
conda
Release 24.3.1.dev75

Anaconda, Inc.

Apr 25, 2024

CONTENTS

1 Install 3

2 New to conda? 5

3 Other useful resources 7

4 Contributors welcome 9

Python Module Index 733

Index 737

i

ii

conda, Release 24.3.1.dev75

Welcome to conda's documentation! Conda provides package, dependency, and environment management for any
language. Here, you will find everything you need to get started using conda in your own projects.

CONTENTS 1

conda, Release 24.3.1.dev75

2 CONTENTS

CHAPTER

ONE

INSTALL

We recommend the following methods to install conda:

Windows

Miniconda installer for:

Windows x86 64-bit

macOS

Miniconda installer for:

macOS x86 64-bit

macOS M1 64-bit

Linux

Miniconda installer for:

Linux x86 64-bit

Homebrew

Run the following Homebrew command:

brew install miniconda

3

https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.pkg
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.pkg
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://brew.sh/

conda, Release 24.3.1.dev75

4 Chapter 1. Install

CHAPTER

TWO

NEW TO CONDA?

If you are new to conda, we first recommend the following articles:

Getting started guide Learn the basics of using conda such as creating and adding packages to environments

Managing environments Learn more about environments and best practices for using them in your projects

See also:
Want to get even more in-depth training on how to use conda for free? Check out Anaconda's free course on conda
basics.

5

https://learning.anaconda.cloud/conda-basics
https://learning.anaconda.cloud/conda-basics

conda, Release 24.3.1.dev75

6 Chapter 2. New to conda?

CHAPTER

THREE

OTHER USEFUL RESOURCES

Command reference Full reference for all standard commands and options

Cheatsheets Get the latest cheatsheet for commonly used commands

Configuring conda Learn about the various ways conda's behavior can be configured

Glossary Important vocabulary to know when working with conda

7

conda, Release 24.3.1.dev75

8 Chapter 3. Other useful resources

CHAPTER

FOUR

CONTRIBUTORS WELCOME

Conda is an open source project and always welcomes new contributions. Please read the following guides to get started
developing conda and making your own contributions.

Contributing 101 Learn more about how the conda project is managed and how to contribute

Development environment Follow this guide to get your own development environment set up

4.1 User guide

4.1.1 Getting started with conda

Conda is a powerful command line tool for package and environment management that runs on Windows, macOS, and
Linux.

This guide to getting started with conda goes over the basics of starting up and using conda to create environments and
install packages.

Tip: Anaconda Navigator is a graphical desktop application that enables you to use conda without having to run
commands at the command line.

See Getting started with Anaconda Navigator to learn more.

Before you start

You should have already installed conda before beginning this getting started guide. Conda can be found in many
distributions, like Anaconda Distribution, Miniconda or Miniforge.

9

https://docs.anaconda.com/free/navigator/getting-started
https://docs.anaconda.com/free/anaconda/install/
https://docs.anaconda.com/free/miniconda/
https://github.com/conda-forge/miniforge

conda, Release 24.3.1.dev75

Starting conda

Conda is available on Windows, macOS, or Linux and can be used with any terminal application (or shell).

Windows

1. Open either the Command Prompt (cmd.exe) or PowerShell.

macOS

1. Open Launchpad.

2. Open the Other application folder.

3. Open the Terminal application.

Linux

Open a terminal window.

Creating environments

Conda allows you to create separate environments, each containing their own files, packages, and package dependencies.
The contents of each environment do not interact with each other.

The most basic way to create a new environment is with the following command:

conda create -n <env-name>

To add packages while creating an environment, specify them after the environment name:

conda create -n myenvironment python numpy pandas

For more information on working with environments, see Managing environments.

Listing environments

To see a list of all your environments:

conda info --envs

A list of environments appears, similar to the following:

conda environments:

base /home/username/Anaconda3
myenvironment * /home/username/Anaconda3/envs/myenvironment

Tip: The active environment is the one with an asterisk (*).

To change your current environment back to the default base:

10 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

conda activate

Tip: When the environment is deactivated, its name is no longer shown in your prompt, and the asterisk (*) returns to
base. To verify, you can repeat the conda info --envs command.

Installing packages

You can also install packages into a previously created environment. To do this, you can either activate the environment
you want to modify or specify the environment name on the command line:

via environment activation
conda activate myenvironment
conda install matplotlib

via command line option
conda install --name myenvironment matplotlib

For more information on searching for and installing packages, see Managing packages.

Specifying channels

Channels are locations (on your own computer or elsewhere on the Internet) where packages are stored. By default,
conda searches for packages in its default channels.

If a package you want is located in another channel, such as conda-forge, you can manually specify the channel when
installing the package:

conda install conda-forge::numpy

You can also override the default channels in your .condarc file. For a direct example, see Channel locations (channels)
or read the entire Using the .condarc conda configuration file.

Tip: Find more packages and channels by searching Anaconda.org.

Updating conda

To see your conda version, use the following command:

conda --version

No matter which environment you run this command in, conda displays its current version:

conda 23.10.0

Note: If you get an error message command not found: conda, close and reopen your terminal window and verify
that you are logged into the same user account that you used to install conda.

To update conda to the latest version:

4.1. User guide 11

https://www.anaconda.org

conda, Release 24.3.1.dev75

conda update conda

Conda compares your version to the latest available version and then displays what is available to install.

Tip: We recommend that you always keep conda updated to the latest version. For conda's official version support
policy, see CEP 10.

More information

• Conda cheat sheet

• Full documentation

• Free community support

4.1.2 Installing conda

To install conda, you must first pick the right installer for you. The following are the most popular installers currently
available:

Miniconda
Miniconda is a minimal installer provided by Anaconda. Use this installer if you want to install most packages
yourself.

Anaconda Distribution
Anaconda Distribution is a full featured installer that comes with a suite of packages for data science, as well as
Anaconda Navigator, a GUI application for working with conda environments.

Miniforge
Miniforge is an installer maintained by the conda-forge community that comes preconfigured for use with the
conda-forge channel. To learn more about conda-forge, visit their website.

Tip
If you are just starting out, we recommend installing conda via the Miniconda installer.

System requirements

• A supported operating systems: Windows, macOS, or Linux

• For Miniconda or Miniforge: 400 MB disk space

• For Anaconda: Minimum 3 GB disk space to download and install

• For Windows: Windows 8.1 or newer for Python 3.9, or Windows Vista or newer for Python 3.8

Tip
You do not need administrative or root permissions to install conda if you select a user-writable install location (e.g.
/Users/my-username/conda or C:\Users\my-username\conda).

12 Chapter 4. Contributors welcome

https://github.com/conda-incubator/ceps/blob/main/cep-10.md
https://conda.io/docs/
https://groups.google.com/a/anaconda.com/forum/#!forum/anaconda
https://docs.anaconda.com/free/miniconda/
https://www.anaconda.com/download
https://github.com/conda-forge/miniforge
https://conda-forge.org
https://docs.anaconda.com/free/miniconda/

conda, Release 24.3.1.dev75

Regular installation

Follow the instructions for your operating system:

• Windows

• macOS

• Linux

Installing in silent mode

You can use silent installation of Miniconda, Anaconda, or Miniforge for deployment or testing or building services,
such as GitHub Actions.

Follow the silent-mode instructions for your operating system:

• Windows

• macOS

• Linux

Cryptographic hash verification

SHA-256 checksums are available for Miniconda and Anaconda Distribution. We do not recommend using MD5
verification as SHA-256 is more secure.

Download the installer file and, before installing, verify it as follows:

• Windows:

– If you have PowerShell V4 or later:

Open a PowerShell console and verify the file as follows:

Get-FileHash filename -Algorithm SHA256

– If you don't have PowerShell V4 or later:

Use the free online verifier tool on the Microsoft website.

1. Download the file and extract it.

2. Open a Command Prompt window.

3. Navigate to the file.

4. Run the following command:

Start-PsFCIV -Path C:\path\to\file.ext -HashAlgorithm SHA256 -Online

• macOS: In iTerm or a terminal window enter shasum -a 256 filename.

• Linux: In a terminal window enter sha256sum filename.

4.1. User guide 13

https://docs.anaconda.com/free/miniconda/
https://docs.anaconda.com/free/anaconda/reference/hashes/all/
https://gallery.technet.microsoft.com/PowerShell-File-Checksum-e57dcd67

conda, Release 24.3.1.dev75

Installing on Windows

1. Download the installer:

• Miniconda installer for Windows

• Anaconda Distribution installer for Windows

• Miniforge installer for Windows

2. Verify your installer hashes.

3. Double-click the .exe file.

4. Follow the instructions on the screen.

If you are unsure about any setting, accept the defaults. You can change them later.

When installation is finished, from the Start menu, open either Command Prompt (cmd.exe) or PowerShell

5. Test your installation. In your terminal window, run the command conda list. A list of installed packages
appears if it has been installed correctly.

Installing in silent mode

Note: The following instructions are for Miniconda but should also work for the Anaconda Distribution or Miniforge
installers.

Note: As of Anaconda Distribution 2022.05 and Miniconda 4.12.0, the option to add Anaconda to the PATH
environment variable during an All Users installation has been disabled. This was done to address a security exploit.
You can still add Anaconda to the PATH environment variable during a Just Me installation.

To run the the Windows installer for Miniconda in silent mode, use the /S argument. The following optional arguments
are supported:

• /InstallationType=[JustMe|AllUsers]---Default is JustMe.

• /AddToPath=[0|1]---Default is 0

• /RegisterPython=[0|1]---Make this the system's default Python. 0 indicates Python won't be registered as
the system's default. 1 indicates Python will be registered as the system's default.

• /S---Install in silent mode.

• /D=<installation path>---Destination installation path. Must be the last argument. Do not wrap in quotation
marks. Required if you use /S.

All arguments are case-sensitive.

Example: The following command installs Miniconda for the current user without registering Python as the system's
default:

start /wait "" Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /
→˓RegisterPython=0 /S /D=%UserProfile%\Miniconda3

14 Chapter 4. Contributors welcome

https://docs.anaconda.com/free/miniconda/
https://www.anaconda.com/download/
https://github.com/conda-forge/miniforge
https://nvd.nist.gov/vuln/detail/CVE-2022-26526

conda, Release 24.3.1.dev75

Updating conda

1. Open Command Prompt or PowerShell from the start menu.

2. Run conda update conda.

Uninstalling conda

1. In the Windows Control Panel, click Add or Remove Program.

2. Select Python X.X (Miniconda), where X.X is your version of Python.

3. Click Remove Program.

Note: Removing a program is different in Windows 10.

Installing on macOS

Caution: If you use the .pkg installer for Miniconda, beware that those installers may skip the "Destination Select"
page which will cause the installation to fail. If the installer skips this page, click "Change Install Location..." on
the "Installation Type" page, choose a location for your install, and then click Continue.

1. Download the installer:

• Miniconda installer for macOS.

• Anaconda installer for macOS.

• Miniforge installer for macOS.

2. Verify your installer hashes.

3. Install:

• Miniconda or Miniforge: in your terminal window, run:

bash <conda-installer-name>-latest-MacOSX-x86_64.sh

• Anaconda Distribution: double-click the .pkg file.

4. Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You can
change them later.

