TilingComposite(qpu_2000q, 1, 1, 4))
>>> Q = {(1, 1): -1, (1, 2): 2, (2, 1): 0, (2, 2): -1}
>>> sampleset = sampler.sample_qubo(Q)
>>> len(sampleset)> 1
True

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

Properties

	TilingComposite.properties

	Properties in the form of a dict.

	TilingComposite.parameters

	Parameters in the form of a dict.

	TilingComposite.children

	The single wrapped structured sampler.

	TilingComposite.child

	The child sampler.

	TilingComposite.nodelist

	List of active qubits for the structured solver.

	TilingComposite.edgelist

	List of active couplers for the D-Wave solver.

	TilingComposite.adjacency

	Adjacency structure formatted as a dict, where keys are the nodes of the structured sampler and values are sets of all adjacent nodes for each key node.

	TilingComposite.structure

	Structure of the structured sampler formatted as a namedtuple, Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist, edgelist and adjacency attributes.

Methods

	TilingComposite.sample(bqm, **kwargs)

	Sample from the specified binary quadratic model.

	TilingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

	TilingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

VirtualGraphComposite

	
class VirtualGraphComposite(sampler, embedding, chain_strength=None, flux_biases=None, flux_bias_num_reads=1000, flux_bias_max_age=3600)

	Composite to use the D-Wave virtual graph feature for minor-embedding.

Calibrates qubits in chains to compensate for the effects of biases and enables easy
creation, optimization, use, and reuse of an embedding for a given working graph.

Inherits from dimod.ComposedSampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.ComposedSampler] and dimod.Structured [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Structured].

	Parameters

	
	sampler (DWaveSampler) – A dimod dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]. Typically a DWaveSampler or
derived composite sampler; other samplers may not work or make sense with
this composite layer.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict][hashable, iterable]) – Mapping from a source graph to the specified sampler’s graph (the target graph).

	chain_strength (float [https://docs.python.org/3/library/functions.html#float], optional, default=None) – Desired chain coupling strength. This is the magnitude of couplings between qubits
in a chain. If None, uses the maximum available as returned by a SAPI query
to the D-Wave solver.

	flux_biases (list/False/None, optional, default=None) – Per-qubit flux bias offsets in the form of a list of lists, where each sublist
is of length 2 and specifies a variable and the flux bias offset associated with
that variable. Qubits in a chain with strong negative J values experience a
J-induced bias; this parameter compensates by recalibrating to remove that bias.
If False, no flux bias is applied or calculated.
If None, flux biases are pulled from the database or calculated empirically.

	flux_bias_num_reads (int [https://docs.python.org/3/library/functions.html#int], optional, default=1000) – Number of samples to collect per flux bias value to calculate calibration
information.

	flux_bias_max_age (int [https://docs.python.org/3/library/functions.html#int], optional, default=3600) – Maximum age (in seconds) allowed for a previously calculated flux bias offset to
be considered valid.

Attention

D-Wave’s virtual graphs feature can require many seconds of D-Wave system time to calibrate
qubits to compensate for the effects of biases. If your account has limited
D-Wave system access, consider using FixedEmbeddingComposite instead.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that submits a QUBO problem to a D-Wave solver.
The problem represents a logical
AND gate using penalty function \(P = xy - 2(x+y)z +3z\), where variables x and y
are the gate’s inputs and z the output. This simple three-variable problem is manually
minor-embedded to a single Chimera [https://docs.ocean.dwavesys.com/en/stable/docs_system/intro.html] unit cell:
variables x and y are represented by qubits 1 and 5, respectively, and z by a
two-qubit chain consisting of qubits 0 and 4.
The chain strength is set to the maximum allowed found from querying the solver’s extended
J range. In this example, the ten returned samples all represent valid states of
the AND gate.

>>> from dwave.system import DWaveSampler, VirtualGraphComposite
>>> embedding = {'x': {1}, 'y': {5}, 'z': {0, 4}}
>>> qpu_2000q = DWaveSampler(solver={'topology__type': 'chimera'})
>>> qpu_2000q.properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(qpu_2000q, embedding, chain_strength=2)
>>> Q = {('x', 'y'): 1, ('x', 'z'): -2, ('y', 'z'): -2, ('z', 'z'): 3}
>>> sampleset = sampler.sample_qubo(Q, num_reads=10)
>>> print(sampleset)
 x y z energy num_oc. chain_.
0 1 0 0 0.0 2 0.0
1 0 1 0 0.0 3 0.0
2 1 1 1 0.0 3 0.0
3 0 0 0 0.0 2 0.0
['BINARY', 4 rows, 10 samples, 3 variables]

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

Properties

	VirtualGraphComposite.properties

	Properties in the form of a dict.

	VirtualGraphComposite.parameters

	Parameters in the form of a dict.

	VirtualGraphComposite.children

	List containing the structured sampler.

	VirtualGraphComposite.child

	The child sampler.

	VirtualGraphComposite.nodelist

	Nodes available to the composed sampler.

	VirtualGraphComposite.edgelist

	Edges available to the composed sampler.

	VirtualGraphComposite.adjacency

	Adjacency structure for the composed sampler.

	VirtualGraphComposite.structure

	Structure of the structured sampler formatted as a namedtuple, Structure(nodelist, edgelist, adjacency), where the 3-tuple values are the nodelist, edgelist and adjacency attributes.

Methods

	VirtualGraphComposite.sample(bqm[, ...])

	Sample from the given Ising model.

	VirtualGraphComposite.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	VirtualGraphComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

Reverse Anneal

Composites that do batch operations for reverse annealing based on sets of initial
states or anneal schedules.

ReverseBatchStatesComposite

	
class ReverseBatchStatesComposite(child_sampler)

	Composite that reverse anneals from multiple initial samples. Each submission is independent
from one another.

	Parameters

	sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – A dimod sampler.

Examples

This example runs 100 reverse anneals each from two initial states on a problem
constructed by setting random \(\pm 1\) values on a clique (complete
graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseBatchStatesComposite
...
>>> sampler = DWaveCliqueSampler()
>>> sampler_reverse = ReverseBatchStatesComposite(sampler)
>>> schedule = [[0.0, 1.0], [10.0, 0.5], [20, 1.0]]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = [{i: -1 for i in range(15)}, {i: 1 for i in range(15)}]
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedule=schedule,
... initial_states=init_samples,
... num_reads=100,
... reinitialize_state=True)

Properties

	ReverseBatchStatesComposite.child

	The child sampler.

	ReverseBatchStatesComposite.children

	List of child samplers that that are used by this composite.

	ReverseBatchStatesComposite.properties

	A dict containing any additional information about the sampler.

	ReverseBatchStatesComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

Methods

	ReverseBatchStatesComposite.sample(bqm[, ...])

	Sample the binary quadratic model using reverse annealing from multiple initial states.

	ReverseBatchStatesComposite.sample_ising(h, ...)

	Sample from an Ising model using the implemented sample method.

	ReverseBatchStatesComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

ReverseAdvanceComposite

	
class ReverseAdvanceComposite(child_sampler)

	Composite that reverse anneals an initial sample through a sequence of anneal
schedules.

If you do not specify an initial sample, a random sample is used for the first
submission. By default, each subsequent submission selects the most-found
lowest-energy sample as its initial state. If you set reinitialize_state to False,
which makes each submission behave like a random walk, the subsequent submission
selects the last returned sample as its initial state.

	Parameters

	sampler (dimod.Sampler [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampler_composites/api.html#dimod.Sampler]) – A dimod sampler.

Examples

This example runs 100 reverse anneals each for three schedules on a problem
constructed by setting random \(\pm 1\) values on a clique (complete
graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseAdvanceComposite
...
>>> sampler = DWaveCliqueSampler()
>>> sampler_reverse = ReverseAdvanceComposite(sampler)
>>> schedule = [[[0.0, 1.0], [t, 0.5], [20, 1.0]] for t in (5, 10, 15)]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = {i: -1 for i in range(15)}
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedules=schedule,
... initial_state=init_samples,
... num_reads=100,
... reinitialize_state=True)

Properties

	ReverseAdvanceComposite.child

	The child sampler.

	ReverseAdvanceComposite.children

	List of child samplers that that are used by this composite.

	ReverseAdvanceComposite.properties

	A dict containing any additional information about the sampler.

	ReverseAdvanceComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

Methods

	ReverseAdvanceComposite.sample(bqm[, ...])

	Sample the binary quadratic model using reverse annealing along a given set of anneal schedules.

	ReverseAdvanceComposite.sample_ising(h, J, ...)

	Sample from an Ising model using the implemented sample method.

	ReverseAdvanceComposite.sample_qubo(Q, ...)

	Sample from a QUBO using the implemented sample method.

dwave.system.composites.CutOffComposite.child

	
property CutOffComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.CutOffComposite.children

	
property CutOffComposite.children

	List of child samplers that that are used by this composite.

dwave.system.composites.CutOffComposite.properties

	
property CutOffComposite.properties

	A dict containing any additional information about the sampler.

dwave.system.composites.CutOffComposite.parameters

	
property CutOffComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods
and values are lists of the properties relevent to each parameter.

dwave.system.composites.CutOffComposite.sample

	
CutOffComposite.sample(bqm, **parameters)

	Cut off interactions and sample from the provided binary quadratic model.

Prunes the binary quadratic model (BQM) submitted to the child sampler
by retaining only interactions with value commensurate with the
sampler’s precision as specified by the cutoff argument. Also removes
variables isolated post- or pre-removal of these interactions from the
BQM passed on to the child sampler, setting these variables to values
that minimize the original BQM’s energy for the returned samples.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in CutOffComposite.

dwave.system.composites.CutOffComposite.sample_ising

	
CutOffComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.CutOffComposite.sample_qubo

	
CutOffComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.PolyCutOffComposite.child

	
property PolyCutOffComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.PolyCutOffComposite.children

	
property PolyCutOffComposite.children

	List of child samplers that that are used by this composite.

dwave.system.composites.PolyCutOffComposite.properties

	
property PolyCutOffComposite.properties

	A dict containing any additional information about the sampler.

dwave.system.composites.PolyCutOffComposite.parameters

	
property PolyCutOffComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods and values are lists of the properties relevent to each parameter.

dwave.system.composites.PolyCutOffComposite.sample_poly

	
PolyCutOffComposite.sample_poly(poly, **kwargs)

	Cutoff and sample from the provided binary polynomial.

