
CyVerse Documentation
Release 0.1.0

CyVerse

Sep 18, 2020

Container Camp Workshop

1 Workshop Code of Conduct 3

2 Pre-Workshop Setup 5

3 Agenda 9

4 About CyVerse 13

5 Training session in Docker 15

6 Training session in Singularity 17

7 Training session in scaling up your analysis using containers 19

8 Training session in Biocontainers 21

9 Booting an Atmosphere computer instance for your use! 23

10 Introduction to Docker 33

11 Advanced Docker 55

12 Introduction to Singularity 101

13 Advanced Singularity 117

14 Deploying apps in Discovery Environment 123

15 OSG (Open Science Grid) Singularity Infrastructure 131

16 Pegasus Workflows with Application Containers 141

17 Distributed Computing with Makeflow and Work Queue 151

18 Introduction to Biocontainers 159

19 Biocontainers in HPC 173

20 Docker related resources 175

i

21 Singularity related resources 177

22 Other resources 179

23 For instructors! 181

24 Problems? Bugs? Questions? 185

ii

CyVerse Documentation, Release 0.1.0

Container Camp Workshop 1

CyVerse Documentation, Release 0.1.0

2 Container Camp Workshop

CHAPTER 1

Workshop Code of Conduct

All attendees, speakers, sponsors and volunteers at our workshop are required to follow this code of conduct. Organ-
isers will enforce this code throughout the event. We expect cooperation from all participants to help ensure a safe
environment for everyone.

This Code of Conduct is taken from http://confcodeofconduct.com/. See http://www.ashedryden.com/blog/
codes-of-conduct-101-faq for more information on codes of conduct.

FAIR principles

Container Camp supports FAIR data principles by providing services that help make data Findable, Accessible, In-
teroperable, and Reusable. Participants will get an introduction to containers and learn how to create and manage
containers.

Learning objectives

Participants will learn key containerization concepts for developing reproducible analysis pipelines, with emphasis on
container lifecycle management from design to execution and scaling.

The workshop will cover key concepts about containers such as defining the architecture of containers, building images
and pushing them to public and private repositories as well as how to scale your analysis from laptop to cloud and to
HPC systems using containers.

Who should attend?

Faculty, researchers, postdocs, and graduate students who use and analyze data of all types (genomics, image data,
from animals, plants, etc.).

Workshop level

This workshop is focused on beginner-level users with little to no previous container experience.

Intermeidate and advanced users who attend will gain a better understanding of and ability with container capabilities
and resources, including deploying their own tools and extending these analyses into Cloud and HPC.

Need help?

Couldn’t find what you were looking for?

• You can reach the lead instructor, Upendra Devisetty, at upendra at cyverse dot org.

3

http://confcodeofconduct.com/
http://www.ashedryden.com/blog/codes-of-conduct-101-faq
http://www.ashedryden.com/blog/codes-of-conduct-101-faq

CyVerse Documentation, Release 0.1.0

• You can also talk to any of the instructors or TAs if you need immediate help.

• Chat with us and our community on Slack.

• Post an issue on the documentation issue tracker on GitHub

4 Chapter 1. Workshop Code of Conduct

https://github.com/CyVerse-learning-materials/container_camp_workshop_2018/issues

CHAPTER 2

Pre-Workshop Setup

Please complete the minimum Setup Instructions to prepare for the Container Camp workshop at CyVerse, The Uni-
versity of Arizona, which will run from March 7th to 9th, 2018.

5

CyVerse Documentation, Release 0.1.0

Prerequisite Notes Links
Wi-Fi-enabled laptop You should be able to use any lap-

top using Windows/MacOS/Linux.
We strongly recommend Fire-
fox or Chrome browser; We do
not recommend Microsoft Edge
Browser. It is recommended that
you have administrative/install per-
missions on your laptop.

• Download FireFox
• Download Chrome

CyVerse Account Please ensure that you have a Cy-
Verse account and have verfied your
account by completing the verifica-
tion steps in the email you got when
you registered.

Register for your cyverse account
at http://user.cyverse.org/. You can
test your account by logging into
http://user.cyverse.org/.

Github Account Please ensure that you have a Github
account if you don’t have one al-
ready

Register for your Github account at
https://github.com/.

Dockerhub Account Please ensure that you have a Dock-
erhub account if you don’t have one
already

Register for your Dockerhub ac-
count at https://hub.docker.com/.

Quay.io Account This is completely optional but rec-
ommended and can use github to
log-in to quay.io account

Register for your Quay.io account at
https://quay.io/.

XSEDE Account Please ensure that you have a
XSEDE account by registering at
XSEDE portal to access Jetstream
cloud computing

Register for your XSEDE account at
https://portal.xsede.org/.

TACC Account Please ensure that you have a TACC
account to access Stampede2 HPC
computer at TACC

Register for your TACC account at
https://portal.tacc.utexas.edu/.

Text Editor Please ensure that you have a Text
editor of your choice. Any decent
text editor would be sufficient and
recommended ones include Sub-
lime2 and Atom

• Register for Sublime at https:
//www.sublimetext.com/.

• Register for Atom at https://
atom.io/.

Slack for networking We will be using Slack extensively
for communication and networking
purposes

Register for Slack at https://slack.
com/.

Optional Download Extras

Listed below are some extra downloads that aren’t required for the workshop, but which provide some options for
functionalities we will cover.

6 Chapter 2. Pre-Workshop Setup

https://www.mozilla.org/en-US/firefox/new/?scene=2
https://www.google.com/chrome/browser/
http://user.cyverse.org/
http://user.cyverse.org/
https://github.com/
https://hub.docker.com/
https://quay.io/
https://portal.xsede.org/
https://portal.tacc.utexas.edu/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://atom.io/
https://atom.io/
https://slack.com/
https://slack.com/

CyVerse Documentation, Release 0.1.0

Tool Notes Link
SSH Clients (Windows) PuTTY allows SSH connection to

a remote machine, and is designed
for Windows users who do not have
a Mac/Linux terminal. MobaXterm
is a single Windows application that
provides a ton of functions for pro-
grammers, webmasters, IT adminis-
trators, and anybody is looking to
manage system remotely

• Download PuTTY
• Download mobaXterm
• Update Windows 10 to use

Linux Bash

Cyberduck Cyberduck is a third-party tool
for uploading/downloading data to
CyVerse Data Store. Currently,
this tool is available for Win-
dows/MacOS only. You will need to
download Cyberduck and the con-
nection profile. We will go through
configuration and installation at the
workshop.

• Download Cyberduck
• Download CyVerse Cyber-

duck connection profile

iCommands iCommands are third-party software
for command-line connection to the
CyVerse Data Store.

Download and installation instruc-
tions available at CyVerse Learning
Center

7

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://cyberduck.io/
https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2
https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2
https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html
https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html

CyVerse Documentation, Release 0.1.0

8 Chapter 2. Pre-Workshop Setup

CHAPTER 3

Agenda

Below are the schedule and classroom materials for Container Camp at The University of Arizona, which will run
from March 7th to 9th, 2018. The workshop will take place in Drachman A116. Click this link to the building -
https://goo.gl/7Yv4PA

This workshop runs under a Code of Conduct. Please respect it and be excellent to each other!

Twitter hash tag: #cc2018

We will use this for notetaking - https://goo.gl/6Bd9tX

Day Time Topic/Activity Notes/Links
03/07/18 (Wednesday) 8:30-9:00 General introduction to

CyVerse and Camp logis-
tics (Nirav Merchant &
Upendra Devisetty)

Intro slides

9:00-9:30 General overview of con-
tainer technology land-
scape (Nirav Merchant)

Intro slides

9:30-9:45 Coffee and snack break
with networking

served in A127-29 across
the hall (pls no food/bev in
A116)

9:45-11:00 Introduction to Docker
(Kapeel Chougule) • Docker intro slides

• Docker intro demo

11:00-12.00 Singularity (Vanessa
Sochat)

Remote talk

12:00-1:00 Lunch break on your own
1:00-2:30 Advanced Docker (Upen-

dra Devisetty)
Advanced docker

Continued on next page

9

https://goo.gl/7Yv4PA
../getting_started/main.html
https://goo.gl/6Bd9tX
https://docs.google.com/presentation/d/1shHJKmmLO8VfBfhhhm7cjFhD-5F1b-2fHWtRtaW-pIA/edit?usp=sharing
https://docs.google.com/presentation/d/1shHJKmmLO8VfBfhhhm7cjFhD-5F1b-2fHWtRtaW-pIA/edit?usp=sharing
https://docs.google.com/presentation/d/1OqEiVZRq9ibmVk8A0YyeXoNBXfm5JQAXWhow-P6_Iho/edit?usp=sharing
../docker/dockerintro.html
../docker/dockeradvanced.html

CyVerse Documentation, Release 0.1.0

Table 1 – continued from previous page
Day Time Topic/Activity Notes/Links

2:30-3:00 Coffee break (15 min) and
afternoon session plan-
ning

served in A127-29

3:00-5:00 BYOD (Hands on Project)
5:00-6:00 Catchup with instructors

03/08/18 (Thursday) 8:30-9:00 Recap and planning day 2
9:00-9:30 General overview of Sin-

gularity (John Fonner)
Singularity Overview
Slides

9:30-10.00 Singularity setup (Tyson
Swetnam)

Singularity Introduction

10:00-10:30 Coffee + snack break with
networking

served in A127-29

10:30-12.00 Singularity basics (Tyson
Swetnam) • Gitpitch slides

• University of Ari-
zona High Perfor-
mance Computing

• Introduction to Sin-
gularity

12:00-1:00 Lunch break on your own
1:00-2:30 Advanced Singularity

(John Fonner)
Advanced Singularity

2:30-3:00 Coffee + snack break with
networking

served in A127-29

3:00-5:00 BYOD (Hands on Project)
5:00-6:00 Catchup with instructors

03/09/18 (Friday) 8:30-9:30 Day 2 review and putting
it all together

9:30-10:00 500,000 containers a day?
OSG Singularity Infras-
tructure (Mats Rynge)

• Slides
• Exercises

10.00-10:30 Pegasus Workflows with
Application Containers
(Mats Rynge)

• Slides
• Exercises

10:30-10:45 Coffee + snack break with
networking

served in A127-29

10:45-11:30 Distributed computing
with containers (Nick
Hazekamp & Kyle
Sweeney remotely)

Introduction to Container
scaling

11:30-12:30 Lunch break CyVerse-hosted Food
Truck - stay tuned for
instructions

12:30-1:15 Distributed computing
with containers (Nick
Hazekamp & Kyle
Sweeney remotely)

Introduction to Container
scaling

Continued on next page

10 Chapter 3. Agenda

https://docs.google.com/presentation/d/175QD_mm9aKbV-8WW7hKR04naR08UjTRcGc4CIhMMKKk/edit?usp=sharing
https://docs.google.com/presentation/d/175QD_mm9aKbV-8WW7hKR04naR08UjTRcGc4CIhMMKKk/edit?usp=sharing
../singularity/singularityintro.html
https://gitpitch.com/tyson-swetnam/cc-camp#/
https://docs.hpc.arizona.edu/
https://docs.hpc.arizona.edu/
https://docs.hpc.arizona.edu/
../singularity/singularityintro.html
../singularity/singularityintro.html
../singularity/singularityadvanced.html
https://docs.google.com/presentation/d/1DOfnSYAWl7lqtowbb-T5xpUtnkfRBDg9_6wo_Y7hviI/edit?usp=sharing
../container_scaling/containerscaling_osg.html
https://docs.google.com/presentation/d/1SmmFizUvDmq5p4uNmqBrSsVWMOu89vAuUD-oDGLf4D4/edit?usp=sharing
../container_scaling/containerscaling_pegasus.html
../container_scaling/containerscaling_dc.html
../container_scaling/containerscaling_dc.html
../container_scaling/containerscaling_dc.html
../container_scaling/containerscaling_dc.html

CyVerse Documentation, Release 0.1.0

Table 1 – continued from previous page
Day Time Topic/Activity Notes/Links

1:15-2:30 Biocontainers (Upendra
Devisetty & John Fonner) • Bicontainers Slides

• Biocontainers
Hands-on

• Biocontainers on
HPC

2:30-3:00 Coffee + snack break with
networking

served in A127-29

3:00-5:00 BYOD (Hands on Project)
and end of workshop

11

https://drive.google.com/file/d/1p3OOlwRIXXo6tlPmK2edRYuVSSE9CPOB/view?usp=sharing
../biocontainer/biocontainers.html
../biocontainer/biocontainers.html
../biocontainer/biocontainers_hpc.html
../biocontainer/biocontainers_hpc.html

CyVerse Documentation, Release 0.1.0

12 Chapter 3. Agenda

CHAPTER 4

About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national cyberinfrastructure for life sciences research and train
scientists in its use. CyVerse provides life scientists with powerful computational infrastructure to handle huge datasets
and complex analyses, thus enabling data-driven discovery. Our powerful extensible platforms provide data storage,
bioinformatics tools, image analyses, cloud services, APIs, and more.

While originally created with the name iPlant Collaborative to serve U.S. plant science communities, CyVerse cy-
berinfrastructure is germane to all life sciences disciplines and works equally well on data from plants, animals, or
microbes. By democratizing access to supercomputing capabilities, we provide a crucial resource to enable scientists
to find solutions for the future. CyVerse is of, by, and for the community, and community-driven needs shape our
mission. We rely on your feedback to provide the infrastructure you need most to advance your science, development,
and educational agenda.

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under Award Numbers DBI-0735191 and DBI-
1265383.

Please cite CyVerse appropriately when you make use of our resources, CyVerse citation policy

13

http://www.cyverse.org
http://www.cyverse.org/acknowledge-and-cite-cyverse

CyVerse Documentation, Release 0.1.0

14 Chapter 4. About CyVerse

CHAPTER 5

Training session in Docker

Trainers (Kapeel Chougule and Upendra Devisetty)

In this session we will explain the various aspects of the Docker. Starting with the basics of Docker which focus on the
installation and configuration of Docker, the session will gradually move to advanced topics such as managing data
using volumes and pushing and pull containers from registries. Overall this session covers the development aspects of
Docker and how you can get up and running on the development environments using Docker containers.

• Docker basics/Introduction (Kapeel)

This is the introductory session for the concept of Docker. The topics include Docker installation, running prebuilt
Docker containers, deploying web applications with Docker, building and running your own Docker containers, etc.

• Advanced Docker (Upendra)

This is the advanced session for the concept of Docker. The topics include pushing and pulling Docker containers to
public and private registries, automated Docker image building from github/bitbucket repositories, managing data in
Docker containers, Docker compose for building multiple Docker containers, improving your data science workflows
using Docker containers, etc.

15

../docker/dockerintro.html
../docker/dockeradvanced.html

CyVerse Documentation, Release 0.1.0

16 Chapter 5. Training session in Docker

CHAPTER 6

Training session in Singularity

Trainers (Tyson Swetnam and John Fonner)

In this session we will show you how to containerize your software/applications using Singularity, push them to
Singularityhub and deploy them on cloud and HPC.

• Singularity basics/Introduction (Tyson Swetnam)

This would be the introductory session for concept of Singularity. The topics include installation Singularity on various
platforms, running prebuilt singularity containers, building singularity containers locally etc.

• Advanced Singularity (John Fonner)

This is the advanced session for the concept of Singularity. The topics include pushing and pulling Singularity images
to and from Singularity hub, converting Docker containers to Singularity containers, mounting data on to Singularity
containers etc.

17

../singularity/singularityintro.html
../singularity/singularityadvanced.html

CyVerse Documentation, Release 0.1.0

18 Chapter 6. Training session in Singularity

CHAPTER 7

Training session in scaling up your analysis using containers

Trainers (Mats Rynge, Nicholas Hazekamp and Kyle Sweeney)

In this exciting session of the workshop, we will show you how to scale your analyses (simple apps and complex
workflow) using Docker swarm, Google Kubernetes and Workflows Management Systems such as Pegasus, Work-
Queue and Makeflow from laptop to Cloud to HPC resources such as Stampede2, OSG and campus clusters and also
show how using several compute clusters, you can scale your analysis significantly and efficiently. Some of the topics
include:

• OSG (Open Science Grid) Singularity Infrastructure (Mats Rynge)

• Pegasus Workflows with Application Containers (Mats Rynge)

• Distributed computing with containers (Nicholas and Kyle remotely)

19

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://pegasus.isi.edu/
https://ccl.cse.nd.edu/software/workqueue/
https://ccl.cse.nd.edu/software/workqueue/
https://ccl.cse.nd.edu/software/makeflow/
../container_scaling/containerscaling_osg.html
../container_scaling/containerscaling_pegasus.html
../container_scaling/containerscaling_dc.html

CyVerse Documentation, Release 0.1.0

20 Chapter 7. Training session in scaling up your analysis using containers

CHAPTER 8

Training session in Biocontainers

Trainers (Upendra Devisetty and John Fonner)

In this session we will show you how to containerize your bioinformatic software/applications (with special focus in
Proteomics, Genomics, Transcriptomics and Metabolomics), push them to Dockerhub and other registries and finally
deploy them on Cloud and HPC.

• Introduction to Biocontainers (Upendra Devisetty)

This would be the introductory session for concept of Biocontainers. The topics include what are biocontainers and
how are they different from Docker containers, developing biocontainers, running Biocontainers, Biocontainer registry
etc.

• Biocontainers in HPC environment (John Fonner)

This would be the session for concept of Biocontainers in HPC environment.

21

../biocontainer/biocontainers.html
../biocontainer/biocontainers_HPC.html

CyVerse Documentation, Release 0.1.0

22 Chapter 8. Training session in Biocontainers

CHAPTER 9

Booting an Atmosphere computer instance for your use!

What we’re going to do here is walk through of how to start up a running computer (an “instance”) on the CyVerse
Atmosphere Cloud service.

Below, we’ve provided screenshots of the whole process. You can click on them to zoom in a bit. The important areas
to fill in are highlighted.

First, go to the Atmosphere application and then click login

Important: You will need to have access to the Atmosphere workshop cloud. If you are not able to log-in for some
reason, please let us know and we will fix it immediately.

1. Fill in the username and password and click “LOGIN”

Fill in the username, which is your CyVerse username, and then enter the password (which is your CyVerse password).

23

https://atmo.cyverse.org/application/images

CyVerse Documentation, Release 0.1.0

2. Select Projects and “Create New Project”

• Now, this is something you only need to do once.

• We’ll do this with Projects, which gives you a bit of a workspace in which to keep things that belong to “you”.

• Click on the “Projects” tab on the top and then click “CREATE NEW PROJECT”

24 Chapter 9. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

• Enter the name “CCW2018” into the Project Name, and something simple like “Container Camp Workshop
2018” into the description. Then click ‘create’.

25

CyVerse Documentation, Release 0.1.0

3. Select the newly created project

• Click on your newly created project!

• Now, click ‘New’ and then “Instance” from the dropdown menu to start up a new virtual machine.

• Find the “Ubuntu 16.04” image, click on it

26 Chapter 9. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

• Name it something simple such as “workshop tutorial” and select ‘tiny1 (CPU: 1, Mem: 4GB, Disk: 30GB)’.

• Leave rest of the fields as default.

27

CyVerse Documentation, Release 0.1.0

• Wait for it to become active

• It will now be booting up! This will take 2-10 minutes, depending.

Just wait! Don’t reload or anything.

• Click on your new instance to get more information!

• Now, you can either click “Open Web Shell”, or, if you know how to use ssh,

you can ssh in with your CyVerse username on the IP address of the machine

28 Chapter 9. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

Deleting your instance

• To completely remove your instance, you can select the “delete” buttom from the instance details page.

• This will open up a dialogue window. Select the “Yes, delete this instance” button.

29

CyVerse Documentation, Release 0.1.0

• It may take Atmosphere a few minutes to process your request. The instance should disappear from the project
when it has been successfully deleted.

30 Chapter 9. Booting an Atmosphere computer instance for your use!

CyVerse Documentation, Release 0.1.0

Note: It is advisable to delete the machine if you are not planning to use it in future to save valuable resources.
However if you want to use it in future, you can suspend it.

31

CyVerse Documentation, Release 0.1.0

32 Chapter 9. Booting an Atmosphere computer instance for your use!

33

CyVerse Documentation, Release 0.1.0

CHAPTER 10

Introduction to Docker

34 Chapter 10. Introduction to Docker

CyVerse Documentation, Release 0.1.0

10.1 1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text
editor. Prior experience in developing web applications will be helpful but is not required.

10.2 2. Docker Installation

Getting all the tooling setup on your computer can be a daunting task, but not with Docker. Getting Docker up and
running on your favorite OS (Mac/Windows/Linux) is very easy.

The getting started guide on Docker has detailed instructions for setting up Docker on Mac/Windows/Linux.

Note: If you’re using Docker for Windows make sure you have shared your drive.

If you’re using an older version of Windows or MacOS you may need to use Docker Machine instead.

All commands work in either bash or Powershell on Windows.

Note: Depending on how you’ve installed Docker on your system, you might see a permission denied error
after running the above command. If you’re on Linux, you may need to prefix your Docker commands with sudo.
Alternatively to run docker command without sudo, you need to add your user (who has root privileges) to docker
group. For this run:

Create the docker group:

$ sudo groupadd docker

Add your user to the docker group:

$ sudo usermod -aG docker $USER

Log out and log back in so that your group membership is re-evaluated

10.2.1 2.1 Testing Docker installation

Once you are done installing Docker, test your Docker installation by running the following command to make sure
you are using version 1.13 or higher:

$ docker --version
Docker version 17.09.0-ce, build afdb6d4

When run without --version you should see a whole bunch of lines showing the different options available with
docker. Alternatively you can test your installation by running the following:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

(continues on next page)

10.1. 1. Prerequisites 35

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-windows/#shared-drives
https://docs.docker.com/machine/overview/

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.
.......

10.3 3. Running Docker containers from prebuilt images

Now that you have everything setup, it’s time to get our hands dirty. In this section, you are going to run a container
from Alpine Linux (a lightweight linux distribution) image on your system and get a taste of the docker run
command.

But wait, what exactly is a container and image?

Containers - Running instances of Docker images — containers run the actual applications. A container includes an
application and all of its dependencies. It shares the kernel with other containers, and runs as an isolated process in
user space on the host OS.

Images - The file system and configuration of our application which are used to create containers. To find out more
about a Docker image, run docker inspect hello-world. In the demo above, you could have used the
docker pull command to download the hello-world image. However when you executed the command
docker run hello-world, it also did a docker pull behind the scenes to download the hello-world
image with latest tag (we will learn more about tags little later).

Now that we know what a container and image is, let’s run the following command in our terminal:

$ docker run alpine ls -l
total 52
drwxr-xr-x 2 root root 4096 Dec 26 2016 bin
drwxr-xr-x 5 root root 340 Jan 28 09:52 dev
drwxr-xr-x 14 root root 4096 Jan 28 09:52 etc
drwxr-xr-x 2 root root 4096 Dec 26 2016 home
drwxr-xr-x 5 root root 4096 Dec 26 2016 lib
drwxr-xr-x 5 root root 4096 Dec 26 2016 media
........