5. To make the changes take effect, close and then re-open your terminal window.

6. To verify your installation, in your terminal window, run the command conda list. A list of installed packages
appears if it has been installed correctly.

4.1. User guide 15

https://docs.anaconda.com/free/miniconda/
https://www.anaconda.com/download/
https://github.com/conda-forge/miniforge/

conda, Release 24.3.1.dev75

Installing in silent mode

Note: The following instructions are for Miniconda but should also work for the Anaconda Distribution or Miniforge
installers.

To run the silent installation of Miniconda for macOS or Linux, specify the -b and -p arguments of the bash installer.
The following arguments are supported:

• -b: Batch mode with no PATH modifications to shell scripts. Assumes that you agree to the license agreement.
Does not edit shell scripts such as .bashrc, .bash_profile, .zshrc, etc.

• -p: Installation prefix/path.

• -f: Force installation even if prefix -p already exists.

Example

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O ~/
→˓miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda

Note: In order to initialize after the installation process is done, first run source <path to conda>/bin/activate
and then run conda init --all.

Updating Anaconda or Miniconda

1. Open a terminal window.

2. Run conda update conda.

Uninstalling Anaconda or Miniconda

1. Open a terminal window.

2. Remove the entire Miniconda install directory with (this may differ depending on your installation location)

rm -rf ~/miniconda

3. Optional: run conda init --reverse --all to undo changes to shell initialization scripts

4. Optional: remove the following hidden file and folders that may have been created in the home directory:

• .condarc file

• .conda directory

• .continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

16 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Installing on Linux

1. Download the installer:

• Miniconda installer for Linux.

• Anaconda Distribution installer for Linux.

• Miniforge installer for Linux.

2. Verify your installer hashes.

3. In your terminal window, run:

bash <conda-installer-name>-latest-Linux-x86_64.sh

conda-installer-name will be one of "Miniconda3", "Anaconda", or "Miniforge3".

4. Follow the prompts on the installer screens. If you are unsure about any setting, accept the defaults. You can
change them later.

5. To make the changes take effect, close and then re-open your terminal window.

6. Test your installation. In your terminal window, run the command conda list. A list of installed packages
appears if it has been installed correctly.

Using with fish shell

To use conda with fish shell, run the following in your terminal:

Add conda binary to $PATH, if not yet added:

fish_add_path <conda-install-location>/condabin

Configure fish-shell:

conda init fish

Installing in silent mode

See the instructions for installing in silent mode on macOS.

Updating conda

1. Open a terminal window.

2. Run conda update conda.

4.1. User guide 17

https://docs.anaconda.com/free/miniconda/
https://www.anaconda.com/download/
https://github.com/conda-forge/miniforge/

conda, Release 24.3.1.dev75

Uninstalling conda

1. Open a terminal window.

2. Remove the entire conda install directory with (this may differ depending on your installation location)

rm -rf ~/conda

3. Optional: run conda init --reverse --all to undo changes to shell initialization scripts

4. Optional: remove the following hidden file and folders that may have been created in the home directory:

• .condarc file

• .conda directory

• .continuum directory

By running:

rm -rf ~/.condarc ~/.conda ~/.continuum

RPM and Debian Repositories for Miniconda

Conda is available as either a RedHat RPM or as a Debian package. The packages are the equivalent to the Miniconda
installer, which only contains conda and its dependencies. You can use yum or apt to install, uninstall, and manage
conda on your system. To install conda, follow the instructions for your Linux distribution.

To install the RPM on RedHat, CentOS, Fedora distributions, and other RPM-based distributions, such as openSUSE,
download the GPG key and add a repository configuration file for conda.

Import our GPG public key
rpm --import https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc

Add the Anaconda repository
cat <<EOF > /etc/yum.repos.d/conda.repo
[conda]
name=Conda
baseurl=https://repo.anaconda.com/pkgs/misc/rpmrepo/conda
enabled=1
gpgcheck=1
gpgkey=https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc
EOF

Conda is ready to install on your RPM-based distribution.

Install it!
yum install conda
Loaded plugins: fastestmirror, ovl
Setting up Install Process
Loading mirror speeds from cached hostfile
* base: repo1.dal.innoscale.net
* extras: mirrordenver.fdcservers.net
* updates: mirror.tzulo.com
Resolving Dependencies
--> Running transaction check

(continues on next page)

18 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

---> Package conda.x86_64 0:4.5.11-0 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

===
Package Arch Version Repository Size

===
Installing:
conda x86_64 4.5.11-0 conda 73 M

Transaction Summary

===
Install 1 Package(s)

Total download size: 73 M
Installed size: 210 M
Is this ok [y/N]:

To install on Debian-based Linux distributions, such as Ubuntu, download the public GPG key and add the conda
repository to the sources list.

Install our public GPG key to trusted store
curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg
install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg

Check whether fingerprint is correct (will output an error message otherwise)
gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --
→˓fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806

Add our Debian repo
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://
→˓repo.anaconda.com/pkgs/misc/debrepo/conda stable main" > /etc/apt/sources.list.d/conda.
→˓list

NB: If you receive a Permission denied error when trying to run the above command␣
→˓(because `/etc/apt/sources.list.d/conda.list` is write protected), try using the␣
→˓following command instead:
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://
→˓repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | sudo tee -a /etc/apt/sources.
→˓list.d/conda.list

Conda is ready to install on your Debian-based distribution.

Install it!
apt update
apt install conda
Reading package lists... Done
Building dependency tree

(continues on next page)

4.1. User guide 19

conda, Release 24.3.1.dev75

(continued from previous page)

Reading state information... Done
The following NEW packages will be installed:
conda
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 76.3 MB of archives.
After this operation, 221 MB of additional disk space will be used.
Get:1 https://repo.anaconda.com/pkgs/misc/debrepo/conda stable/main amd64
conda amd64 4.5.11-0 [76.3 MB]
Fetched 76.3 MB in 10s (7733 kB/s)
debconf: delaying package configuration, since apt-utils is not installed
Selecting previously unselected package conda.
(Reading database ... 4799 files and directories currently installed.)
Preparing to unpack .../conda_4.5.11-0_amd64.deb ...
Unpacking conda (4.5.11-0) ...
Setting up conda (4.5.11-0) ...

Check to see if the installation is successful by typing:

source /opt/conda/etc/profile.d/conda.sh
conda -V
conda 4.5.11

Installing conda packages with the system package manager makes it very easy to distribute conda across a cluster
of machines running Linux without having to worry about any non-privileged user modifying the installation. Any
non-privileged user simply needs to run source /opt/conda/etc/profile.d/conda.sh to use conda.

Administrators can also distribute a .condarc file at /opt/conda/.condarc so that a predefined configuration for chan-
nels, package cache directory, and environment locations is pre-seeded to all users in a large organization. A sample
configuration could look like:

channels:
- defaults

pkg_dirs:
- /shared/conda/pkgs
- $HOME/.conda/pkgs

envs_dirs:
- /shared/conda/envs
- $HOME/.conda/envs

These RPM and Debian packages also provide another way to set up conda inside a Docker container.

Tip
It is recommended to use this installation method in a read-only manner and upgrade conda using the respective package
manager only.

20 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.1.3 Tasks

Managing conda

Verifying that conda is installed

To verify that conda is installed, in your terminal window, run:

conda --version

Conda responds with the version number that you have installed, such as conda 4.12.0.

If you get an error message, make sure of the following:

• You are logged into the same user account that you used to install Anaconda or Miniconda.

• You are in a directory that Anaconda or Miniconda can find.

• You have closed and re-opened the terminal window after installing conda.

Determining your conda version

In addition to the conda --version command explained above, you can determine what conda version is installed
by running one of the following commands in your terminal window:

conda info

OR

conda -V

Updating conda to the current version

To update conda, in your terminal window, run:

conda update conda

Conda compares versions and reports what is available to install. It also tells you about other packages that will be
automatically updated or changed with the update. If conda reports that a newer version is available, type y to update:

Proceed ([y]/n)? y

Suppressing warning message about updating conda

To suppress the following warning message when you do not want to update conda to the latest version:

==> WARNING: A newer version of conda exists. <==
current version: 4.6.13
latest version: 4.8.0

4.1. User guide 21

conda, Release 24.3.1.dev75

Update conda by running: conda update -n base conda

Run the following command from your terminal: conda config --set notify_outdated_conda false

Or add the following line in your .condarc file: notify_outdated_conda: false

Managing environments

With conda, you can create, export, list, remove, and update environments that have different versions of Python and/or
packages installed in them. Switching or moving between environments is called activating the environment. You can
also share an environment file.

There are many options available for the commands described on this page. For a detailed reference on all available
commands, see commands.

Creating an environment with commands

Use the terminal for the following steps:

1. To create an environment:

conda create --name <my-env>

Replace <my-env> with the name of your environment.

2. When conda asks you to proceed, type y:

proceed ([y]/n)?

This creates the myenv environment in /envs/. No packages will be installed in this environment.

3. To create an environment with a specific version of Python:

conda create -n myenv python=3.9

4. To create an environment with a specific package:

conda create -n myenv scipy

or:

conda create -n myenv python
conda install -n myenv scipy

5. To create an environment with a specific version of a package:

conda create -n myenv scipy=0.17.3

or:

conda create -n myenv python
conda install -n myenv scipy=0.17.3

6. To create an environment with a specific version of Python and multiple packages:

conda create -n myenv python=3.9 scipy=0.17.3 astroid babel

22 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Tip: Install all the programs that you want in this environment at the same time. Installing one program at a
time can lead to dependency conflicts.

To automatically install pip or another program every time a new environment is created, add the default programs
to the create_default_packages section of your .condarc configuration file. The default packages are installed every
time you create a new environment. If you do not want the default packages installed in a particular environment, use
the --no-default-packages flag:

conda create --no-default-packages -n myenv python

Tip: You can add much more to the conda create command. For details, run conda create --help.

Creating an environment from an environment.yml file

Use the terminal for the following steps:

1. Create the environment from the environment.yml file:

conda env create -f environment.yml

The first line of the yml file sets the new environment's name. For details see Creating an environment file
manually.

2. Activate the new environment: conda activate myenv

3. Verify that the new environment was installed correctly:

conda env list

You can also use conda info --envs.

Specifying a location for an environment

You can control where a conda environment lives by providing a path to a target directory when creating the environ-
ment. For example, the following command will create a new environment in a subdirectory of the current working
directory called envs:

conda create --prefix ./envs jupyterlab=3.2 matplotlib=3.5 numpy=1.21

You then activate an environment created with a prefix using the same command used to activate environments created
by name:

conda activate ./envs

Specifying a path to a subdirectory of your project directory when creating an environment has the following benefits:

• It makes it easy to tell if your project uses an isolated environment by including the environment as a subdirectory.

• It makes your project more self-contained as everything, including the required software, is contained in a single
project directory.

4.1. User guide 23

conda, Release 24.3.1.dev75

An additional benefit of creating your project’s environment inside a subdirectory is that you can then use the same
name for all your environments. If you keep all of your environments in your envs folder, you’ll have to give each
environment a different name.

There are a few things to be aware of when placing conda environments outside of the default envs folder.

1. Conda can no longer find your environment with the --name flag. You’ll generally need to pass the --prefix
flag along with the environment’s full path to find the environment.