Prunes the binary polynomial submitted to the child sampler by retaining
only interactions with values commensurate with the sampler’s precision
as specified by the cutoff argument. Also removes variables isolated
post- or pre-removal of these interactions from the polynomial passed
on to the child sampler, setting these variables to values that minimize
the original polynomial’s energy for the returned samples.

	Parameters

	
	poly (dimod.BinaryPolynomial) – Binary polynomial to be sampled from.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in PolyCutOffComposite.

dwave.system.composites.PolyCutOffComposite.sample_hising

	
PolyCutOffComposite.sample_hising(h, J, **kwargs)

	Sample from a higher-order Ising model.

Convert the given higher-order Ising model to a BinaryPolynomial
and call sample_poly().

	Parameters

	
	h (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Variable biases of the Ising problem as a dict of
the form {v: bias, …}, where v is a variable in the
polynomial and bias its associated coefficient.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Interaction biases of the Ising problem as a dict of
the form {(u, v, …): bias}, where u, v, are spin-valued
variables in the polynomial and bias their associated
coefficient.

	**kwargs – See sample_poly() for additional keyword definitions.

	Returns

	SampleSet

See also

sample_poly(), sample_hubo()

dwave.system.composites.PolyCutOffComposite.sample_hubo

	
PolyCutOffComposite.sample_hubo(H, **kwargs)

	Sample from a higher-order unconstrained binary optimization problem.

Convert the given higher-order unconstrained binary optimization
problem to a BinaryPolynomial and then call
sample_poly().

	Parameters

	
	H (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of the HUBO as a dict of the form
{(u, v, …): bias, …}, where u, v, are binary-valued
variables in the polynomial and bias their associated
coefficient.

	**kwargs – See sample_poly() for additional keyword definitions.

	Returns

	SampleSet

See also

sample_poly(), sample_hising()

dwave.system.composites.AutoEmbeddingComposite.child

	
property AutoEmbeddingComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.AutoEmbeddingComposite.parameters

	
AutoEmbeddingComposite.parameters = None

	Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters
accepted by the child sampler and parameters added by the composite.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.AutoEmbeddingComposite.properties

	
AutoEmbeddingComposite.properties = None

	Properties in the form of a dict.

Contains the properties of the child sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.AutoEmbeddingComposite.sample

	
AutoEmbeddingComposite.sample(bqm, **parameters)

	Sample from the provided binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required
chain strength for each variable. Callables should accept the BQM
and embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	chain_break_method (function/list, optional) – Method or methods used to resolve chain breaks. If multiple
methods are given, the results are concatenated and a new field
called “chain_break_method” specifying the index of the method
is appended to the sample set.
See unembed_sampleset() and
dwave.embedding.chain_breaks.

	chain_break_fraction (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=True) – Add a chain_break_fraction field to the unembedded response with
the fraction of chains broken before unembedding.

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as
keyword arguments. Overrides any embedding_parameters passed
to the constructor.

	return_embedding (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the embedding, chain strength, chain break method and
embedding parameters are added to dimod.SampleSet.info [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.info.html#dimod.SampleSet.info]
of the returned sample set. The default behaviour is defined
by return_embedding_default, which itself defaults to
False.

	warnings (WarningAction, optional) – Defines what warning action to take, if any. See
warnings. The default behaviour is defined
by warnings_default, which itself defaults to
IGNORE

	**parameters – Parameters for the sampling method, specified by the child
sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in EmbeddingComposite.

dwave.system.composites.AutoEmbeddingComposite.sample_ising

	
AutoEmbeddingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.AutoEmbeddingComposite.sample_qubo

	
AutoEmbeddingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.EmbeddingComposite.child

	
property EmbeddingComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.EmbeddingComposite.parameters

	
EmbeddingComposite.parameters = None

	Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters
accepted by the child sampler and parameters added by the composite.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.EmbeddingComposite.properties

	
EmbeddingComposite.properties = None

	Properties in the form of a dict.

Contains the properties of the child sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.EmbeddingComposite.return_embedding_default

	
EmbeddingComposite.return_embedding_default = False

	Defines the default behaviour for sample()’s return_embedding
kwarg.

dwave.system.composites.EmbeddingComposite.warnings_default

	
EmbeddingComposite.warnings_default = 'ignore'

	Defines the default behavior for sample()’s warnings kwarg.

dwave.system.composites.EmbeddingComposite.sample

	
EmbeddingComposite.sample(bqm, chain_strength=None, chain_break_method=None, chain_break_fraction=True, embedding_parameters=None, return_embedding=None, warnings=None, **parameters)

	Sample from the provided binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required
chain strength for each variable. Callables should accept the BQM
and embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	chain_break_method (function/list, optional) – Method or methods used to resolve chain breaks. If multiple
methods are given, the results are concatenated and a new field
called “chain_break_method” specifying the index of the method
is appended to the sample set.
See unembed_sampleset() and
dwave.embedding.chain_breaks.

	chain_break_fraction (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=True) – Add a chain_break_fraction field to the unembedded response with
the fraction of chains broken before unembedding.

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as
keyword arguments. Overrides any embedding_parameters passed
to the constructor.

	return_embedding (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the embedding, chain strength, chain break method and
embedding parameters are added to dimod.SampleSet.info [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.info.html#dimod.SampleSet.info]
of the returned sample set. The default behaviour is defined
by return_embedding_default, which itself defaults to
False.

	warnings (WarningAction, optional) – Defines what warning action to take, if any. See
warnings. The default behaviour is defined
by warnings_default, which itself defaults to
IGNORE

	**parameters – Parameters for the sampling method, specified by the child
sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

See the example in EmbeddingComposite.

dwave.system.composites.EmbeddingComposite.sample_ising

	
EmbeddingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.EmbeddingComposite.sample_qubo

	
EmbeddingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.FixedEmbeddingComposite.properties

	
FixedEmbeddingComposite.properties = None

	Properties in the form of a dict.

Contains the properties of the child sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.FixedEmbeddingComposite.parameters

	
FixedEmbeddingComposite.parameters = None

	Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters
accepted by the child sampler and parameters added by the composite.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.FixedEmbeddingComposite.children

	
FixedEmbeddingComposite.children = None

	List containing the structured sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] [child_sampler]

dwave.system.composites.FixedEmbeddingComposite.child

	
property FixedEmbeddingComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.FixedEmbeddingComposite.nodelist

	
property FixedEmbeddingComposite.nodelist

	Nodes available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.FixedEmbeddingComposite.edgelist

	
property FixedEmbeddingComposite.edgelist

	Edges available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.FixedEmbeddingComposite.adjacency

	
property FixedEmbeddingComposite.adjacency

	Adjacency structure for the composed sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, set [https://docs.python.org/3/library/stdtypes.html#set]]

dwave.system.composites.FixedEmbeddingComposite.structure

	
property FixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a
namedtuple, Structure(nodelist, edgelist, adjacency),
where the 3-tuple values are the nodelist, edgelist
and adjacency attributes.

dwave.system.composites.FixedEmbeddingComposite.sample

	
FixedEmbeddingComposite.sample(bqm, **parameters)

	Sample the binary quadratic model.

On the first call of a sampling method, finds a minor-embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embedding]
for the given binary quadratic model (BQM). All subsequent calls to its
sampling methods reuse this embedding.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required
chain strength for each variable. Callables should accept the BQM
and embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	chain_break_method (function, optional) – Method used to resolve chain breaks during sample unembedding.
See unembed_sampleset().

	chain_break_fraction (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=True) – Add a ‘chain_break_fraction’ field to the unembedded response with
the fraction of chains broken before unembedding.

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as
keyword arguments. Overrides any embedding_parameters passed
to the constructor. Only used on the first call.

	**parameters – Parameters for the sampling method, specified by the child
sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

dwave.system.composites.FixedEmbeddingComposite.sample_ising

	
FixedEmbeddingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.FixedEmbeddingComposite.sample_qubo

	
FixedEmbeddingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.LazyFixedEmbeddingComposite.parameters

	
LazyFixedEmbeddingComposite.parameters = None

	Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters
accepted by the child sampler and parameters added by the composite.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.LazyFixedEmbeddingComposite.properties

	
LazyFixedEmbeddingComposite.properties = None

	Properties in the form of a dict.

Contains the properties of the child sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.LazyFixedEmbeddingComposite.nodelist

	
property LazyFixedEmbeddingComposite.nodelist

	Nodes available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.LazyFixedEmbeddingComposite.edgelist

	
property LazyFixedEmbeddingComposite.edgelist

	Edges available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.LazyFixedEmbeddingComposite.adjacency

	
property LazyFixedEmbeddingComposite.adjacency

	Adjacency structure for the composed sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, set [https://docs.python.org/3/library/stdtypes.html#set]]

dwave.system.composites.LazyFixedEmbeddingComposite.structure

	
property LazyFixedEmbeddingComposite.structure

	Structure of the structured sampler formatted as a
namedtuple, Structure(nodelist, edgelist, adjacency),
where the 3-tuple values are the nodelist, edgelist
and adjacency attributes.

dwave.system.composites.LazyFixedEmbeddingComposite.sample

	
LazyFixedEmbeddingComposite.sample(bqm, **parameters)

	Sample the binary quadratic model.

On the first call of a sampling method, finds a minor-embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embedding]
for the given binary quadratic model (BQM). All subsequent calls to its
sampling methods reuse this embedding.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required
chain strength for each variable. Callables should accept the BQM
and embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	chain_break_method (function, optional) – Method used to resolve chain breaks during sample unembedding.
See unembed_sampleset().

	chain_break_fraction (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=True) – Add a ‘chain_break_fraction’ field to the unembedded response with
the fraction of chains broken before unembedding.

	embedding_parameters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If provided, parameters are passed to the embedding method as
keyword arguments. Overrides any embedding_parameters passed
to the constructor. Only used on the first call.