Similar to docker run hello-world command in the demo above, docker run alpine ls -l com-
mand fetches the alpine:latest image from the Docker registry first, saves it in our system and then runs a
container from that saved image.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified
and you saw the listing

You can use the docker images command to see a list of all images on your system

$ docker images
REPOSITORY TAG IMAGE ID CREATED
→˓VIRTUAL SIZE

(continues on next page)

36 Chapter 10. Introduction to Docker

http://www.alpinelinux.org/

CyVerse Documentation, Release 0.1.0

(continued from previous page)

alpine latest c51f86c28340 4 weeks ago 1.
→˓109 MB
hello-world latest 690ed74de00f 5 months ago
→˓960 B

Let’s try something more exciting.

$ docker run alpine echo "Hello world"
Hello world

OK, that’s some actual output. In this case, the Docker client dutifully ran the echo command in our alpine
container and then exited it. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual
machine, running a command and then killing it. Now you know why they say containers are fast!

Try another command.

$ docker run alpine sh

Wait, nothing happened! Is that a bug? Well, no. These interactive shells will exit after running any scripted commands
such as sh, unless they are run in an interactive terminal - so for this example to not exit, you need to docker run
-it alpine sh. You are now inside the container shell and you can try out a few commands like ls -l, uname
-a and others.

Before doing that, now it’s time to see the docker ps command which shows you all containers that are currently
running.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES

Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps -a

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES
36171a5da744 alpine "/bin/sh" 5 minutes ago
→˓Exited (0) 2 minutes ago fervent_newton
a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago
→˓Exited (0) 6 minutes ago lonely_kilby
ff0a5c3750b9 alpine "ls -l" 8 minutes ago
→˓Exited (0) 8 minutes ago elated_ramanujan
c317d0a9e3d2 hello-world "/hello" 34 seconds ago
→˓Exited (0) 12 minutes ago stupefied_mcclintock

What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers
exited a few minutes ago.

If you want to run scripted commands such as sh, they should be run in an interactive terminal. In addition, interactive
terminal allows you to run more than one command in a container. Let’s try that now:

$ docker run -it alpine sh
/ # ls
bin dev etc home lib media mnt proc root run sbin srv
→˓sys tmp usr var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux

10.3. 3. Running Docker containers from prebuilt images 37

CyVerse Documentation, Release 0.1.0

Running the run command with the -it flags attaches us to an interactive tty in the container. Now you can run as
many commands in the container as you want. Take some time to run your favorite commands.

Exit out of the container by giving the exit command.

/ # exit

Note: If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
de4bbc3eeaec alpine "/bin/sh" 3 minutes ago
→˓ Exited (0) About a minute ago pensive_leavitt

If you want to keep the container active, then you can use keys ctrl +p, ctrl +q. To make sure that it is not
exited run the same docker ps -a command again:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
0db38ea51a48 alpine "sh" 3 minutes ago
→˓ Up 3 minutes elastic_lewin

Now if you want to get back into that container, then you can type docker attach <container id>. This
way you can save your container:

$ docker attach 0db38ea51a48

10.4 4. Deploying web applications with Docker

Great! so you have now looked at docker run, played with a Docker containers and also got the hang of some
terminology. Armed with all this knowledge, you are now ready to get to the real stuff — deploying web applications
with Docker.

10.4.1 4.1 Deploying static website

Let’s start by taking baby-steps. First, we’ll use Docker to run a static website in a container. The website is based on
an existing image and in the next section we will see how to build a new image and run a website in that container.
We’ll pull a Docker image from Dockerhub, run the container, and see how easy it is to set up a web server.

Note: Code for this section is in this repo in the static-site directory

The image that you are going to use is a single-page website that was already created for this demo and is available on
the Dockerhub as dockersamples/static-site. You can pull and run the image directly in one go using docker run
as follows.

$ docker run -d dockersamples/static-site

38 Chapter 10. Introduction to Docker

https://github.com/docker/labs/tree/master/beginner/static-site
https:/hub.docker.com/community/images/dockersamples/static-site

CyVerse Documentation, Release 0.1.0

Note: The -d flag enables detached mode, which detaches the running container from the terminal/shell and returns
your prompt after the container starts.

So, what happens when you run this command?

Since the image doesn’t exist on your Docker host (laptop/computer), the Docker daemon first fetches it from the
registry and then runs it as a container.

Now that the server is running, do you see the website? What port is it running on? And more importantly, how do
you access the container directly from our host machine?

Actually, you probably won’t be able to answer any of these questions yet! In this case, the client didn’t tell the
Docker Engine to publish any of the ports, so you need to re-run the docker run command to add this instruction.

Let’s re-run the command with some new flags to publish ports and pass your name to the container to customize the
message displayed. We’ll use the -d option again to run the container in detached mode.

First, stop the container that you have just launched. In order to do this, we need the container ID.

Since we ran the container in detached mode, we don’t have to launch another terminal to do this. Run docker ps
to view the running containers.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓ STATUS PORTS NAMES
a7a0e504ca3e dockersamples/static-site "/bin/sh -c 'cd /usr/" 28 seconds
→˓ago Up 26 seconds 80/tcp, 443/tcp stupefied_mahavira

Check out the CONTAINER ID column. You will need to use this CONTAINER ID value, a long sequence of charac-
ters, to identify the container you want to stop, and then to remove it. The example below provides the CONTAINER
ID on our system; you should use the value that you see in your terminal.

$ docker stop a7a0e504ca3e
$ docker rm a7a0e504ca3e

Note: A cool feature is that you do not need to specify the entire CONTAINER ID. You can just specify a few starting
characters and if it is unique among all the containers that you have launched, the Docker client will intelligently pick
it up.

Now, let’s launch a container in detached mode as shown below:

$ docker run --name static-site -d -P dockersamples/static-site
e61d12292d69556eabe2a44c16cbd54486b2527e2ce4f95438e504afb7b02810

In the above command:

• -d will create a container with the process detached from our terminal

• -P will publish all the exposed container ports to random ports on the Docker host

• --name allows you to specify a container name

Now you can see the ports by running the docker port command.

$ docker port static-site
443/tcp -> 0.0.0.0:32770
80/tcp -> 0.0.0.0:32773

10.4. 4. Deploying web applications with Docker 39

CyVerse Documentation, Release 0.1.0

If you are running Docker for Mac, Docker for Windows, or Docker on Linux, open a web browser and go to port 80
on your host. The exact address will depend on how you’re running Docker

• Laptop or Native linux: http://localhost:[YOUR_PORT_FOR 80/tcp]. On my system this is
http://localhost:32773.

• Cloud server: If you are running the same set of commands on Atmosphere/Jetstream or on any other cloud
service, you can open ipaddress:[YOUR_PORT_FOR 80/tcp]. On my Atmosphere instance this is
http://128.196.142.26:32769/. We will see more about deploying Docker containers on Atmo-
sphere/Jetstream Cloud in the Advanced Docker session.

40 Chapter 10. Introduction to Docker

CyVerse Documentation, Release 0.1.0

Note: -P` `will publish all the exposed container ports to random ports on the
Docker host. However if you want to assign a fixed port then you can use ``-p
option. The format is -p <host port>:<container port>. For example:

$ docker run --name static-site2 -d -p 8088:80 dockersamples/static-site

If you are running Docker for Mac, Docker for Windows, or Docker on Linux, you can open http://
localhost:[YOUR_PORT_FOR 80/tcp]. For our example this is http://localhost:8088.

10.4. 4. Deploying web applications with Docker 41

CyVerse Documentation, Release 0.1.0

If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open
ipaddress:[YOUR_PORT_FOR 80/tcp]. For our example this is http://128.196.142.26:8088/

If you see “Hello Docker!” then you’re done!

Let’s stop and remove the containers since you won’t be using them anymore.

$ docker stop static-site static-site2
$ docker rm static-site static-site2

Let’s use a shortcut to both stop and delete that container from your system:

$ docker rm -f static-site static-site2

Run docker ps to make sure the containers are gone.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES

10.4.2 4.2 Deploying dynamic website

One area where Docker shines is when you need to use a command line utility that has a large number of dependencies.

In this section, let’s dive deeper into what Docker images are. Later on we will build our own image and use that
image to run an application locally (deploy a dynamic website).

4.2.1 Docker images

Docker images are the basis of containers. In the previous example, you pulled the dockersamples/
static-site image from the registry and asked the Docker client to run a container based on that image. To
see the list of images that are available locally on your system, run the docker images command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED
→˓ SIZE
dockersamples/static-site latest 92a386b6e686 2 hours ago
→˓ 190.5 MB
nginx latest af4b3d7d5401 3 hours ago
→˓ 190.5 MB
hello-world latest 690ed74de00f 5 months ago
→˓ 960 B
.........

Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You
will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID
is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a git repository - images can be committed with changes and have
multiple versions. When you do not provide a specific version number, the client defaults to latest.

For example you could pull a specific version of ubuntu image as follows:

$ docker pull ubuntu:16.04

If you do not specify the version number of the image, as mentioned, the Docker client will default to a version named
latest.

42 Chapter 10. Introduction to Docker

CyVerse Documentation, Release 0.1.0

So for example, the docker pull command given below will pull an image named ubuntu:latest

$ docker pull ubuntu

To get a new Docker image you can either get it from a registry (such as the Docker hub) or create your own. There are
hundreds of thousands of images available on Docker hub. You can also search for images directly from the command
line using docker search.

$ docker search ubuntu
NAME DESCRIPTION

→˓ STARS OFFICIAL AUTOMATED
ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 7310 [OK]
dorowu/ubuntu-desktop-lxde-vnc Ubuntu with openssh-server

→˓and NoVNC 163 [OK]
rastasheep/ubuntu-sshd Dockerized SSH service,

→˓built on top of offi... 131 [OK]
ansible/ubuntu14.04-ansible Ubuntu 14.04 LTS with

→˓ansible 90 [OK]
ubuntu-upstart Upstart is an event-based

→˓replacement for th... 81 [OK]
neurodebian NeuroDebian provides

→˓neuroscience research s... 43 [OK]
ubuntu-debootstrap debootstrap --

→˓variant=minbase --components=m... 35 [OK]
1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5 ubuntu-16-nginx-php-

→˓phpmyadmin-mysql-5 26 [OK]
nuagebec/ubuntu Simple always updated Ubuntu

→˓docker images w... 22 [OK]
tutum/ubuntu Simple Ubuntu docker images

→˓with SSH access 18
ppc64le/ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 11
i386/ubuntu Ubuntu is a Debian-based

→˓Linux operating sys... 9
1and1internet/ubuntu-16-apache-php-7.0 ubuntu-16-apache-php-7.0

→˓ 7 [OK]
eclipse/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git,

→˓curl, nmap, mc, ... 5 [OK]
darksheer/ubuntu Base Ubuntu Image -- Updated

→˓hourly 3 [OK]
codenvy/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git,

→˓curl, nmap, mc, ... 3 [OK]
1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4 ubuntu-16-nginx-php-5.6-

→˓wordpress-4 2 [OK]
1and1internet/ubuntu-16-nginx ubuntu-16-nginx

→˓ 2 [OK]
pivotaldata/ubuntu A quick freshening-up of the

→˓base Ubuntu doc... 1
smartentry/ubuntu ubuntu with smartentry

→˓ 0 [OK]
pivotaldata/ubuntu-gpdb-dev Ubuntu images for GPDB

→˓development 0
1and1internet/ubuntu-16-healthcheck ubuntu-16-healthcheck

→˓ 0 [OK]
thatsamguy/ubuntu-build-image Docker webapp build images

→˓based on Ubuntu 0
ossobv/ubuntu Custom ubuntu image from

→˓scratch (based on o... 0 (continues on next page)

10.4. 4. Deploying web applications with Docker 43

CyVerse Documentation, Release 0.1.0

(continued from previous page)

1and1internet/ubuntu-16-sshd ubuntu-16-sshd
→˓ 0 [OK]

An important distinction with regard to images is between base images and child images and official images and user
images (Both of which can be base images or child images.).

Important: Base images are images that have no parent images, usually images with an OS like ubuntu, alpine or
debian.

Child images are images that build on base images and add additional functionality.

Official images are Docker sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for re-
viewing and publishing all Official Repositories content. This team works in collaboration with upstream software
maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user
name. In the list of images above, the python, node, alpine and nginx images are official (base) images. To find out
more about them, check out the Official Images Documentation.

User images are images created and shared by users like you. They build on base images and add additional function-
ality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub
user or organization name.

4.2.2 Meet our Flask app

Now that you have a better understanding of images, it’s time to create an image that sandboxes a small Flask ap-
plication. Flask is a lightweight Python web framework. We’ll do this by first pulling together the components for
a random cat picture generator built with Python Flask, then dockerizing it by writing a Dockerfile and finally we’ll
build the image and run it.

• Create a Python Flask app that displays random cat

• Build the image

• Run your image

Note: I have already written the Flask app for you, so you should start by cloning the git repository at https://github.
com/upendrak/flask-app. You can do this with git clone if you have git installed, or by clicking the “Download
ZIP” button on GitHub

1. Create a Python Flask app that displays random cat

For the purposes of this workshop, we’ve created a fun little Python Flask app that displays a random cat .gif every
time it is loaded - because, you know, who doesn’t like cats?

Start by creating a directory called flask-app where we’ll create the following files:

• app.py

• requirements.txt

• templates/index.html

• Dockerfile

$ mkdir flask-app && cd flask-app

44 Chapter 10. Introduction to Docker

http://flask.pocoo.org/
https://github.com/upendrak/flask-app
https://github.com/upendrak/flask-app

CyVerse Documentation, Release 0.1.0

1.1 app.py

Create the app.py file with the following content. You can use any of favorite text editor to create this file.

from flask import Flask, render_template
import random

app = Flask(__name__)

list of cat images
images = [

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-
→˓buzz-26388-1381844103-11.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr01/15/9/anigif_enhanced-
→˓buzz-31540-1381844535-8.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-
→˓buzz-26390-1381844163-18.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/10/anigif_enhanced-
→˓buzz-1376-1381846217-0.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/9/anigif_enhanced-
→˓buzz-3391-1381844336-26.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/10/anigif_enhanced-
→˓buzz-29111-1381845968-0.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/9/anigif_enhanced-
→˓buzz-3409-1381844582-13.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr02/15/9/anigif_enhanced-
→˓buzz-19667-1381844937-10.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr05/15/9/anigif_enhanced-
→˓buzz-26358-1381845043-13.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/9/anigif_enhanced-
→˓buzz-18774-1381844645-6.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr06/15/9/anigif_enhanced-
→˓buzz-25158-1381844793-0.gif",

"http://ak-hdl.buzzfed.com/static/2013-10/enhanced/webdr03/15/10/anigif_enhanced-
→˓buzz-11980-1381846269-1.gif"
]

@app.route('/')
def index():

url = random.choice(images)
return render_template('index.html', url=url)

if __name__ == "__main__":
app.run(host="0.0.0.0")

1.2. requirements.txt

In order to install the Python modules required for our app, we need to create a file called requirements.txt and
add the following line to that file:

Flask==0.10.1

1.3. templates/index.html

Create a directory called templates and create an index.html file in that directory with the following content in it:

$ mkdir templates && cd templates

10.4. 4. Deploying web applications with Docker 45

CyVerse Documentation, Release 0.1.0

<html>
<head>
<style type="text/css">

body {
background: black;
color: white;

}
div.container {

max-width: 500px;
margin: 100px auto;
border: 20px solid white;
padding: 10px;
text-align: center;

}
h4 {

text-transform: uppercase;
}

</style>
</head>
<body>
<div class="container">

<h4>Cat Gif of the day</h4>

<p><small>Courtesy: <a href="http://www.buzzfeed.com/copyranter/the-best-cat-

→˓gif-post-in-the-history-of-cat-gifs">Buzzfeed</small></p>
</div>

</body>
</html>

Note: If you want, you can run this app through your laptop’s native Python installation first just to see what it looks
like. Run sudo pip install -r requirements.txt and then run python app.py.

You should then be able to open a web browser, go to http://localhost:5000, and see the message “Hello! I am a Flask
application”.

This is totally optional - but some people like to see what the app’s supposed to do before they try to Dockerize it.

1.4. Dockerfile

A Dockerfile is a text file that contains a list of commands that the Docker daemon calls while creating an image.
The Dockerfile contains all the information that Docker needs to know to run the app — a base Docker image to run
from, location of your project code, any dependencies it has, and what commands to run at start-up. It is a simple
way to automate the image creation process. The best part is that the commands you write in a Dockerfile are almost
identical to their equivalent Linux commands. This means you don’t really have to learn new syntax to create your
own Dockerfiles.

We want to create a Docker image with this web app. As mentioned above, all user images are based on a base image.
Since our application is written in Python, we will build our own Python image based on Alpine. We’ll do that using
a Dockerfile.

Create a file called Dockerfile in the flask directory, and add content to it as described below. Since you are currently
in templates directory, you need to go up one directory up before you can create your Dockerfile

cd ..

46 Chapter 10. Introduction to Docker

http://localhost:5000

CyVerse Documentation, Release 0.1.0

our base image
FROM alpine:3.5

install python and pip
RUN apk add --update py2-pip

install Python modules needed by the Python app
COPY requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt

copy files required for the app to run
COPY app.py /usr/src/app/
COPY templates/index.html /usr/src/app/templates/

tell the port number the container should expose
EXPOSE 5000

run the application
CMD ["python", "/usr/src/app/app.py"]

Now let’s see what each of those lines mean..

1.4.1 We’ll start by specifying our base image, using the FROM keyword:

FROM alpine:3.5

1.4.2. The next step usually is to write the commands of copying the files and installing the dependencies. But first we
will install the Python pip package to the alpine linux distribution. This will not just install the pip package but any
other dependencies too, which includes the python interpreter. Add the following RUN command next:

RUN apk add --update py2-pip

1.4.3. Let’s add the files that make up the Flask Application. Install all Python requirements for our app to run. This
will be accomplished by adding the lines:

COPY requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt

1.4.4. Copy the files you have created earlier into our image by using COPY command.

COPY app.py /usr/src/app/
COPY templates/index.html /usr/src/app/templates/

1.4.5. Specify the port number which needs to be exposed. Since our flask app is running on 5000 that’s what we’ll
expose.

EXPOSE 5000

1.4.6. The last step is the command for running the application which is simply - python ./app.py. Use the CMD
command to do that:

CMD ["python", "/usr/src/app/app.py"]

The primary purpose of CMD is to tell the container which command it should run by default when it is started.

2. Build the image

Now that you have your Dockerfile, you can build your image. The docker build command does the heavy-lifting
of creating a docker image from a Dockerfile.

10.4. 4. Deploying web applications with Docker 47

CyVerse Documentation, Release 0.1.0

The docker build command is quite simple - it takes an optional tag name with the -t flag, and the location of
the directory containing the Dockerfile - the . indicates the current directory:

Note: When you run the docker build command given below, make sure to replace
<YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created
when registering on Docker hub. If you haven’t done that yet, please go ahead and create an account in Dockerhub.

YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>

For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=upendradevisetty

Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/myfirstapp .
Sending build context to Docker daemon 7.68kB
Step 1/8 : FROM alpine:3.5
---> 88e169ea8f46

Step 2/8 : RUN apk add --update py2-pip
---> Using cache
---> 8b1f026c3899

Step 3/8 : COPY requirements.txt /usr/src/app/
---> Using cache
---> 6923f451ee09

Step 4/8 : RUN pip install --no-cache-dir -r /usr/src/app/requirements.txt
---> Running in fb6b7b8beb3c

Collecting Flask==0.10.1 (from -r /usr/src/app/requirements.txt (line 1))
Downloading Flask-0.10.1.tar.gz (544kB)

Collecting Werkzeug>=0.7 (from Flask==0.10.1->-r /usr/src/app/requirements.txt (line
→˓1))
Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)

Collecting Jinja2>=2.4 (from Flask==0.10.1->-r /usr/src/app/requirements.txt (line 1))
Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)

Collecting itsdangerous>=0.21 (from Flask==0.10.1->-r /usr/src/app/requirements.txt
→˓(line 1))
Downloading itsdangerous-0.24.tar.gz (46kB)

Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->Flask==0.10.1->-r /usr/src/app/
→˓requirements.txt (line 1))
Downloading MarkupSafe-1.0.tar.gz

Installing collected packages: Werkzeug, MarkupSafe, Jinja2, itsdangerous, Flask
Running setup.py install for MarkupSafe: started
Running setup.py install for MarkupSafe: finished with status 'done'

Running setup.py install for itsdangerous: started
Running setup.py install for itsdangerous: finished with status 'done'

Running setup.py install for Flask: started
Running setup.py install for Flask: finished with status 'done'

Successfully installed Flask-0.10.1 Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1
→˓itsdangerous-0.24
You are using pip version 9.0.0, however version 9.0.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
---> 16d47a8073fd

Removing intermediate container fb6b7b8beb3c
Step 5/8 : COPY app.py /usr/src/app/
---> 338019e5711f

Step 6/8 : COPY templates/index.html /usr/src/app/templates/

(continues on next page)

48 Chapter 10. Introduction to Docker

https://hub.docker.com

CyVerse Documentation, Release 0.1.0

(continued from previous page)

---> b65ed769c446
Step 7/8 : EXPOSE 5000
---> Running in b95001d36e4d
---> 0deaa29ca54a

Removing intermediate container b95001d36e4d
Step 8/8 : CMD python /usr/src/app/app.py
---> Running in 4a8e82f87e2f
---> 40a121fff878

Removing intermediate container 4a8e82f87e2f
Successfully built 40a121fff878
Successfully tagged upendradevisetty/myfirstapp:latest

If you don’t have the alpine:3.5 image, the client will first pull the image and then create your image. Therefore,
your output on running the command will look different from mine. If everything went well, your image should be
ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/myfirstapp shows.

3. Run your image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using
the docker run command. Don’t forget to include the port forwarding options you learned about before.

$ docker run -d -p 8888:5000 --name myfirstapp $YOUR_DOCKERHUB_USERNAME/myfirstapp

Head over to http://localhost:8888 and your app should be live.

10.4. 4. Deploying web applications with Docker 49

CyVerse Documentation, Release 0.1.0

Hit the Refresh button in the web browser to see a few more cat images.

10.4.3 Exercise (5-10 mins): Deploy a custom Docker image

• Download the sample code from https://github.com/Azure-Samples/docker-django-webapp-linux.git

• Build the image using the Dockerfile in that repo using docker build command

• Run an instance from that image

50 Chapter 10. Introduction to Docker

https://github.com/Azure-Samples/docker-django-webapp-linux.git

CyVerse Documentation, Release 0.1.0

• Verify the web app and container are functioning correctly

• Share your (non-localhost) url on Slack

10.5 5. Dockerfile commands summary

Here’s a quick summary of the few basic commands we used in our Dockerfile.