2. Specifying an install path when creating your conda environments makes it so that your command prompt is now
prefixed with the active environment’s absolute path rather than the environment’s name.

After activating an environment using its prefix, your prompt will look similar to the following:

(/absolute/path/to/envs) $

This can result in long prefixes:

(/Users/USER_NAME/research/data-science/PROJECT_NAME/envs) $

To remove this long prefix in your shell prompt, modify the env_prompt setting in your .condarc file:

conda config --set env_prompt '({name})'

This will edit your .condarc file if you already have one or create a .condarc file if you do not.

Now your command prompt will display the active environment’s generic name, which is the name of the environment's
root folder:

$ cd project-directory
$ conda activate ./env
(env) project-directory $

Updating an environment

You may need to update your environment for a variety of reasons. For example, it may be the case that:

• one of your core dependencies just released a new version (dependency version number update).

• you need an additional package for data analysis (add a new dependency).

• you have found a better package and no longer need the older package (add new dependency and remove old
dependency).

If any of these occur, all you need to do is update the contents of your environment.yml file accordingly and then
run the following command:

conda env update --file environment.yml --prune

Note: The --prune option causes conda to remove any dependencies that are no longer required from the environment.

24 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Cloning an environment

Use the terminal for the following steps:

You can make an exact copy of an environment by creating a clone of it:

conda create --name myclone --clone myenv

Note: Replace myclone with the name of the new environment. Replace myenv with the name of the existing
environment that you want to copy.

To verify that the copy was made:

conda info --envs

In the environments list that displays, you should see both the source environment and the new copy.

Building identical conda environments

You can use explicit specification files to build an identical conda environment on the same operating system platform,
either on the same machine or on a different machine.

Use the terminal for the following steps:

1. Run conda list --explicit to produce a spec list such as:

This file may be used to create an environment using:
$ conda create --name <env> --file <this file>
platform: osx-64
@EXPLICIT
https://repo.anaconda.com/pkgs/free/osx-64/mkl-11.3.3-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/numpy-1.11.1-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/openssl-1.0.2h-1.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/pip-8.1.2-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/python-3.5.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/readline-6.2-2.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/setuptools-25.1.6-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/sqlite-3.13.0-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/tk-8.5.18-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/wheel-0.29.0-py35_0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/xz-5.2.2-0.tar.bz2
https://repo.anaconda.com/pkgs/free/osx-64/zlib-1.2.8-3.tar.bz2

2. To create this spec list as a file in the current working directory, run:

conda list --explicit > spec-file.txt

Note: You can use spec-file.txt as the filename or replace it with a filename of your choice.

An explicit spec file is not usually cross platform, and therefore has a comment at the top such as # platform:
osx-64 showing the platform where it was created. This platform is the one where this spec file is known to

4.1. User guide 25

conda, Release 24.3.1.dev75

work. On other platforms, the packages specified might not be available or dependencies might be missing for
some of the key packages already in the spec.

To use the spec file to create an identical environment on the same machine or another machine:

conda create --name myenv --file spec-file.txt

To use the spec file to install its listed packages into an existing environment:

conda install --name myenv --file spec-file.txt

Conda does not check architecture or dependencies when installing from a spec file. To ensure that the pack-
ages work correctly, make sure that the file was created from a working environment, and use it on the same
architecture, operating system, and platform, such as linux-64 or osx-64.

Activating an environment

Activating environments is essential to making the software in the environments work well. Activation entails two
primary functions: adding entries to PATH for the environment and running any activation scripts that the environment
may contain. These activation scripts are how packages can set arbitrary environment variables that may be necessary
for their operation. You can also use the config API to set environment variables.

Activation prepends to PATH. This only takes effect when you have the environment active so it is local to a terminal
session, not global.

Note: When installing Anaconda, you have the option to “Add Anaconda to my PATH environment variable.” This
is not recommended because it appends Anaconda to PATH. When the installer appends to PATH, it does not call the
activation scripts.

Note: On Windows, PATH is composed of two parts, the system PATH and the user PATH. The system PATH always
comes first. When you install Anaconda for "Just Me", we add it to the user PATH. When you install for "All Users",
we add it to the system PATH. In the former case, you can end up with system PATH values taking precedence over
your entries. In the latter case, you do not. We do not recommend multi-user installs.

To activate an environment: conda activate myenv

Note: Replace myenv with the environment name or directory path.

Conda prepends the path name myenv onto your system command.

You may receive a warning message if you have not activated your environment:

Warning:
This Python interpreter is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation.

If you receive this warning, you need to activate your environment. To do so on Windows, run: c:\Anaconda3\
Scripts\activate base in a terminal window.

26 Chapter 4. Contributors welcome

http://docs.anaconda.com/anaconda/install.html
https://docs.anaconda.com/free/anaconda/install/multi-user/

conda, Release 24.3.1.dev75

Windows is extremely sensitive to proper activation. This is because the Windows library loader does not support the
concept of libraries and executables that know where to search for their dependencies (RPATH). Instead, Windows
relies on a dynamic-link library search order.

If environments are not active, libraries won't be found and there will be lots of errors. HTTP or SSL errors are common
errors when the Python in a child environment can't find the necessary OpenSSL library.

Conda itself includes some special workarounds to add its necessary PATH entries. This makes it so that it can be called
without activation or with any child environment active. In general, calling any executable in an environment without
first activating that environment will likely not work. For the ability to run executables in activated environments, you
may be interested in the conda run command.

If you experience errors with PATH, review our troubleshooting.

Conda init

Earlier versions of conda introduced scripts to make activation behavior uniform across operating systems. Conda 4.4
allowed conda activate myenv. Conda 4.6 added extensive initialization support so that conda works faster and
less disruptively on a wide variety of shells (bash, zsh, csh, fish, xonsh, and more). Now these shells can use the conda
activate command. Removing the need to modify PATH makes conda less disruptive to other software on your
system. For more information, read the output from conda init --help.

One setting may be useful to you when using conda init is:

auto_activate_base: bool

This setting controls whether or not conda activates your base environment when it first starts up. You'll have the conda
command available either way, but without activating the environment, none of the other programs in the environment
will be available until the environment is activated with conda activate base. People sometimes choose this setting
to speed up the time their shell takes to start up or to keep conda-installed software from automatically hiding their
other software.

Nested activation

By default, conda activate will deactivate the current environment before activating the new environment and re-
activate it when deactivating the new environment. Sometimes you may want to leave the current environment PATH
entries in place so that you can continue to easily access command-line programs from the first environment. This is
most commonly encountered when common command-line utilities are installed in the base environment. To retain the
current environment in the PATH, you can activate the new environment using:

conda activate --stack myenv

If you wish to always stack when going from the outermost environment, which is typically the base environment, you
can set the auto_stack configuration option:

conda config --set auto_stack 1

You may specify a larger number for a deeper level of automatic stacking, but this is not recommended since deeper
levels of stacking are more likely to lead to confusion.

4.1. User guide 27

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

conda, Release 24.3.1.dev75

Environment variable for DLL loading verification

If you don't want to activate your environment and you want Python to work for DLL loading verification, then follow
the troubleshooting directions.

Warning: If you choose not to activate your environment, then loading and setting environment variables to
activate scripts will not happen. We only support activation.

Deactivating an environment

To deactivate an environment, type: conda deactivate

Conda removes the path name for the currently active environment from your system command.

Note: To simply return to the base environment, it's better to call conda activate with no environment specified,
rather than to try to deactivate. If you run conda deactivate from your base environment, you may lose the ability
to run conda at all. Don't worry, that's local to this shell - you can start a new one. However, if the environment was
activated using --stack (or was automatically stacked) then it is better to use conda deactivate.

Determining your current environment

Use the terminal for the following steps.

By default, the active environment---the one you are currently using---is shown in parentheses () or brackets [] at the
beginning of your command prompt:

(myenv) $

If you do not see this, run:

conda info --envs

In the environments list that displays, your current environment is highlighted with an asterisk (*).

By default, the command prompt is set to show the name of the active environment. To disable this option:

conda config --set changeps1 false

To re-enable this option:

conda config --set changeps1 true

28 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Viewing a list of your environments

To see a list of all of your environments, in your terminal window, run:

conda info --envs

OR

conda env list

A list similar to the following is displayed:

conda environments:
myenv /home/username/miniconda/envs/myenv
snowflakes /home/username/miniconda/envs/snowflakes
bunnies /home/username/miniconda/envs/bunnies

If this command is run by an administrator, a list of all environments belonging to all users will be displayed.

Viewing a list of the packages in an environment

To see a list of all packages installed in a specific environment:

• If the environment is not activated, in your terminal window, run:

conda list -n myenv

• If the environment is activated, in your terminal window, run:

conda list

• To see if a specific package is installed in an environment, in your terminal window, run:

conda list -n myenv scipy

Using pip in an environment

To use pip in your environment, in your terminal window, run:

conda install -n myenv pip
conda activate myenv
pip <pip_subcommand>

Issues may arise when using pip and conda together. When combining conda and pip, it is best to use an isolated conda
environment. Only after conda has been used to install as many packages as possible should pip be used to install any
remaining software. If modifications are needed to the environment, it is best to create a new environment rather than
running conda after pip. When appropriate, conda and pip requirements should be stored in text files.

We recommend that you:

Use pip only after conda
• Install as many requirements as possible with conda then use pip.

• Pip should be run with --upgrade-strategy only-if-needed (the default).

4.1. User guide 29

conda, Release 24.3.1.dev75

• Do not use pip with the --user argument, avoid all users installs.

Use conda environments for isolation
• Create a conda environment to isolate any changes pip makes.

• Environments take up little space thanks to hard links.

• Care should be taken to avoid running pip in the root environment.

Recreate the environment if changes are needed
• Once pip has been used, conda will be unaware of the changes.

• To install additional conda packages, it is best to recreate the environment.

Store conda and pip requirements in text files
• Package requirements can be passed to conda via the --file argument.

• Pip accepts a list of Python packages with -r or --requirements.

• Conda env will export or create environments based on a file with conda and pip requirements.

Setting environment variables

If you want to associate environment variables with an environment, you can use the config API. This is recommended
as an alternative to using activate and deactivate scripts since those are an execution of arbitrary code that may not be
safe.

First, create your environment and activate it:

conda create -n test-env
conda activate test-env

To list any variables you may have, run conda env config vars list.

To set environment variables, run conda env config vars set my_var=value.

Once you have set an environment variable, you have to reactivate your environment: conda activate test-env.

To check if the environment variable has been set, run echo $my_var (echo %my_var% on Windows) or conda env
config vars list.

When you deactivate your environment, you can use those same commands to see that the environment variable goes
away.

You can specify the environment you want to affect using the -n and -p flags. The -n flag allows you to name the
environment and -p allows you to specify the path to the environment.

To unset the environment variable, run conda env config vars unset my_var -n test-env.

When you deactivate your environment, you can see that environment variable goes away by rerunning echo my_var
or conda env config vars list to show that the variable name is no longer present.

Environment variables set using conda env config vars will be retained in the output of conda env export.
Further, you can declare environment variables in the environment.yml file as shown here:

name: env-name
channels:
- conda-forge
- defaults

dependencies:
(continues on next page)

30 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

- python=3.7
- codecov

variables:
VAR1: valueA
VAR2: valueB

Saving environment variables

Conda environments can include saved environment variables.