	**parameters – Parameters for the sampling method, specified by the child
sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

dwave.system.composites.LazyFixedEmbeddingComposite.sample_ising

	
LazyFixedEmbeddingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.LazyFixedEmbeddingComposite.sample_qubo

	
LazyFixedEmbeddingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.TilingComposite.properties

	
TilingComposite.properties = None

	Properties in the form of a dict.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.TilingComposite.parameters

	
TilingComposite.parameters = None

	Parameters in the form of a dict.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.TilingComposite.children

	
TilingComposite.children = None

	The single wrapped structured sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.TilingComposite.child

	
property TilingComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.TilingComposite.nodelist

	
TilingComposite.nodelist = None

	List of active qubits for the structured solver.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.TilingComposite.edgelist

	
TilingComposite.edgelist = None

	List of active couplers for the D-Wave solver.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.TilingComposite.adjacency

	
property TilingComposite.adjacency

	Adjacency structure formatted as a dict, where
keys are the nodes of the structured sampler and values are sets of all
adjacent nodes for each key node.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, set [https://docs.python.org/3/library/stdtypes.html#set]]

dwave.system.composites.TilingComposite.structure

	
property TilingComposite.structure

	Structure of the structured sampler formatted as a
namedtuple, Structure(nodelist, edgelist, adjacency),
where the 3-tuple values are the nodelist, edgelist
and adjacency attributes.

dwave.system.composites.TilingComposite.sample

	
TilingComposite.sample(bqm, **kwargs)

	Sample from the specified binary quadratic model.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	**kwargs – Optional keyword arguments for the sampling method, specified per solver.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]

Examples

This example submits a simple Ising problem of just two variables on a
D-Wave system.
Because the problem fits in a single Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera] unit cell, it is tiled
across the solver’s entire Chimera graph, resulting in multiple samples
(the exact number depends on the working Chimera graph of the D-Wave system).

>>> from dwave.system import DWaveSampler, EmbeddingComposite
>>> from dwave.system import TilingComposite
...
>>> qpu_2000q = DWaveSampler(solver={'topology__type': 'chimera'})
>>> sampler = EmbeddingComposite(TilingComposite(qpu_2000q, 1, 1, 4))
>>> response = sampler.sample_ising({},{('a', 'b'): 1})
>>> len(response)
246

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

dwave.system.composites.TilingComposite.sample_ising

	
TilingComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.TilingComposite.sample_qubo

	
TilingComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.VirtualGraphComposite.properties

	
VirtualGraphComposite.properties = None

	Properties in the form of a dict.

Contains the properties of the child sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.VirtualGraphComposite.parameters

	
VirtualGraphComposite.parameters = None

	Parameters in the form of a dict.

For an instantiated composed sampler, keys are the keyword parameters
accepted by the child sampler and parameters added by the composite.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]]

dwave.system.composites.VirtualGraphComposite.children

	
VirtualGraphComposite.children = None

	List containing the structured sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] [child_sampler]

dwave.system.composites.VirtualGraphComposite.child

	
property VirtualGraphComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.VirtualGraphComposite.nodelist

	
property VirtualGraphComposite.nodelist

	Nodes available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.VirtualGraphComposite.edgelist

	
property VirtualGraphComposite.edgelist

	Edges available to the composed sampler.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

dwave.system.composites.VirtualGraphComposite.adjacency

	
property VirtualGraphComposite.adjacency

	Adjacency structure for the composed sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, set [https://docs.python.org/3/library/stdtypes.html#set]]

dwave.system.composites.VirtualGraphComposite.structure

	
property VirtualGraphComposite.structure

	Structure of the structured sampler formatted as a
namedtuple, Structure(nodelist, edgelist, adjacency),
where the 3-tuple values are the nodelist, edgelist
and adjacency attributes.

dwave.system.composites.VirtualGraphComposite.sample

	
VirtualGraphComposite.sample(bqm, apply_flux_bias_offsets=True, **kwargs)

	Sample from the given Ising model.

	Parameters

	
	h (list/dict) – Linear biases of the Ising model. If a list, the list’s indices
are used as variable labels.

	J (dict of (int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]) – float):
Quadratic biases of the Ising model.

	apply_flux_bias_offsets (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, use the calculated flux_bias offsets (if available).

	**kwargs – Optional keyword arguments for the sampling method, specified per solver.

Examples

This example uses VirtualGraphComposite to instantiate a composed sampler
that submits an Ising problem to a D-Wave solver.
The problem represents a logical
NOT gate using penalty function \(P = xy\), where variable x is the gate’s input
and y the output. This simple two-variable problem is manually minor-embedded
to a single Chimera [https://docs.ocean.dwavesys.com/en/stable/docs_system/intro.html] unit cell: each variable
is represented by a chain of half the cell’s qubits, x as qubits 0, 1, 4, 5,
and y as qubits 2, 3, 6, 7.
The chain strength is set to half the maximum allowed found from querying the solver’s extended
J range. In this example, the ten returned samples all represent valid states of
the NOT gate.

>>> from dwave.system import DWaveSampler, VirtualGraphComposite
>>> embedding = {'x': {0, 4, 1, 5}, 'y': {2, 6, 3, 7}}
>>> qpu_2000q = DWaveSampler(solver={'topology__type': 'chimera'})
>>> qpu_2000q.properties['extended_j_range']
[-2.0, 1.0]
>>> sampler = VirtualGraphComposite(qpu_2000q, embedding, chain_strength=1)
>>> h = {}
>>> J = {('x', 'y'): 1}
>>> sampleset = sampler.sample_ising(h, J, num_reads=10)
>>> print(sampleset)
 x y energy num_oc. chain_.
0 -1 +1 -1.0 6 0.0
1 +1 -1 -1.0 4 0.0
['SPIN', 2 rows, 10 samples, 2 variables]

See Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]
for explanations of technical terms in descriptions of Ocean tools.

dwave.system.composites.VirtualGraphComposite.sample_ising

	
VirtualGraphComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.VirtualGraphComposite.sample_qubo

	
VirtualGraphComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.ReverseBatchStatesComposite.child

	
property ReverseBatchStatesComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.ReverseBatchStatesComposite.children

	
property ReverseBatchStatesComposite.children

	List of child samplers that that are used by
this composite.

	Type

	list[Sampler]

dwave.system.composites.ReverseBatchStatesComposite.properties

	
property ReverseBatchStatesComposite.properties

	A dict containing any additional information about the sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.ReverseBatchStatesComposite.parameters

	
property ReverseBatchStatesComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler
methods and values are lists of the properties relevent to each parameter.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.ReverseBatchStatesComposite.sample

	
ReverseBatchStatesComposite.sample(bqm, initial_states=None, initial_states_generator='random', num_reads=None, seed=None, **parameters)

	Sample the binary quadratic model using reverse annealing from multiple initial states.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	initial_states (samples-like, optional, default=None) – One or more samples, each defining an initial state for all the problem variables.
If fewer than num_reads initial states are defined, additional values are
generated as specified by initial_states_generator. See dimod.as_samples() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples]
for a description of “samples-like”.

	initial_states_generator ({'none', 'tile', 'random'}, optional, default='random') – Defines the expansion of initial_states if fewer than
num_reads are specified:

	
	”none”:
	If the number of initial states specified is smaller than
num_reads, raises ValueError.

	
	”tile”:
	Reuses the specified initial states if fewer than num_reads
or truncates if greater.

	
	”random”:
	Expands the specified initial states with randomly generated
states if fewer than num_reads or truncates if greater.

	num_reads (int [https://docs.python.org/3/library/functions.html#int], optional, default=len(initial_states) or 1) – Equivalent to number of desired initial states. If greater than the number of
provided initial states, additional states will be generated. If not provided,
it is selected to match the length of initial_states. If initial_states
is not provided, num_reads defaults to 1.

	seed (int [https://docs.python.org/3/library/functions.html#int] (32-bit unsigned integer), optional) – Seed to use for the PRNG. Specifying a particular seed with a
constant set of parameters produces identical results. If not
provided, a random seed is chosen.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet] that has initial_state field.

Examples

This example runs 100 reverse anneals each from two initial states on a problem
constructed by setting random \(\pm 1\) values on a clique (complete
graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseBatchStatesComposite
...
>>> sampler = DWaveCliqueSampler()
>>> sampler_reverse = ReverseBatchStatesComposite(sampler)
>>> schedule = [[0.0, 1.0], [10.0, 0.5], [20, 1.0]]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = [{i: -1 for i in range(15)}, {i: 1 for i in range(15)}]
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedule=schedule,
... initial_states=init_samples,
... num_reads=100,
... reinitialize_state=True)

dwave.system.composites.ReverseBatchStatesComposite.sample_ising

	
ReverseBatchStatesComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.ReverseBatchStatesComposite.sample_qubo

	
ReverseBatchStatesComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

dwave.system.composites.ReverseAdvanceComposite.child

	
property ReverseAdvanceComposite.child

	The child sampler. First sampler in Composite.children.

	Type

	Sampler

dwave.system.composites.ReverseAdvanceComposite.children

	
property ReverseAdvanceComposite.children

	List of child samplers that that are used by
this composite.

	Type

	list[Sampler]

dwave.system.composites.ReverseAdvanceComposite.properties

	
property ReverseAdvanceComposite.properties

	A dict containing any additional information about the sampler.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.ReverseAdvanceComposite.parameters

	
property ReverseAdvanceComposite.parameters

	A dict where keys are the keyword parameters accepted by the sampler
methods and values are lists of the properties relevent to each parameter.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dwave.system.composites.ReverseAdvanceComposite.sample

	
ReverseAdvanceComposite.sample(bqm, anneal_schedules=None, **parameters)

	Sample the binary quadratic model using reverse annealing along a given set
of anneal schedules.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – Binary quadratic model to be sampled from.

	anneal_schedules (list of lists, optional, default=[[[0, 1], [1, 0.35], [9, 0.35], [10, 1]]]) – Anneal schedules in order of submission. Each schedule is formatted
as a list of [time, s] pairs, in which time is in microseconds and s
is the normalized persistent current in the range [0,1].

	initial_state (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The state to reverse anneal from. If not provided, it will
be randomly generated.

	**parameters – Parameters for the sampling method, specified by the child sampler.

	Returns

	dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet] that has initial_state and schedule_index fields.