• FROM starts the Dockerfile. It is a requirement that the Dockerfile must start with the FROM command.
Images are created in layers, which means you can use another image as the base image for your own. The
FROM command defines your base layer. As arguments, it takes the name of the image. Optionally, you can
add the Dockerhub username of the maintainer and image version, in the format username/imagename:version.

• RUN is used to build up the Image you’re creating. For each RUN command, Docker will run the command
then create a new layer of the image. This way you can roll back your image to previous states easily. The
syntax for a RUN instruction is to place the full text of the shell command after the RUN (e.g., RUN mkdir
/user/local/foo). This will automatically run in a /bin/sh shell. You can define a different shell like this: RUN
/bin/bash -c ‘mkdir /user/local/foo’

• COPY copies local files into the container.

• CMD defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new
layer for the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you
need to run multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you
tell it where to run the command, unlike RUN. So example CMD commands would be:

CMD ["python", "./app.py"]

CMD ["/bin/bash", "echo", "Hello World"]

• EXPOSE creates a hint for users of an image which ports provide services. It is included in the information
which can be retrieved via $ docker inspect <container-id>.

Note: The EXPOSE command does not actually make any ports accessible to the host! Instead, this requires publish-
ing ports by means of the -p flag when using docker run.

• PUSH pushes your image to Docker Cloud, or alternately to a private registry

Note: If you want to learn more about Dockerfiles, check out Best practices for writing Dockerfiles.

10.6 6. Demo’s

10.6.1 6.1 Portainer

Portainer is an open-source lightweight managment UI which allows you to easily manage your Docker hosts or
Swarm cluster.

• Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker
and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are
just one Docker command away from running Portainer anywhere.

10.5. 5. Dockerfile commands summary 51

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://portainer.io/

CyVerse Documentation, Release 0.1.0

• Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest
versions of Docker, Docker Swarm and Swarm mode.

6.1.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you
by now. We will talk about first line of command in the Advanced Docker session.

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v
→˓portainer_data:/data portainer/portainer

• If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where
portainer is running using username admin and password tryportainer

• If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000.
For my case this is http://128.196.142.26:9000

Note: The -v /var/run/docker.sock:/var/run/docker.sock option can be used in mac/linux environments only.

52 Chapter 10. Introduction to Docker

http://localhost:9000

CyVerse Documentation, Release 0.1.0

10.6.2 6.2 Play-with-docker (PWD)

PWD is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the
experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers
and even create clusters in Docker Swarm Mode. Under the hood, Docker-in-Docker (DinD) is used to give the effect
of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of
Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com.

10.6. 6. Demo’s 53

http://www.play-with-docker.com/
https://docs.docker.com/engine/swarm/
http://training.play-with-docker.com/

CyVerse Documentation, Release 0.1.0

6.2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ and start
using PWD

Note: You can use your Dockerhub credentials to log-in to PWD

54 Chapter 10. Introduction to Docker

CHAPTER 11

Advanced Docker

Now that we are relatively comfortable with Docker basics, lets look at some of the advanced Docker topics such as
porting the Docker image to repositories (public and private), managing data in containers and finally deploy containers
into cloud and other infrastructures etc.,

11.1 1. Docker registries

To demonstrate the portability of what we just created, let’s upload our built Docker image and run it somewhere else
(Atmosphere cloud). After all, you’ll need to learn how to push to registries when you want to deploy containers to
production.

Important: So what exactly is a registry?

A registry is a collection of repositories, and a repository is a collection of images—sort of like a GitHub repository,
except the code is already built. An account on a registry can create many repositories. The docker CLI uses Docker’s
public registry by default. You can even set up your own private registry using Docker Trusted Registry

There are several things you can do with Docker registries:

• Pushing images

• Finding images

• Pulling images

• Sharing images

11.1.1 1.1 Public repositories

Some example of public registries include Docker cloud, Docker hub and quay.io.

55

https://cloud.docker.com/
https://hub.docker.com/
https://quay.io/

CyVerse Documentation, Release 0.1.0

1.1.1 Log in with your Docker ID

Now that you’ve created and tested your image, you can push it to Docker cloud or Docker hub.

Note: If you don’t have a Docker account, sign up for one at Docker cloud or Docker hub. Make note of your
username. There are several advantages of registering to Dockerhub which we will see later on in the session

First you have to login to your Docker hub account. To do that:

$ docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have
→˓a Docker ID, head over to https://hub.docker.com to create one.
Username (upendradevisetty):
Password:

Enter Username and Password when prompted.

1.1.2 Tag the image

The notation for associating a local image with a repository on a registry is username/repository:tag. The
tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give
the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in
the get-started repository and tag it as part2.

Note: By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not
recommended for reproducibility purposes.

Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so
that the image will upload to your desired destination. For our docker image since we already have our Dockerhub
username we will just add tag which in this case is 1.0

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp $YOUR_DOCKERHUB_USERNAME/
→˓myfirstapp:1.0

1.1.3 Publish the image

Upload your tagged image to the Dockerhub repository

$ docker push $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0

Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new
image there, with its pull command.

56 Chapter 11. Advanced Docker

https://cloud.docker.com/
https://hub.docker.com/

CyVerse Documentation, Release 0.1.0

Congrats! You just made your first Docker image and shared it with the world!

1.1.4 Pull and run the image from the remote repository

Let’s try to run the image from the remote repository on Cloud server by logging into CyVerse Atmosphere, launching
an instance

First install Docker on Atmosphere using from here https://docs.docker.com/install/linux/
docker-ce/ubuntu or alternatively you can use ezd command which is a short-cut command for installing

11.1. 1. Docker registries 57

../atmosphere/boot.html
../atmosphere/boot.html

CyVerse Documentation, Release 0.1.0

Docker on Atmosphere

$ ezd

Now run the following command to run the docker image from Dockerhub

$ sudo docker run -d -p 8888:5000 --name myfirstapp $YOUR_DOCKERHUB_USERNAME/
→˓myfirstapp:1.0

Note: You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will
pull it from the repository.

Head over to http://<ipaddress>:8888 and your app should be live.

11.1.2 1.2 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While
the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality
Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization.
For example, CyVerse has it own private registry which will be used to push the Docker images.

1.2.1 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it
should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

58 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2

Run docker ps -l to check the recent container from this Docker image

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED
→˓STATUS PORTS NAMES

(continues on next page)

11.1. 1. Docker registries 59

CyVerse Documentation, Release 0.1.0

(continued from previous page)

6e44a0459373 registry:2 "/entrypoint.sh /e..." 11 seconds ago
→˓Up 10 seconds 0.0.0.0:5000->5000/tcp registry

1.2.2 Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0 $REGISTRY/$(whoami)/myfirstapp:1.
→˓0

1.2.2 Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/myfirstapp:1.0
The push refers to a repository [localhost:5000/upendra_35/myfirstapp]
64436820c85c: Pushed
831cff83ec9e: Pushed
c3497b2669a8: Pushed
1c5b16094682: Pushed
c52044a91867: Pushed
60ab55d3379d: Pushed
1.0: digest: sha256:5095dea8b2cf308c5866ef646a0e84d494a00ff0e9b2c8e8313a176424a230ce
→˓size: 1572

1.2.3 Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container
from it

$ docker run -d -P --name=myfirstapplocal $REGISTRY/$(whoami)/myfirstapp:1.0

11.2 2. Automated Docker image building from github

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository.
By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image
every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a
repository containing a Dockerfile.

Automated Builds have several advantages:

• Images built in this way are built exactly as specified.

• The Dockerfile is available to anyone with access to your Docker Hub repository.

• Your repository is kept up-to-date with code changes automatically.

• Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.

60 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

11.2.1 2.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub and on the hosted repository provider (GitHub
or Bitbucket). While Dockerhub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub
repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free

Note:

• If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private
connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings
> Linked Accounts & Services.

• Building Windows containers is not supported.

11.2.2 2.2 Link your Docker Hub account to GitHub

1. Log into Docker Hub.

2. Navigate to Profile > Settings > Linked Accounts & Services.

3. Click the Link GitHub. The system prompts you to choose between Public and Private and Limited Ac-
cess. The Public and Private connection type is required if you want to use the Automated Builds.

4. Press Select under Public and Private connection type. If you are not logged into GitHub, the system
prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your
code repository, the system returns you to Docker Hub and the link is complete.

After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For
example, github linked hosted repository looks like this:

11.2. 2. Automated Docker image building from github 61

https://hub.docker.com
https://github.com/
https://bitbucket.org/
https://hub.docker.com/account/authorized-services/

CyVerse Documentation, Release 0.1.0

11.2.3 2.3 Create a new automated build

Automated build repositories rely on the integration with your github code repository to build.

Let’s create an automatic build for our flask-app using the instructions below:

1. Initialize git repository for the flask-app directory

62 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

$ git init
Initialized empty Git repository in /Users/upendra_35/Documents/git.repos/flask-app/.
→˓git/

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

Dockerfile
app.py
requirements.txt
templates/

nothing added to commit but untracked files present (use "git add" to track)

$ git add * && git commit -m"Add files and folders"
[master (root-commit) cfdf021] Add files and folders
4 files changed, 75 insertions(+)
create mode 100644 Dockerfile
create mode 100644 app.py
create mode 100644 requirements.txt
create mode 100644 templates/index.html

2. Create a new repository on github by navigating to this url - https://github.com/new

11.2. 2. Automated Docker image building from github 63

https://github.com/new

CyVerse Documentation, Release 0.1.0

3. Push the repository to github

64 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

$ git remote add origin https://github.com/upendrak/flask-app.git

$ git push -u origin master
Counting objects: 7, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.44 KiB | 0 bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To https://github.com/upendrak/flask-app.git

(continues on next page)

11.2. 2. Automated Docker image building from github 65

CyVerse Documentation, Release 0.1.0

(continued from previous page)

* [new branch] master -> master
Branch master set up to track remote branch master from origin.

4. Select Create > Create Automated Build from Docker Hub.

• The system prompts you with a list of User/Organizations and code repositories.

• For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.

• Pick the project to build. In this case flask-app. Type in “Conainer Camp flask-app” in the Short Description
box.

• If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project,
the system displays the Create Automated Build dialog.

66 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

Note: The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch
in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it
with the branch name.

5. Customize the automated build by pressing the Click here to customize behavior link.

11.2. 2. Automated Docker image building from github 67

CyVerse Documentation, Release 0.1.0

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter
a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the
right of the page.

• Enter the master (default) for the name of the branch.

• Leave the Dockerfile location as is.

• Recall the file is in the root of your code repository.

• Specify 1.0 for the Tag Name.

68 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

6. Click Create.

Important: During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker
community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dock-
erfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md
file in your repository, it is used in the repository as the full description. If you change the full description after a
build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your
Git repository.

Warning: You can only trigger one build at a time and no more than one every five minutes. If you already have
a build pending, or if you recently submitted a build request, Docker ignores new requests.

It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the
detail page for your Automated Build repository.

7. Manually Trigger a Build

Before you trigger an automated build by pushing to your GitHub flask-app repo, you’ll trigger a manual build.
Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

11.2. 2. Automated Docker image building from github 69

CyVerse Documentation, Release 0.1.0

Press Trigger button and finally click Save Changes.

Note: Docker builds everything listed whenever a push is made to the code repository. If you specify a particular
branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax
(regex) to define your build branch or tag, Docker does not give you the option to manually build.

70 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

8. Review the build results

The Build Details page shows a log of your build systems:

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

11.2. 2. Automated Docker image building from github 71

CyVerse Documentation, Release 0.1.0

11.2.4 Exercise 1 (5-10 mins): Updating and automated building

• Add some more cat pics to the app.py file

• Add, Commit and Push it to your github repo

• Trigger automatic build with a new tag (2.0) on Dockerhub

• Run an instance to make sure the new pics show up

72 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

• Share your Dockerhub link url on Slack

11.3 3. Managing data in Docker

It is possible to store data within the writable layer of a container, but there are some limitations:

• The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of
the container if another process needs it.

• A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t
easily move the data somewhere else.

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or
tmpfs volumes. When in doubt, volumes are almost always the right choice.

11.3.1 3.1 Volumes

Volumes are created and managed by Docker. You can create a volume explicitly using the docker volume
create command, or Docker can create a volume during container creation. When you create a volume, it is
stored within a directory on the Docker host (/var/lib/docker/ on Linux and check for the location on mac
in here https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/). When you
mount the volume into a container, this directory is what is mounted into the container. A given volume can be
mounted into multiple containers simultaneously. When no running container is using a volume, the volume is still
available to Docker and is not removed automatically. You can remove unused volumes using docker volume
prune command.

11.3. 3. Managing data in Docker 73

https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/

CyVerse Documentation, Release 0.1.0

Volumes are often a better choice than persisting data in a container’s writable layer, because using a volume does
not increase the size of containers using it, and the volume’s contents exist outside the lifecycle of a given container.
While bind mounts (which we will see later) are dependent on the directory structure of the host machine, volumes
are completely managed by Docker. Volumes have several advantages over bind mounts:

• Volumes are easier to back up or migrate than bind mounts.

• You can manage volumes using Docker CLI commands or the Docker API.

• Volumes work on both Linux and Windows containers.

74 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

• Volumes can be more safely shared among multiple containers.

• A new volume’s contents can be pre-populated by a container.

Note: If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing the data
anywhere permanently, and to increase the container’s performance by avoiding writing into the container’s writable
layer.

3.1.1 Choose the -v or –mount flag for mounting volumes

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was used for swarm
services. However, starting with Docker 17.06, you can also use --mount with standalone containers. In general,
--mount is more explicit and verbose. The biggest difference is that the -v syntax combines all the options together
in one field, while the --mount syntax separates them. Here is a comparison of the syntax for each flag.

Tip: New users should use the --mount syntax. Experienced users may be more familiar with the -v or --volume
syntax, but are encouraged to use --mount, because research has shown it to be easier to use.

-v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the correct order,
and the meaning of each field is not immediately obvious. - In the case of named volumes, the first field is the name
of the volume, and is unique on a given host machine. - The second field is the path where the file or directory are
mounted in the container. - The third field is optional, and is a comma-separated list of options, such as ro.

--mount: Consists of multiple key-value pairs, separated by commas and each consisting of a <key>=<value>
tuple. The --mount syntax is more verbose than -v or --volume, but the order of the keys is not significant,
and the value of the flag is easier to understand. - The type of the mount, which can be bind, volume, or tmpfs. -
The source of the mount. For named volumes, this is the name of the volume. For anonymous volumes, this field is
omitted. May be specified as source or src. - The destination takes as its value the path where the file or directory is
mounted in the container. May be specified as destination, dst, or target. - The readonly option, if present, causes
the bind mount to be mounted into the container as read-only.

Note: The --mount and -v examples have the same end result.

3.1.2. Create and manage volumes

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

Let’s create a volume

$ docker volume create my-vol

List volumes:

$ docker volume ls

local my-vol

Inspect a volume by looking at the Mount section in the docker volume inspect

11.3. 3. Managing data in Docker 75

CyVerse Documentation, Release 0.1.0

$ docker volume inspect my-vol
[

{
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
"Name": "my-vol",
"Options": {},
"Scope": "local"

}
]

Remove a volume

$ docker volume rm my-vol

3.1.3 Populate a volume using a container

This example starts an nginx container and populates the new volume nginx-vol with the contents of the con-
tainer’s /var/log/nginx directory, which is where Nginx stores its log files.

$ docker run -d -p 8891:80 --name=nginxtest --mount source=nginx-vol,target=/var/log/
→˓nginx nginx:latest

So, we now have a copy of Nginx running inside a Docker container on our machine, and our host machine’s port
5000 maps directly to that copy of Nginx’s port 80. Let’s use curl to do a quick test request:

$ curl localhost:8891
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>

body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

You’ll get a screenful of HTML back from Nginx showing that Nginx is up and running. But more interestingly, if
you look in the nginx-vol volume on the host machine and take a look at the access.log file you’ll see a log

76 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

message from Nginx showing our request.

cat nginx-vol/_data/access.log

Use docker inspect nginx-vol to verify that the volume was created and mounted correctly. Look for the
Mounts section:

"Mounts": [
{

"Type": "volume",
"Name": "nginx-vol",
"Source": "/var/lib/docker/volumes/nginx-vol/_data",
"Destination": "/var/log/nginx",
"Driver": "local",
"Mode": "z",
"RW": true,
"Propagation": ""

}
],

This shows that the mount is a volume, it shows the correct source and destination, and that the mount is read-write.

After running either of these examples, run the following commands to clean up the containers and volumes.

$ docker stop nginxtest

$ docker rm nginxtest

$ docker volume rm nginx-vol

11.3.2 3.2 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

Tip: If you are developing new Docker applications, consider using named volumes instead. You can’t use Docker
CLI commands to directly manage bind mounts.

11.3. 3. Managing data in Docker 77

CyVerse Documentation, Release 0.1.0

Warning: One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem
via processes running in a container, including creating, modifying, or deleting important system files or directo-
ries. This is a powerful ability which can have security implications, including impacting non-Docker processes
on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not
automatically create it for you, but generates an error.

78 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

3.2.1 Start a container with a bind mount

$ mkdir data

$ docker run -d -p 8891:80 --name devtest --mount type=bind,source="$(pwd)"/data,
→˓target=/var/log/nginx nginx:latest

Use docker inspect devtest to verify that the bind mount was created correctly. Look for the “Mounts” section

This shows that the mount is a bind mount, it shows the correct source and target, it shows that the mount is read-write,
and that the propagation is set to rprivate.

Stop the container:

$ docker rm -f devtest

3.2.2 Use a read-only bind mount

For some development applications, the container needs to write into the bind mount, so changes are propagated back
to the Docker host. At other times, the container only needs read access.

This example modifies the one above but mounts the directory as a read-only bind mount, by adding ro to the (empty
by default) list of options, after the mount point within the container. Where multiple options are present, separate
them by commas.

$ docker run -d -p 8891:80 --name devtest --mount type=bind,source="$(pwd)"/data,
→˓target=/var/log/nginx,readonly nginx:latest

Use docker inspect devtest to verify that the bind mount was created correctly. Look for the Mounts section:

"Mounts": [
{

"Type": "bind",
"Source": "/Users/upendra_35/Documents/git.repos/flask-app/data",
"Destination": "/var/log/nginx",
"Mode": "",
"RW": false,
"Propagation": "rprivate"

}
],

Stop the container:

$ docker rm -f devtest

Remove the volume:

$ docker volume rm devtest

11.3.3 3.3 tmpfs

tmpfs mounts: A tmpfs mount is not persisted on disk, either on the Docker host or within a container. It can be used
by a container during the lifetime of the container, to store non-persistent state or sensitive information. For instance,
internally, swarm services use tmpfs mounts to mount secrets into a service’s containers.

11.3. 3. Managing data in Docker 79

CyVerse Documentation, Release 0.1.0

Volumes and bind mounts are mounted into the container’s filesystem by default, and their contents are stored on
the host machine. There may be cases where you do not want to store a container’s data on the host machine, but
you also don’t want to write the data into the container’s writable layer, for performance or security reasons, or
if the data relates to non-persistent application state. An example might be a temporary one-time password that the
container’s application creates and uses as-needed. To give the container access to the data without writing it anywhere
permanently, you can use a tmpfs mount, which is only stored in the host machine’s memory (or swap, if memory is
low). When the container stops, the tmpfs mount is removed. If a container is committed, the tmpfs mount is not
saved.

80 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

$ docker run -d -p 8891:80 --name devtest --mount type=tmpfs,target=/var/log/nginx
→˓nginx:latest

Use docker inspect devtest to verify that the bind mount was created correctly. Look for the Mounts section:

$ docker inspect devtest

"Mounts": [
{

"Type": "tmpfs",
"Source": "",
"Destination": "/var/log/nginx",
"Mode": "",
"RW": true,
"Propagation": ""

}
],

You can see from the above output that the Source filed is empty which indicates that the contents are not avaible on
Docker host or host file system.

Stop the container:

$ docker rm -f devtest

Remove the volume:

$ docker volume rm devtest

11.4 4. Docker Compose for multi container apps

Docker Compose is a tool for defining and running your multi-container Docker applications.

Main advantages of Docker compose include:

• Your applications can be defined in a YAML file where all the options that you used in docker run are now
defined (Reproducibility).

• It allows you to manage your application as a single entity rather than dealing with individual containers (Sim-
plicity).

Let’s now create a simple web app with Docker Compose using Flask (which you already seen before) and Redis. We
will end up with a Flask container and a Redis container all on one host.

Note: The code for the above compose example is available here

1. You’ll need a directory for your project on your host machine:

$ mkdir compose_flask && cd compose_flask

2. Add the following to requirements.txt inside compose_flask directory:

flask
redis

11.4. 4. Docker Compose for multi container apps 81

https://github.com/upendrak/compose_flask

CyVerse Documentation, Release 0.1.0

3. Copy and paste the following code into a new file called app.py inside compose_flask directory:

from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():

redis.incr('hits')
return 'This Compose/Flask demo has been viewed %s time(s).' % redis.get('hits')

if __name__ == "__main__":
app.run(host="0.0.0.0", debug=True)

4. Create a Dockerfile with the following code inside compose_flask directory:

FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD python app.py

5. Add the following code to a new file, docker-compose.yml, in your project directory:

version: '2'
services:

web:
restart: always
build: .
ports:

- "8888:5000"
volumes:

- .:/code
depends_on:

- redis
redis:

restart: always
image: redis

A brief explanation of docker-compose.yml is as below:

• restart: always means that it will restart whenever it fails.

• We define two services, web and redis.

• The web service builds from the Dockerfile in the current directory.

• Forwards the container’s exposed port (5000) to port 8888 on the host.

• Mounts the project directory on the host to /code inside the container (allowing you to modify the code without
having to rebuild the image).

• depends_on links the web service to the Redis service.

• The redis service uses the latest Redis image from Docker Hub.