Suppose you want an environment "analytics" to store both a secret key needed to log in to a server and a path to a
configuration file. The sections below explain how to write a script named env_vars to do this on Windows and macOS
or Linux.

This type of script file can be part of a conda package, in which case these environment variables become active when
an environment containing that package is activated.

You can name these scripts anything you like. However, multiple packages may create script files, so be sure to use
descriptive names that are not used by other packages. One popular option is to give the script a name in the form
packagename-scriptname.sh, or on Windows, packagename-scriptname.bat.

Windows

1. Locate the directory for the conda environment in your terminal window by running in the command shell
%CONDA_PREFIX%.

2. Enter that directory and create these subdirectories and files:

cd %CONDA_PREFIX%
mkdir .\etc\conda\activate.d
mkdir .\etc\conda\deactivate.d
type NUL > .\etc\conda\activate.d\env_vars.bat
type NUL > .\etc\conda\deactivate.d\env_vars.bat

3. Edit .\etc\conda\activate.d\env_vars.bat as follows:

set MY_KEY='secret-key-value'
set MY_FILE=C:\path\to\my\file

4. Edit .\etc\conda\deactivate.d\env_vars.bat as follows:

set MY_KEY=
set MY_FILE=

When you run conda activate analytics, the environment variables MY_KEY and MY_FILE are set to the values
you wrote into the file. When you run conda deactivate, those variables are erased.

4.1. User guide 31

conda, Release 24.3.1.dev75

macOS and Linux

1. Locate the directory for the conda environment in your terminal window by running in the terminal echo
$CONDA_PREFIX.

2. Enter that directory and create these subdirectories and files:

cd $CONDA_PREFIX
mkdir -p ./etc/conda/activate.d
mkdir -p ./etc/conda/deactivate.d
touch ./etc/conda/activate.d/env_vars.sh
touch ./etc/conda/deactivate.d/env_vars.sh

3. Edit ./etc/conda/activate.d/env_vars.sh as follows:

#!/bin/sh

export MY_KEY='secret-key-value'
export MY_FILE=/path/to/my/file/

4. Edit ./etc/conda/deactivate.d/env_vars.sh as follows:

#!/bin/sh

unset MY_KEY
unset MY_FILE

When you run conda activate analytics, the environment variables MY_KEY and MY_FILE are set to the values
you wrote into the file. When you run conda deactivate, those variables are erased.

Sharing an environment

You may want to share your environment with someone else---for example, so they can re-create a test that you have
done. To allow them to quickly reproduce your environment, with all of its packages and versions, give them a copy of
your environment.yml file.

Exporting the environment.yml file

Note: If you already have an environment.yml file in your current directory, it will be overwritten during this task.

1. Activate the environment to export: conda activate myenv

Note: Replace myenv with the name of the environment.

2. Export your active environment to a new file:

conda env export > environment.yml

Note: This file handles both the environment's pip packages and conda packages.

32 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

3. Email or copy the exported environment.yml file to the other person.

Exporting an environment file across platforms

If you want to make your environment file work across platforms, you can use the conda env export
--from-history flag. This will only include packages that you’ve explicitly asked for, as opposed to including every
package in your environment.

For example, if you create an environment and install Python and a package:

conda install python=3.7 codecov

This will download and install numerous additional packages to solve for dependencies. This will introduce packages
that may not be compatible across platforms.

If you use conda env export, it will export all of those packages. However, if you use conda env export
--from-history, it will only export those you specifically chose:

(env-name) ~ conda env export --from-history
name: env-name
channels:
- conda-forge
- defaults

dependencies:
- python=3.7
- codecov

prefix: /Users/username/anaconda3/envs/env-name

Note: If you installed Anaconda 2019.10 on macOS, your prefix may be /Users/username/opt/envs/env-name.

Creating an environment file manually

You can create an environment file (environment.yml) manually to share with others.

EXAMPLE: A simple environment file:

name: stats
dependencies:
- numpy
- pandas

EXAMPLE: A more complex environment file:

name: stats2
channels:
- javascript

dependencies:
- python=3.9
- bokeh=2.4.2
- conda-forge::numpy=1.21.*
- nodejs=16.13.*

(continues on next page)

4.1. User guide 33

conda, Release 24.3.1.dev75

(continued from previous page)

- flask
- pip
- pip:
- Flask-Testing

Note: Using wildcards
Note the use of the wildcard * when defining a few of the versions in the complex environment file. Keeping the major
and minor versions fixed while allowing the patch to be any number allows you to use your environment file to get
any bug fixes while still maintaining consistency in your environment. For more information on package installation
values, see Package search and install specifications.

Specifying channels outside of "channels"
You may occasionally want to specify which channel conda will use to install a specific package. To accomplish this,
use the channel::package syntax in dependencies:, as demonstrated above with conda-forge::numpy (version numbers
optional). The specified channel does not need to be present in the channels: list, which is useful if you want some—but
not all—packages installed from a community channel such as conda-forge.

You can exclude the default channels by adding nodefaults to the channels list.

channels:
- javascript
- nodefaults

This is equivalent to passing the --override-channels option to most conda commands.

Adding nodefaults to the channels list in environment.yml is similar to removing defaults from the channels
list in the .condarc file. However, changing environment.yml affects only one of your conda environments while
changing .condarc affects them all.

For details on creating an environment from this environment.yml file, see Creating an environment from an envi-
ronment.yml file.

Restoring an environment

Conda keeps a history of all the changes made to your environment, so you can easily "roll back" to a previous version.
To list the history of each change to the current environment: conda list --revisions

To restore environment to a previous revision: conda install --revision=REVNUM or conda install --rev
REVNUM.

Note: Replace REVNUM with the revision number.

Example: If you want to restore your environment to revision 8, run conda install --rev 8.

34 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Removing an environment

To remove an environment, in your terminal window, run:

conda remove --name myenv --all

You may instead use conda env remove --name myenv.

To verify that the environment was removed, in your terminal window, run:

conda info --envs

The environments list that displays should not show the removed environment.

Managing channels

Conda channels are the locations where packages are stored. They serve as the base for hosting and managing packages.
Conda packages are downloaded from remote channels, which are URLs to directories containing conda packages. The
conda command searches a default set of channels and packages are automatically downloaded and updated from the
default channel. Read more about conda channels and the various terms of service for their use.

Different channels can have the same package, so conda must handle these channel collisions.

There will be no channel collisions if you use only the defaults channel. There will also be no channel collisions if all
of the channels you use only contain packages that do not exist in any of the other channels in your list. The way conda
resolves these collisions matters only when you have multiple channels in your channel list that host the same package.

By default, conda prefers packages from a higher priority channel over any version from a lower priority channel.
Therefore, you can now safely put channels at the bottom of your channel list to provide additional packages that are
not in the default channels and still be confident that these channels will not override the core package set.

Conda collects all of the packages with the same name across all listed channels and processes them as follows:

1. Sorts packages from highest to lowest channel priority.

2. Sorts tied packages---packages with the same channel priority---from highest to lowest version number. For
example, if channelA contains NumPy 1.12.0 and 1.13.1, NumPy 1.13.1 will be sorted higher.

3. Sorts still-tied packages---packages with the same channel priority and same version---from highest to lowest
build number. For example, if channelA contains both NumPy 1.12.0 build 1 and build 2, build 2 is sorted first.
Any packages in channelB would be sorted below those in channelA.

4. Installs the first package on the sorted list that satisfies the installation specifications.

Essentially, the order goes: channelA::numpy-1.13_1 > channelA::numpy-1.12.1_1 > channelA::numpy-1.12.1_0 >
channelB::numpy-1.13_1

Note: If strict channel priority is turned on then channelB::numpy-1.13_1 isn't included in the list at all.

To make conda install the newest version of a package in any listed channel:

• Add channel_priority: disabled to your .condarc file.

OR

• Run the equivalent command:

conda config --set channel_priority disabled

4.1. User guide 35

https://repo.anaconda.com/pkgs/

conda, Release 24.3.1.dev75

Conda then sorts as follows:

1. Sorts the package list from highest to lowest version number.

2. Sorts tied packages from highest to lowest channel priority.

3. Sorts tied packages from highest to lowest build number.

Because build numbers from different channels are not comparable, build number still comes after channel priority.

The following command adds the channel "new_channel" to the top of the channel list, making it the highest priority:

conda config --add channels new_channel

Conda has an equivalent command:

conda config --prepend channels new_channel

Conda also has a command that adds the new channel to the bottom of the channel list, making it the lowest priority:

conda config --append channels new_channel

Strict channel priority

As of version 4.6.0, Conda has a strict channel priority feature. Strict channel priority can dramatically speed up conda
operations and also reduce package incompatibility problems. We recommend setting channel priority to "strict" when
possible.

Details about it can be seen by typing conda config --describe channel_priority.

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.

channel_priority: flexible

Managing packages

Note: There are many options available for the commands described on this page. For details, see commands.

36 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Searching for packages

Use the terminal for the following steps.

To see if a specific package, such as SciPy, is available for installation:

conda search scipy

To see if a specific package, such as SciPy, is available for installation from Anaconda.org:

conda search --override-channels --channel defaults scipy

To see if a specific package, such as iminuit, exists in a specific channel, such as http://conda.anaconda.org/mutirri,
and is available for installation:

conda search --override-channels --channel http://conda.anaconda.org/mutirri iminuit

Installing packages

Use the terminal for the following steps.

To install a specific package such as SciPy into an existing environment "myenv":

conda install --name myenv scipy

If you do not specify the environment name, which in this example is done by --name myenv, the package installs into
the current environment:

conda install scipy

To install a specific version of a package such as SciPy:

conda install scipy=0.15.0

To install multiple packages at once, such as SciPy and cURL:

conda install scipy curl

Note: It is best to install all packages at once, so that all of the dependencies are installed at the same time.

To install multiple packages at once and specify the version of the package:

conda install scipy=0.15.0 curl=7.26.0

To install a package for a specific Python version:

conda install scipy=0.15.0 curl=7.26.0 -n py34_env

If you want to use a specific Python version, it is best to use an environment with that version. For more information,
see Troubleshooting.

4.1. User guide 37

http://conda.anaconda.org/mutirri

conda, Release 24.3.1.dev75

Installing similar packages

Installing packages that have similar filenames and serve similar purposes may return unexpected results. The package
last installed will likely determine the outcome, which may be undesirable. If the two packages have different names,
or if you're building variants of packages and need to line up other software in the stack, we recommend using Mutex
metapackages.

Installing packages from Anaconda.org

Packages that are not available using conda install can be obtained from Anaconda.org, a package management
service for both public and private package repositories. Anaconda.org is an Anaconda product, just like Anaconda
and Miniconda.

To install a package from Anaconda.org:

1. In a browser, go to http://anaconda.org.

2. To find the package named bottleneck, type bottleneck in the top-left box named Search Packages.

3. Find the package that you want and click it to go to the detail page.

The detail page displays the name of the channel. In this example it is the "pandas" channel.

4. Now that you know the channel name, use the conda install command to install the package. In your terminal
window, run:

conda install -c pandas bottleneck

This command tells conda to install the bottleneck package from the pandas channel on Anaconda.org.

5. To check that the package is installed, in your terminal window, run:

conda list

A list of packages appears, including bottleneck.