Examples

This example runs 100 reverse anneals each for three schedules on a problem
constructed by setting random \(\pm 1\) values on a clique (complete
graph) of 15 nodes, minor-embedded on a D-Wave system using the
DWaveCliqueSampler sampler.

>>> import dimod
>>> from dwave.system import DWaveCliqueSampler, ReverseAdvanceComposite
...
>>> sampler = DWaveCliqueSampler()
>>> sampler_reverse = ReverseAdvanceComposite(sampler)
>>> schedule = [[[0.0, 1.0], [t, 0.5], [20, 1.0]] for t in (5, 10, 15)]
...
>>> bqm = dimod.generators.ran_r(1, 15)
>>> init_samples = {i: -1 for i in range(15)}
>>> sampleset = sampler_reverse.sample(bqm,
... anneal_schedules=schedule,
... initial_state=init_samples,
... num_reads=100,
... reinitialize_state=True)

dwave.system.composites.ReverseAdvanceComposite.sample_ising

	
ReverseAdvanceComposite.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

dwave.system.composites.ReverseAdvanceComposite.sample_qubo

	
ReverseAdvanceComposite.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

Embedding

Provides functions that map binary quadratic model [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-binary-quadratic-model]s and samples between
a source [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Source] graph [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Graph] and a target [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Target] graph.

For an introduction to minor-embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Minor-embedding], see
Minor-Embedding [https://docs.ocean.dwavesys.com/en/stable/concepts/embedding.html].

Generators

Tools for finding embeddings.

Generic

minorminer [https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/sdk_index.html] is a heuristic tool for minor embedding: given a
minor and target graph, it tries to find a mapping that embeds the minor into the target.

	minorminer.find_embedding

	Heuristically attempt to find a minor-embedding of source graph S into a target graph T.

Chimera

Minor-embedding in Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera]-structured target graphs.

	chimera.find_clique_embedding(k, m[, n, t, ...])

	Find an embedding for a clique in a Chimera graph.

	chimera.find_biclique_embedding(a, b, m[, ...])

	Find an embedding for a biclique in a Chimera graph.

	chimera.find_grid_embedding(dim, m[, n, t])

	Find an embedding for a grid in a Chimera graph.

Pegasus

Minor-embedding in Pegasus [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Pegasus]-structured target graphs.

	pegasus.find_clique_embedding(k[, m, ...])

	Find an embedding for a clique in a Pegasus graph.

Utilities

	embed_bqm(source_bqm[, embedding, ...])

	Embed a binary quadratic model onto a target graph.

	embed_ising(source_h, source_J, embedding, ...)

	Embed an Ising problem onto a target graph.

	embed_qubo(source_Q, embedding, target_adjacency)

	Embed a QUBO onto a target graph.

	unembed_sampleset(target_sampleset, ...[, ...])

	Unembed a sample set.

Diagnostics

	chain_break_frequency(samples_like, embedding)

	Determine the frequency of chain breaks in the given samples.

	diagnose_embedding(emb, source, target)

	Diagnose a minor embedding.

	is_valid_embedding(emb, source, target)

	A simple (bool) diagnostic for minor embeddings.

	verify_embedding(emb, source, target[, ...])

	A simple (exception-raising) diagnostic for minor embeddings.

Chain Strength

Utility functions for calculating chain strength.

Examples

This example uses uniform_torque_compensation(), given a prefactor of 2,
to calculate a chain strength that EmbeddingComposite then uses.

>>> from functools import partial
>>> from dwave.system import EmbeddingComposite, DWaveSampler
>>> from dwave.embedding.chain_strength import uniform_torque_compensation
...
>>> Q = {(0,0): 1, (1,1): 1, (2,3): 2, (1,2): -2, (0,3): -2}
>>> sampler = EmbeddingComposite(DWaveSampler())
>>> # partial() can be used when the BQM or embedding is not accessible
>>> chain_strength = partial(uniform_torque_compensation, prefactor=2)
>>> sampleset = sampler.sample_qubo(Q, chain_strength=chain_strength, return_embedding=True)
>>> sampleset.info['embedding_context']['chain_strength']
1.224744871391589

	chain_strength.uniform_torque_compensation(bqm)

	Chain strength that attempts to compensate for torque that would break the chain.

	chain_strength.scaled(bqm[, embedding, ...])

	Chain strength that is scaled to the problem bias range.

Chain-Break Resolution

Unembedding samples with broken chains.

Generators

	chain_breaks.discard(samples, chains)

	Discard broken chains.

	chain_breaks.majority_vote(samples, chains)

	Unembed samples using the most common value for broken chains.

	chain_breaks.weighted_random(samples, chains)

	Unembed samples using weighed random choice for broken chains.

Callable Objects

	chain_breaks.MinimizeEnergy(bqm, embedding)

	Unembed samples by minimizing local energy for broken chains.

Exceptions

	exceptions.EmbeddingError

	Base class for all embedding exceptions.

	exceptions.MissingChainError(snode)

	Raised if a node in the source graph has no associated chain.

	exceptions.ChainOverlapError(tnode, snode0, ...)

	Raised if two source nodes have an overlapping chain.

	exceptions.DisconnectedChainError(snode)

	Raised if a chain is not connected in the target graph.

	exceptions.InvalidNodeError(snode, tnode)

	Raised if a chain contains a node not in the target graph.

	exceptions.MissingEdgeError(snode0, snode1)

	Raised when two source nodes sharing an edge to not have a corresponding edge between their chains.

Classes

	
class EmbeddedStructure(target_edges, embedding)

	Processes an embedding and a target graph to collect target edges
into those within individual chains, and those that connect chains. This
is used elsewhere to embed binary quadratic models into the target graph.

	Parameters

	
	target_edges (iterable[edge]) – An iterable of edges in the target graph. Each edge should be an
iterable of 2 hashable objects.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form
{s: {t, …}, …}, where s is a source-model variable and t is a
target-model variable.

This class is a dict, and acts as an immutable duplicate of embedding.

minorminer.find_embedding

	
find_embedding()

	Heuristically attempt to find a minor-embedding of source graph S
into a target graph T.

	Parameters

	
	S (iterable/NetworkX Graph) – The source graph as an iterable of label pairs representing the
edges, or a NetworkX Graph.

	T (iterable/NetworkX Graph) – The target graph as an iterable of label pairs representing the
edges, or a NetworkX Graph.

	**params (optional) – See below.

	Returns

	When the optional parameter return_overlap is False (the default),
the function returns a dict that maps labels in S to lists of labels in
T. If the heuristic fails to find an embedding, an empty dictionary is
returned.

When return_overlap is True, the function returns a tuple consisting
of a dict that maps labels in S to lists of labels in T and a bool
indicating whether or not a valid embedding was found.

When interrupted by Ctrl-C, the function returns the best embedding found
so far.

Note that failure to return an embedding does not prove that no embedding
exists.

	Optional Parameters:
	
	max_no_improvement (int, optional, default=10):
	Maximum number of failed iterations to improve the current solution,
where each iteration attempts to find an embedding for each variable
of S such that it is adjacent to all its neighbours.

	random_seed (int, optional, default=None):
	Seed for the random number generator. If None, seed is set by
os.urandom().

	timeout (int, optional, default=1000):
	Algorithm gives up after timeout seconds.

	max_beta (double, optional, max_beta=None):
	Qubits are assigned weight according to a formula (beta^n)
where n is the number of chains containing that qubit. This value
should never be less than or equal to 1. If None, max_beta is
effectively infinite.

	tries (int, optional, default=10):
	Number of restart attempts before the algorithm stops. On
D-WAVE 2000Q, a typical restart takes between 1 and 60 seconds.

	inner_rounds (int, optional, default=None):
	The algorithm takes at most this many iterations between
restart attempts; restart attempts are typically terminated due to
max_no_improvement. If None, inner_rounds is effectively
infinite.

	chainlength_patience (int, optional, default=10):
	Maximum number of failed iterations to improve chain lengths in the
current solution, where each iteration attempts to find an embedding
for each variable of S such that it is adjacent to all its neighbours.

	max_fill (int, optional, default=None):
	Restricts the number of chains that can simultaneously incorporate
the same qubit during the search. Values above 63 are treated as 63.
If None, max_fill is effectively infinite.

	threads (int, optional, default=1):
	Maximum number of threads to use. Note that the parallelization is
only advantageous where the expected degree of variables is
significantly greater than the number of threads. Value must be
greater than 1.

	return_overlap (bool, optional, default=False):
	This function returns an embedding, regardless of whether or not
qubits are used by multiple variables. return_overlap determines
the function’s return value. If True, a 2-tuple is returned, in which
the first element is the embedding and the second element is
a bool representing the embedding validity. If False, only an
embedding is returned.

	skip_initialization (bool, optional, default=False):
	Skip the initialization pass. Note that this only works if the chains
passed in through initial_chains and fixed_chains are
semi-valid. A semi-valid embedding is a collection of chains such
that every adjacent pair of variables (u,v) has a coupler (p,q) in
the hardware graph where p is in chain(u) and q is in chain(v). This
can be used on a valid embedding to immediately skip to the chain
length improvement phase. Another good source of semi-valid embeddings
is the output of this function with the return_overlap parameter
enabled.

	verbose (int, optional, default=0):
	Level of output verbosity.

	When set to 0:
	Output is quiet until the final result.

	When set to 1:
	Output looks like this:

initialized
max qubit fill 3; num maxfull qubits=3
embedding trial 1
max qubit fill 2; num maxfull qubits=21
embedding trial 2
embedding trial 3
embedding trial 4
embedding trial 5
embedding found.
max chain length 4; num max chains=1
reducing chain lengths
max chain length 3; num max chains=5

	When set to 2:
	Output the information for lower levels and also report
progress on minor statistics (when searching for an embedding,
this is when the number of maxfull qubits decreases; when
improving, this is when the number of max chains decreases).

	When set to 3:
	Report before each pass. Look here when tweaking tries,
inner_rounds, and chainlength_patience.

	When set to 4:
	Report additional debugging information. By default, this package
is built without this functionality. In the C++ headers, this is
controlled by the CPPDEBUG flag.