Note: Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users
do not need to install Compose separately. Docker for Windows and Docker Toolbox already include Compose along

82 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.19.0/docker-
→˓compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

5. Build and Run with docker-compose up -d command

$ docker-compose up -d

Building web
Step 1/5 : FROM python:2.7
2.7: Pulling from library/python
f49cf87b52c1: Already exists
7b491c575b06: Already exists
b313b08bab3b: Already exists
51d6678c3f0e: Already exists
09f35bd58db2: Already exists
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
Digest: sha256:8cb593cb9cd1834429f0b4953a25617a8457e2c79b3e111c0f70bffd21acc467
Status: Downloaded newer image for python:2.7
---> 9e92c8430ba0

Step 2/5 : ADD . /code
---> 746bcecfc3c9

Step 3/5 : WORKDIR /code
---> c4cf3d6cb147

Removing intermediate container 84d850371a36
Step 4/5 : RUN pip install -r requirements.txt
---> Running in d74c2e1cfbf7

Collecting flask (from -r requirements.txt (line 1))
Downloading Flask-0.12.2-py2.py3-none-any.whl (83kB)

Collecting redis (from -r requirements.txt (line 2))
Downloading redis-2.10.6-py2.py3-none-any.whl (64kB)

Collecting itsdangerous>=0.21 (from flask->-r requirements.txt (line 1))
Downloading itsdangerous-0.24.tar.gz (46kB)

Collecting Jinja2>=2.4 (from flask->-r requirements.txt (line 1))
Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)

Collecting Werkzeug>=0.7 (from flask->-r requirements.txt (line 1))
Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)

Collecting click>=2.0 (from flask->-r requirements.txt (line 1))
Downloading click-6.7-py2.py3-none-any.whl (71kB)

Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask->-r requirements.txt (line 1))
Downloading MarkupSafe-1.0.tar.gz

Building wheels for collected packages: itsdangerous, MarkupSafe
Running setup.py bdist_wheel for itsdangerous: started
Running setup.py bdist_wheel for itsdangerous: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/fc/a8/66/

→˓24d655233c757e178d45dea2de22a04c6d92766abfb741129a
Running setup.py bdist_wheel for MarkupSafe: started
Running setup.py bdist_wheel for MarkupSafe: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/88/a7/30/

→˓e39a54a87bcbe25308fa3ca64e8ddc75d9b3e5afa21ee32d57

(continues on next page)

11.4. 4. Docker Compose for multi container apps 83

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Successfully built itsdangerous MarkupSafe
Installing collected packages: itsdangerous, MarkupSafe, Jinja2, Werkzeug, click,
→˓flask, redis
Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7 flask-0.
→˓12.2 itsdangerous-0.24 redis-2.10.6
---> 5cc574ff32ed

Removing intermediate container d74c2e1cfbf7
Step 5/5 : CMD python app.py
---> Running in 3ddb7040e8be
---> e911b8e8979f

Removing intermediate container 3ddb7040e8be
Successfully built e911b8e8979f
Successfully tagged composeflask_web:latest

And that’s it! You should be able to see the Flask application running on http://localhost:8888 or
<ipaddress>:8888

84 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

11.4.1 Exercise 2 (10 mins)

• Change the greeting in app.py and save it. For example, change the This Compose/Flask demo has
been viewed message to This Container Camp Workshop demo has been viewed

• Refresh the app in your browser. What do you see now?

• Create a automatic build for compose-flask project directory

11.4. 4. Docker Compose for multi container apps 85

CyVerse Documentation, Release 0.1.0

• Share your Dockerhub link url on Slack

11.5 5. Improving your data science workflow using Docker contain-
ers (Containerized Data Science)

For a data scientist, running a container that is already equipped with the libraries and tools needed for a particular
analysis eliminates the need to spend hours debugging packages across different environments or configuring custom
environments.

But why Set Up a Data Science Environment in a Container?

• One reason is speed. We want data scientists using our platform to launch a Jupyter or RStudio session in
minutes, not hours. We also want them to have that fast user experience while still working in a governed,
central architecture (rather than on their local machines).

• Containerization benefits both data science and IT/technical operations teams. In the DataScience.com Platform,
for instance, we allow IT to configure environments with different languages, libraries, and settings in an admin
dashboard and make those images available in the dropdown menu when a data scientist launches a session.
These environments can be selected for any run, session, scheduled job, or API. (Or you don’t have to configure
anything at all. We provide plenty of standard environment templates to choose from.)

• Ultimately, containers solve a lot of common problems associated with doing data science work at the enterprise
level. They take the pressure off of IT to produce custom environments for every analysis, standardize how
data scientists work, and ensure that old code doesn’t stop running because of environment changes. To start
using containers and our library of curated images to do collaborative data science work, request a demo of our
platform today.

• Configuring a data science environment can be a pain. Dealing with inconsistent package versions, having to
dive through obscure error messages, and having to wait hours for packages to compile can be frustrating. This
makes it hard to get started with data science in the first place, and is a completely arbitrary barrier to entry.

Thanks to the rich ecosystem, there are already several readily available images for the common components in data
science pipelines. Here are some Docker images to help you quickly spin up your own data science pipeline:

• MySQL

• Postgres

• Redmine

• MongoDB

• Hadoop

• Spark

• Zookeeper

• Kafka

• Cassandra

• Storm

• Flink

• R

Motivation: Say you want to play around with some cool data science libraries in Python or R but what you
don’t want to do is spend hours on installing Python or R, working out what libraries you need, installing each
and every one and then messing around with the tedium of getting things to work just right on your version of

86 Chapter 11. Advanced Docker

https://hub.docker.com/_/mysql/
https://hub.docker.com/_/postgres/
https://hub.docker.com/_/redmine/
https://hub.docker.com/_/mongo/
https://hub.docker.com/r/sequenceiq/hadoop-docker/
https://hub.docker.com/r/sequenceiq/spark/
https://hub.docker.com/r/wurstmeister/zookeeper/
https://github.com/spotify/docker-kafka
https://hub.docker.com/_/cassandra/
https://github.com/wurstmeister/storm-docker
https://github.com/apache/flink/tree/master/flink-contrib/docker-flink
https://github.com/rocker-org/rocker

CyVerse Documentation, Release 0.1.0

Linux/Windows/OSX/OS9—well this is where Docker comes to the rescue! With Docker we can get a Jupyter ‘Data
Science’ notebook stack up and running in no time at all. Let’s get started! We will see few examples of thse in the
following sections. . .

Note: The above code can be found in this github

1. Launch a Jupyter notebook conatiner

Docker allows us to run a ‘ready to go’ Jupyter data science stack in what’s known as a container:

1.1 Create a docker-compose.yml file

$ mkdir jn && cd jn

version: '2'

services:
datascience-notebook:
image: jupyter/datascience-notebook
volumes:

- .:/data
ports:

- 8888:8888
container_name: datascience-notebook-container

Note: The jupyter/datascience-notebook image can be found on dockerhub

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

87

https://github.com/upendrak/jupyternotebook_docker

CyVerse Documentation, Release 0.1.0

1.2 Run container using docker-compose file

$ docker-compose up
Creating datascience-notebook-container ...
Creating datascience-notebook-container ... done
Attaching to datascience-notebook-container
datascience-notebook-container | Execute the command: jupyter notebook
datascience-notebook-container | [I 08:44:31.312 NotebookApp] Writing notebook server
→˓cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret

(continues on next page)

88 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

(continued from previous page)

datascience-notebook-container | [W 08:44:31.332 NotebookApp] WARNING: The notebook
→˓server is listening on all IP addresses and not using encryption. This is not
→˓recommended.
datascience-notebook-container | [I 08:44:31.370 NotebookApp] JupyterLab alpha
→˓preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
datascience-notebook-container | JupyterLab v0.27.0
datascience-notebook-container | Known labextensions:
datascience-notebook-container | [I 08:44:31.373 NotebookApp] Running the core
→˓application with no additional extensions or settings
datascience-notebook-container | [I 08:44:31.379 NotebookApp] Serving notebooks from
→˓local directory: /home/jovyan
datascience-notebook-container | [I 08:44:31.379 NotebookApp] 0 active kernels
datascience-notebook-container | [I 08:44:31.379 NotebookApp] The Jupyter Notebook is
→˓running at: http://[all ip addresses on your system]:8888/?
→˓token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478
datascience-notebook-container | [I 08:44:31.379 NotebookApp] Use Control-C to stop
→˓this server and shut down all kernels (twice to skip confirmation).
datascience-notebook-container | [C 08:44:31.380 NotebookApp]
datascience-notebook-container |
datascience-notebook-container | Copy/paste this URL into your browser when you
→˓connect for the first time,
datascience-notebook-container | to login with a token:
datascience-notebook-container | http://localhost:8888/?
→˓token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

The last line is a URL that we need to copy and paste into our browser to access our new Jupyter stack:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

Warning: Do not copy and paste the above URL in your browser as this URL is specific to my environment.

Once you’ve done that you should be greeted by your very own containerised Jupyter service!

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

89

CyVerse Documentation, Release 0.1.0

To create your first notebook, drill into the work directory and then click on the ‘New’ button on the right hand side
and choose ‘Python 3’ to create a new Python 3 based Notebook.

90 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

Now you can write your python code. Here is an example

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

91

CyVerse Documentation, Release 0.1.0

92 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

To shut down the container once you’re done working, simply hit Ctrl-C in the terminal/command prompt. Your work
will all be saved on your actual machine in the path we set in our Docker compose file. And there you have it—a quick
and easy way to start using Jupyter notebooks with the magic of Docker.

2. Launch a R-Studio container

Next, we will see a Docker image from Rocker which will allow us to run RStudio inside the container and has many
useful R packages already installed.

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

93

CyVerse Documentation, Release 0.1.0

$ docker run --rm -d -p 8787:8787 rocker/rstudio:3.4.3

Note: -rm ensures that when we quit the container, the container is deleted. If we did not do this, everytime we run
a container, a version of it will be saved to our local computer. This can lead to the eventual wastage of a lot of disk
space until we manually remove these containers.

The command above will lead RStudio-Server to launch invisibly. To connect to it, open a browser and enter http:
//localhost:8787, or <ipaddress>:8787 on cloud

94 Chapter 11. Advanced Docker

http://localhost:8787
http://localhost:8787

CyVerse Documentation, Release 0.1.0

Enter rstudio as username and password. Finally Rstudio shows up and you can run your R command from here

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

95

CyVerse Documentation, Release 0.1.0

3. Machine learning using Docker

In this simple example we’ll take a sample dataset of fruits metrics (like size, weight, texture) labelled apples and
oranges. Then we can predict the fruit given a new set of fruit metrics using scikit-learn’s decision tree

You can find the above code in this github repo

1. Create a directory that consists of all the files

$ mkdir scikit_docker && cd scikit_docker

96 Chapter 11. Advanced Docker

https://github.com/upendrak/scikit_tree_docker

CyVerse Documentation, Release 0.1.0

2. Create requirements.txt file—Contains python modules and has nothing to do with Docker inside the
folder - scikit_docker.

numpy
scipy
scikit-learn

3. Create a file called app.py inside the folder— scikit_docker

from sklearn import tree
#DataSet
#[size,weight,texture]
X = [[181, 80, 44], [177, 70, 43], [160, 60, 38], [154, 54, 37],[166, 65, 40], [190,
→˓90, 47], [175, 64, 39], [177, 70, 40], [159, 55, 37], [171, 75, 42], [181, 85, 43]]

Y = ['apple', 'apple', 'orange', 'orange', 'apple', 'apple', 'orange', 'orange',
→˓'orange', 'apple', 'apple']

#classifier - DecisionTreeClassifier
clf_tree = tree.DecisionTreeClassifier();
clf_tree = clf_tree.fit(X,Y);

#test_data
test_data = [[190,70,42],[172,64,39],[182,80,42]];

#prediction
prediction_tree = clf_tree.predict(test_data);

Write output to a file
with open("output.txt", 'w') as fh_out:

fh_out.write("Prediction of DecisionTreeClassifier:")
fh_out.write(str(prediction_tree))

4. Create a Dockerfile that contains all the instructions for building a Docker image inside the project directory

Use an official Python runtime as a parent image
FROM python:3.6-slim
MAINTAINER Upendra Devisetty <upendra@cyverse.org>
LABEL Description "This Dockerfile is used to build a scikit-learn’s decision tree
→˓image"

Set the working directory to /app
WORKDIR /app

Copy the current directory contents into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

Define environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

5. Create a Docker compose YAML file

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

97

CyVerse Documentation, Release 0.1.0

version: '2'
services:

datasci:
build: .
volumes:

- .:/app

5. Now Build and Run the Docker image using docker-compose up command to predict the fruit given a new set
of fruit metrics

$ docker-compose up
Building datasci
Step 1/8 : FROM python:3.6-slim
---> dc41c0491c65

Step 2/8 : MAINTAINER Upendra Devisetty <upendra@cyverse.org>
---> Running in 95a4da823100
---> 7c4d5b78bb0a

Removing intermediate container 95a4da823100
Step 3/8 : LABEL Description "This Dockerfile is used to build a scikit-learn’s
→˓decision tree image"
---> Running in e8000ae57a7d
---> d872e29971e3

Removing intermediate container e8000ae57a7d
Step 4/8 : WORKDIR /app
---> 083eb3e4fb16

Removing intermediate container c965871286f9
Step 5/8 : ADD . /app
---> 82b1dbdbe759

Step 6/8 : RUN pip install -r requirements.txt
---> Running in 3c82f7d5dd95

Collecting numpy (from -r requirements.txt (line 1))
Downloading numpy-1.14.0-cp36-cp36m-manylinux1_x86_64.whl (17.2MB)

Collecting scipy (from -r requirements.txt (line 2))
Downloading scipy-1.0.0-cp36-cp36m-manylinux1_x86_64.whl (50.0MB)

Collecting scikit-learn (from -r requirements.txt (line 3))
Downloading scikit_learn-0.19.1-cp36-cp36m-manylinux1_x86_64.whl (12.4MB)

Installing collected packages: numpy, scipy, scikit-learn
Successfully installed numpy-1.14.0 scikit-learn-0.19.1 scipy-1.0.0
---> 3d402c23203f

Removing intermediate container 3c82f7d5dd95
Step 7/8 : ENV NAME World
---> Running in d0468b521e81
---> 9cd31e8e7c95

Removing intermediate container d0468b521e81
Step 8/8 : CMD python app.py
---> Running in 051bd2235697
---> 36bb4c3d9183

Removing intermediate container 051bd2235697
Successfully built 36bb4c3d9183
Successfully tagged scikitdocker_datasci:latest
WARNING: Image for service datasci was built because it did not already exist. To
→˓rebuild this image you must use `docker-compose build` or `docker-compose up --
→˓build`.
Creating scikitdocker_datasci_1 ...
Creating scikitdocker_datasci_1 ... done
Attaching to scikitdocker_datasci_1
scikitdocker_datasci_1 exited with code 0

98 Chapter 11. Advanced Docker

CyVerse Documentation, Release 0.1.0

Use docker-compose rm to remove the container after docker-compose finish running

docker-compose rm
Going to remove scikitdocker_datasci_1
Are you sure? [yN] y
Removing scikitdocker_datasci_1 ... done

You will find the ouput file in the scikit_docker folder with the following contents

$ cat output.txt
Prediction of DecisionTreeClassifier:['apple' 'orange' 'apple']

11.5. 5. Improving your data science workflow using Docker containers (Containerized Data
Science)

99

CyVerse Documentation, Release 0.1.0

100 Chapter 11. Advanced Docker

CHAPTER 12

Introduction to Singularity

12.1 1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text
editor. Prior experience developing web applications could be helpful but is not required.

Note:

Important: Docker and Singularity are friends but they have distinct differences.

Singularity Related Resources

Docker:

• Inside a Docker container the user has escalated privileges, effectively making them root on the
host system. This is not supported by most administrators of High Performance Computing (HPC)
centers.

Singularity:

101

http://singularity.lbl.gov/docs-docker
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/en/latest/useful_resources/usefulresources_singularity.html

CyVerse Documentation, Release 0.1.0

• Work on HPC

• Same user inside and outside the container

• User only has root privileges if elevated with sudo

• Run (and modify!) existing Docker containers

Singularity uses a ‘flow’ whereby you can (1) create and modify images on your dev system, (2) build containers using
recipes or pulling from repositories, and (3) execute containers on production systems.

12.2 2. Singularity Installation

Singularity homepage: https://www.sylabs.io/docs/

102 Chapter 12. Introduction to Singularity

https://www.sylabs.io/docs/

CyVerse Documentation, Release 0.1.0

While Singularity is more likely to be used on a remote system, e.g. HPC or cloud, you may want to develop your
own containers first on a local machine or dev system.

12.2.1 Exercise 1 (15-20 mins)

12.2.2 2.1 Setting up your Laptop

To Install Singularity on your laptop or desktop PC follow the instructions from Singularity: (Mac, Windows, Linux)

• running a VM is required on Mac OS X, Singularityware VagrantBox

12.2.3 2.2 HPC

Load the Singularity module on a HPC

If you are interested in working on HPC, you may need to contact your systems administrator and request they install
Singularity.

Most HPC systems are running Environment Modules with the simple command module. You can check to see what
is available:

$ module avail

If Singularity is installed:

$ module load singularity

12.2.4 2.3 XSEDE Jetstream / CyVerse Atmosphere Clouds

CyVerse staff have deployed an Ansible playbooks called ez installation which includes Singularity that only requires
you to type a short line of code.

Start a featured instance on Atmosphere or Jetstream.

Type in the following:

$ ezs

* Updating ez singularity and installing singularity (this may take a few minutes,
→˓coffee break!)
Cloning into '/opt/cyverse-ez-singularity'...
remote: Counting objects: 11, done.
remote: Total 11 (delta 0), reused 0 (delta 0), pack-reused 11
Unpacking objects: 100% (11/11), done.
Checking connectivity... done.

12.2.5 2.4 Check Installation

Singularity should now be installed on your laptop or VM, or loaded on the HPC, you can check the installation with:

12.2. 2. Singularity Installation 103

http://singularity.lbl.gov/install-mac
https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-windows
https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-linux
https://www.sylabs.io/guides/2.6/user-guide/installation.html#install-on-mac
https://www.sylabs.io/guides/2.6/user-guide/installation.html#requesting-an-installation
https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/

CyVerse Documentation, Release 0.1.0

$ singularity pull shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /tmp/vsoch-hello-world-master.simg

$ singularity run vsoch-hello-world-master.simg
RaawwWWWWWRRRR!!

View the Singularity help:

$ singularity --help

USAGE: singularity [global options...] <command> [command options...] ...

GLOBAL OPTIONS:
-d|--debug Print debugging information
-h|--help Display usage summary
-s|--silent Only print errors
-q|--quiet Suppress all normal output

--version Show application version
-v|--verbose Increase verbosity +1
-x|--sh-debug Print shell wrapper debugging information

GENERAL COMMANDS:
help Show additional help for a command or container
selftest Run some self tests for singularity install

CONTAINER USAGE COMMANDS:
exec Execute a command within container
run Launch a runscript within container
shell Run a Bourne shell within container
test Launch a testscript within container

CONTAINER MANAGEMENT COMMANDS:
apps List available apps within a container
bootstrap *Deprecated* use build instead
build Build a new Singularity container
check Perform container lint checks
inspect Display container's metadata
mount Mount a Singularity container image
pull Pull a Singularity/Docker container to $PWD

COMMAND GROUPS:
image Container image command group
instance Persistent instance command group

CONTAINER USAGE OPTIONS:
see singularity help <command>

For any additional help or support visit the Singularity
website: http://singularity.lbl.gov/

104 Chapter 12. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

12.3 3. Downloading Singularity containers

The easiest way to use a Singularity container is to pull an existing container from one of the Container Registries
maintained by the Singularity group.

12.3.1 Exercise 2 (~10 mins)

12.3.2 3.1: Pulling a Container from Singularity Hub

You can use the pull command to download pre-built images from a number of Container Registries, here we’ll be
focusing on the Singularity-Hub or DockerHub.

Container Registries:

• shub - images hosted on Singularity Hub

• docker - images hosted on Docker Hub

• localimage - images saved on your machine

• yum - yum based systems such as CentOS and Scientific Linux

• debootstrap - apt based systems such as Debian and Ubuntu

• arch - Arch Linux

• busybox - BusyBox

• zypper - zypper based systems such as Suse and OpenSuse

In this example I am pulling a base Ubuntu container from Singularity-Hub:

$ singularity pull shub://singularityhub/ubuntu

You can rename the container using the –name flag:

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu

After your image has finished downloading it should be in the present working directory, unless you specified to
download it somewhere else.

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu
Progress |===================================| 100.0%
Done. Container is at: /home/***/ubuntu_test.simg
$ singularity run ubuntu_test.simg
This is what happens when you run the container...
$ singularity shell ubuntu_test.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_test.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04 LTS"
NAME="Ubuntu"
VERSION="14.04, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04 LTS"

(continues on next page)

12.3. 3. Downloading Singularity containers 105

https://www.singularity-hub.org
https://hub.docker.com/

CyVerse Documentation, Release 0.1.0

(continued from previous page)

VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
Singularity ubuntu_test.simg:~>

12.3.3 Exercise 2.2: Pulling container from Docker Hub

This example pulls a container from DockerHub

Build to your container by pulling an image from Docker:

$ singularity pull docker://ubuntu:16.04
WARNING: pull for Docker Hub is not guaranteed to produce the
WARNING: same image on repeated pull. Use Singularity Registry
WARNING: (shub://) to pull exactly equivalent images.
Docker image path: index.docker.io/library/ubuntu:16.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%
Importing: base Singularity environment
Importing: /home/.../.singularity/docker/
→˓sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/.../.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu-16.04.simg
Cleaning up...
Done. Container is at: ./ubuntu-16.04.simg

Note, there are some Warning messages concerning the build from Docker.

The example below does the same as above, but renames the image.

$ singularity pull --name ubuntu_docker.simg docker://ubuntu
Importing: /home/***/.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /home/***/.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /home/***/.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /home/***/.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ./ubuntu_docker.simg

(continues on next page)

106 Chapter 12. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Cleaning up...
Done. Container is at: ./ubuntu_docker.simg

When we run this particular Docker container without any runtime arguments, it does not return any notifications, and
the Bash prompt does not change the prompt.

$ singularity run ubuntu_docker.simg
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"
NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

Whoa, we’re inside a container!?!

This is the OS on the VM I tested this on:

$ exit
exit
$ cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS"
NAME="Ubuntu"
VERSION="16.04.1 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.1 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

Here we are back in the container:

$ singularity shell ubuntu_docker.simg
Singularity: Invoking an interactive shell within container...

Singularity ubuntu_docker.simg:~> cat /etc/*release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.3 LTS"

(continues on next page)

12.3. 3. Downloading Singularity containers 107

CyVerse Documentation, Release 0.1.0

(continued from previous page)

NAME="Ubuntu"
VERSION="16.04.3 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.3 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial
Singularity ubuntu_docker.simg:~>

When invoking a container, make sure it executes and exits, or notifies you it is running.

Keeping track of downloaded images may be necessary if space is a concern.

By default, Singularity uses a temporary cache to hold Docker tarballs:

$ ls ~/.singularity

You can change these by specifying the location of the cache and temporary directory on your localhost:

$ sudo mkdir tmp
$ sudo mkdir scratch

$ SINGULARITY_TMPDIR=$PWD/scratch SINGULARITY_CACHEDIR=$PWD/tmp singularity --debug
→˓pull --name ubuntu-tmpdir.simg docker://ubuntu

As an example, using Singularity we can run a UI program that was built from Docker, here I show the IDE RStudio
tidyverse from Rocker

$ singularity exec docker://rocker/tidyverse:latest R

“An Introduction to Rocker: Docker Containers for R by Carl Boettiger, Dirk Eddelbuettel”

12.4 4. Building Singularity containers locally

Like Docker which uses a dockerfile to build its containers, Singularity uses a file called Singularity

When you are building locally, you can name this file whatever you wish, but a better practice is to put it in a directory
and name it Singularity - as this will help later on when developing on Singularity-Hub and Github.