Note: For information on installing packages from multiple channels, see Managing channels.

Installing non-conda packages

If a package is not available from conda or Anaconda.org, you may be able to find and install the package via conda-forge
or with another package manager like pip.

Pip packages do not have all the features of conda packages and we recommend first trying to install any package with
conda. If the package is unavailable through conda, try finding and installing it with conda-forge.

If you still cannot install the package, you can try installing it with pip. The differences between pip and conda packages
cause certain unavoidable limits in compatibility but conda works hard to be as compatible with pip as possible.

Note: Both pip and conda are included in Anaconda and Miniconda, so you do not need to install them separately.

Conda environments replace virtualenv, so there is no need to activate a virtualenv before using pip.

It is possible to have pip installed outside a conda environment or inside a conda environment.

38 Chapter 4. Contributors welcome

http://anaconda.org
https://conda-forge.org/search.html

conda, Release 24.3.1.dev75

To gain the benefits of conda integration, be sure to install pip inside the currently active conda environment and then
install packages with that instance of pip. The command conda list shows packages installed this way, with a label
showing that they were installed with pip.

You can install pip in the current conda environment with the command conda install pip, as discussed in Using
pip in an environment.

If there are instances of pip installed both inside and outside the current conda environment, the instance of pip installed
inside the current conda environment is used.

To install a non-conda package:

1. Activate the environment where you want to put the program:

• In your terminal window, run conda activate myenv.

2. To use pip to install a program such as See, in your terminal window, run:

pip install see

3. To verify the package was installed, in your terminal window, run:

conda list

If the package is not shown, install pip as described in Using pip in an environment and try these commands
again.

Installing commercial packages

Installing a commercial package such as IOPro is the same as installing any other package. In your terminal window,
run:

conda install --name myenv iopro

This command installs a free trial of one of Anaconda's commercial packages called IOPro, which can speed up your
Python processing. Except for academic use, this free trial expires after 30 days.

Viewing a list of installed packages

Use the terminal for the following steps.

To list all of the packages in the active environment:

conda list

To list all of the packages in a deactivated environment:

conda list -n myenv

4.1. User guide 39

https://docs.continuum.io/iopro/

conda, Release 24.3.1.dev75

Listing package dependencies

To find what packages are depending on a specific package in your environment, there is not one specific conda com-
mand. It requires a series of steps:

1. List the dependencies that a specific package requires to run: conda search package_name --info

2. Find your installation’s package cache directory: conda info

3. Find package dependencies. By default, Anaconda/Miniconda stores packages in ~/anaconda/pkgs/ (or
~/opt/pkgs/ on macOS Catalina). Each package has an index.json file which lists the package’s dependencies.
This file resides in ~anaconda/pkgs/package_name/info/index.json.

4. Now you can find what packages depend on a specific package. Use grep to search all index.json files as follows:
grep package_name ~/anaconda/pkgs/*/info/index.json

The result will be the full package path and version of anything containing the <package_name>.

Example: grep numpy ~/anaconda3/pkgs/*/info/index.json

Output from the above command:

/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpy 1.11.3␣
→˓py36_0
/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpydoc 0.6.
→˓0 py36_0
/Users/testuser/anaconda3/pkgs/anaconda-4.3.0-np111py36_0/info/index.json: numpy 1.11.3␣
→˓py36_0

Note this also returned “numpydoc” as it contains the string “numpy”. To get a more specific result set you can add <
and >.

Updating packages

Use conda update command to check to see if a new update is available. If conda tells you an update is available,
you can then choose whether or not to install it.

Use the terminal for the following steps.

• To update a specific package:

conda update biopython

• To update Python:

conda update python

• To update conda itself:

conda update conda

Note: Conda updates to the highest version in its series, so Python 3.8 updates to the highest available in the 3.x series.

To update the Anaconda metapackage:

40 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

conda update conda
conda update anaconda

Regardless of what package you are updating, conda compares versions and then reports what is available to install. If
no updates are available, conda reports "All requested packages are already installed."

If a newer version of your package is available and you wish to update it, type y to update:

Proceed ([y]/n)? y

Preventing packages from updating (pinning)

Pinning a package specification in an environment prevents packages listed in the pinned file from being updated.

In the environment's conda-meta directory, add a file named pinned that includes a list of the packages that you do
not want updated.

EXAMPLE: The file below forces NumPy to stay on the 1.7 series, which is any version that starts with 1.7. This also
forces SciPy to stay at exactly version 0.14.2:

numpy 1.7.*
scipy ==0.14.2

With this pinned file, conda update numpy keeps NumPy at 1.7.1, and conda install scipy=0.15.0 causes
an error.

Use the --no-pin flag to override the update restriction on a package. In the terminal, run:

conda update numpy --no-pin

Because the pinned specs are included with each conda install, subsequent conda update commands without
--no-pin will revert NumPy back to the 1.7 series.

Adding default packages to new environments automatically

To automatically add default packages to each new environment that you create:

1. Open a terminal window and run: conda config --add create_default_packages PACKAGENAME1
PACKAGENAME2

2. Now, you can create new environments and the default packages will be installed in all of them.

You can also edit the .condarc file with a list of packages to create by default.

You can override this option at the command prompt with the --no-default-packages flag.

4.1. User guide 41

conda, Release 24.3.1.dev75

Removing packages

Use the terminal for the following steps.

• To remove a package such as SciPy in an environment such as myenv:

conda remove -n myenv scipy

• To remove a package such as SciPy in the current environment:

conda remove scipy

• To remove multiple packages at once, such as SciPy and cURL:

conda remove scipy curl

• To confirm that a package has been removed:

conda list

Managing Python

Conda treats Python the same as any other package, so it is easy to manage and update multiple installations.

Conda supports Python 3.8, 3.9, 3.10, 3.11 and 3.12.

Viewing a list of available Python versions

To list the versions of Python that are available to install, in your terminal window, run:

conda search python

This lists all packages whose names contain the text python.

To list only the packages whose full name is exactly python, add the --full-name option. In your terminal window,
run:

conda search --full-name python

Installing a different version of Python

To install a different version of Python without overwriting the current version, create a new environment and install
the second Python version into it:

1. Create the new environment:

• To create the new environment for Python 3.9, in your terminal window run:

conda create -n py39 python=3.9

42 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Note: Replace py39 with the name of the environment you want to create. python=3.9 is the package
and version you want to install in this new environment. This could be any package, such as numpy=1.19,
or multiple packages.

2. Activate the new environment.

3. Verify that the new environment is your current environment.

4. To verify that the current environment uses the new Python version, in your terminal window, run:

python --version

Installing PyPy

To use the PyPy builds you can do the following:

conda config --add channels conda-forge
conda config --set channel_priority strict
conda create -n pypy pypy
conda activate pypy

Using a different version of Python

To switch to an environment that has different version of Python, activate the environment.

Updating Python

To update Python to the latest version in your environment, run:

conda update python

This command will update you to the latest major release (e.g. from python=3.10 to python=3.12).

If you would like to remain on a minor release, use the conda install command instead:

conda install python=3.10

Managing virtual packages

"Virtual" packages are injected into the conda solver to allow real packages to depend on features present on the system
that cannot be managed directly by conda, like system driver versions or CPU features. Virtual packages are not real
packages and not displayed by conda list. Instead conda runs a small bit of code to detect the presence or absence
of the system feature that corresponds to the package. The currently supported list of virtual packages includes:

• __cuda: Maximum version of CUDA supported by the display driver.

• __osx: OSX version if applicable.

• __glibc: Version of glibc supported by the OS.

• __linux: Available when running on Linux.

4.1. User guide 43

conda, Release 24.3.1.dev75

• __unix: Available when running on OSX or Linux.

• __win: Available when running on Win.

• __conda: Version of conda that is being used for solving.

Other virtual packages will be added in future conda releases. These are denoted by a leading double-underscore in
the package name.

Note: Note that as of version 22.11.0, virtual packages are implemented as conda plugins.

Listing detected virtual packages

Use the terminal for the following steps.

To see the list of detected virtual packages, run:

conda info

If a package is detected, you will see it listed in the virtual packages section, as shown in this example:

active environment : base
active env location : /Users/demo/dev/conda/devenv

shell level : 1
user config file : /Users/demo/.condarc

populated config files : /Users/demo/.condarc
conda version : 4.6.3.post8+8f640d35a

conda-build version : 3.17.8
python version : 3.7.2.final.0

virtual packages : __cuda=10.0
base environment : /Users/demo/dev/conda/devenv (writable)

channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/free/osx-64
https://repo.anaconda.com/pkgs/free/noarch
https://repo.anaconda.com/pkgs/r/osx-64
https://repo.anaconda.com/pkgs/r/noarch

package cache : /Users/demo/dev/conda/devenv/pkgs
/Users/demo/.conda/pkgs

envs directories : /Users/demo/dev/conda/devenv/envs
/Users/demo/.conda/envs

platform : osx-64
user-agent : conda/4.6.3.post8+8f640d35a requests/2.21.0 CPython/3.7.2␣

→˓Darwin/17.7.0 OSX/10.13.6
UID:GID : 502:20

netrc file : None
offline mode : False

44 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Overriding detected packages

For troubleshooting, it is possible to override virtual package detection using an environment variable. Supported
variables include:

• CONDA_OVERRIDE_CUDA - CUDA version number or set to "" for no CUDA detected.

• CONDA_OVERRIDE_OSX - OSX version number or set to "" for no OSX detected.

• CONDA_OVERRIDE_GLIBC - GLIBC version number or set to "" for no GLIBC. This only applies on Linux.

Creating custom channels

In this tutorial, we walk through how to create your own channel that can either be accessed via the local or network
file system or served from a webserver.

To create a custom channel:

1. You will need to install conda-build to complete this tutorial. If you do not already have it, you can install it with
the following command:

conda install conda-build

2. Organize all the packages in subdirectories for the platforms you wish to serve. Below is an example of what this
may look like:

channel
linux-64

package-1.0-0.tar.bz2
osx-64

package-1.0-0.tar.bz2
win-64

package-1.0-0.tar.bz2

3. Run conda index on the channel root directory:

conda index channel/

The conda index command generates a file repodata.json, saved to each repository directory, which conda
uses to get the metadata for the packages in the channel.

Note: Each time you add or modify a package in the channel, you must rerun conda index for conda to see
the update.

4. To test custom channels, serve the custom channel using a web server or using a file:// URL to the channel
directory. Test by sending a search command to the custom channel.

Example: if you want a file in the custom channel location /opt/channel/linux-64/, search for files in that
location:

conda search -c file:///opt/channel/ --override-channels

Note:
• The channel URL does not include the platform, as conda automatically detects and adds the platform.

4.1. User guide 45

conda, Release 24.3.1.dev75

• The option --override-channels ensures that conda searches only your specified channel and no other
channels, such as default channels or any other channels you may have listed in your .condarc file.

If you have set up your private repository correctly, you get the following output:

Fetching package metadata:

This is followed by a list of the conda packages found. This verifies that you have set up and indexed your private
repository successfully.

Creating projects

In this tutorial, we will walk through how to set up a new Python project in conda using an environment.yml file.
This file will help you keep track of your dependencies and share your project with others. We cover how to create your
project, add a simple Python program and update it with new dependencies.