	Detailed explanation of the output information:
	
	max qubit fill:
	Largest number of variables represented in a qubit.

	num maxfull:
	Number of qubits that have max overfill.

	max chain length:
	Largest number of qubits representing a single variable.

	num max chains:
	Number of variables that have max chain size.

	interactive (bool, optional, default=False):
	If logging is None or False, the verbose output will be printed
to stdout/stderr as appropriate, and keyboard interrupts will stop
the embedding process and the current state will be returned to the
user. Otherwise, output will be directed to the logger
logging.getLogger(minorminer.__name__) and keyboard interrupts
will be propagated back to the user. Errors will use logger.error(),
verbosity levels 1 through 3 will use logger.info() and level 4
will use logger.debug().

	initial_chains (dict, optional):
	Initial chains inserted into an embedding before fixed_chains are
placed, which occurs before the initialization pass. These can be
used to restart the algorithm in a similar state to a previous
embedding; for example, to improve chain length of a valid embedding
or to reduce overlap in a semi-valid embedding (see
skip_initialization) previously returned by the algorithm. Missing
or empty entries are ignored. Each value in the dictionary is a list
of qubit labels.

	fixed_chains (dict, optional):
	Fixed chains inserted into an embedding before the initialization
pass. As the algorithm proceeds, these chains are not allowed to
change, and the qubits used by these chains are not used by other
chains. Missing or empty entries are ignored. Each value in the
dictionary is a list of qubit labels.

	restrict_chains (dict, optional):
	Throughout the algorithm, it is guaranteed that chain[i] is a subset
of restrict_chains[i] for each i, except those with missing or
empty entries. Each value in the dictionary is a list of qubit labels.

	suspend_chains (dict, optional):
	This is a metafeature that is only implemented in the Python
interface. suspend_chains[i] is an iterable of iterables; for
example, suspend_chains[i] = [blob_1, blob_2], with each blob_j
an iterable of target node labels.

This enforces the following:

for each suspended variable i,
 for each blob_j in the suspension of i,
 at least one qubit from blob_j will be contained in the chain for i

We accomplish this through the following problem transformation
for each iterable blob_j in suspend_chains[i],

	Add an auxiliary node Zij to both source and target graphs

	Set fixed_chains[Zij] = [Zij]

	Add the edge (i,Zij) to the source graph

	Add the edges (q,Zij) to the target graph for each q in blob_j

dwave.embedding.chimera.find_clique_embedding

	
find_clique_embedding(k, m, n=None, t=None, target_edges=None)

	Find an embedding for a clique in a Chimera graph.

Given the node labels or size of a clique (fully connected graph) and size or
edges of the target Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera] graph, attempts to find an embedding.

	Parameters

	
	k (int/iterable) – Clique to embed. If k is an integer, generates an embedding for a
clique of size k labelled [0,k-1]. If k is an iterable of nodes,
generates an embedding for a clique of size len(k) labelled
for the given nodes.

	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows in the Chimera lattice.

	n (int [https://docs.python.org/3/library/functions.html#int], optional, default=m) – Number of columns in the Chimera lattice.

	t (int [https://docs.python.org/3/library/functions.html#int], optional, default 4) – Size of the shore within each Chimera tile.

	target_edges (iterable[edge]) – A list of edges in the target Chimera graph. Nodes are labelled as
returned by chimera_graph() [https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph].

	Returns

	An embedding mapping a clique to the Chimera lattice.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

The first example finds an embedding for a \(K_4\) complete graph in a single
Chimera unit cell. The second for an alphanumerically labeled \(K_3\)
graph in 4 unit cells.

>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(4, 1, 1)
>>> embedding
{0: [4, 0], 1: [5, 1], 2: [6, 2], 3: [7, 3]}

>>> from dwave.embedding.chimera import find_clique_embedding
...
>>> embedding = find_clique_embedding(['a', 'b', 'c'], m=2, n=2, t=4)
>>> embedding
{'a': [20, 16], 'b': [21, 17], 'c': [22, 18]}

dwave.embedding.chimera.find_biclique_embedding

	
find_biclique_embedding(a, b, m, n=None, t=None, target_edges=None)

	Find an embedding for a biclique in a Chimera graph.

Given a biclique (a bipartite graph where every vertex in a set in connected
to all vertices in the other set) and a target Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera] graph size or
edges, attempts to find an embedding.

	Parameters

	
	a (int/iterable) – Left shore of the biclique to embed. If a is an integer, generates
an embedding for a biclique with the left shore of size a labelled
[0,a-1]. If a is an iterable of nodes, generates an embedding for a
biclique with the left shore of size len(a) labelled for the given
nodes.

	b (int/iterable) – Right shore of the biclique to embed.If b is an integer, generates
an embedding for a biclique with the right shore of size b labelled
[0,b-1]. If b is an iterable of nodes, generates an embedding for a
biclique with the right shore of size len(b) labelled for the given
nodes.

	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows in the Chimera lattice.

	n (int [https://docs.python.org/3/library/functions.html#int], optional, default=m) – Number of columns in the Chimera lattice.

	t (int [https://docs.python.org/3/library/functions.html#int], optional, default 4) – Size of the shore within each Chimera tile.

	target_edges (iterable[edge]) – A list of edges in the target Chimera graph. Nodes are labelled as
returned by chimera_graph() [https://docs.ocean.dwavesys.com/en/stable/docs_dnx/reference/generated/dwave_networkx.chimera_graph.html#dwave_networkx.chimera_graph].

	Returns

	A 2-tuple containing:

dict: An embedding mapping the left shore of the biclique to
the Chimera lattice.

dict: An embedding mapping the right shore of the biclique to
the Chimera lattice.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

This example finds an embedding for an alphanumerically labeled biclique in a single
Chimera unit cell.

>>> from dwave.embedding.chimera import find_biclique_embedding
...
>>> left, right = find_biclique_embedding(['a', 'b', 'c'], ['d', 'e'], 1, 1)
>>> print(left, right)
{'a': [4], 'b': [5], 'c': [6]} {'d': [0], 'e': [1]}

dwave.embedding.chimera.find_grid_embedding

	
find_grid_embedding(dim, m, n=None, t=4)

	Find an embedding for a grid in a Chimera graph.

Given grid dimensions and a target Chimera [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chimera] graph size,
attempts to find an embedding.

	Parameters

	
	dim (iterable[int [https://docs.python.org/3/library/functions.html#int]]) – Sizes of each grid dimension. Length can be between 1 and 3.

	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows in the Chimera lattice.

	n (int [https://docs.python.org/3/library/functions.html#int], optional, default=m) – Number of columns in the Chimera lattice.

	t (int [https://docs.python.org/3/library/functions.html#int], optional, default 4) – Size of the shore within each Chimera tile.

	Returns

	An embedding mapping a grid to the Chimera lattice.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

This example finds an embedding for a 2x3 grid in a 12x12 lattice of Chimera unit cells.

>>> from dwave.embedding.chimera import find_grid_embedding
...
>>> embedding = find_grid_embedding([2, 3], m=12, n=12, t=4)
>>> embedding
{(0, 0): [0, 4],
 (0, 1): [8, 12],
 (0, 2): [16, 20],
 (1, 0): [96, 100],
 (1, 1): [104, 108],
 (1, 2): [112, 116]}

dwave.embedding.pegasus.find_clique_embedding

	
find_clique_embedding(k, m=None, target_graph=None)

	Find an embedding for a clique in a Pegasus graph.

Given a clique (fully connected graph) and target Pegasus graph, attempts
to find an embedding by transforming the Pegasus graph into a \(K_{2,2}\)
Chimera graph and then applying a Chimera clique-finding algorithm. Results
are converted back to Pegasus coordinates.

	Parameters

	
	k (int/iterable/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – A complete graph to embed,
formatted as a number of nodes, node labels, or a NetworkX graph.

	m (int [https://docs.python.org/3/library/functions.html#int]) – Number of tiles in a row of a square Pegasus graph. Required to
generate an m-by-m Pegasus graph when target_graph is None.

	target_graph (networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – A Pegasus graph. Required when m
is None.

	Returns

	An embedding as a dict, where keys represent the clique’s nodes and
values, formatted as lists, represent chains of pegasus coordinates.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

This example finds an embedding for a \(K_3\) complete graph in a
2-by-2 Pegaus graph.

>>> from dwave.embedding.pegasus import find_clique_embedding
...
>>> print(find_clique_embedding(3, 2))
{0: [10, 34], 1: [35, 11], 2: [32, 12]}

dwave.embedding.embed_bqm

	
embed_bqm(source_bqm, embedding=None, target_adjacency=None, chain_strength=None, smear_vartype=None)

	Embed a binary quadratic model onto a target graph.

	Parameters

	
	source_bqm (BinaryQuadraticModel) – Binary quadratic model to embed.

	embedding (dict/EmbeddedStructure) – Mapping from source graph to target graph as a dict of form
{s: {t, …}, …}, where s is a source-model variable and t is a
target-model variable. Alternately, an EmbeddedStructure object
produced by, for example,
EmbeddedStructure(target_adjacency.edges(), embedding). If embedding
is a dict, target_adjacency must be provided.

	target_adjacency (dict/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], optional) – Adjacency of the target graph as a dict of form {t: Nt, …}, where
t is a variable in the target graph and Nt is its set of neighbours.
This should be omitted if and only if embedding is an
EmbeddedStructure object.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required chain
strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	smear_vartype (Vartype, optional, default=None) – Determines whether the linear bias of embedded variables is smeared
(the specified value is evenly divided as biases of a chain in the
target graph) in SPIN or BINARY space. Defaults to the
Vartype of source_bqm.

	Returns

	Target binary quadratic model.

	Return type

	BinaryQuadraticModel

Examples

This example embeds a triangular binary quadratic model representing
a \(K_3\) clique into a square target graph by mapping variable c
in the source to nodes 2 and 3 in the target.

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # Binary quadratic model for a triangular source graph
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the chain strength
>>> target_bqm = dwave.embedding.embed_bqm(bqm, embedding, target)
>>> target_bqm.quadratic[(2, 3)]
-1.9996979771955565
>>> print(target_bqm.quadratic)
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.9996979771955565}

See also

embed_ising(), embed_qubo()

dwave.embedding.embed_ising

	
embed_ising(source_h, source_J, embedding, target_adjacency, chain_strength=None)

	Embed an Ising problem onto a target graph.