Create Container and add content to it:

$ singularity image.create ubuntu14.simg
Creating empty 768MiB image file: ubuntu14.simg
Formatting image with ext3 file system
Image is done: ubuntu14.simg

$ singularity build ubuntu14.simg docker://ubuntu:14.04
Building into existing container: ubuntu14.simg
Docker image path: index.docker.io/library/ubuntu:14.04
Cache folder set to /home/.../.singularity/docker
[5/5] |===================================| 100.0%

(continues on next page)

108 Chapter 12. Introduction to Singularity

https://hub.docker.com/r/rocker/rstudio/
https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Importing: base Singularity environment
Importing: /home/.../.singularity/docker/
→˓sha256:c954d15f947c57e059f67a156ff2e4c36f4f3e59b37467ff865214a88ebc54d6.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:c3688624ef2b94ab3981564e23e1f48df8f1b988519373ccfb79d7974017cb85.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:848fe4263b3b44987f0eacdb2fc0469ae6ff04b2311e759985dfd27ae5d3641d.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:23b4459d3b04aa0bc7cb7f7021e4d7bbb5e87aa74a6a5f57475a0e8badbd9a26.tar.gz
Importing: /home/.../.singularity/docker/
→˓sha256:36ab3b56c8f1a3188464886cbe41f42a969e6f9374e040f13803d796ed27b0ec.tar.gz
Importing: /home/.../.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: ubuntu14.simg
Cleaning up...

Note, image.create uses an ext3 file system

Create a container using a custom Singularity file:

$ singularity build --name ubuntu.simg Singularity

In the above command:

• –name will create a container named ubuntu.simg

Pull a Container from Docker and make it writable using the –writable flag:

$ sudo singularity build --writable ubuntu.simg docker://ubuntu

Docker image path: index.docker.io/library/ubuntu:latest
Cache folder set to /root/.singularity/docker
Importing: base Singularity environment
Importing: /root/.singularity/docker/
→˓sha256:1be7f2b886e89a58e59c4e685fcc5905a26ddef3201f290b96f1eff7d778e122.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:6fbc4a21b806838b63b774b338c6ad19d696a9e655f50b4e358cc4006c3baa79.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:c71a6f8e13782fed125f2247931c3eb20cc0e6428a5d79edb546f1f1405f0e49.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:4be3072e5a37392e32f632bb234c0b461ff5675ab7e362afad6359fbd36884af.tar.gz
Importing: /root/.singularity/docker/
→˓sha256:06c6d2f5970057aef3aef6da60f0fde280db1c077f0cd88ca33ec1a70a9c7b58.tar.gz
Importing: /root/.singularity/metadata/
→˓sha256:c6a9ef4b9995d615851d7786fbc2fe72f72321bee1a87d66919b881a0336525a.tar.gz
Creating empty Singularity writable container 120MB
Creating empty 150MiB image file: ubuntu.simg
Formatting image with ext3 file system
Image is done: ubuntu.simg
Building Singularity image...
Singularity container built: ubuntu.simg
Cleaning up...

$ singularity shell ubuntu.simg

(continues on next page)

12.4. 4. Building Singularity containers locally 109

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Reading package lists... Done
W: chmod 0700 of directory /var/lib/apt/lists/partial failed -
→˓SetupAPTPartialDirectory (1: Operation not permitted)
E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)
E: Unable to lock directory /var/lib/apt/lists/
Singularity ubuntu.simg:~> exit
exit

$ sudo singularity shell ubuntu.simg

Singularity: Invoking an interactive shell within container...

Singularity ubuntu.simg:~> apt-get update

Hit:1 http://archive.ubuntu.com/ubuntu xenial InRelease
Get:2 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Get:3 http://archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Get:4 http://archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]
Get:5 http://security.ubuntu.com/ubuntu xenial-security/universe Sources [73.2 kB]
Get:6 http://archive.ubuntu.com/ubuntu xenial/universe Sources [9802 kB]
Get:7 http://security.ubuntu.com/ubuntu xenial-security/main amd64 Packages [585 kB]
Get:8 http://security.ubuntu.com/ubuntu xenial-security/universe amd64 Packages [405
→˓kB]
Get:9 http://security.ubuntu.com/ubuntu xenial-security/multiverse amd64 Packages
→˓[3486 B]
Get:10 http://archive.ubuntu.com/ubuntu xenial/universe amd64 Packages [9827 kB]
Get:11 http://archive.ubuntu.com/ubuntu xenial/multiverse amd64 Packages [176 kB]
Get:12 http://archive.ubuntu.com/ubuntu xenial-updates/universe Sources [241 kB]
Get:13 http://archive.ubuntu.com/ubuntu xenial-updates/main amd64 Packages [953 kB]
Get:14 http://archive.ubuntu.com/ubuntu xenial-updates/restricted amd64 Packages [13.
→˓1 kB]
Get:15 http://archive.ubuntu.com/ubuntu xenial-updates/universe amd64 Packages [762
→˓kB]
Get:16 http://archive.ubuntu.com/ubuntu xenial-updates/multiverse amd64 Packages [18.
→˓5 kB]
Get:17 http://archive.ubuntu.com/ubuntu xenial-backports/main amd64 Packages [5153 B]
Get:18 http://archive.ubuntu.com/ubuntu xenial-backports/universe amd64 Packages
→˓[7168 B]
Fetched 23.2 MB in 4s (5569 kB/s)
Reading package lists... Done

Singularity ubuntu.simg:~> apt-get install curl --fix-missing

When I try to install software to the image without sudo it is denied, because root is the owner of the container. When
I use sudo I can install software to the container. The software remain in the container after closing the container and
restart.

Note: Bootstrapping bootstrap command is deprecated (v2.4), use build instead.

To install a container with Ubuntu from the ubuntu.com reposutiry you need to use debootstrap

110 Chapter 12. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

12.4.1 Exercise 3: Creating the Singularity file (30 minutes)

Recipes can use any number of container registries for bootstrapping a container.

(Advanced) the Singularity file can be hosted on Github and will be auto-detected by Singularity-Hub when you set
up your Container Collection.

Building your own containers requires that you have sudo privileges - therefore you’ll need to develop these on your
local machine or on a VM that you can gain root access on.

• The Header

The top of the file, selects the base OS for the container. Bootstrap: references the repository (e.g. docker, debootstrap,
sub). From: selects the name of the owner/container.

Bootstrap: shub
From: vsoch/hello-world

Using debootstrap with a build that uses a mirror:

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/

Using a localimage to build:

Bootstrap: localimage
From: /path/to/container/file/or/directory

Using CentOS-like container:

Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-7/7/os/x86_64/
Include:yum

Note: to use yum to build a container you should be operating on a RHEL system, or an Ubuntu system with yum
installed.

The container registries which Singularity uses are listed above in Section 3.1.

• Sections

The Singularity file uses sections to specify the dependencies, environmental settings, and runscripts when it build.

• %help - create text for a help menu associated with your container

• %setup - executed on the host system outside of the container, after the base OS has been installed.

• %files - copy files from your host system into the container

• %labels - store metadata in the container

• %environment - loads environment variables at the time the container is run (not built)

• %post - set environment variables during the build

• %runscript - executes a script when the container runs

• %test - runs a test on the build of the container

• Apps

12.4. 4. Building Singularity containers locally 111

http://singularity.lbl.gov/docs-recipes

CyVerse Documentation, Release 0.1.0

In Singularity 2.4+ we can build a container which does multiple things, e.g. each app has its own runscripts. These
use the prefix %app before the sections mentioned above. The %app architecture can exist in addition to the regular
%post and %runscript sections.

Bootstrap: docker
From: ubuntu

% environment

%labels

##############################
foo
##############################

%apprun foo
exec echo "RUNNING FOO"

%applabels foo
BESTAPP=FOO
export BESTAPP

%appinstall foo
touch foo.exec

%appenv foo
SOFTWARE=foo
export SOFTWARE

%apphelp foo
This is the help for foo.

%appfiles foo
avocados.txt

##############################
bar
##############################

%apphelp bar
This is the help for bar.

%applabels bar
BESTAPP=BAR
export BESTAPP

%appinstall bar
touch bar.exec

%appenv bar
SOFTWARE=bar
export SOFTWARE

• Setting up Singularity file system

%help section can be as verbose as you want

112 Chapter 12. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

Bootstrap: docker
From: ubuntu

%help
This is the container help section.

%setup commands are executed on the localhost system outside of the container - these files could include necessary
build dependencies. We can copy files to the $SINGULARITY_ROOTFS file system can be done during %setup

%files include any files that you want to copy from your localhost into the container.

%post includes all of the environment variables and dependencies that you want to see installed into the container at
build time.

%environment includes the environment variables which we want to be run when we start the container

%runscript does what it says, it executes a set of commands when the container is run.

Example Singularity file bootstrapping a Docker Ubuntu (16.04) image.

BootStrap: docker
From: ubuntu:16.04

%post
apt-get -y update
apt-get -y install fortune cowsay lolcat

%environment
export LC_ALL=C
export PATH=/usr/games:$PATH

%runscript
fortune | cowsay | lolcat

%labels
Maintainer Tyson Swetnam
Version v0.1

Build the container:

singularity build --name cowsay_container.simg Singularity

Run the container:

singularity run cowsay.simg

If you build a squashfs container, it is immutable (you cannot –writable edit it)

12.5 5. Running Singularity Containers

Commands:

exec - command allows you to execute a custom command within a container by specifying the image file.

shell - command allows you to spawn a new shell within your container and interact with it.

run - assumes your container is set up with “runscripts” triggered with the run command, or simply by calling the
container as though it were an executable.

12.5. 5. Running Singularity Containers 113

https://hub.docker.com/_/ubuntu/

CyVerse Documentation, Release 0.1.0

inspect - inspects the container.

–writable - creates a writable container that you can edit interactively and save on exit.

–sandbox - copies the guts of the container into a directory structure.

12.5.1 5.1 Using the exec command

$ singularity exec shub://singularityhub/ubuntu cat /etc/os-release

12.5.2 5.2 Using the shell command

$ singularity shell shub://singularityhub/ubuntu

12.5.3 5.3 Using the run command

$ singularity run shub://singularityhub/ubuntu

12.5.4 5.4 Using the inspect command

You can inspect the build of your container using the inspect command

$ singularity pull shub://vsoch/hello-world
Progress |===================================| 100.0%
Done. Container is at: /home/***/vsoch-hello-world-master-latest.simg

$ singularity inspect vsoch-hello-world-master-latest.simg
{

"org.label-schema.usage.singularity.deffile.bootstrap": "docker",
"MAINTAINER": "vanessasaur",
"org.label-schema.usage.singularity.deffile": "Singularity",
"org.label-schema.schema-version": "1.0",
"WHATAMI": "dinosaur",
"org.label-schema.usage.singularity.deffile.from": "ubuntu:14.04",
"org.label-schema.build-date": "2017-10-15T12:52:56+00:00",
"org.label-schema.usage.singularity.version": "2.4-feature-squashbuild-secbuild.

→˓g780c84d",
"org.label-schema.build-size": "333MB"

}

12.5.5 5.5 Using the –sandbox and –writable commands

As of Singularity v2.4 by default build produces immutable images in the ‘squashfs’ file format. This ensures repro-
ducible and verifiable images.

Creating a –writable image must use the sudo command, thus the owner of the container is root

114 Chapter 12. Introduction to Singularity

CyVerse Documentation, Release 0.1.0

$ sudo singularity build --writable ubuntu-master.simg shub://singularityhub/ubuntu
Cache folder set to /root/.singularity/shub
Progress |===================================| 100.0%
Building from local image: /root/.singularity/shub/singularityhub-ubuntu-master-
→˓latest.simg
Creating empty Singularity writable container 208MB
Creating empty 260MiB image file: ubuntu-master.simg
Formatting image with ext3 file system
Image is done: ubuntu-master.simg
Building Singularity image...
Singularity container built: ubuntu-master.simg
Cleaning up...

You can convert these images to writable versions using the –writable and –sandbox commands.

When you use the –sandbox the container is written into a directory structure. Sandbox folders can be created without
the sudo command.

$ singularity build --sandbox lolcow/ shub://GodloveD/lolcow
WARNING: Building sandbox as non-root may result in wrong file permissions
Cache folder set to /home/.../.singularity/shub
Progress |===================================| 100.0%
Building from local image: /home/.../.singularity/shub/GodloveD-lolcow-master-latest.
→˓simg
WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Singularity container built: lolcow/
Cleaning up...
@vm142-73:~$ cd lolcow/
@vm142-73:~/lolcow$ ls
bin boot dev environment etc home lib lib64 media mnt opt proc run sbin
→˓singularity srv sys tmp usr var

12.5.6 5.6 Test

Singularity can test the build of your container.

You can bypass the test by using –no-test.

12.5.7 5.7 Bind Paths

When Singularity creates the new file system inside a container it ignores directories that are not part of the standard
kernel, e.g. /scratch, /xdisk, /global, etc. These paths can be added back into the container by binding them when the
container is run.

$ singularity shell --bind /xdisk ubuntu14.simg

The system administrator can also define what is added to a container. This is important on campus HPC systems that
often have a /scratch or /xdisk directory structure. By editing the /etc/singularity/singularity.conf a new path can be
added to the system containers.

12.5.8 5.8 Overlay

You can make changes to an immutable container which only persist for the duration of the container being run.

12.5. 5. Running Singularity Containers 115

CyVerse Documentation, Release 0.1.0

First, download a container.

Next, create a new image in the ext3 format.

$ singularity image.create blank_slate.simg

Now, overlay your blank image file name with the container you just downloaded.

$ sudo singularity shell --overlay blank_slate.simg ubuntu14.simg

note: using the ‘sudo‘ command to make the container writable

116 Chapter 12. Introduction to Singularity

CHAPTER 13

Advanced Singularity

13.1 1. Using HPC Environments

Conducting analyses on high performance computing clusters happens through very different patterns of interaction
than running analyses on a VM. When you login, you are on a node that is shared with lots of people. Trying to run
jobs on that node is not “high performance” at all. Those login nodes are just intended to be used for moving files,
editing files, and launching jobs.

Most jobs on an HPC cluster are neither interactive, nor realtime. When you submit a job to the scheduler, you must
tell it what resources you need (e.g. how many nodes, what type of nodes) and what you want to run. Then the
scheduler finds resources matching your requirements, and runs the job for you when it can.

For example, if you want to run the command:

singularity exec docker://python:latest /usr/local/bin/python

On an HPC system, your job submission script would look something like:

117

CyVerse Documentation, Release 0.1.0

#!/bin/bash
#
#SBATCH -J myjob # Job name
#SBATCH -o output.%j # Name of stdout output file (%j expands to
→˓jobId)
#SBATCH -p development # Queue name
#SBATCH -N 1 # Total number of nodes requested (68 cores/
→˓node)
#SBATCH -n 17 # Total number of mpi tasks requested
#SBATCH -t 02:00:00 # Run time (hh:mm:ss) - 4 hours

module load tacc-singularity
singularity exec docker://python:latest /usr/local/bin/python

This example is for the Slurm scheduler, a popular one used by all TACC systems. Each of the #SBATCH lines looks
like a comment to the bash kernel, but the scheduler reads all those lines to know what resources to reserve for you.

It is usually possible to get an interactive session as well. At TACC, the command “idev” is used to get an interactive
development session. For example:

idev -m 240 -p skx-normal

Just running “idev” gives you one hour on a development node. The example above will give you a 240 minute
interactive session on the “skx-normal” partition of the system (which in this case have 48 Skylake CPU cores per
node).

Note: Every HPC cluster is a little different, but they almost universally have a “User’s Guide” that serves both as a
quick reference for helpful commands and contains guidelines for how to be a “good citizen” while using the system.
For TACC’s Stampede2 system, the user guide is at: https://portal.tacc.utexas.edu/user-guides/stampede2

13.1.1 How do HPC systems fit into the development workflow?

A few things to consider when using HPC systems:

1. Using ‘sudo’ is not allowed on HPC systems, and building a Singularity container from scratch requires sudo.
That means you have to build your containers on a different development system. You can pull a docker image
on HPC systems

2. If you need to edit text files, command line text editors don’t support using a mouse, so working efficiently has
a learning curve. There are text editors that support editing files over SSH. This lets you use a local text editor
and just save the changes to the HPC system.

3. Singularity is in the process of changing image formats. Depending on the version of Singularity running on the
HPC system, new squashFS or .simg formats may not work.

13.2 2. Singularity and MPI

Singularity supports MPI fairly well. Since (by default) the network is the same insde and outside the container, the
communication between containers usually just works. The more complicated bit is making sure that the container
has the right set of MPI libraries. MPI is an open specification, but there are several implementations (OpenMPI,
MVAPICH2, and Intel MPI to name three) with some non-overlapping feature sets. If the host and container are
running different MPI implementations, or even different versions of the same implementation, hilarity may ensue.

118 Chapter 13. Advanced Singularity

https://portal.tacc.utexas.edu/user-guides/stampede2

CyVerse Documentation, Release 0.1.0

The general rule is that you want the version of MPI inside the container to be the same version or newer than the host.
You may be thinking that this is not good for the portability of your container, and you are right. Containerizing MPI
applications is not terribly difficult with Singularity, but it comes at the cost of additional requirements for the host
system.

Note: Many HPC Systems, like Stampede2, have highspeed, low latency networks that have special drivers. In-
finiband, Ares, and OmniPath are three different specs for these types of networks. When running MPI jobs, if the
container doesn’t have the right libraries, it won’t be able to use those special interconnects to communicate between
nodes.

Because you may have to build your own MPI enabled Singularity images (to get the versions to match), here is a 2.3
compatible example of what it may look like:

Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.
#
"Singularity" Copyright (c) 2016, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/

%runscript
echo "This is what happens when you run the container..."

%post
echo "Hello from inside the container"
sed -i 's/$/ universe/' /etc/apt/sources.list
apt update
apt -y --allow-unauthenticated install vim build-essential wget gfortran

→˓bison libibverbs-dev libibmad-dev libibumad-dev librdmacm-dev libmlx5-dev
→˓libmlx4-dev

wget http://mvapich.cse.ohio-state.edu/download/mvapich/mv2/ mvapich2-2.1.tar.
→˓gz

tar xvf mvapich2-2.1.tar.gz
cd mvapich2-2.1
./configure --prefix=/usr/local
make -j4
make install
/usr/local/bin/mpicc examples/hellow.c -o /usr/bin/hellow

You could also build in everything in a Dockerfile and convert the image to Singularity at the end.

Once you have a working MPI container, invoking it would look something like:

mpirun -np 4 singularity exec ./mycontainer.img /app.py arg1 arg2

This will use the host MPI libraries to run in parallel, and assuming the image has what it needs, can work across
many nodes.

For a single node, you can also use the container MPI to run in parallel (usually you don’t want this)

singularity exec ./mycontainer.img mpirun -np 4 /app.py arg1 arg2

13.2. 2. Singularity and MPI 119

CyVerse Documentation, Release 0.1.0

13.3 3. Singularity and GPU Computing

GPU support in Singularity is fantastic

Since Singularity supported docker containers, it has been fairly simple to utilize GPUs for machine learning code like
TensorFlow. From Maverick, which is TACC’s GPU system:

Work from a compute node
idev -m 60
Load the singularity module
module load tacc-singularity
Pull your image
singularity pull docker://nvidia/caffe:latest

singularity exec --nv caffe-latest.img caffe device_query -gpu 0

Please note that the –nv flag specifically passes the GPU drivers into the container. If you leave it out, the GPU will
not be detected.

singularity exec caffe-latest.img caffe device_query -gpu 0

For TensorFlow, you can directly pull their latest GPU image and utilize it as follows.

Change to your $WORK directory
cd $WORK
#Get the software
git clone https://github.com/tensorflow/models.git ~/models
Pull the image
singularity pull docker://tensorflow/tensorflow:latest-gpu
Run the code
singularity exec --nv tensorflow-latest-gpu.img python $HOME/models/tutorials/image/
→˓mnist/convolutional.py

Note: You probably noticed that we check out the models repository into your $HOME directory. This is because
your $HOME and $WORK directories are only available inside the container if the root folders /home and /work exist
inside the container. In the case of tensorflow-latest-gpu.img, the /work directory does not exist, so any files there are
inaccessible to the container.

You may be thinking “what about overlayFS??”. Stampede2 supports it, but the Linux kernel on the other systems
does not support overlayFS, so it had to be disabled in our Singularity install. This may change as new Singularity
versions are released.

13.3.1 Hands-On Exercise

Build a Singularity container that implements a simple Tensorflow image classifier.

The image classifier script is available “out of the box” here: https://raw.githubusercontent.com/tensorflow/models/
master/tutorials/image/imagenet/classify_image.py

Tensorflow has working Docker containers on DockerHub that you can use to support all the dependencies. For
example, the first line of your Dockerfile might look like:

FROM tensorflow/tensorflow:1.5.0-py3

When running the image classifier, the non-containerized version would be invoked with something like:

120 Chapter 13. Advanced Singularity

https://raw.githubusercontent.com/tensorflow/models/master/tutorials/image/imagenet/classify_image.py
https://raw.githubusercontent.com/tensorflow/models/master/tutorials/image/imagenet/classify_image.py

CyVerse Documentation, Release 0.1.0

python /classify_image.py --model_dir /model --image_file cat.png

You can use a Singularity file or a Dockerfile to help you. For reference, you can lookback at the “Singularity Intro”
section on building Singularity images, yesterday’s material on building Dockerfiles, or the respective manual pages:

• http://singularity.lbl.gov/docs-build-container

• https://docs.docker.com/engine/reference/builder/

13.3. 3. Singularity and GPU Computing 121

http://singularity.lbl.gov/docs-build-container
https://docs.docker.com/engine/reference/builder/

CyVerse Documentation, Release 0.1.0

122 Chapter 13. Advanced Singularity

CHAPTER 14

Deploying apps in Discovery Environment

The CyVerse Discovery Environment (DE) provides a simple yet powerful web portal for managing data, analyses,
and workflows. The DE uses containers (via Docker and Singularity through Agave) to support customizable, non-
interactive, reproducible workflows using data stored in the CyVerse Data Store, based on iRODS. Agave is a “Science-
as-a-Service” API platform for high-performance computing (HPC), high-throughput computing (HTC) and big-data
resources.

14.1 Deploying Docker images as apps in DE

Instruction guide: This paper will guide you to bring your dockerized tools into CyVerse DE.

https://f1000research.com/articles/5-1442/v3

123

https://f1000research.com/articles/5-1442/v3

CyVerse Documentation, Release 0.1.0

Note: Significant changes have been made as to how you can bring your tools into DE and so we are working on
a separate paper that will show all those changes. Meanwhile you can follow the below tutorial for integrating your
tools.