Requirements

To follow along, you will need a working conda installation. Please head over to our installation guide for instructions
on how to get conda installed if you do not have it.

This tutorial relies heavily on using your computer's terminal (Command Prompt or PowerShell on Windows), so it is
also important to have a working familiarity with using basic commands such as cd and ls.

Creating the project's files

To start off, we will need a directory that will contain the files for our project. This can be created with the following
command:

mkdir my-project

In this directory, we will now create a new environment.yaml file, which will hold the dependencies for our Python
project. In your text editor (e.g. VSCode, PyCharm, vim, etc.), create this file and add the following:

name: my-project
channels:
- defaults

dependencies:
- python

Let's briefly go over what each part of this file means.

Name
The name of your environment. Here, we have chosen the name "my-project", but this can be anything you want.

Channels
Channels specify where you want conda to search for packages. We have chosen the defaults channel, but
others such as conda-forge or bioconda are also possible to list here.

Dependencies
All the dependencies that you need for your project. So far, we have just added python because we know it will
be a Python project. We will add more later.

46 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Creating our environment

Now that we have written a basic environment.yml file, we can create and activate an environment from it. To do
so, run the following commands:

conda env create --file environment.yml
conda activate my-project

Creating our Python application

With our new environment with Python installed, we can create a simple Python program. In your project folder, create
a main.py file and add the following:

def main():
print("Hello, conda!")

if __name__ == "__main__":
main()

We can run our simple Python program by running the following command:

python main.py
Hello, conda!

Updating our project with new dependencies

If you want your project to do more than the simple example above, you can use one of the thousands of available
packages on conda channels. To demonstrate this, we will add a new dependency so that we can pull in some data from
the internet and perform a basic analysis.

To perform the data analysis, we will be relying on the Pandas package. To add this to our project, we will need to
update our environment.yml file:

name: my-project
channels:
- defaults

dependencies:
- python
- pandas # <-- This is our new dependency

Once we have done that, we can run the conda env update command to install the new package:

conda env update --file environment.yml

Now that our dependencies are installed, we will download some data to use for our analysis. For this, we will use the
U.S. Environmental Protection Agency's Walkability Index dataset available on data.gov. You can download this with
the following command:

curl -O https://edg.epa.gov/EPADataCommons/public/OA/EPA_SmartLocationDatabase_V3_Jan_
→˓2021_Final.csv

4.1. User guide 47

https://pandas.pydata.org/docs/index.html
https://catalog.data.gov/dataset/walkability-index1
https://data.gov

conda, Release 24.3.1.dev75

Tip
If you do not have curl, you can visit the above link with a web browser to download it.

For our analysis, we are interested in knowing what percentage of U.S. residents live in highly walkable areas. This is
a question that we can easily answer using the pandas library. Below is an example of how you might go about doing
that:

import pandas as pd

def main():
"""
Answers the question:

What percentage of U.S. residents live highly walkable neighborhoods?

"15.26" is the threshold on the index for a highly walkable area.
"""
csv_file = "./EPA_SmartLocationDatabase_V3_Jan_2021_Final.csv"
highly_walkable = 15.26

df = pd.read_csv(csv_file)

total_population = df["TotPop"].sum()
highly_walkable_pop = df[df["NatWalkInd"] >= highly_walkable]["TotPop"].sum()

percentage = (highly_walkable_pop / total_population) * 100.0

print(
f"{percentage:.2f}% of U.S. residents live in highly" "walkable neighborhoods."

)

if __name__ == "__main__":
main()

Update your main.py file with the code above and run it. You should get the following answer:

python main.py
10.69% of Americans live in highly walkable neighborhoods

Conclusion

You have just been introduced to creating your own data analysis project by using the environment.yml file in conda.
As the project grows, you may wish to add more dependencies and also better organize the Python code into separate
files and modules.

For even more information about working with environments and environment.yml files, please see Managing En-
vironments.

48 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Viewing command-line help

To see a list of supported conda commands, in your terminal window, run:

conda --help

or

conda -h

To get help for a specific command, type the command name followed by --help.

Example
To see help for the create command, in your terminal window, run:

conda create -h

Note: You can see the same command help in commands.

The tasks section is organized into various pages which cover nearly everything you can do with conda.

Common Tasks

Managing conda
Everything necessary to know about managing your installation of conda

Managing environments
Various operations involved with creating, updating, exporting, and removing environments, plus more

Managing channels
Information about channels and how they are searched through when installing packages

Managing packages
Details related to how to find, install, remove, and update packages in a given environment

Managing python
Supported versions of Python and tips for updating and using multiple Python versions

Managing virtual packages
Learn what virtual packages are and conda uses them

View command line help
Get help on the command line for any conda command

Tutorials

Creating custom channels
Tutorial walking you through how to create a custom channel and serve it from your local computer

Creating projects with conda
Learn how to start a new project with conda using a environment.yml file to manage your dependencies

4.1. User guide 49

conda, Release 24.3.1.dev75

4.1.4 Configuration

Using the .condarc conda configuration file

Overview

The conda configuration file, .condarc, is an optional runtime configuration file that allows advanced users to con-
figure various aspects of conda, such as which channels it searches for packages, proxy settings, and environment
directories. For all of the conda configuration options, see the configuration page.

Note: A .condarc file can also be used in an administrator-controlled installation to override the users’ configuration.
See Administering a multi-user conda installation.

The .condarc file can change many parameters, including:

• Where conda looks for packages.

• If and how conda uses a proxy server.

• Where conda lists known environments.

• Whether to update the Bash prompt with the currently activated environment name.

• Whether user-built packages should be uploaded to Anaconda.org.

• What default packages or features to include in new environments.

Creating and editing

The .condarc file is not included by default, but it is automatically created in your home directory the first time you
run the conda config command. To create or modify a .condarc file, open a terminal and enter the conda config
command.

The .condarc configuration file follows simple YAML syntax.

Example:

conda config --add channels conda-forge

Alternatively, you can open a text editor such as Notepad on Windows, TextEdit on macOS, or VS Code. Name the
new file .condarc and save it to your user home directory or root directory. To edit the .condarc file, open it from
your home or root directory and make edits in the same way you would with any other text file. If the .condarc file is
in the root environment, it will override any in the home directory.

You can find information about your .condarc file by typing conda info in your terminal. This will give you infor-
mation about your .condarc file, including where it is located.

You can also download a sample .condarc file to edit in your editor and save to your user home directory or root
directory.

To set configuration options, edit the .condarc file directly or use the conda config --set command.

Example:
To set the auto_update_conda option to False, run:

conda config --set auto_update_conda False

50 Chapter 4. Contributors welcome

http://anaconda.org
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

conda, Release 24.3.1.dev75

For a complete list of conda config commands, see the command reference. The same list is available at the terminal
by running conda config --help. You can also see the conda channel configuration for more information.

Conda supports a wide range of configuration options. This page gives a non-exhaustive list of the most frequently used
options and their usage. For a complete list of all available options for your version of conda, use the conda config
--describe command.

Searching for .condarc

Conda looks in the following locations for a .condarc file:

if on_win:
SEARCH_PATH = (

"C:/ProgramData/conda/.condarc",
"C:/ProgramData/conda/condarc",
"C:/ProgramData/conda/condarc.d",

)
else:

SEARCH_PATH = (
"/etc/conda/.condarc",
"/etc/conda/condarc",
"/etc/conda/condarc.d/",
"/var/lib/conda/.condarc",
"/var/lib/conda/condarc",
"/var/lib/conda/condarc.d/",

)

SEARCH_PATH += (
"$CONDA_ROOT/.condarc",
"$CONDA_ROOT/condarc",
"$CONDA_ROOT/condarc.d/",
"$XDG_CONFIG_HOME/conda/.condarc",
"$XDG_CONFIG_HOME/conda/condarc",
"$XDG_CONFIG_HOME/conda/condarc.d/",
"~/.config/conda/.condarc",
"~/.config/conda/condarc",
"~/.config/conda/condarc.d/",
"~/.conda/.condarc",
"~/.conda/condarc",
"~/.conda/condarc.d/",
"~/.condarc",
"$CONDA_PREFIX/.condarc",
"$CONDA_PREFIX/condarc",
"$CONDA_PREFIX/condarc.d/",
"$CONDARC",

)

XDG_CONFIG_HOME is the path to where user-specific configuration files should be stored defined following The XDG
Base Directory Specification (XDGBDS). Default to $HOME/.config should be used. CONDA_ROOT is the path for
your base conda install. CONDA_PREFIX is the path to the current active environment. CONDARC must be a path to a file
named .condarc, condarc, or end with a YAML suffix (.yml or .yaml).

Note: Any condarc files that exist in any of these special search path directories need to end in a valid yaml extension

4.1. User guide 51

https://conda.io/projects/conda/en/latest/configuration.html

conda, Release 24.3.1.dev75

(".yml" or ".yaml").

Conflict merging strategy

When conflicts between configurations arise, the following strategies are employed:

• Lists - merge

• Dictionaries - merge

• Primitive - clobber

Precedence

The precedence by which the conda configuration is built out is shown below. Each new arrow takes precedence over
the ones before it. For example, config files (by parse order) will be superseded by any of the other configuration
options. Configuration environment variables (formatted like CONDA_<CONFIG NAME>) will always take precedence
over the other 3.

Obtaining information from the .condarc file

You can use the following commands to get the effective settings for conda. The effective settings are those that have
merged settings from all the sources mentioned above.

To get all keys and their values:

conda config --get

To get the value of a specific key, such as channels:

conda config --get channels

To show all the configuration file sources and their contents:

conda config --show-sources

52 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Saving settings to your .condarc file

The .condarc file can also be modified via conda commands. Below are several examples of how to do this.

To add a new value, such as http://conda.anaconda.org/mutirri, to a specific key, such as channels:

conda config --add channels http://conda.anaconda.org/mutirri

To remove an existing value, such as http://conda.anaconda.org/mutirri from a specific key, such as channels:

conda config --remove channels http://conda.anaconda.org/mutirri

To remove a key, such as channels, and all of its values:

conda config --remove-key channels

To configure channels and their priority for a single environment, make a .condarc file in the root directory of that
environment.

Sample .condarc file

Because the .condarc file is just a YAML file, it means that it can be edited directly. Below is an example .condarc
file:

This is a sample .condarc file.
It adds the r Anaconda.org channel and enables
the show_channel_urls option.

channel locations. These override conda defaults, i.e., conda will
search *only* the channels listed here, in the order given.
Use "defaults" to automatically include all default channels.
Non-url channels will be interpreted as Anaconda.org usernames
(this can be changed by modifying the channel_alias key; see below).
The default is just 'defaults'.
channels:
- r
- defaults

Show channel URLs when displaying what is going to be downloaded
and in 'conda list'. The default is False.
show_channel_urls: True

For more information about this file see:
https://conda.io/docs/user-guide/configuration/use-condarc.html

4.1. User guide 53

http://conda.anaconda.org/mutirri
http://conda.anaconda.org/mutirri

conda, Release 24.3.1.dev75

Settings

This page contains an overview of many important settings available in conda with examples where possible.

General configuration

channels: Channel locations

Listing channel locations in the .condarc file overrides conda defaults, causing conda to search only the channels
listed there in the order given.