	Parameters

	
	source_h (dict [https://docs.python.org/3/library/stdtypes.html#dict][variable, bias]/list[bias]) – Linear biases of the Ising problem. If a list, the list’s indices are used as
variable labels.

	source_J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form {s: {t, …}, …},
where s is a source-model variable and t is a target-model variable.

	target_adjacency (dict/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – Adjacency of the target graph as a dict of form {t: Nt, …},
where t is a target-graph variable and Nt is its set of neighbours.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required chain
strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	Returns

	A 2-tuple:

dict[variable, bias]: Linear biases of the target Ising problem.

dict[(variable, variable), bias]: Quadratic biases of the target Ising problem.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

This example embeds a triangular Ising problem representing
a \(K_3\) clique into a square target graph by mapping variable c
in the source to nodes 2 and 3 in the target.

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # Ising problem biases
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the resulting biases
>>> th, tJ = dwave.embedding.embed_ising(h, J, embedding, target)
>>> th
{0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0}
>>> tJ
{(0, 1): 1.0, (0, 3): 1.0, (1, 2): 1.0, (2, 3): -1.0}

See also

embed_bqm(), embed_qubo()

dwave.embedding.embed_qubo

	
embed_qubo(source_Q, embedding, target_adjacency, chain_strength=None)

	Embed a QUBO onto a target graph.

	Parameters

	
	source_Q (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Coefficients of a quadratic unconstrained binary optimization (QUBO) model.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form {s: {t, …}, …},
where s is a source-model variable and t is a target-model variable.

	target_adjacency (dict/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – Adjacency of the target graph as a dict of form {t: Nt, …},
where t is a target-graph variable and Nt is its set of neighbours.

	chain_strength (float/mapping/callable, optional) – Sets the coupling strength between qubits representing variables
that form a chain [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html#term-Chain]. Mappings should specify the required chain
strength for each variable. Callables should accept the BQM and
embedding and return a float or mapping. By default,
chain_strength is calculated with
uniform_torque_compensation().

	Returns

	Quadratic biases of the target QUBO.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]

Examples

This example embeds a triangular QUBO representing a \(K_3\) clique
into a square target graph by mapping variable c in the source to nodes
2 and 3 in the target.

>>> import networkx as nx
...
>>> target = nx.cycle_graph(4)
>>> # QUBO
>>> Q = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> # Variable c is a chain
>>> embedding = {'a': {0}, 'b': {1}, 'c': {2, 3}}
>>> # Embed and show the resulting biases
>>> tQ = dwave.embedding.embed_qubo(Q, embedding, target)
>>> tQ
{(0, 1): 1.0,
 (0, 3): 1.0,
 (1, 2): 1.0,
 (2, 3): -4.0,
 (0, 0): 0.0,
 (1, 1): 0.0,
 (2, 2): 2.0,
 (3, 3): 2.0}

See also

embed_bqm(), embed_ising()

dwave.embedding.unembed_sampleset

	
unembed_sampleset(target_sampleset, embedding, source_bqm, chain_break_method=None, chain_break_fraction=False, return_embedding=False)

	Unembed a sample set.

Given samples from a target binary quadratic model (BQM), construct a sample
set for a source BQM by unembedding.

	Parameters

	
	target_sampleset (dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]) – Sample set from the target BQM.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form
{s: {t, …}, …}, where s is a source variable and t is a target
variable.

	source_bqm (BinaryQuadraticModel) – Source BQM.

	chain_break_method (function/list, optional) – Method or methods used to resolve chain breaks. If multiple methods
are given, the results are concatenated and a new field called
“chain_break_method” specifying the index of the method is appended
to the sample set.
Defaults to majority_vote().
See dwave.embedding.chain_breaks.

	chain_break_fraction (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=False) – Add a chain_break_fraction field to the unembedded dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]
with the fraction of chains broken before unembedding.

	return_embedding (bool [https://docs.python.org/3/library/functions.html#bool], optional, default=False) – If True, the embedding is added to dimod.SampleSet.info [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.SampleSet.info.html#dimod.SampleSet.info]
of the returned sample set. Note that if an embedding key
already exists in the sample set then it is overwritten.

	Returns

	Sample set in the source BQM.

	Return type

	SampleSet

Examples

This example unembeds from a square target graph samples of a triangular
source BQM.

>>> # Triangular binary quadratic model and an embedding
>>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J)
>>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]}
>>> # Samples from the embedded binary quadratic model
>>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken
... {0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken
>>> energies = [-3, 1]
>>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies)
>>> # Unembed
>>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm)
>>> samples.record.sample
array([[-1, -1, -1],
 [1, 1, 1]], dtype=int8)

dwave.embedding.chain_break_frequency

	
chain_break_frequency(samples_like, embedding)

	Determine the frequency of chain breaks in the given samples.

	Parameters

	
	samples_like (samples_like/dimod.SampleSet [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/sampleset.html#dimod.SampleSet]) – A collection of raw samples. ‘samples_like’ is an extension of NumPy’s array_like.
See dimod.as_samples() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples].

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form {s: {t, …}, …},
where s is a source-model variable and t is a target-model variable.

	Returns

	Frequency of chain breaks as a dict in the form {s: f, …}, where s
is a variable in the source graph and float f the fraction
of broken chains.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

This example embeds a single source node, ‘a’, as a chain of two target nodes (0, 1)
and uses chain_break_frequency() to show that out of two synthetic samples,
one ([-1, +1]) represents a broken chain.

>>> import numpy as np
...
>>> samples = np.array([[-1, +1], [+1, +1]])
>>> embedding = {'a': {0, 1}}
>>> print(dwave.embedding.chain_break_frequency(samples, embedding)['a'])
0.5

dwave.embedding.diagnose_embedding

	
diagnose_embedding(emb, source, target)

	Diagnose a minor embedding.

Produces a generator that lists all issues with the embedding. User-friendly
variants of this function are is_valid_embedding(), which returns a
bool, and verify_embedding(), which raises the first observed error.

	Parameters

	
	emb (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of source nodes to arrays of target nodes as a dict
of form {s: [t, …], …}, where s is a source-graph variable and t
is a target-graph variable.

	source (list/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – Graph to be embedded as a NetworkX graph or a list of edges.

	target (list/networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – Graph being embedded into as a NetworkX graph or a list of edges.

	Yields

	Errors yielded in the form ExceptionClass, arg1, arg2,…, where the
arguments following the class are used to construct the exception object,
which are subclasses of EmbeddingError.

MissingChainError, snode: a source node label that does not
occur as a key of emb, or for which emb[snode] is empty.

ChainOverlapError, tnode, snode0, snode1: a target node which
occurs in both emb[snode0] and emb[snode1].

DisconnectedChainError, snode: a source node label whose chain
is not a connected subgraph of target.

InvalidNodeError, tnode, snode: a source node label and putative
target node label that is not a node of target.

MissingEdgeError, snode0, snode1: a pair of source node labels
defining an edge that is not present between their chains.

Examples

This example diagnoses an invalid embedding from a triangular source graph
to a square target graph. A valid embedding, such as
emb = {0: [1], 1: [0], 2: [2, 3]}, yields no errors.

>>> from dwave.embedding import diagnose_embedding
>>> import networkx as nx
>>> source = nx.complete_graph(3)
>>> target = nx.cycle_graph(4)
>>> embedding = {0: [2], 1: [1, 'a'], 2: [2, 3]}
>>> diagnosis = diagnose_embedding(embedding, source, target)
>>> for problem in diagnosis:
... print(problem)
(<class 'dwave.embedding.exceptions.InvalidNodeError'>, 1, 'a')
(<class 'dwave.embedding.exceptions.ChainOverlapError'>, 2, 2, 0)

dwave.embedding.is_valid_embedding

	
is_valid_embedding(emb, source, target)

	A simple (bool) diagnostic for minor embeddings.

See diagnose_embedding() for a more detailed diagnostic and more information.

	Parameters

	
	emb (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of source nodes to arrays of target nodes as a dict
of form {s: [t, …], …}, where s is a source-graph variable and t
is a target-graph variable.

	source (graph or edgelist) – Graph to be embedded.

	target (graph or edgelist) – Graph being embedded into.

	Returns

	True if emb is valid.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

dwave.embedding.verify_embedding

	
verify_embedding(emb, source, target, ignore_errors=())

	A simple (exception-raising) diagnostic for minor embeddings.

See diagnose_embedding() for a more detailed diagnostic and more information.

	Parameters

	
	emb (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of source nodes to arrays of target nodes as a dict
of form {s: [t, …], …}, where s is a source-graph variable and t
is a target-graph variable.

	source (graph or edgelist) – Graph to be embedded

	target (graph or edgelist) – Graph being embedded into

	Raises

	EmbeddingError – A catch-all class for the following errors:

 MissingChainError: A key is missing from emb or the associated chain is empty.

 ChainOverlapError: Two chains contain the same target node.

 DisconnectedChainError: A chain is disconnected.

 InvalidNodeError: A chain contains a node label not found in target.

 MissingEdgeError: A source edge is not represented by any target edges.

	Returns

	True if no exception is raised.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

dwave.embedding.chain_strength.uniform_torque_compensation

	
uniform_torque_compensation(bqm, embedding=None, prefactor=1.414)

	Chain strength that attempts to compensate for torque that would break
the chain.

The RMS of the problem’s quadratic biases is used for calculation.

	Parameters

	
	bqm (BinaryQuadraticModel) – A binary quadratic model.

	embedding (dict/EmbeddedStructure, default=None) – Included to satisfy the chain_strength callable specifications
for embed_bqm.

	prefactor (float [https://docs.python.org/3/library/functions.html#float], optional, default=1.414) – Prefactor used for scaling. For non-pathological problems, the recommended
range of prefactors to try is [0.5, 2].

	Returns

	The chain strength, or 1 if chain strength is not applicable.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

dwave.embedding.chain_strength.scaled

	
scaled(bqm, embedding=None, prefactor=1.0)

	Chain strength that is scaled to the problem bias range.