Here are the basic steps for deploying Docker images as apps in DE. For this tutorial I am going to show an example
of Tensor image classifier docker image that I dockerized and pushed to dockerhub.

• Build and test your Docker images

• Push your Docker image to public repositories

• Add Docker images as tool in DE

• Create a UI for the tool in DE

• Test the app using appropriate test data

Warning: If you already have your own Docker image or Docker image of interest is hosted on public repositories
(Dockerhub or quay.io or some other public repository), then you can skip to step 3

1. Build and test your Docker images

The first step is to dockerize your tool or software of interest. Detailed steps of how to dockerize your tool and test
your dockerized images can be found in sections intro to docker and advanced docker.

For this tutorial I will use the tensorflow image classifier docker image that I built using this code

Testing

124 Chapter 14. Deploying apps in Discovery Environment

../docker/dockerintro.html
../docker/dockeradvanced.html
https://github.com/upendrak/tensorflow_image_classifier

CyVerse Documentation, Release 0.1.0

docker run -v $(pwd):/data -w /data tensorflow_up:1.0 sample_data/16401288243_
→˓36112bd52f_m.jpg

2. Push your Docker image to public repositories

Once the Docker image works then you can push those images to some public repository such as dockerhub or quay.io

Here is the docker image for the tensorflow image classifier on docker hub - https://hub.docker.com/r/upendradevisetty/
tensorflow_image_classifier/

3. Add Docker images as tool in DE

All tools now run installed as Docker images in the DE. Once the software is dockerized and available as Docker
images on dockerhub then you can add those docker images as a tool in DE.

Warning: Check if the tool and correct version are already installed in the DE by following the below steps.

• Log in to the Discovery Environment by going to https://de.cyverse.org/de/, entering your CyVerse username
and password, and clicking LOGIN. If you have not already done so, you will need to sign up for a CyVerse
account.

• Click the Apps window to open the Apps window.

• Click the Manage Tools button on the top-right of the Apps window.

• In the search tools field, enter the first few letters of the tool name and then click enter.

• If the tool is available then you can skip to skip to step 3 for creating a UI for that tool.

If the tool is not available in DE then do the following:

• Click open the Tools tab in Manage Tools window and then click Add tools button

• Then enter the fields about your tool and then click “Ok”.

– Tool Name: It should be the name of the tool. For example “tensorflow_image_classifier”.

– Description: A short Description about the tool. For example “Tensorflow image classifier”.

– Version: What is the version number of the tool. For example “1.0”.

– Image name: Name of the Docker image on dockerhub or quay.io. For example “upendrade-
visetty/tensorflow_image_classifier”.

– Tag: What is the tag of your Docker image. This is optional but is highly recommended. If non specified,
it will pull the default tag latest. If the latest tag is not avaiable the tool integration will fail. For
example “1.0”

– Entrypoint: Do you want a entrypoint for your Docker image? This optional.

– Docker Hub URL: URL of the Dockerhub docker image. Option but is recommended. In this example “”.

14.1. Deploying Docker images as apps in DE 125

http://hub.docker.com
http://quay.io
https://hub.docker.com/r/upendradevisetty/tensorflow_image_classifier/
https://hub.docker.com/r/upendradevisetty/tensorflow_image_classifier/
https://de.cyverse.org/de/

CyVerse Documentation, Release 0.1.0

• If there is no error, it indicates successful integration of the tool.

4. Create a UI for the tool in DE

Once the Dockerized tool is added, you can create the app UI for the tool. The Create App window consists of four
distinct sections:

• The first section contains the different app items that can be added to your interface. To add an app item, select
the one to use (hover over the object name for a brief description) and drag it into position in the middle section.

• The second section is the landing place for the objects you dragged and dropped from the left section, and it
updates to display how the app will look when presented to a user.

• The third section (Details) displays all of the available properties for the selected item. As you customize the
app in this section, the middle section updates dynamically so you can see how it will look and act.

• Finally, the fourth section at the bottom (Command line view) contains the command-line commands for the
current item’s properties. As you update the properties in the Details section, the command-line view updates
as well to let you make sure that you are passing the correct arguments in the correct order.

126 Chapter 14. Deploying apps in Discovery Environment

CyVerse Documentation, Release 0.1.0

Note: Creating a new app interface requires that you know how to use the tool. With that knowledge, you create the
interface according to how you want options to be displayed to a user.

Here is an example of the Tensorflow image classifier - 1.0 app UI in DE

14.1. Deploying Docker images as apps in DE 127

CyVerse Documentation, Release 0.1.0

5. Test the app using appropriate test data

After creating the new app according to your design, test your app in the your Apps under development folder in the
DE using appropriate test data to make sure it works properly.

For testing, we’ll use the the same image that we have used earlier.

1. First open the Tensorflow image classifier - 1.0 app in the app window

128 Chapter 14. Deploying apps in Discovery Environment

CyVerse Documentation, Release 0.1.0

2. Next browse the test file in the app and click launch analysis

3. After the analysis is completed, open the folder and check to see if the image classifier correctly predicts

14.1. Deploying Docker images as apps in DE 129

CyVerse Documentation, Release 0.1.0

Congrats!!! It works. The image classifier correctly predicts that image is a daisy..

• If your app works the way you expect it to you can share your app or make the app public

• If your app doesn’t work, then you may need to make changes to the app UI or you need to make changes to
your Docker image. If you make changes to the Docker image, then you don’t need to create a new app UI again
as the Docker image updates will be propagated automatically.

130 Chapter 14. Deploying apps in Discovery Environment

CHAPTER 15

OSG (Open Science Grid) Singularity Infrastructure

15.1 1. Prerequisites

ssh will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors
will supply a slip of paper with username, password and hostname during the session.

15.2 2. OSG Overview

The Open Science Grid (OSG) is a distributed infrastructure for high throughput computing. The OSG enables dozens
of universities and labs to provide researchers with access to significant computing resources. The resources accessible
through the OSG are contributed by the community, organized by the OSG, and governed by the OSG consortium. In
the last 12 months, we have provided more than 1.2 Billion CPU hours to researchers across a wide variety of projects.

131

https://www.opensciencegrid.org/

CyVerse Documentation, Release 0.1.0

This map is available “live” on the OSG Display site.

15.2.1 2.1 Distributed High Throughput Computing

OSG is focusing on single core, or low number core jobs which can fit on a single node. Some guidelines:

• Use less than 2 GB memory

• Each invocation should run for 1-12 hours

132 Chapter 15. OSG (Open Science Grid) Singularity Infrastructure

https://display.grid.iu.edu/

CyVerse Documentation, Release 0.1.0

• Compute sites in the OSG can be configured to use preemption, which means jobs can be automatically killed
if higher priority jobs enter the system. Preempted jobs will restart on another site, but it is important that the
jobs can handle multiple restarts.

15.2.2 2.2 Motivations for Containers in OSG

Each computing resource exposes a slightly different operating system environment. Actually this capacity can be
daunting for the individual: each site has its own discretion to setup their runtime environment in a unique way.

Note: Before containers, OSG used to tell the users:

• Binaries should preferably be statically linked. However, dynamically linked binaries with standard library
dependencies, built for a 64-bit Red Hat Enterprise Linux (RHEL) 6 machines will also work. Also, interpreted
languages such as Python or Perl will work as long as there are no special module requirements.

• Software dependencies can be difficult to accommodate unless the software can be staged with the job.

Motivation for containers in OSG:

• Consistent environment (default images) - If a user does not specify a specific image, a default one is used
by the job. The image contains a decent base line of software, and because the same image is used across all
the sites, the user sees a more consistent environment than if the job landed in the environments provided by the
individual sites.

• Custom software environment (user defined images) - Users can create and use their custom images, which
is useful when having very specific software requirements or software stacks which can be tricky to bring with
a job. For example: Python or R modules with dependencies, TensorFlow, . . .

• Enables special environment such as GPUs - Special software environments to go and in hand with the special
hardware.

• Process isolation - Sandboxes the job environment so that a job can not peek at other jobs.

• File isolation - Sandboxes the job file system, so that a job can not peek at other jobs’ data.

15.2.3 2.3 Container Statistics

These are for a subset of OSG, specifically for the OSG VO (Virtual Organization). Other VOs are also using contain-
ers.

15.2. 2. OSG Overview 133

CyVerse Documentation, Release 0.1.0

One challenge when running these many container per day, across 100’s of sites and 1000’s of compute nodes, is how
do we distribute and access containers without putting unnecessary load on Docker and Singularity hubs? More about
this below.

The breakdown of jobs shows about half runs without containers, and the once running in containers are mostly doing
so under the default images.

134 Chapter 15. OSG (Open Science Grid) Singularity Infrastructure

CyVerse Documentation, Release 0.1.0

15.3 3. CVMFS

The CernVM File System (CVMFS) is a highly-scalable global filesystem optimized for global distribution of soft-
ware. The CERN-based LHC experiments invested in this filesystem based on the experience of attempting to syn-
chronize the install their complex application software stacks across hundreds of sites. Each release may contain tens
of gigabytes of data across hundreds of thousands of files; a few dozen to a hundred releases might be active at any
given time.

15.3. 3. CVMFS 135

CyVerse Documentation, Release 0.1.0

CVMFS is FUSE-based - a filesystem implemented in user space, not within the Linux kernel. It scales well because
changes to each repository are only written to a single repository node and then distributed throughout the CVMFS
content distribution network (a hierarchical set of web servers and HTTP caches). All writes are aggregated into a
single transaction, making the rate of change relatively slow (typically, updates occur no faster than once every 15
minutes). Since file contents are immutable, CVMFS is able to use a content-addressed scheme and the corresponding
HTTP objects immutable. Thus, the entire system is amenable to cache hierarchies.

CVMFS’s original use case has significant parallels with distributing scientific containers: containers tend to be read-
only, contain relatively large sets of software, and need to be accessed - without modification or corruption - at multiple
sites.

136 Chapter 15. OSG (Open Science Grid) Singularity Infrastructure

CyVerse Documentation, Release 0.1.0

OSG stores container images on CVMFS in extracted form. That is, we take the Docker image layers or the Singularity
img/simg files and export them onto CVMFS. For example, ls on one of the containers looks similar to ls / on any
Linux machine:

$ ls /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el7:latest/
cvmfs host-libs proc sys anaconda-post.log lib64
dev media root tmp bin sbin
etc mnt run usr image-build-info.txt singularity
home opt srv var lib

This is a very efficient way for use to distribute the images. Most jobs only need small parts of the actual image (as
low as 25-100 MBs), and the CVMFS caching mechanism means those bits are aggressivly cached at both the site and
node level.

15.3.1 3.1 cvmfs-singularity-sync

Information on how to register your image can be found on the Docker and Singularity Containers page in the OSG
Help Desk. It says:

In order to be able to efficiently distribute the container images to a large of distributed compute hosts, OSG has chosen
to host the images under CVMFS. Any image publicly available in Docker can be included for automatic syncing into
the CVMFS repository. The result is an unpacked image under /cvmfs/singularity.opensciencegrid.org/

To get your images included, please either create a git pull request against docker_images.txt in the cvmfs-singularity-
sync repository, or contact user-support@opensciencegrid.org and we can help you.

Once your image has been registered, new versions pushed to Docker Hub will automatically be detected and CVMFS
will be updated accordingly.

15.4 4. Exercise 1: Exploring Available Images

Log in via ssh to the training account provided on the slip of paper. workflow.isi.edu is a submit host for both Open
Science Grid as well as a local HTCondor pool.

Look at at the directories and sub directories under /cvmfs/singularity.opensciencegrid.org

$ ls /cvmfs/singularity.opensciencegrid.org/

Note how the directories in here relate to the docker_images.txt in the cvmfs-singularity-sync repository (link).

Let’s explore an image which is different from the host operating system (CentOS 7). A good example of this is the
TensorFlow image which is based on Ubuntu 16.04. Start an interactive shell and explore the environment, including
verifying that TensorFlow is available and what version it is:

$ singularity shell /cvmfs/singularity.opensciencegrid.org/opensciencegrid/
→˓tensorflow:latest/
Singularity: Invoking an interactive shell within container...

$ cat /etc/issue
Ubuntu 16.04.3 LTS

$ python3 -c 'import tensorflow as tf; print(tf.__version__)'
1.4.0

$ exit

15.4. 4. Exercise 1: Exploring Available Images 137

https://display.grid.iu.edu/
https://github.com/opensciencegrid/cvmfs-singularity-sync
https://github.com/opensciencegrid/cvmfs-singularity-sync
mailto:user-support@opensciencegrid.org
https://github.com/opensciencegrid/cvmfs-singularity-sync/blob/master/docker_images.txt

CyVerse Documentation, Release 0.1.0

Make sure you run exit as the remaining exercises will be run under the host operating system.

15.5 5. Exercise 2: Containerized Job - Default Image

Note: These exercises will continue to use the workflow.isi.edu submit host. If you want to use OSG for your research
in the future, please sign up for an account on OSG Connect and then use the OSG Connect submit hosts.

More information on how to run jobs on OSG can be found in the OSG Connect Quick Start Guide

You will find an example HTCondor job under ~/ContainerCamp/OSG-02-Default-Image/. Look at the content of
test-1.submit

$ cd ~/ContainerCamp/OSG-02-Default-Image/
$ cat test-1.submit

The submit file specifies that we want Singularity, but not which image:

Requirements = HAS_SINGULARITY == True

Submit a job with:

$ condor_submit test-1.submit

Check on the job with condor_q or condor_q -nobatch:

$ condor_q
$ connor_q -nobatch

Once the job is complete, examine the created job.*.output file:

$ cat job.920697.0.output
Hello! I'm running on the site MWT2 on the node uct2-c235.mwt2.org
My Singularity image is /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-
→˓el6:latest

Open Science Grid has multiple default images! Currently, we have one for RHEL 6 and one for RHEL 7. The
dynamic pool of resources contains a mix of these defaults. Most of the OSG users only cares about the base OS, and
not whether it is a Singularity instance or not. A common requirments line is Requirements = OSGVO_OS_STRING
== “RHEL 6” && Arch == “X86_64” && HAS_MODULES == True which maps to RHEL 6 (Singularity or native),
on 64 bit host and which as a modules software. For fun, we can steer our jobs to a Singularity RHEL 7 instance. Let’s
take a look at test-2.submit requirments:

Requirements = HAS_SINGULARITY == True && OSGVO_OS_STRING == "RHEL 7"

Submit the job and examine the output just like for the first job:

$ condor_submit test-2.submit

15.6 6. Exercise 3: Containerized Job - Custom Image

To run a job with a custom image, the +SingularityImage is used in the submit file to specify what image should be
used. Change your working directory into ~/ContainerCamp/OSG-03-Custom-Image and look at the test-1.submit file

138 Chapter 15. OSG (Open Science Grid) Singularity Infrastructure

http://osgconnect.net/
https://support.opensciencegrid.org/solution/articles/5000633410-osg-connect-quickstart

CyVerse Documentation, Release 0.1.0

$ cd ~/ContainerCamp/OSG-03-Custom-Image/
$ cat test-1.submit
...
Requirements = HAS_SINGULARITY == True
+SingularityImage = "/cvmfs/singularity.opensciencegrid.org/opensciencegrid/
→˓tensorflow:latest"
...

Using +SingularityImage, you can specify any image available under /cvmfs/singularity.opensciencegrid.org/. Just
like we did above, you can run this job and see what the output shows.

OSG also has limited support for pulling images directly from Singularity Hub, Docker Hub, or over http. This is
pass-through functionallity of what Singularity can do (see the Singularity Quickstart Guide). This is a less efficient
way to access the images, so only use this for small workloads. For larger workloads, please use the CVMFS approach.
Also note that the APIs change, so pulling images directly from the hubs can be Singularity version sensitive. test-
2.submit shows how we can specify that the job should use Singularity 2.4.2 and pull directly from the Singularity
Hub. +SingularityBindCVMFS = False is required for images which do not have the /cvmfs directory and do not want
to have CVMFS access.

$ cat test-2.submit
...
Requirements = HAS_SINGULARITY == True && OSG_SINGULARITY_VERSION == "2.4.2-dist"
+SingularityImage = "shub://singularityhub/ubuntu"
+SingularityBindCVMFS = False
...

15.6. 6. Exercise 3: Containerized Job - Custom Image 139

http://singularity.lbl.gov/quickstart

CyVerse Documentation, Release 0.1.0

140 Chapter 15. OSG (Open Science Grid) Singularity Infrastructure

CHAPTER 16

Pegasus Workflows with Application Containers

Note: This section contains an overview of scientific workflows, Pegasus, and how containers fits into Pegasus
workflows. We will not have time to thoroughly cover all aspects of Pegasus - for future reference please see the user
guide and self guided tutorial.

16.1 1. Prerequisites

ssh will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors
will supply a slip of paper with username, password and hostname during the session.

16.2 2. What are Scientific Workflows?

Scientific workflows allow users to easily express multi-step computational tasks, for example retrieve data from an
instrument or a database, reformat the data, and run an analysis. A scientific workflow describes the dependencies
between the tasks and in most cases the workflow is described as a directed acyclic graph (DAG), where the nodes are
tasks and the edges denote the task dependencies. A defining property for a scientific workflow is that it manages data
flow. The tasks in a scientific workflow can be everything from short serial tasks to very large parallel tasks (MPI for
example) surrounded by a large number of small, serial tasks used for pre- and post-processing.

141

https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/tutorial.php

CyVerse Documentation, Release 0.1.0

16.3 2. Pegasus Workflow Management System

Pegasus WMS is a configurable system for mapping and executing abstract application workflows over a wide range
of execution environments including a laptop, a campus cluster, a Grid, or a commercial or academic cloud. Today,
Pegasus runs workflows on Amazon EC2, Google Compute Engine, Open Science Grid, XSEDE, and campus clusters.
One workflow can run on a single system or across a heterogeneous set of resources.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computational
resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms with-
out worrying about the details of the underlying execution environment or the particulars of the low-level specifications
required by the middleware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current cyberinfras-
tructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description of the abstract
workflow in XML format.

Pegasus has a number of features that contribute to its useability and effectiveness.

• Portability / Reuse. User created workflows can easily be run in different environments without alteration.
Pegasus currently runs workflows on top of Condor, Grid infrastrucutures such as Open Science Grid and Ter-
aGrid, Amazon EC2, Nimbus, and many campus clusters. The same workflow can run on a single system or
across a heterogeneous set of resources.

• Performance. The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall
workflow performance.

• Scalability. Pegasus can easily scale both the size of the workflow, and the resources that the workflow is
distributed over. Pegasus runs workflows ranging from just a few computational tasks up to millions of tasks.
The number of resources involved in executing a workflow can scale as needed without any impediments to
performance.

• Provenance. By default, all jobs in Pegasus are launched via the kickstart process that captures runtime prove-
nance of the job and helps in debugging. The provenance data is collected in a database, and the data can be
summarised with tools such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

• Data Management. Pegasus handles replica selection, data transfers and output registrations in data catalogs.
These tasks are added to a workflow as auxilliary jobs by the Pegasus planner.

142 Chapter 16. Pegasus Workflows with Application Containers

CyVerse Documentation, Release 0.1.0

• Reliability. Jobs and data transfers are automatically retried in case of failures. Debugging tools such as
pegasus-analyzer helps the user to debug the workflow in case of non-recoverable failures.

• Error Recovery. When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the
entire workflow, by providing workflow-level checkpointing, by re-mapping portions of the workflow, by trying
alternative data sources for staging data, and, when all else fails, by providing a rescue workflow containing a
description of only the work that remains to be done. It cleans up storage as the workflow is executed so that
data-intensive workflows have enough space to execute on storage-constrained resource. Pegasus keeps track of
what has been done (provenance) including the locations of data used and produced, and which software was
used with which parameters.

16.4 3. Exercise 1: Without Containers

All of the example workflows described in the previous section can be generated with the pegasus-init command. For
this tutorial we will be using the split workflow, which can be created like this:

$ pegasus-init split
Do you want to generate a tutorial workflow? (y/n) [n]: y
1: Local Machine
2: USC HPCC Cluster
3: OSG from ISI submit node
4: XSEDE, with Bosco
5: Bluewaters, with Glite
What environment is tutorial to be setup for? (1-5) [1]: 3
1: Process
2: Pipeline
3: Split
4: Merge
5: EPA (requires R)
What tutorial workflow do you want? (1-5) [1]: 3
Do you want to use Condor file transfers (y/n) [y]: y
Pegasus Tutorial setup for example workflow - split for execution on osg

The split workflow looks like this:

16.4. 3. Exercise 1: Without Containers 143

CyVerse Documentation, Release 0.1.0

The input workflow description for Pegasus is called the DAX. It can be generated by running the generate_dax.sh
script from the split directory, like this:

$./generate_dax.sh split.dax
Generated dax split.dax

This script will run a small Python program (daxgen.py) that generates a file with a .dax extension using the Pegasus
Python API. Pegasus reads the DAX and generates an executable HTCondor workflow that is run on an execution site.

The pegasus-plan command is used to submit the workflow through Pegasus. The pegasus-plan command reads
the input workflow (DAX file specified by –dax option), maps the abstract DAX to one or more execution sites,
and submits the generated executable workflow to HTCondor. Among other things, the options to pegasus-plan tell
Pegasus

• the workflow to run

• where (what site) to run the workflow

• the input directory where the inputs are placed

• the output directory where the outputs are placed

By default, the workflow is setup to run on the compute sites (i.e sites with handle other than “local”) defined in the
sites.xml file. In our example, the workflow will run on a site named “condorpool” in the sites.xml file.

$./plan_dax.sh split.dax

File for submitting this DAG to HTCondor : split-0.dag.condor.sub
Log of DAGMan debugging messages : split-0.dag.dagman.out
Log of HTCondor library output : split-0.dag.lib.out
Log of HTCondor library error messages : split-0.dag.lib.err
Log of the life of condor_dagman itself : split-0.dag.dagman.log

Submitting to condor split-0.dag.condor.sub
Submitting job(s).
1 job(s) submitted to cluster 920589.

Your workflow has been started and is running in the base directory:

/split/submit/pegtrain50/pegasus/split/run0001

*** To monitor the workflow you can run ***

pegasus-status -l /split/submit/pegtrain50/pegasus/split/run0001

*** To remove your workflow run ***

pegasus-remove /split/submit/pegtrain50/pegasus/split/run0001

This is what the split workflow looks like after Pegasus has finished planning the DAX:

144 Chapter 16. Pegasus Workflows with Application Containers

CyVerse Documentation, Release 0.1.0

You can monitor the workflow with the pegasus-status command provided in the output of the plan_dax.sh command:

pegasus-status -l /split/submit/pegtrain50/pegasus/split/run0001

More details on how to run basic workflow can be found in the Pegasus Tutorial

16.4. 3. Exercise 1: Without Containers 145

https://pegasus.isi.edu/documentation/tutorial.php

CyVerse Documentation, Release 0.1.0

16.5 4. Exercise 2: With Containers

Now when we have a basic understanding of what a Pegasus workflow looks like, let’s use containers to run some real
science codes. This example is based on IPAC’s Montage toolkit, which is used to process and create astronomical
image mosaics of from telescope images datasets. The workflow has a few software dependencies: Montage obviously,
but also Python modules like AstroPy. These could be installed on the cluster you want to run the workflow on, but
using containers makes it even easier!