Use defaults to automatically include all default channels. Non-URL channels are interpreted as Anaconda.org user
or organization names. You can change this by modifying the channel_alias as described in channel_alias: Set a
channel alias. The default is just defaults.

Example:

channels:
- <anaconda_dot_org_username>
- http://some.custom/channel
- file:///some/local/directory
- defaults

To select channels for a single environment, put a .condarc file in the root directory of that environment (or use the
--env option when using conda config).

Example: If you have installed Miniconda with Python 3 in your home directory and the environment is named "flow-
ers", the path may be:

~/miniconda3/envs/flowers/.condarc

default_channels: Default channels

Normally, the defaults channel points to several channels at the repo.anaconda.com repository, but if
default_channels is defined, it sets the new list of default channels. This is especially useful for airgapped and
enterprise installations.

To ensure that all users only pull packages from an on-premises repository, an administrator can set both channel alias
and default_channels.

default_channels:
- http://some.custom/channel
- file:///some/local/directory

54 Chapter 4. Contributors welcome

https://repo.anaconda.com/

conda, Release 24.3.1.dev75

channel_settings: Extra settings for individual channels

Added in version 23.3.0.

With channel_settings, it is possible to add extra configuration options for individual channels. This is currently
used to register additional authentication handlers for conda via the Auth Handlers plugin hook, but may also accom-
modate more use cases in the future.

Here is an example of how it may be defined provided there was an available authentication handler called, "test-auth-
handler" registered via the aforementioned plugin hook:

channel_settings:
- channel: https://some.custom/channel
auth: test-auth-handler
user: my-user-account

- channel: https://some.base-url-prefix/*
auth: another-auth-handler

Note: Each entry in channel_settings needs to define the channel attribute so that the configuration knows which
channel these settings are associated with. The channel attribute may specify a glob-like URL pattern for matching.
Note that in this case, the HTTP schema must match exactly to the channel URL, so a pattern like * is not valid.

auto_update_conda: Update conda automatically

When True, conda updates itself any time a user updates or installs a package in the root environment. When False,
conda updates itself only if the user manually issues a conda update command. The default is True.

Example:

auto_update_conda: False

always_yes: Always yes

Choose the yes option whenever asked to proceed, such as when installing. Same as using the --yes flag at the
command line. The default is False.

Example:

always_yes: True

show_channel_urls: Show channel URLs

Show channel URLs in conda list and when displaying what is going to be downloaded. The default is False.

Example:

show_channel_urls: True

4.1. User guide 55

conda, Release 24.3.1.dev75

changeps1: Change command prompt

When using conda activate, change the command prompt from $PS1 to include the activated environment. The
default is True.

Example:

changeps1: False

add_pip_as_python_dependency: Add pip as Python dependency

Add pip, wheel, and setuptools as dependencies of Python. This ensures that pip, wheel, and setuptools are always
installed any time Python is installed. The default is True.

Example:

add_pip_as_python_dependency: False

use_pip: Use pip

Use pip when listing packages with conda list. This does not affect any conda command or functionality other than
the output of the command conda list. The default is True.

Example:

use_pip: False

proxy_servers: Configure conda for use behind a proxy server

By default, proxy settings are pulled from the HTTP_PROXY and HTTPS_PROXY environment variables or the sys-
tem. Setting them here overrides that default:

proxy_servers:
http: http://user:pass@corp.com:8080
https: https://user:pass@corp.com:8080

To give a proxy for a specific scheme and host, use the scheme://hostname form for the key. This matches for any
request to the given scheme and exact host name:

proxy_servers:
'http://10.20.1.128': 'http://10.10.1.10:5323'

If you do not include the username and password or if authentication fails, conda prompts for a username and password.

If your password contains special characters, you need to escape them as described in Percent-encoding reserved char-
acters on Wikipedia.

Be careful not to use http when you mean https or https when you mean http.

56 Chapter 4. Contributors welcome

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

conda, Release 24.3.1.dev75

ssl_verify: SSL verification

If you are behind a proxy that does SSL inspection, such as a Cisco IronPort Web Security Appliance (WSA), you may
need to use ssl_verify to override the SSL verification settings.

By default, this variable is True, which means that SSL verification is used and conda verifies certificates for SSL
connections. Setting this variable to False disables the connection's normal security and is not recommended:

ssl_verify: False

You can also set ssl_verify to a string path to a certificate, which can be used to verify SSL connections:

ssl_verify: corp.crt

offline: Offline mode only

Filters out all channel URLs that do not use the file:// protocol. The default is False.

Example:

offline: True

Advanced configuration

allow_softlinks: Disallow soft-linking

When allow_softlinks is True, conda uses hard links when possible and soft links (symlinks) when hard links are
not possible, such as when installing on a different file system than the one that the package cache is on.

When allow_softlinks is False, conda still uses hard links when possible, but when it is not possible, conda copies
files. Individual packages can override this option, specifying that certain files should never be soft linked.

The default is True.

Example:

allow_softlinks: False

channel_alias: Set a channel alias

Whenever you use the -c or --channel flag to give conda a channel name that is not a URL, conda prepends the
channel_alias to the name that it was given. The default channel_alias is https://conda.anaconda.org.

If channel_alias is set to https://my.anaconda.repo:8080/conda/, then a user who runs the command conda
install -c conda-forge some-package will install the package some-package from https://my.anaconda.
repo:8080/conda/conda-forge.

For example, the command:

conda install --channel asmeurer <package>

is the same as:

4.1. User guide 57

https://conda.anaconda.org

conda, Release 24.3.1.dev75

conda install --channel https://conda.anaconda.org/asmeurer <package>

You can set channel_alias to your own repository.

Example: To set channel_alias to your repository at https://your.repo.com:

channel_alias: https://your.repo/

On Windows, you must include a slash ("/") at the end of the URL:

Example: https://your.repo/conda/

When channel_alias set to your repository at https://your.repo.com:

conda install --channel jsmith <package>

is the same as:

conda install --channel https://your.repo.com/jsmith <package>

create_default_packages: Always add packages by default

When creating new environments, add the specified packages by default. The default packages are installed in every
environment you create. You can override this option at the command prompt with the --no-default-packages
flag. The default is to not include any packages.

Example:

create_default_packages:
- pip
- ipython
- scipy=0.15.0

track_features: Track features

Enable certain features to be tracked by default. The default is to not track any features. This is similar to adding MKL
to the create_default_packages list.

Example:

track_features:
- mkl

update_dependencies: Disable updating of dependencies

By default, conda install updates the given package to the latest version and installs any dependencies necessary
for that package. However, if dependencies that satisfy the package's requirements are already installed, conda will not
update those packages to the latest version.

In this case, if you would prefer that conda update all dependencies to the latest version that is compatible with the
environment, set update_dependencies to True.

The default is False.

58 Chapter 4. Contributors welcome

https://your.repo.com
https://your.repo/conda/
https://your.repo.com

conda, Release 24.3.1.dev75

Example:

update_dependencies: True

Note: Conda still ensures that dependency specifications are satisfied. Thus, some dependencies may still be updated
or, conversely, this may prevent packages given at the command line from being updated to their latest versions. You
can always specify versions at the command line to force conda to install a given version, such as conda install
numpy=1.9.3.

To avoid updating only specific packages in an environment, a better option may be to pin them. For more information,
see Preventing packages from updating (pinning).

disallow: Disallow installation of specific packages

Disallow the installation of certain packages. The default is to allow installation of all packages.

Example:

disallow:
- anaconda

add_anaconda_token: Add Anaconda.org token to automatically see private packages

When the channel alias is Anaconda.org or an Anaconda Server GUI, you can set the system configuration so that
users automatically see private packages. Anaconda.org was formerly known as binstar.org. This uses the Anaconda
command-line client, which you can install with conda install anaconda-client, to automatically add the token
to the channel URLs.

The default is True.

Example:

add_anaconda_token: False

Note: Even when set to True, this setting is enabled only if the Anaconda command-line client is installed and you
are logged in with the anaconda login command.

envs_dirs: Specify environment directories

Specify directories in which environments are located. If this key is set, the root prefix envs_dir is not used unless
explicitly included. This key also determines where the package caches are located.

For each envs here, envs/pkgs is used as the pkgs cache, except for the standard envs directory in the root directory,
for which the normal root_dir/pkgs is used.

Example:

envs_dirs:
- ~/my-envs
- /opt/anaconda/envs

4.1. User guide 59

conda, Release 24.3.1.dev75

The CONDA_ENVS_PATH environment variable overwrites the envs_dirs setting:

• For macOS and Linux: CONDA_ENVS_PATH=~/my-envs:/opt/anaconda/envs

• For Windows: set CONDA_ENVS_PATH=C:\Users\joe\envs;C:\Anaconda\envs

pkgs_dirs: Specify package directories

Specify directories in which packages are located. If this key is set, the root prefix pkgs_dirs is not used unless
explicitly included.

If the pkgs_dirs key is not set, then envs/pkgs is used as the pkgs cache, except for the standard envs directory in
the root directory, for which the normal root_dir/pkgs is used.

Example:

pkgs_dirs:
- /opt/anaconda/pkgs

The CONDA_PKGS_DIRS environment variable overwrites the pkgs_dirs setting:

• For macOS and Linux: CONDA_PKGS_DIRS=/opt/anaconda/pkgs

• For Windows: set CONDA_PKGS_DIRS=C:\Anaconda\pkgs

use_only_tar_bz2: Force conda to download only .tar.bz2 packages

Conda 4.7 introduced a new .conda package file format. .conda is a more compact and faster alternative to .tar.bz2
packages. It's thus the preferred file format to use where available.

Nevertheless, it's possible to force conda to only download .tar.bz2 packages by setting the use_only_tar_bz2
boolean to True.

The default is False.

Example:

use_only_tar_bz2: True

Note: This is forced to True if conda-build is installed and older than 3.18.3, because older versions of conda break
when conda feeds it the new file format.

Conda-build configuration

root-dir: Specify conda-build output root directory

Build output root directory. You can also set this with the CONDA_BLD_PATH environment variable. The default is
<CONDA_PREFIX>/conda-bld/. If you do not have write permissions to <CONDA_PREFIX>/conda-bld/, the default
is ~/conda-bld/.

Example:

conda-build:
root-dir: ~/conda-builds

60 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

output_folder: Specify conda-build build folder (conda-build 3.16.3+)

Folder to dump output package to. Packages are moved here if build or test succeeds. If unset, the output folder
corresponds to the same directory as root-dir: the root build directory. .. code-block:: yaml

conda-build:
output_folder: conda-bld

pkg_version: Specify conda-build package version

Conda package version to create. Use 2 for .conda packages. If not set, conda-build defaults to .tar.bz2.

conda-build:
pkg_format: 2

anaconda_upload: Automatically upload conda-build packages to Anaconda.org

Automatically upload packages built with conda-build to Anaconda.org. The default is False.