	Parameters

	
	bqm (BinaryQuadraticModel) – A binary quadratic model.

	embedding (dict/EmbeddedStructure, default=None) – Included to satisfy the chain_strength callable specifications
for embed_bqm.

	prefactor (float [https://docs.python.org/3/library/functions.html#float], optional, default=1.0) – Prefactor used for scaling.

	Returns

	The chain strength, or 1 if chain strength is not applicable.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

dwave.embedding.chain_breaks.discard

	
discard(samples, chains)

	Discard broken chains.

	Parameters

	
	samples (samples_like) – A collection of samples. samples_like is an extension of NumPy’s
array_like. See dimod.as_samples() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples].

	chains (list [https://docs.python.org/3/library/stdtypes.html#list][array_like]) – List of chains, where each chain is an array_like collection of
the variables in the same order as their represention in the given
samples.

	Returns

	A 2-tuple containing:

numpy.ndarray: Unembedded samples as an array of dtype ‘int8’.
Broken chains are discarded.

numpy.ndarray: Indicies of rows with unbroken chains.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

This example unembeds two samples that chains nodes 0 and 1 to represent
a single source node. The first sample has an unbroken chain, the second
a broken chain.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2,)]
>>> samples = np.array([[1, 1, 0], [1, 0, 0]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.discard(samples, chains)
>>> unembedded
array([[1, 0]], dtype=int8)
>>> print(idx)
[0]

dwave.embedding.chain_breaks.majority_vote

	
majority_vote(samples, chains)

	Unembed samples using the most common value for broken chains.

	Parameters

	
	samples (samples_like) – A collection of samples. samples_like is an extension of NumPy’s
array_like. See dimod.as_samples() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples].

	chains (list [https://docs.python.org/3/library/stdtypes.html#list][array_like]) – List of chains, where each chain is an array_like collection of
the variables in the same order as their represention in the given
samples.

	Returns

	A 2-tuple containing:

numpy.ndarray: Unembedded samples as an nS-by-nC array of
dtype ‘int8’, where nC is the number of chains and nS the number
of samples. Broken chains are resolved by setting the sample value to
that of most the chain’s elements or, for chains without a majority,
an arbitrary value.

numpy.ndarray: Indicies of the samples. Equivalent to
np.arange(nS) because all samples are kept and none added.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
Both samples have one broken chain, with different majority values.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 1, 0, 0, 1], [1, 1, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.majority_vote(samples, chains)
>>> print(unembedded)
[[1 0]
 [1 1]]
>>> print(idx)
[0 1]

dwave.embedding.chain_breaks.weighted_random

	
weighted_random(samples, chains)

	Unembed samples using weighed random choice for broken chains.

	Parameters

	
	samples (samples_like) – A collection of samples. samples_like is an extension of NumPy’s
array_like. See dimod.as_samples() [https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.as_samples.html#dimod.as_samples].

	chains (list [https://docs.python.org/3/library/stdtypes.html#list][array_like]) – List of chains, where each chain is an array_like collection of
the variables in the same order as their represention in the given
samples.

	Returns

	A 2-tuple containing:

numpy.ndarray: Unembedded samples as an nS-by-nC array of
dtype ‘int8’, where nC is the number of chains and nS the number
of samples. Broken chains are resolved by setting the sample value to
a random value weighted by frequency of the value in the chain.

numpy.ndarray: Indicies of the samples. Equivalent to
np.arange(nS) because all samples are kept
and no samples are added.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Examples

This example unembeds samples from a target graph that chains nodes 0 and 1 to
represent one source node and nodes 2, 3, and 4 to represent another.
The sample has broken chains for both source nodes.

>>> import dimod
>>> import numpy as np
...
>>> chains = [(0, 1), (2, 3, 4)]
>>> samples = np.array([[1, 0, 1, 0, 1]], dtype=np.int8)
>>> unembedded, idx = dwave.embedding.weighted_random(samples, chains)
>>> unembedded
array([[1, 1]], dtype=int8)
>>> idx
array([0, 1])

dwave.embedding.chain_breaks.MinimizeEnergy

	
class MinimizeEnergy(bqm, embedding)

	Unembed samples by minimizing local energy for broken chains.

	Parameters

	
	bqm (BinaryQuadraticModel) – Binary quadratic model associated with the source graph.

	embedding (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping from source graph to target graph as a dict of form {s: [t, …], …},
where s is a source-model variable and t is a target-model variable.

Examples

This example embeds from a triangular graph to a square graph,
chaining target-nodes 2 and 3 to represent source-node c, and unembeds minimizing the
energy for the samples. The first two sample have unbroken chains, the second two have
broken chains.

>>> import dimod
>>> import numpy as np
...
>>> h = {'a': 0, 'b': 0, 'c': 0}
>>> J = {('a', 'b'): 1, ('b', 'c'): 1, ('a', 'c'): 1}
>>> bqm = dimod.BinaryQuadraticModel.from_ising(h, J)
>>> embedding = {'a': [0], 'b': [1], 'c': [2, 3]}
>>> cbm = dwave.embedding.MinimizeEnergy(bqm, embedding)
>>> samples = np.array([[+1, -1, +1, +1],
... [-1, -1, -1, -1],
... [-1, -1, +1, -1],
... [+1, +1, -1, +1]], dtype=np.int8)
>>> chains = [embedding['a'], embedding['b'], embedding['c']]
>>> unembedded, idx = cbm(samples, chains)
>>> unembedded
array([[1, -1, 1],
 [-1, -1, -1],
 [-1, -1, 1],
 [1, 1, -1]], dtype=int8)
>>> idx
array([0, 1, 2, 3])

	
__init__(bqm, embedding)

	

Methods

	__init__(bqm, embedding)

	

dwave.embedding.exceptions.EmbeddingError

	
exception EmbeddingError

	Base class for all embedding exceptions.

dwave.embedding.exceptions.MissingChainError

	
exception MissingChainError(snode)

	Raised if a node in the source graph has no associated chain.

	Parameters

	snode – The source node with no associated chain.

dwave.embedding.exceptions.ChainOverlapError

	
exception ChainOverlapError(tnode, snode0, snode1)

	Raised if two source nodes have an overlapping chain.

	Parameters

	
	tnode – Location where the chains overlap.

	snode0 – First source node with overlapping chain.

	snode1 – Second source node with overlapping chain.

dwave.embedding.exceptions.DisconnectedChainError

	
exception DisconnectedChainError(snode)

	Raised if a chain is not connected in the target graph.

	Parameters

	snode – The source node associated with the broken chain.

dwave.embedding.exceptions.InvalidNodeError

	
exception InvalidNodeError(snode, tnode)

	Raised if a chain contains a node not in the target graph.

	Parameters

	
	snode – The source node associated with the chain.

	tnode – The node in the chain not in the target graph.

dwave.embedding.exceptions.MissingEdgeError

	
exception MissingEdgeError(snode0, snode1)

	Raised when two source nodes sharing an edge to not have a corresponding edge between their chains.

	Parameters

	
	snode0 – First source node.

	snode1 – Second source node.

Utilities

Utility functions.

	common_working_graph(graph0, graph1)

	Creates a graph using the common nodes and edges of two given graphs.

dwave.system.utilities.common_working_graph

	
common_working_graph(graph0, graph1)

	Creates a graph using the common nodes and edges of two given graphs.

This function finds the edges and nodes with common labels. Note that this
not the same as finding the greatest common subgraph with isomorphisms.

	Parameters

	
	graph0 – (dict[dict]/Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph])
A NetworkX graph or a dictionary of dictionaries adjacency
representation.

	graph1 – (dict[dict]/Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph])
A NetworkX graph or a dictionary of dictionaries adjacency
representation.

	Returns

	A graph with the nodes and edges common to both
input graphs.

	Return type

	Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

Examples

This example creates a graph that represents a quarter (4 by 4 Chimera tiles)
of a particular D-Wave system’s working graph.

>>> import dwave_networkx as dnx
>>> from dwave.system import DWaveSampler, common_working_graph
...
>>> sampler = DWaveSampler()
>>> C4 = dnx.chimera_graph(4) # a 4x4 lattice of Chimera tiles
>>> c4_working_graph = common_working_graph(C4, sampler.adjacency)

Warnings

	
class WarningAction(value)

	An enumeration.

	
class ChainBreakWarning

	

	
class ChainLengthWarning

	

	
class TooFewSamplesWarning

	

	
class ChainStrengthWarning

	Base category for warnings about the embedding chain strength.

	
class EnergyScaleWarning

	Base category for warnings about the relative bias strengths.

	
class WarningHandler(action=None)

	

Installation

Installation from PyPI:

pip install dwave-system

Installation from PyPI with drivers:

Note

Prior to v0.3.0, running pip install dwave-system installed a driver dependency called dwave-drivers
(previously also called dwave-system-tuning). This dependency has a restricted license and has been made optional
as of v0.3.0, but is highly recommended. To view the license details:

from dwave.drivers import __license__
print(__license__)

To install with optional dependencies:

pip install dwave-system[drivers] --extra-index-url https://pypi.dwavesys.com/simple

Installation from source:

pip install -r requirements.txt
python setup.py install

Note that installing from source installs dwave-drivers. To uninstall the proprietary components:

pip uninstall dwave-drivers

License

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dwave	

 	
 	
 dwave.embedding.chain_breaks	

 	
 	
 dwave.embedding.chain_strength	

 	
 	
 dwave.system.composites.embedding	

 	
 	
 dwave.system.utilities	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (MinimizeEnergy method)

A

 	
 	adjacency (DWaveSampler property)

 	(FixedEmbeddingComposite property)

 	(LazyFixedEmbeddingComposite property)

 	(TilingComposite property)

 	(VirtualGraphComposite property)

 	
 	AutoEmbeddingComposite (class in dwave.system.composites)

C

 	
 	chain_break_frequency() (in module dwave.embedding)

 	ChainBreakWarning (class in dwave.system.warnings)

 	ChainLengthWarning (class in dwave.system.warnings)

 	ChainOverlapError

 	ChainStrengthWarning (class in dwave.system.warnings)

 	child (AutoEmbeddingComposite property)

 	(CutOffComposite property)

 	(EmbeddingComposite property)

 	(FixedEmbeddingComposite property)

 	(PolyCutOffComposite property)

 	(ReverseAdvanceComposite property)