Not only will we make the compute jobs run inside containers, but also the data find step needed to construct the
workflow. IPAC provides services to list the images available for a given location in the sky (for example, see the
documentation for mArchiveList). For this querying we will use the same container as the jobs will be using. To get
started, clone the Montage workflow from GitHub, and run the data find step:

$ cd ~
$ git clone https://github.com/pegasus-isi/montage-workflow-v2.git
$ cd montage-workflow-v2
$ singularity exec \

--bind $PWD:/srv --pwd /srv \
shub://pegasus-isi/montage-workflow-v2 \
/srv/montage-workflow.py \

--tc-target container \
--center "275.196290 -16.171530" \
--degrees 0.2 \
--band 2mass:j:green \
--band 2mass:h:blue \
--band 2mass:k:red

The three different band arguments specify different bands that we want to find images for, and map to blue, green,
and red in to the final image. The output of the command should show a few images found for each band:

Progress |===================================| 100.0%

Adding band 1 (2mass j -> green)
Running sub command: mArchiveList 2mass j "275.196290 -16.171530" 0.284 0.284 data/1-
→˓images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 1-images.tbl region-oversized.hdr 1-raw.tbl
→˓1-projected.tbl 1-corrected.tbl
[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 1-raw.tbl 1-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]

Adding band 2 (2mass h -> blue)
Running sub command: mArchiveList 2mass h "275.196290 -16.171530" 0.284 0.284 data/2-
→˓images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 2-images.tbl region-oversized.hdr 2-raw.tbl
→˓2-projected.tbl 2-corrected.tbl
[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 2-raw.tbl 2-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]

Adding band 3 (2mass k -> red)
Running sub command: mArchiveList 2mass k "275.196290 -16.171530" 0.284 0.284 data/3-
→˓images.tbl
[struct stat="OK", module="mArchiveList", count=8]
Running sub command: cd data && mDAGTbls 3-images.tbl region-oversized.hdr 3-raw.tbl
→˓3-projected.tbl 3-corrected.tbl (continues on next page)

146 Chapter 16. Pegasus Workflows with Application Containers

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/docs/mArchiveList.html

CyVerse Documentation, Release 0.1.0

(continued from previous page)

[struct stat="OK", count="8", total="8"]
Running sub command: cd data && mOverlaps 3-raw.tbl 3-diffs.tbl
[struct stat="OK", module="mOverlaps", count=13]

The data/ directory contains the imformation about the input images, the generated workflow (data/montage.dax) and
the transformation catalog (data/tc.txt) which tells Pegasus where software is available. A job in the data/montage.dax
file might look like:

<job id="ID0000001" name="mProject">
<argument>-X <file name="2mass-atlas-990502s-j1420198.fits"/> <file name="p2mass-

→˓atlas-990502s-j1420198.fits"/> <file name="region-oversized.hdr"/></argument>
<uses name="region-oversized.hdr" link="input"/>
<uses name="2mass-atlas-990502s-j1420198.fits" link="input"/>
<uses name="p2mass-atlas-990502s-j1420198.fits" link="output" transfer="false"/>
<uses name="p2mass-atlas-990502s-j1420198_area.fits" link="output" transfer="false

→˓"/>
</job>

data/tc.txt has the specification on how mProject can be executed:

tr mProject {
site condor_pool {
type "INSTALLED"
container "montage"
pfn "file:///opt/Montage/bin/mProject"
profile pegasus "clusters.size" "3"

}
}

Note the container “montage” part - this is a reference to the top of the file which has:

cont montage {
type "singularity"
image "shub://pegasus-isi/montage-workflow-v2"
profile env "MONTAGE_HOME" "/opt/Montage"

}

Which is the same container we used for the data find step. Note that container images is just like any other piece of
data to Pegasus. In this case, the image will be downloaded once from the Singularity Hub, and then shipped around
to the jobs with the same mechanism as any other data in the workflow.

There is currently a small issue by running the data find step inside a container - the paths for the files are based on
paths in the container which are different from what Pegasus expects on the submit host. The following command
adjusts those paths:

$ perl -p -i -e "s;/srv/data;$PWD/data;g" data/rc.txt

Now we are are ready to plan and submit the workflow:

$ pegasus-plan \
--dir work \
--relative-dir `date +'%s'` \
--dax data/montage.dax \
--sites condor_pool \
--output-site local \
--submit

16.5. 4. Exercise 2: With Containers 147

CyVerse Documentation, Release 0.1.0

The workflow will looks something like this:

The first level reprojects the input images to a common projection. The images are then fitted together. A background
correction is applied so that the the final image will be seamless. The last step is to take the 3 different color bands,
and add them together into a final output image:

148 Chapter 16. Pegasus Workflows with Application Containers

CyVerse Documentation, Release 0.1.0

To see how Pegasus handled the container in this case, let’s look at some plumming for one of the mProject job. The
HTCondor submit file can be seen with:

$ cat `find . -name mProject_ID0000002.sub`

Look at the transfer_input_files attribute line, and specifically for the montage.simg file. It is transferred together with
all the other inputs for the job:

transfer_input_files = region-oversized.hdr,2mass-atlas-990502s-j1350092.fits,montage.
→˓simg,/opt/training/pegasus-4.8.2dev/share/pegasus/sh/pegasus-lite-common.sh,/
→˓scitech/home/pegtrain99/montage-workflow-v2/work/1520295762/pegasus-worker-4.8.2dev-
→˓x86_64_rhel_7.tar.gz

(continues on next page)

16.5. 4. Exercise 2: With Containers 149

CyVerse Documentation, Release 0.1.0

(continued from previous page)

Looking at the corresponding .sh file we can see how Pegasus executed the container:

$ cat `find . -name mProject_ID0000002.sh`
...
singularity exec --pwd /srv --scratch /var/tmp --scratch /tmp --home $PWD:/srv
→˓montage.simg ./mProject_ID0000002-cont.sh
...

The ./mProject_ID0000002-cont.sh is a script generated at runtime, containing the execution of the user codes.

150 Chapter 16. Pegasus Workflows with Application Containers

CHAPTER 17

Distributed Computing with Makeflow and Work Queue

17.1 1. Prerequisites

‘ssh’ will be used to connect to a remote job submit host. Please ensure you have a ssh client installed. The instructors
will supply a slip of paper with username, password and hostname during the session.

This tutorial will also be linked to from our tutorial webpage: http://ccl.cse.nd.edu/software/tutorials/cyversecc18/

Our website is located at: http://ccl.cse.nd.edu/

You can get the slides from this talk there as well as additional material for our tools.

17.2 2. Cooperative Computing Lab

The CCL designs software that enables our collaborators to easily harness large scale distributed systems such as
clusters, clouds, and grids. We perform fundamental computer science research that enables new discoveries through
computing in fields such as physics, chemistry, bioinformatics, biometrics, and data mining.

The software suite we write and maintain is the CCTools software package.

• Makeflow. A portable workflow manager. Link

• Work Queue. A lightweight distributed execution system. Link

• Parrot. A personal user-level virtual file system. Link

• Chirp. A user-level distributed filesystem. Link

• Specialized Software. A selection of applications tailored to specific compuation tasks.

17.3 2. Makeflow

Makeflow is a workflow system for executing large complex workflows on clusters, clouds, and grids.

151

http://ccl.cse.nd.edu/software/tutorials/cyversecc18/
http://ccl.cse.nd.edu/
http://ccl.cse.nd.edu/software/makeflow/
http://ccl.cse.nd.edu/software/workqueue/
http://ccl.cse.nd.edu/software/parrot/
http://ccl.cse.nd.edu/software/chirp/

CyVerse Documentation, Release 0.1.0

• Makeflow is easy to use. The Makeflow language is similar to traditional Make, so if you can write a Makefile,
then you can write a Makeflow. A workflow can be just a few commands chained together, or it can be a complex
application consisting of thousands of tasks. It can have an arbitrary DAG structure and is not limited to specific
patterns.

• Makeflow is production-ready. Makeflow is used on a daily basis to execute complex scientific applications
in fields such as data mining, high energy physics, image processing, and bioinformatics. It has run on campus
clusters, the Open Science Grid, NSF XSEDE machines, NCSA Blue Waters, and Amazon Web Services. Here
are some real examples of workflows used in production systems:

• Makeflow is portable. A workflow is written in a technology neutral way, and then can be deployed to a
variety of different systems without modification, including local execution on a single multicore machine,
public cloud services such as Amazon EC2 and Amazon Lambda, batch systems like HTCondor, SGE, PBS,
Torque, SLURM, or the bundled Work Queue system. Makeflow can also easily run your jobs in a container
environment like Docker or Singularity on top of an existing batch system. The same specification works for all
systems, so you can easily move your application from one system to another without rewriting everything.

• Makeflow is powerful. Makeflow can handle workloads of millions of jobs running on thousands of machines
for months at a time. Makeflow is highly fault tolerant: it can crash or be killed, and upon resuming, will
reconnect to running jobs and continue where it left off. A variety of analysis tools are available to understand
the performance of your jobs, measure the progress of a workflow, and visualize what is going on.

17.4 2. Work Queue

Work Queue is a framework for building large master-worker applications that span thousands of machines drawn
from clusters, clouds, and grids. Work Queue applications are written in C, Perl, or Python using a simple API that
allows users to define tasks, submit them to the queue, and wait for completion. Tasks are executed by a standard
worker process that can run on any available machine. Each worker calls home to the master process, arranges for data
transfer, and executes the tasks. The system handles a wide variety of failures, allowing for dynamically scalable and
robust applications.

Work Queue has been used to write applications that scale from a handful of workstations up to tens of thousands
of cores running on supercomputers. Examples include Lobster, NanoReactors, ForceBalance, Accelerated Weighted
Ensemble, the SAND genome assembler, the Makeflow workflow engine, and the All-Pairs and Wavefront abstrac-
tions. The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing,
distributed computing, and cyberinfrastructure at the University of Notre Dame, the University of Arizona, and the
University of Wisconsin - Eau Claire.

17.5 3. Makeflow Tutorial

This tutorial goes through the installation process of CCTools, the creation and running of a Makeflow, and how to
use Makeflow in conjunction with Work Queue to leverage different execution resources for your execution. More
information can be found a http://ccl.cse.nd.edu/. For specific information on Makeflow execution see http://ccl.cse.nd.
edu/software/manuals/makeflow.html and Work Queue see http://ccl.cse.nd.edu/software/manuals/workqueue.html.

17.6 3.1. Running on Atmosphere/Jetstream

To start out we are going to launch an instance:

We are going to be using an Ubuntu instance with Docker already installed: Ubuntu 16.04 Devel and Docker v.1.13

Please note you should use images of at least Medium size.

152 Chapter 17. Distributed Computing with Makeflow and Work Queue

http://ccl.cse.nd.edu/
http://ccl.cse.nd.edu/software/manuals/makeflow.html
http://ccl.cse.nd.edu/software/manuals/makeflow.html
http://ccl.cse.nd.edu/software/manuals/workqueue.html
https://use.jetstream-cloud.org/application/images/107

CyVerse Documentation, Release 0.1.0

Once the instance is up, we are going to add a few packages to allow for easy installation. Most of these packages are
already installed on batch submission sites, but possibly not in all Jetstream instances.

$ sudo apt-get install zlib1g-dev libncurses5-dev g++

Additionally, we are going to add our current user to the docker group:

$ sudo usermod -aG docker ${USER}

We are also going to install Singularity if you have not done so yet. This should be done using the provided ansible
script:

$ ezs

After adding this log out and back in.

$ exit

Now re-open the in web-shell. Once you are logged back in, we are going to pull the docker image we will use today:

$ docker pull nekelluna/ccl_makeflow_examples
$ docker save -o mfe.tar nekelluna/ccl_makeflow_examples
$ singularity pull docker://nekelluna/ccl_makeflow_examples

Note: If you would like to test this out with Work Queue on another machine, now is a great time to launch and do
these setup steps on each machine. Hint hint you should do this.

17.7 3.2. Download and Installation

Once you have a shell, download and install the CCTools software in your home directory in one of two ways:

To build our latest release:

$ wget http://ccl.cse.nd.edu/software/files/cctools-6.2.6-source.tar.gz
$ tar zxpvf cctools-6.2.6-source.tar.gz
$ cd cctools-6.2.6-source
$./configure --prefix $HOME/cctools --tcp-low-port 9000 --tcp-high-port 9500
$ make
$ make install
$ cd $HOME

If you use bash then do this to set your path:

$ export PATH=$HOME/cctools/bin:$PATH

If you use tcsh instead, then do this:

$ setenv PATH $HOME/cctools/bin:$PATH

Now double check that you can run the various commands, like this:

$ makeflow -v
$ work_queue_worker -v
$ work_queue_status

17.7. 3.2. Download and Installation 153

CyVerse Documentation, Release 0.1.0

17.8 3.3. Getting Makeflow-Examples

As a good reference point for workflow design and examples we are going to use our Makeflow Examples repository.

$ git clone https://github.com/cooperative-computing-lab/makeflow-examples.git
-- or --

$ wget https://github.com/cooperative-computing-lab/makeflow-examples/archive/master.
→˓zip

If you used wget to pull down the zip file remember to unzip and enter this directory:

$ unzip master.zip
$ mv master makeflow-examples
$ cd makeflow-examples

17.9 4.1. Makeflow Example

Let’s begin by using Makeflow to run a handful of simulation codes. First, make and enter a clean directory to work
in inside of makeflow-examples:

$ cd $HOME/makeflow-examples
$ mkdir tutorial
$ cd tutorial

Download this program, which performs a highly sophisticated simulation of black holes colliding together:

$ wget http://ccl.cse.nd.edu/software/tutorials/cyversecc18/simulation.py

Try running it once, just to see what it does:

$ chmod 755 simulation.py
$./simulation.py 5

Now, let’s use Makeflow to run several simulations. Create a file called example.makeflow and paste the following
text into it:

input.txt:
LOCAL /bin/echo "Hello Makeflow!" > input.txt

output.1: simulation.py input.txt
./simulation.py 1 < input.txt > output.1

output.2: simulation.py input.txt
./simulation.py 2 < input.txt > output.2

output.3: simulation.py input.txt
./simulation.py 3 < input.txt > output.3

output.4: simulation.py input.txt
./simulation.py 4 < input.txt > output.4

To run it on your local machine, one job at a time:

$ makeflow example.makeflow -j 1

154 Chapter 17. Distributed Computing with Makeflow and Work Queue

https://github.com/cooperative-computing-lab/makeflow-examples

CyVerse Documentation, Release 0.1.0

Note that if you run it a second time, nothing will happen, because all of the files are built:

$ makeflow example.makeflow
$ makeflow: nothing left to do

Use the -c option to clean everything up before trying it again:

$ makeflow -c example.makeflow

Here are some other options for built-in batch systems:

$ makeflow -T slurm example.makeflow
$ makeflow -T torque example.makeflow
$ makeflow -T sge example.makeflow

17.10 4.2. Running Makeflow with Work Queue

You will notice that a workflow can run very slowly if you submit each job individually. To get around this limitation,
we provide the Work Queue system. This allows Makeflow to function as a master process that quickly dispatches
work to remote worker processes.

$ makeflow -c example.makeflow
$ makeflow -T wq example.makeflow -p 0
listening for workers on port XXXX.
...

Now open up another shell and run a single worker process:

$ work_queue_worker crcfe01.crc.nd.edu XXXX

Go back to your first shell and observe that the makeflow has finished. Of course, remembering port numbers all the
time gets old fast, so try the same thing again, but using a project name:

$ makeflow -c example.makeflow
$ makeflow -T wq example.makeflow -N project-$USER
listening for workers on port XXXX
...

Now open up another shell and run your worker with a project name:

$ work_queue_worker -N project-$USER

17.11 5. Using Containers with Makeflow

We are going to start using Containers in the Makeflow by showing the different configurations that we talked about
in the slides. There is a simple, 1 rule, makeflow that we will use to show these:

hello.out:
echo "hello, world!" > hello.out

The first configuration we discussed would be to run both the Makeflow and the Worker inside of container to allow
for a consistent environment.

17.10. 4.2. Running Makeflow with Work Queue 155

CyVerse Documentation, Release 0.1.0

We will not do this here, as that is extremely similar to running in Atmosphere/Jetstream to begin with. This is great
way to test out different software configurations when determining what is needed for a workflow and how different
software will interact.

The second configuration is to run each task inside of separate containers. This configuration is useful for specializing
the configuration each task uses and not assuming the execution site has any software requirements aside from docker
or singularity.

Assuming we are wrapping each task in a container, there are two ways to do this in Makeflow. The first is to manually
add the container to your command. This allows for precise control of how the task is executed and in which container
this occurs. We will show this now:

We are going to look at what the hello-containers folder:

$ cd $HOME/makeflow-examples
$ cd hello-containers

Inside of the hello-containers folder, there is a python script, hello_world_creator.py, that will create
a simple hello world example which uses a container:

To test with Docker:

$ python hello_world_creator.py --docker nekelluna/ccl_makeflow_examples

To test with Singularity

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ python hello_world_creator.py --singularity ccl_makeflow_examples.simg

After running these, look at hello_world.mf and see how the above run has been wrapped by the container
command. Now we are just going to run this locally:

$ makeflow hello_world.mf -T local

Now, instead of wrapping each task by hand, we are going to assume that each task will use the same container. For
this we will use Makeflow’s built in support for containers. We will assume that the above steps for either docker or
singularity have been done:

$ cd $HOME/makeflow-examples
$ cd hello-world

We are going to start from the existing hello-world example. To run Makeflow with either docker or singularity
we specify the container in the arguments:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow hello_world.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.
→˓tar

Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow hello_world.mf --singularity=ccl_makeflow_examples.simg

We have three additional examples that will work with the above provided container.

• 5.1. BLAST in a Container

• 5.2. BWA in a Container

156 Chapter 17. Distributed Computing with Makeflow and Work Queue

CyVerse Documentation, Release 0.1.0

• 5.3. Text Analysis in a Container

Each of these examples may have a small amount of setup to pull/compile the software needed.

17.12 5.1. BLAST in a Container

BLAST is a common bioinformatic application used for determining alignment of a query dataset with a known
reference set. BLAST compares each line independently of each other, allowing for clear parallelism opportunities.

$ cd $HOME/makeflow-examples
$ cd blast

We use an older BLAST executable for this example, as this creation script has not been changed. These commands
pull down the executable and a reference database.

$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/legacy.NOTSUPPORTED/2.2.26/blast-
→˓2.2.26-x64-linux.tar.gz
$ tar xvzf blast-2.2.26-x64-linux.tar.gz
$ cp blast-2.2.26/bin/blastall .
$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt.44.tar.gz
$ mkdir nt
$ tar -C nt -xvzf nt.44.tar.gz

We are now going to generate a random data set to align with the reference:

$./fasta_generator 200 1000 > test.fasta

Based on the generated data, we will now write a makeflow:

$./makeflow_blast -d nt -i test.fasta -p blastn --num_seq 5 --makeflow blast_test.mf

Assuming you have already pulled the images needed for either singularity or docker we will run them similarly to
how it was done above:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow blast_test.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar

Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow blast_test.mf --singularity=ccl_makeflow_examples.simg

17.13 5.2. BWA in a Container

BWA is similar to BLAST in that it is a bioinformatics tool that aligns a query dataset with a reference dataset. BWA
does not operate on highly structured reference data like BLAST, but uses a fasta or fastq data file for both the query
and reference.

$ cd $HOME/makeflow-examples
$ cd bwa

We will download and compile the software:

17.12. 5.1. BLAST in a Container 157

CyVerse Documentation, Release 0.1.0

$ git clone https://github.com/lh3/bwa bwa-src
$ cd bwa-src
$ make
$ cp bwa ..
$ cd ..

Create the data we will use for the analysis:

$./fastq_generate.pl 10000 1000 > ref.fastq
$./fastq_generate.pl 1000 100 ref.fastq > query.fastq

The first line creates the reference dataset and the second will create a query dataset based on a portion of the provided
reference dataset. This allows us to guarantee there will be some overlap and data analysis at each step for this
example.

Now we will create the makeflow based on the input dataset:

$./make_bwa_workflow --ref ref.fastq --query query.fastq --num_seq 100 > bwa.mf

Again assuming that the docker and singularity images have been pulled down, run the makeflow:

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow bwa.mf --docker=nekelluna/ccl_makeflow_examples --docker-tar=mfe.tar

Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow bwa.mf --singularity=ccl_makeflow_examples.simg

17.14 5.3. Text Analysis in a Container

The test analysis example that we are providing is a simple makelfow that analyzes a set of Shakespeare’s plays. This
workflow gives an example of using Makeflow to parallelize a text search through a collection of William Shake-
speare’s plays. Makeflow will download the plays, package up the version of Perl at the location Makeflow is running,
and run a text analysis Perl script in parallel to figure out which character had the most dialogue out of the plays
selected.

$ cd $HOME/makeflow-examples
$ cd shakespeare

This workflow relys on Perl and CCTools being installed, so there is no further setup needed.

Docker:

$ ln -s $HOME/mfe.tar mfe.tar
$ makeflow shakespeare.makeflow --docker=nekelluna/ccl_makeflow_examples --docker-
→˓tar=mfe.tar

Singularity:

$ ln -s $HOME/ccl_makeflow_examples.simg ccl_makeflow_examples.simg
$ makeflow shakespeare.makeflow --singularity=ccl_makeflow_examples.simg

158 Chapter 17. Distributed Computing with Makeflow and Work Queue

CHAPTER 18

Introduction to Biocontainers

BioContainers is a community-driven project that provides the infrastructure and basic guidelines to create, man-
age and distribute Bioinformatics containers with special focus in Proteomics, Genomics, Transcriptomics and
Metabolomics. BioContainers is based on the popular frameworks of Docker.

BioContainers Goals:

• Provide a base specification and images to easily build and deploy new bioinformatics/proteomics software
including the source and examples.

• Provide a series of containers ready to be used by the bioinformatics community (https://github.com/
BioContainers/containers).

• Define a set of guidelines and specifications to build a standardized container that can be used in combination
with other containers and bioinformatics tools.

• Define a complete infrastructure to develop, deploy and test new bioinformatics containers using continuous
integration suites such as Travis Continuous Integration (https://travisci. org/), Shippable (https://app.shippable.
com/) or manually built solutions.

• Provide support and help to the bioinformatics community to deploy new containers for researchers that do not
have bioinformatics support.