 	(ReverseBatchStatesComposite property)

 	(TilingComposite property)

 	(VirtualGraphComposite property)

 	
 	children (CutOffComposite property)

 	(FixedEmbeddingComposite attribute)

 	(PolyCutOffComposite property)

 	(ReverseAdvanceComposite property)

 	(ReverseBatchStatesComposite property)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

 	common_working_graph() (in module dwave.system.utilities)

 	CutOffComposite (class in dwave.system.composites)

D

 	
 	default_solver (LeapHybridDQMSampler attribute)

 	(LeapHybridSampler attribute)

 	diagnose_embedding() (in module dwave.embedding)

 	discard() (in module dwave.embedding.chain_breaks)

 	DisconnectedChainError

 	
 dwave.embedding.chain_breaks

 	module

 	
 	
 dwave.embedding.chain_strength

 	module

 	
 dwave.system.composites.embedding

 	module

 	
 dwave.system.utilities

 	module

 	DWaveCliqueSampler (class in dwave.system.samplers)

 	DWaveSampler (class in dwave.system.samplers)

E

 	
 	edgelist (DWaveSampler property)

 	(FixedEmbeddingComposite property)

 	(LazyFixedEmbeddingComposite property)

 	(TilingComposite attribute)

 	(VirtualGraphComposite property)

 	embed_bqm() (in module dwave.embedding)

 	
 	embed_ising() (in module dwave.embedding)

 	embed_qubo() (in module dwave.embedding)

 	EmbeddedStructure (class in dwave.embedding)

 	EmbeddingComposite (class in dwave.system.composites)

 	EmbeddingError

 	EnergyScaleWarning (class in dwave.system.warnings)

F

 	
 	find_biclique_embedding() (in module dwave.embedding.chimera)

 	find_clique_embedding() (in module dwave.embedding.chimera)

 	(in module dwave.embedding.pegasus)

 	
 	find_embedding() (in module minorminer)

 	find_grid_embedding() (in module dwave.embedding.chimera)

 	FixedEmbeddingComposite (class in dwave.system.composites)

I

 	
 	InvalidNodeError

 	
 	is_valid_embedding() (in module dwave.embedding)

L

 	
 	largest_clique() (DWaveCliqueSampler method)

 	largest_clique_size (DWaveCliqueSampler property)

 	LazyFixedEmbeddingComposite (class in dwave.system.composites)

 	
 	LeapHybridCQMSampler (class in dwave.system.samplers)

 	LeapHybridDQMSampler (class in dwave.system.samplers)

 	LeapHybridSampler (class in dwave.system.samplers)

M

 	
 	majority_vote() (in module dwave.embedding.chain_breaks)

 	min_time_limit() (LeapHybridCQMSampler method)

 	(LeapHybridDQMSampler method)

 	(LeapHybridSampler method)

 	MinimizeEnergy (class in dwave.embedding.chain_breaks)

 	MissingChainError

 	
 	MissingEdgeError

 	
 module

 	dwave.embedding.chain_breaks

 	dwave.embedding.chain_strength

 	dwave.system.composites.embedding

 	dwave.system.utilities

N

 	
 	nodelist (DWaveSampler property)

 	(FixedEmbeddingComposite property)

 	(LazyFixedEmbeddingComposite property)

 	(TilingComposite attribute)

 	(VirtualGraphComposite property)

P

 	
 	parameters (AutoEmbeddingComposite attribute)

 	(CutOffComposite property)

 	(DWaveCliqueSampler property)

 	(DWaveSampler property)

 	(EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(LazyFixedEmbeddingComposite attribute)

 	(LeapHybridCQMSampler property)

 	(LeapHybridDQMSampler property)

 	(LeapHybridSampler property)

 	(PolyCutOffComposite property)

 	(ReverseAdvanceComposite property)

 	(ReverseBatchStatesComposite property)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

 	
 	PolyCutOffComposite (class in dwave.system.composites)

 	properties (AutoEmbeddingComposite attribute)

 	(CutOffComposite property)

 	(DWaveCliqueSampler property)

 	(DWaveSampler property)

 	(EmbeddingComposite attribute)

 	(FixedEmbeddingComposite attribute)

 	(LazyFixedEmbeddingComposite attribute)

 	(LeapHybridCQMSampler property)

 	(LeapHybridDQMSampler property)

 	(LeapHybridSampler property)

 	(PolyCutOffComposite property)

 	(ReverseAdvanceComposite property)

 	(ReverseBatchStatesComposite property)

 	(TilingComposite attribute)

 	(VirtualGraphComposite attribute)

Q

 	
 	qpu_linear_range (DWaveCliqueSampler property)

 	
 	qpu_quadratic_range (DWaveCliqueSampler property)

R

 	
 	return_embedding_default (EmbeddingComposite attribute)

 	
 	ReverseAdvanceComposite (class in dwave.system.composites)

 	ReverseBatchStatesComposite (class in dwave.system.composites)

S

 	
 	sample() (AutoEmbeddingComposite method)

 	(CutOffComposite method)

 	(DWaveCliqueSampler method)

 	(DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(LazyFixedEmbeddingComposite method)

 	(LeapHybridSampler method)

 	(ReverseAdvanceComposite method)

 	(ReverseBatchStatesComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	sample_cqm() (LeapHybridCQMSampler method)

 	sample_dqm() (LeapHybridDQMSampler method)

 	sample_hising() (PolyCutOffComposite method)

 	sample_hubo() (PolyCutOffComposite method)

 	sample_ising() (AutoEmbeddingComposite method)

 	(CutOffComposite method)

 	(DWaveCliqueSampler method)

 	(DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(LazyFixedEmbeddingComposite method)

 	(LeapHybridSampler method)

 	(ReverseAdvanceComposite method)

 	(ReverseBatchStatesComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	
 	sample_poly() (PolyCutOffComposite method)

 	sample_qubo() (AutoEmbeddingComposite method)

 	(CutOffComposite method)

 	(DWaveCliqueSampler method)

 	(DWaveSampler method)

 	(EmbeddingComposite method)

 	(FixedEmbeddingComposite method)

 	(LazyFixedEmbeddingComposite method)

 	(LeapHybridSampler method)

 	(ReverseAdvanceComposite method)

 	(ReverseBatchStatesComposite method)

 	(TilingComposite method)

 	(VirtualGraphComposite method)

 	scaled() (in module dwave.embedding.chain_strength)

 	structure (DWaveSampler property)

 	(FixedEmbeddingComposite property)

 	(LazyFixedEmbeddingComposite property)

 	(TilingComposite property)

 	(VirtualGraphComposite property)

T

 	
 	target_graph (DWaveCliqueSampler property)

 	TilingComposite (class in dwave.system.composites)

 	
 	to_networkx_graph() (DWaveSampler method)

 	TooFewSamplesWarning (class in dwave.system.warnings)

U

 	
 	unembed_sampleset() (in module dwave.embedding)

 	
 	uniform_torque_compensation() (in module dwave.embedding.chain_strength)

V

 	
 	validate_anneal_schedule() (DWaveSampler method)

 	
 	verify_embedding() (in module dwave.embedding)

 	VirtualGraphComposite (class in dwave.system.composites)

W

 	
 	WarningAction (class in dwave.system.warnings)

 	WarningHandler (class in dwave.system.warnings)

 	
 	warnings_default (EmbeddingComposite attribute)

 	weighted_random() (in module dwave.embedding.chain_breaks)

 [image: _images/dwave-system.svg]
 [https://pypi.org/project/dwave-system][image: _images/959r6vpyertcxkhd.svg]
 [https://ci.appveyor.com/project/dwave-adtt/dwave-system][image: _images/badge.svg]
 [https://codecov.io/gh/dwavesystems/dwave-system][image: _images/35ee9985e2be9c97c87bb1d4e909cf48a96f0359.svg]
 [https://docs.ocean.dwavesys.com/projects/system/en/latest/?badge=latest][image: _images/dwave-system1.svg]
 [https://circleci.com/gh/dwavesystems/dwave-system]
dwave-system

dwave-system is a basic API for easily incorporating the D-Wave system as a
sampler in the
D-Wave Ocean software stack [https://docs.ocean.dwavesys.com/en/stable/overview/stack.html],
directly or through Leap [https://cloud.dwavesys.com/leap/]‘s cloud-based
hybrid solvers. It includes DWaveSampler, a dimod sampler that accepts and
passes system parameters such as system identification and authentication down
the stack, LeapHybridSampler, for Leap’s hybrid solvers, and other. It also
includes several useful composites—layers of pre- and post-processing—that
can be used with DWaveSampler to handle minor-embedding,
optimize chain strength, etc.

Installation

Installation from PyPI:

pip install dwave-system

Installation from PyPI with drivers:

Note

Prior to v0.3.0, running pip install dwave-system installed a driver dependency called dwave-drivers
(previously also called dwave-system-tuning). This dependency has a restricted license and has been made optional
as of v0.3.0, but is highly recommended. To view the license details:

from dwave.drivers import __license__
print(__license__)

To install with optional dependencies:

pip install dwave-system[drivers] --extra-index-url https://pypi.dwavesys.com/simple

Installation from source:

pip install -r requirements.txt
python setup.py install

Note that installing from source installs dwave-drivers. To uninstall the proprietary components:

pip uninstall dwave-drivers

License

Released under the Apache License 2.0. See LICENSE file.

Contributing

Ocean’s contributing guide [https://docs.ocean.dwavesys.com/en/stable/contributing.html]
has guidelines for contributing to Ocean packages.

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 dwave-system

 		
 Introduction

 		
 Example

 		
 Reference Documentation

 		
 Samplers

 		
 DWaveSampler

 		
 DWaveCliqueSampler

 		
 LeapHybridSampler

 		
 LeapHybridCQMSampler

 		
 LeapHybridDQMSampler

 		
 Composites

 		
 CutOffs

 		
 Embedding

 		
 Reverse Anneal

 		
 Embedding

 		
 Generators

 		
 Utilities

 		
 Diagnostics

 		
 Chain Strength

 		
 Chain-Break Resolution

 		
 Exceptions

 		
 Classes

 		
 Utilities

 		
 dwave.system.utilities.common_working_graph

 		
 Warnings

 		
 Installation

 		
 License