• Provide guidelines and help on how to create reproducible pipelines by defining, reusing and reporting specific
container versions which will consistently produce the exact same result and always be available in the history
of the container.

• Coordinate and integrate developers and bioinformaticians to produce best practice of documentation and soft-
ware development.

18.1 Developing biocontainers

18.1.1 1. Docker based Biocontainers

1.1 - How to Request a Biocontainer?

159

https://github.com/BioContainers/containers
https://github.com/BioContainers/containers
https://travisci
https://app.shippable.com/
https://app.shippable.com/

CyVerse Documentation, Release 0.1.0

Users can request a container by opening an issue in the containers repository

The issue should contains the name of the software, the url of the code or binary to be package and information about
the software. When the containers is deployed and fully functional, the issue will be closed by the developer or the
contributor to BioContainers.

1.1.1 - Use a BioContainer

When a container is deployed and the developer closes the issue in GitHub the user received a notification that the
container is ready.

160 Chapter 18. Introduction to Biocontainers

http://github.com/BioContainers/containers/issues

CyVerse Documentation, Release 0.1.0

18.1. Developing biocontainers 161

CyVerse Documentation, Release 0.1.0

The user can then use docker pull or docker run for the corresponding container from quay.io/biocontainers. For
example

docker pull quay.io/biocontainers/khmer:2.1.2--py36_0

Note: Reporting a problem with a container: If the user find a problem with a container an issue should be open in
the container repository, the user should use the broken tag (see tags). Developers of the project will pick-up the issue
and deploy a new version of the container. A message will be delivered when the containers has been fixed.

162 Chapter 18. Introduction to Biocontainers

CyVerse Documentation, Release 0.1.0

1.2 - Create a Dockerfile for Biocontainer

If you are familiar with Docker (which you are by now!), then instead of requesting a biocontainer, you can create a
Dockerfile and then submit the Dockerfile for biocontainer

• BioContainers dockerfile template

Note: Please always follow the best practices and help pages using input and output files information.

Below is the complete example of a BioContainers Dockerfile:

Base Image
FROM biocontainers/biocontainers:latest

Metadata
LABEL base.image="biocontainers:latest"
LABEL version="3"
LABEL software="Comet"
LABEL software.version="2016012"
LABEL description="an open source tandem mass spectrometry sequence database search
→˓tool"
LABEL website="http://comet-ms.sourceforge.net/"
LABEL documentation="http://comet-ms.sourceforge.net/parameters/parameters_2016010/"
LABEL license="http://comet-ms.sourceforge.net/"
LABEL tags="Proteomics"

Maintainer
MAINTAINER Felipe da Veiga Leprevost <felipe@leprevost.com.br>

USER biodocker

RUN ZIP=comet_binaries_2016012.zip && \
wget https://github.com/BioDocker/software-archive/releases/download/Comet/$ZIP -O /

→˓tmp/$ZIP && \
unzip /tmp/$ZIP -d /home/biodocker/bin/Comet/ && \
chmod -R 755 /home/biodocker/bin/Comet/* && \
rm /tmp/$ZIP

RUN mv /home/biodocker/bin/Comet/comet_binaries_2016012/comet.2016012.linux.exe /home/
→˓biodocker/bin/Comet/comet

ENV PATH /home/biodocker/bin/Comet:$PATH

WORKDIR /data/

CMD ["comet"]

1.2.1 - Run it!, Test it! Once the container is ready you should test it, try to run your program using the run command,
check if all its functionalities are in order.

1.2.2 - Contribute if everything looks OK. You can contribute to the BioContainers project by sending your Dockerfile.

18.1.2 2. Bioconda based Biocontainers

In contrast to traditional Biocontainers, Bioconda based Biocontainers offers a very easy way to create efficient con-
tainers that are minimal in size, tested and not rely on writing a Dockerfile.

18.1. Developing biocontainers 163

CyVerse Documentation, Release 0.1.0

The preferred way to do this is to write a conda package and submit this it the BioConda communtiy. As soon as your
PR is merged and continues integration testing was successful, a container is built and publish it at quay.io.

In summary, a BioConda recipe should contain the following parts:

• Source URL is stable (details)

• md5 or sha256 hash included for source download (details)

• Appropriate build number (details)

• .bat file for Windows removed (details)

• Remove unnecessary comments (details)

• Adequate tests included

• Files created by the recipe follow the FSH (details)

• License allows redistribution and license is indicated in meta.yaml

• Package does not already exist in the defaults, r, or conda-forge channels with some exceptions (details)

• Package is appropriate for bioconda

• If the recipe installs custom wrapper scripts, usage notes should be added to extra -> notes in the meta.yaml.

Example Yaml for unicycler tool:

package:
name: unicycler
version: 0.3.0b

build:
number: 0
skip: True # [py27]

source:
fn: unicycler_0.3.0b.tar.gz
url: https://github.com/rrwick/Unicycler/archive/

→˓906a3e7f314c7843bf0b4edf917593fc10baee4f.tar.gz
md5: 5f06d2bd8ef5065c8047421db8c7895f

requirements:
build:
- python
- setuptools
- gcc

run:
- python
- libgcc
- spades >=3.6.2
- pilon
- java-jdk
- bowtie2
- samtools >=1.0
- blast
- freebayes

test:
commands:
- unicycler -h

(continues on next page)

164 Chapter 18. Introduction to Biocontainers

https://quay.io/organization/biocontainers

CyVerse Documentation, Release 0.1.0

(continued from previous page)

- unicycler_align -h
- unicycler_check -h
- unicycler_polish -h

about:
home: https://github.com/rrwick/Unicycler
license: GPL-3.0
license_file: LICENSE
summary: 'Hybrid assembly pipeline for bacterial genomes'

When the recipe is ready a Pull Request should be created on the bioconda-recipes github repo. Finally the container
is automatically created for the new BioConda Package if everything is corrected

The following are the detailed steps involved in creating bioconda based biocontainers:

2.1 - One-time Setup

2.1.1 - Install Bioconda

Bioconda is a channel for the conda package manager specializing in bioinformatics software. It consists of:

• A repository of recipes hosted on GitHub

• A build system that turns these recipes into conda packages

• A repository of >1500 bioinformatics packages ready to use with a simple conda install command

Over 130 contributors that add, modify, update and maintain the recipes

Important: Recipe vs package A recipe is a directory containing small set of files that defines name, version,
dependencies, and URL for source code. A recipe typically contains a meta.yaml file that defines these settings and a
build.sh script that builds the software. A recipe is converted into a package by running “conda-build” on the recipe.
A package is a bgzipped tar file (.tar.bz2) that contains the built software. Packages are uploaded to anaconda.org so
that users can install them with “conda install” command.

Bioconda requires the conda package manager to be installed. If you have an Anaconda Python installation, you
already have it. Otherwise, the best way to install it is with the Miniconda package.

Warning: Bioconda supports only 64-bit Linux and Mac OSX. The Python 3 version is recommended.

Install miniconda specific for your platform. The following code shows the Miniconda installation on MacOSX and
Linux

• MacOSX

wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh

• Linux

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Accept all the default settings and let conda prepend the PATH in ~/.bashrc

18.1. Developing biocontainers 165

https://bioconda.github.io/contribute-a-recipe.html#push-changes-wait-for-tests-to-pass-submit-pull-request

CyVerse Documentation, Release 0.1.0

source ~/.bashrc

If you already have miniconda installed on your MacOSX/Linux, you can update that using

conda upgrade conda
conda upgrade conda-build

2.1.2 - Setting up of Channels of Bioconda

After installing conda you will need to add the Bioconda channel as well as the other channels Bioconda depends on.
It is important to run the following commands in this order so that the priority is set correctly.

conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda

2.1.3 - Test Bioconda installation

After installing Bioconda and setting-up channels, test to see if the installation of Bioconda worked properly by
installing a package

conda install <package>

Example
conda install bwa
Or a specific version can be installed like this
conda install bwa=0.7.12

If there are no errors during installation of bwa, your Bioconda set-up is complete

2.1.4 - Next, create a fork of bioconda-recipes repo onto your GitHub account and then clone it locally.

Warning: Create a github account if you don’t have one already.

git clone https://github.com/<githubUSERNAME>/bioconda-recipes.git

2.1.5 - Add the main bioconda-recipes repo as an upstream remote to more easily update your branch with the upstream
master branch

cd bioconda-recipes
git remote add upstream https://github.com/bioconda/bioconda-recipes.git

2.1.6 - Request to be added to the Bioconda team

While not required, you can be added to the Bioconda by posting in Issue #1. Members of the Bioconda team can
merge their own recipes once tests pass, though we ask that first-time contributions and anything out of the ordinary
be reviewed by the @bioconda/core team.

Even if you are a member of the Bioconda team with push access, using your own fork will allow testing of your
recipes on travis-ci using your own account’s free resources without consuming resources allocated by travis-ci to the
Bioconda group. This makes the tests go faster for everyone.

Create the Tool’s Required Bioconda recipe (for generating Biocontainers)

2.1.7 - Update Bioconda repo and requirements

166 Chapter 18. Introduction to Biocontainers

https://github.com/bioconda/bioconda-recipes/issues/1

CyVerse Documentation, Release 0.1.0

Before starting, it’s best to update your fork with any changes made recently to the upstream Bioconda repo. Assuming
you’ve set up your fork as above:

git checkout master
git pull upstream master

2.1.8 - Checkout a new branch

Check out a new branch in your fork (here the branch is arbitrarily named my-recipe):

git checkout -b my-recipe

2.1.9 - Create the recipe

Before you create a recipe, make sure to check that package exists for that recipe. If the package is already present,
then you don’t need to create the recipe. There are couple of ways to check for the package

1. Search for the package name in here

2. Search for the package name on the command line

conda search <package> -c bioconda

Example
conda search taco -c bioconda

If the package of your interest, is not available, you can create the Bioconda recipe for the tool of your interest as
below

conda skeleton <source> <package>

Note: Source: The source of the tool can be pypi, cran, bioconductor or cpan. Guidelines for Bioconda recipe
Package: The name of the package

If the tool is not available from any of the above sources, then you need to generate a Bioconda package from scratch.

2.2.0 - Test it locally

After creating your recipe (using one of the above methods), to make sure your recipe works, you need to test it locally.
There are two options.

2.2.1 - Quick test

The quickest, but not necessarily most complete, is to run conda-build command directly

conda install conda-build
conda build ./<package>

Example
conda build bowtie2/2.2.4

2.2.2 - Push your changes to your fork on github repo

Once your tests are successful, before pushing your changes to your fork on github, it is best to merge any changes
that have happened recently on the upstream master branch. See sycncing a fork for details, or run

git fetch upstream

syncs the fork’s master branch with upstream

18.1. Developing biocontainers 167

http://bioconda.github.io/recipes.html
https://bioconda.github.io/guidelines.html

CyVerse Documentation, Release 0.1.0

git checkout master
git merge upstream/master

merges those changes into the recipe’s branch

git checkout my-recipe
git merge master

push your changes to your fork on github
git push origin my-recipe

2.2.3 - Open a pull request on the bioconda-recipes repo

Tip: If it’s your first recipe or the recipe is doing something non-standard, please ask @bioconda/core for a review.

2.2.4 - Test the built bioconda package and Biocontainer

After the pull request, travis-ci will again do the builds to make sure everthing works. When the pull request is merged
with the master branch by Bioconda team, the package will be uploaded to anaconda.org and Biocontainers will be
pushed to quay.io.

2.2.5 - Testing the Bioconda package

Once the Bioconda package is available on Anaconda and biocontainer is available on quay.io, it may be a good idea
to test those in staging first, so that production jobs aren’t interrupted.

2.2.5.1 - Install the built Bioconda package from Anaconda (optional but recommended)

conda create -n myenvironment my-package # This is optional but it is always good to
→˓test this

This method will install the package in the /home/username/minconda3/envs/myenvironment/bin

2.2.5.2 - Testing the Biocontainer

• Pull your Biocontainer from quay.io of your new recipe (Mandatory)

docker pull quay.io/biocontainers/<my-package>:<version-number>--<python-version>_
→˓<built-number>

Run the tool’s Biocontainer using the image:tag name, sample parameters, and inputs given in the tool request with a
docker run command.

If the tool crashes, or the output does not match the sample output, contact the Bioconda or the user who creates the
Biocontainers. Clean up any data containers and dangling images created in testing with docker rm -v and docker rmi
commands. This command will cleanup any ‘dangling’ images:

docker rmi $(docker images -f 'dangling=true' -q)

18.2 The BioContainers Registry

BioContainers Registry UI provides the interface to search, tag, and document a BioContainers across all the registries.

168 Chapter 18. Introduction to Biocontainers

CyVerse Documentation, Release 0.1.0

The users can search containers by using the search box

18.2. The BioContainers Registry 169

CyVerse Documentation, Release 0.1.0

The containers registry allow the users to sort the containers by any of these properties:

• Container Name: Container Name

• Description: Description Provided by the developer of the container.

• Real Name: The corresponding registry + container name

• Last Modified: Last date where the container has been modified.

• Starred/Start: If the container has been starred in any of the repos.

170 Chapter 18. Introduction to Biocontainers

CyVerse Documentation, Release 0.1.0

• Popularity: How many times a container has been pull from a registry.

• Registry Link: the registry Link.

18.2. The BioContainers Registry 171

CyVerse Documentation, Release 0.1.0

172 Chapter 18. Introduction to Biocontainers

CHAPTER 19

Biocontainers in HPC

On HPC systems, the traditional way to make software available is through the “modules” system. The modules system
allows administrators to install hundreds of scientific software packages on a system, including multiple versions of
the same package, and then users can select the packages they want loaded into their environment.

Adding a package into the modules system can take a lot of work. At TACC, the process of adding a module looks
something like this:

1. Manually install the software on the system as a test to figure out the best compiler optimizations, account for
any dependencies, etc.

2. Encode the installation process into an RPM file, add relevant metadata to the RPM, and craft a “modulefile”
that lets the modules system discover the app.

3. Build the RPM and put the compiled package in a designated location.

4. Send a ticket to the administrators so that they can install the package during the next maintenance.

5. System administrators install the package through a scripted process that installs the package on the local hard-
drive on every node on the system (often thousands of nodes)

6. Next time users look for the package using the “modules” command, it will show up and be available for use.

Note: New systems are usually different enough from the old systems that RPM files must be altered manually every
time, for every package. TACC usually has 6-10 production systems that need scientific software RPMs. For examples
of what goes into an RPM file, you can look in this Github repository

19.1 Installing thousands of apps on a cluster

As the BioContainers project has demonstrated, the Bioinformatics community alone uses thousands of software
packages. What can users of HPC systems do to gain access to the software they care about when the modules system
cannot keep up?

173

https://github.com/TACC/lifesci_spec

CyVerse Documentation, Release 0.1.0

Bjorn Gruning from the University of Freiburg, along with many many collaborators from the BioContainers com-
munity has championed the inclusion of Singularity images from the BioContainers project. This means that ev-
ery app with a Conda recipe also has a Singularity image for it. They are publicly available via FTP here:
https://depot.galaxyproject.org/singularity/

They are also already available on every TACC system on the global work filesystem in this directory:

/work/projects/singularity/TACC/biocontainers/

There are over 7200 Singularity images currently available in that directory. (So be careful trying to do an “ls”
command there!

All the images are named in the format: name_version.img. They were converted from Docker containers using the
docker2singularity script that adds top level directories (like “/work”) to make sure that volume mounts will work on
the HPC systems. If you use TACC, you can check for a software package, for example, bwa, like this:

$ find /work/projects/singularity/TACC/biocontainers/ -name bwa*
/work/projects/singularity/TACC/biocontainers/bwameth_0.20--py35_0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.5.9--0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.17--pl5.22.0_0.img
/work/projects/singularity/TACC/biocontainers/bwameth_0.2.0--py36_1.img
/work/projects/singularity/TACC/biocontainers/bwameth_0.2.0--py36_0.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.13--1.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.15--1.img
/work/projects/singularity/TACC/biocontainers/bwa_0.7.16--pl5.22.0_0.img

To test the image interactively (from a compute node!) you can do something like the following:

get an interactive session
idev
load the Singularity module
module load tacc-singularity
explore the container
singularity shell /work/projects/singularity/TACC/biocontainers/bwa_0.7.15--1.img

Note: If you run the container from your $WORK directory, Singularity will by default volume mount /work into the
container, and all your $WORK files will be available.

From there, you are ready to incorporate “singularity exec” commands into your job submission scripts just like you
would any other command.

174 Chapter 19. Biocontainers in HPC

https://depot.galaxyproject.org/singularity/

CHAPTER 20

Docker related resources

Awesome Docker

Docker labs

Docker Community Slack

Docker Community Forums

Docker hub

Docker documentation

Docker on StackOverflow

Docker on Twitter

Play With Docker Hands-On Labs

Docker tips

Docker cloud

Docker store

Interesting tutorials and blog posts:

1. Docker Blog

2. A beginner friendly intro to VMs and Docker

3. Intro to Docker from Neurohackweek

4. Understanding Images

175

https://veggiemonk.github.io/awesome-docker/
https://github.com/docker/labs
https://community.docker.com/registrations/groups/4316
https://forums.docker.com/
https://hub.docker.com/
http://docs.docker.com/
https://stackoverflow.com/questions/tagged/docker
http://twitter.com/docker
http://training.play-with-docker.com/
https://blog.docker.com/2018/01/5-tips-learn-docker-2018/
https://cloud.docker.com
https://store.doc
http://blog.docker.com/
https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b#.3giab6wvo
https://neurohackweek.github.io/docker-for-scientists/
https://code.tutsplus.com/tutorials/docker-from-the-ground-up-understanding-images--cms-28165

CyVerse Documentation, Release 0.1.0

176 Chapter 20. Docker related resources

CHAPTER 21

Singularity related resources

Singularity Homepage

Singularity Hub

University of Arizona Singularity Tutorials

NIH HPC

Dolmades - Windows Apps in Linux Docker-Singularity Containers Warning not tested

21.1 Singularity Talks

Gregory Kurtzer, creator of Singularity has provided two good talks online: Introduction to Singularity, and Advanced
Singularity.

Vanessa Sochat, lead developer of Singularity Hub, also has given a great talk on Singularity which you can see online.

177

https://www.sylabs.io/guides/2.6/user-guide/index.html
https://www.singularity-hub.org/
https://docs.hpc.arizona.edu/display/UAHPC/Singularity+Tutorials
https://hpc.nih.gov/apps/singularity.html
http://dolmades.org
https://wilsonweb.fnal.gov/slides/hpc-containers-singularity-introductory.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf
https://docs.google.com/presentation/d/14-iKKUpGJC_1qpVFVUyUaitc8xFSw9Rp3v_UE9IGgjM/pub?start=false&loop=false&delayms=3000&slide=id.g1c1cec989b_0_154

CyVerse Documentation, Release 0.1.0

178 Chapter 21. Singularity related resources

CHAPTER 22

Other resources

University of Arizona Campus Resources

• UA Campus Accessibility

• UA Campus Transportation

• Family Spaces and Lactation Support

• BIO5 Institute

• Transportation beyond BIO5 and UA campus

179

http://www.arizona.edu/campus-accessibility
https://parking.arizona.edu/campus-services/cattran/
https://lifework.arizona.edu/cc/lactation_information
http://www.bio5.org/
http://www.sunlinkstreetcar.com/

CyVerse Documentation, Release 0.1.0

180 Chapter 22. Other resources

CHAPTER 23

For instructors!

Coordinating Web site work

Please create a pull request as soon as you start editing something, rather than waiting! That way you can tell others
what you’re working on.

You could/should also mention it on Slack in the “cc-leads” channel.

Technical info re adding content to the Web site

All the Container Camp workshop tutorials are stored on GitHub.

We will use GitHub Flow for updates: from the command line,

• fork container camp repository;

• edit, change, add, etc;

• submit a PR;

• when ready to review & merge say ‘ready for review & merge @cc2018’.

It’s important that all updates go through code review by someone. Anyone with push access to the repo can review
and merge!

From the Web site, you should be able to edit the files and then set up a PR directly. You can also fork the repo,
perform multiple edits and submit a PR through the web interface.

Updating the “official” Web site.

The Web site, will update automatically from GitHub. However, it may take 5-15 minutes to do so.

Building a local copy of the Web site.

Briefly,

• clone the repo:

git clone https://github.com/CyVerse-learning-materials/
container_camp_workshop_2018.git

181

https://github.com/CyVerse-learning-materials/container_camp_workshop_2018
https://guides.github.com/introduction/flow/
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/

CyVerse Documentation, Release 0.1.0

• set up a virtualenv with python2 or python3:

python -m virtualenv buildenv -p python3.5; . ~/buildenv/bin/activate

• install the prerequisites:

pip install -r requirements.txt

• build site:

make html

• open / click on

_build/html/index.html

Formatting, guidelines, etc.

Everything can/should be in Restructured text If you’re not super familiar with Restructured text, you can use online
restructured text editor to write your tutorials.

(Note that you can go visit the github repo and it will helpfully render .rst files for you if you click on them! They just
won’t have the full site template.)

Files and images that don’t need to be “compiled” and should just be served up through the web site can be put in the
_static directory; their URL will then be

https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/_static/filename

Images

Image formatting in Restructured text is pretty straightforward. Here is an example

182 Chapter 23. For instructors!

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet!
/http://rst.ninjs.org/
/http://rst.ninjs.org/
https://cyverse-container-camp-workshop-2018.readthedocs-hosted.com/_static/filename

CyVerse Documentation, Release 0.1.0

.. |static_site_docker| image:: ../img/static_site_docker.png

:width: 750

:height: 700

183

CyVerse Documentation, Release 0.1.0

184 Chapter 23. For instructors!

CHAPTER 24

Problems? Bugs? Questions?

• If there is a bug and you can fix it: submit a PR. Make sure that I know who you are so that I can thank you.

• If there is a bug and you can’t fix it, but you can reproduce it: submit an issue explaining how to reproduce.

• If there is a bug and you can’t even reproduce it: sorry. It is probably an Heisenbug. We can’t act on it until it’s
reproducible, alas.

• If you have attended this workshop and have feedback, or if you want somebody to deliver that workshop at
your conference or for your company: you can contact one of us!

upendra at cyverse dot org

Thank you!

185

	Workshop Code of Conduct
	Pre-Workshop Setup
	Agenda
	About CyVerse
	Training session in Docker
	Training session in Singularity
	Training session in scaling up your analysis using containers
	Training session in Biocontainers
	Booting an Atmosphere computer instance for your use!
	Introduction to Docker
	Advanced Docker
	Introduction to Singularity
	Advanced Singularity
	Deploying apps in Discovery Environment
	OSG (Open Science Grid) Singularity Infrastructure
	Pegasus Workflows with Application Containers
	Distributed Computing with Makeflow and Work Queue
	Introduction to Biocontainers
	Biocontainers in HPC
	Docker related resources
	Singularity related resources
	Other resources
	For instructors!
	Problems? Bugs? Questions?