Example:

anaconda_upload: True

anaconda_token: Token to be used for Anaconda.org uploads (conda-build 3.0+)

Tokens are a means of authenticating with Anaconda.org without logging in. You can pass your token to conda-
build with this .condarc setting, or with a CLI argument. This is unset by default. Setting it implicitly enables
anaconda_upload.

conda-build:
anaconda_token: gobbledygook

quiet: Limit build output verbosity (conda-build 3.0+)

Conda-build's output verbosity can be reduced with the quiet setting. For more verbosity, use the CLI flag --debug.

conda-build:
quiet: true

filename_hashing: Disable filename hashing (conda-build 3.0+)

Conda-build 3 adds hashes to filenames to allow greater customization of dependency versions. If you find this disrup-
tive, you can disable the hashing with the following config entry:

conda-build:
filename_hashing: false

4.1. User guide 61

http://anaconda.org

conda, Release 24.3.1.dev75

Warning: Conda-build does not check when clobbering packages. If you utilize conda-build 3's build matrices
with a build configuration that is not reflected in the build string, packages will be missing due to clobbering.

no_verify: Disable recipe and package verification (conda-build 3.0+)

By default, conda-build uses conda-verify to ensure that your recipe and package meet some minimum sanity checks.
You can disable these:

conda-build:
no_verify: true

set_build_id: Disable per-build folder creation (conda-build 3.0+)

By default, conda-build creates a new folder for each build, named for the package name plus a timestamp. This allows
you to do multiple builds at once. If you have issues with long paths, you may need to disable this behavior. You should
first try to change the build output root directory with the root-dir setting described above, but fall back to this as
necessary:

conda-build:
set_build_id: false

skip_existing: Skip building packages that already exist (conda-build 3.0+)

By default, conda-build builds all recipes that you specify. You can instead skip recipes that are already built. A recipe
is skipped if and only if all of its outputs are available on your currently configured channels.

conda-build:
skip_existing: true

include_recipe: Omit recipe from package (conda-build 3.0+)

By default, conda-build includes the recipe that was used to build the package. If this contains sensitive or proprietary
information, you can omit the recipe.

conda-build:
include_recipe: false

Note: If you do not include the recipe, you cannot use conda-build to test the package after the build completes. This
means that you cannot split your build and test steps across two distinct CLI commands (conda build --notest
recipe and conda build -t recipe). If you need to omit the recipe and split your steps, your only option is to
remove the recipe files from the tarball artifacts after your test step. Conda-build does not provide tools for doing that.

62 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

activate: Disable activation of environments during build/test (conda-build 3.0+)

By default, conda-build activates the build and test environments prior to executing the build or test scripts. This adds
necessary PATH entries, and also runs any activate.d scripts you may have. If you disable activation, the PATH will
still be modified, but the activate.d scripts will not run. This is not recommended, but some people prefer this.

conda-build:
activate: false

long_test_prefix: Disable long prefix during test (conda-build 3.16.3+)

By default, conda-build uses a long prefix for the test prefix. If you have recipes that fail in long prefixes but would still
like to test them in short prefixes, you can disable the long test prefix. This is not recommended.

conda-build:
long_test_prefix: false

The default is true.

pypirc: PyPI upload settings (conda-build 3.0+)

Unset by default. If you have wheel outputs in your recipe, conda-build will try to upload them to the PyPI repository
specified by the pypi_repository setting using credentials from this file path.

conda-build:
pypirc: ~/.pypirc

pypi_repository: PyPI repository to upload to (conda-build 3.0+)

Unset by default. If you have wheel outputs in your recipe, conda-build will try to upload them to this PyPI repository
using credentials from the file specified by the pypirc setting.

conda-build:
pypi_repository: pypi

Expansion of environment variables

Conda expands environment variables in a subset of configuration settings. These are:

• channel

• channel_alias

• channels

• client_cert_key

• client_cert

• custom_channels

• custom_multichannels

4.1. User guide 63

conda, Release 24.3.1.dev75

• default_channels

• envs_dirs

• envs_path

• migrated_custom_channels

• pkgs_dirs

• proxy_servers

• verify_ssl

• allowlist_channels

This allows you to store the credentials of a private repository in an environment variable, like so:

channels:
- https://${USERNAME}:${PASSWORD}@my.private.conda.channel

Configuring number of threads

You can use your .condarc file or environment variables to add configuration to control the number of threads. You
may want to do this to tweak conda to better utilize your system. If you have a very fast SSD, you might increase the
number of threads to shorten the time it takes for conda to create environments and install/remove packages.

repodata_threads

• Default number of threads: None

• Threads used when downloading, parsing, and creating repodata structures from repodata.json files. Multiple
downloads from different channels may occur simultaneously. This speeds up the time it takes to start solving.

verify_threads

• Default number of threads: 1

• Threads used when verifying the integrity of packages and files to be installed in your environment. Defaults to
1, as using multiple threads here can run into problems with slower hard drives.

execute_threads

• Default number of threads: 1

• Threads used to unlink, remove, link, or copy files into your environment. Defaults to 1, as using multiple threads
here can run into problems with slower hard drives.

64 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

default_threads

• Default number of threads: None

• When set, this value is used for all of the above thread settings. With its default setting (None), it does not affect
the other settings.

Setting any of the above can be done in .condarc or with conda config:

At your terminal:

conda config --set repodata_threads 2

In .condarc:

verify_threads: 4

Administering a multi-user conda installation

By default, conda and all of the packages it installs are installed locally with a user-specific configuration. Administra-
tive privileges are not required, and no upstream files or other users are affected by the installation.

You can make conda and any number of packages available to a group of one or more users, while preventing these
users from installing unwanted packages with conda:

1. Install conda and the allowed packages, if any, in a location that is under administrator control and accessible to
users.

2. Create a .condarc system configuration file in the root directory of the installation. This system-level configuration
file will override any user-level configuration files installed by the user.

Each user accesses the central conda installation, which reads settings from the user .condarc configuration file located
in their home directory. The path to the user file is the same as the root environment prefix displayed by conda info,
as shown in User configuration file below. The user .condarc file is limited by the system .condarc file.

System configuration settings are commonly used in a system .condarc file but may also be used in a user .condarc
file. All user configuration settings may also be used in a system .condarc file.

For information about settings in the .condarc file, see Using the .condarc conda configuration file.

Example administrator-controlled installation

The following example describes how to view the system configuration file, review the settings, compare it to a user's
configuration file, and determine what happens when the user attempts to access a file from a blocked channel. It then
describes how the user must modify their configuration file to access the channels allowed by the administrator.

4.1. User guide 65

conda, Release 24.3.1.dev75

System configuration file

1. The system configuration file must be in the top-level conda installation directory. Check the path where conda
is located:

$ which conda
/tmp/miniconda/bin/conda

2. View the contents of the .condarc file in the administrator's directory:

cat /tmp/miniconda/.condarc

The following administrative .condarc file uses the #!final flag to specify the channels, default channels, and
channel_alias available to the user.

$ cat /tmp/miniconda/.condarc

channels: #!final
- admin

channel_alias: https://conda.anaconda.org/ #!final

The #!final flag is very similar to the !important rule in CSS; any parameter within the .condarc that is trailed by
the #!final cannot be overwritten by any other .condarc source. For more information on this flag, see the Anaconda
Blog on the subject.

Because the #!final flag has been used and the channel defaults are not explicitly specified, users are disallowed from
downloading packages from the default channels. You can check this in the next procedure.

User configuration file

1. Check the location of the user's conda installation:

$ conda info
Current conda install:
. . .

channel URLs : https://repo.anaconda.com/pkgs/free/osx-64/
https://repo.anaconda.com/pkgs/pro/osx-64/

config file : /Users/username/.condarc

The conda info command shows that conda is using the user's .condarc file, located at /Users/username/
.condarc and that the default channels such as repo.anaconda.com are listed as channel URLs.

2. View the contents of the administrative .condarc file in the directory that was located in step 1:

$ cat ~/.condarc
channels:
- defaults

This user's .condarc file specifies only the default channels, but the administrator config file has blocked default
channels by specifying that only admin is allowed. If this user attempts to search for a package in the default
channels, they get a message telling them what channels are allowed:

66 Chapter 4. Contributors welcome

https://www.anaconda.com/blog/conda-configuration-engine-power-users
https://www.anaconda.com/blog/conda-configuration-engine-power-users

conda, Release 24.3.1.dev75

$ conda search flask
Fetching package metadata:
Error: URL 'http://repo.anaconda.com/pkgs/pro/osx-64/' not
in allowed channels.
Allowed channels are:
- https://conda.anaconda.org/admin/osx-64/

This error message tells the user to add the admin channel to their configuration file.

3. The user must edit their local .condarc configuration file to access the package through the admin channel:

channels:
- admin

The user can now search for packages in the allowed admin channel.

Mirroring channels

The conda configuration system has several keys that can be used to set up a mirrored context.

The default setup

By default, conda can serve packages from two main locations:

• repo.anaconda.com: this is where defaults points to by default. This base location is hardcoded in the
default value of default_channels:

– https://repo.anaconda.com/pkgs/main

– https://repo.anaconda.com/pkgs/r

– https://repo.anaconda.com/pkgs/msys2

• conda.anaconda.org: this is where conda clients look up community channels like conda-forge or
bioconda. This base location can be configured via channel_alias.

So, when it comes to mirroring these channels, you have to account for those two locations.

Mirror defaults

Use default_channels to overwrite the default configuration. For example:

default_channels:
- https://my-mirror.com/pkgs/main
- https://my-mirror.com/pkgs/r
- https://my-mirror.com/pkgs/msys2

4.1. User guide 67

conda, Release 24.3.1.dev75

Mirror all community channels

Redefine channel_alias to point to your mirror. For example:

channel_alias: https://my-mirror.com

This will make conda look for all community channels at https://my-mirror.com/conda-forge, https://
my-mirror.com/bioconda, etc.

Mirror only some community channels

If you want to mirror only some community channels, you must use custom_channels. This takes precedence over
channel_alias. For example:

custom_channels:
conda-forge: https://my-mirror.com/conda-forge

With this configuration, conda-forge will be looked up at https://my-mirror.com/conda-forge. All other com-
munity channels will be looked up at https://conda.anaconda.org.

Note: Feel free to explore all the available options in Configuration.

Disabling SSL verification

Using conda with SSL is strongly recommended, but it is possible to disable SSL and it may be necessary to disable
SSL in certain cases.

Some corporate environments use proxy services that use Man-In-The-Middle (MITM) attacks to sniff encrypted traffic.
These services can interfere with SSL connections such as those used by conda and pip to download packages from
repositories such as PyPI.

If you encounter this interference, you should set up the proxy service's certificates so that the requests package used
by conda can recognize and use the certificates.

For cases where this is not possible, conda-build versions 3.0.31 and higher have an option that disables SSL certificate
verification and allows this traffic to continue.

conda skeleton pypi can disable SSL verification when pulling packages from a PyPI server over HTTPS.

Warning: This option causes your computer to download and execute arbitrary code over a connection that it
cannot verify as secure. This is not recommended and should only be used if necessary. Use this option at your
own risk.

To disable SSL verification when using conda skeleton pypi, set the SSL_NO_VERIFY environment variable to
either 1 or True (case insensitive).

On *nix systems:

SSL_NO_VERIFY=1 conda skeleton pypi a_package

And on Windows systems:

68 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

set SSL_NO_VERIFY=1
conda skeleton pypi a_package
set SSL_NO_VERIFY=

We recommend that you unset this environment variable immediately after use. If it is not unset, some other tools may
recognize it and incorrectly use unverified SSL connections.

Using this option will cause requests to emit warnings to STDERR about insecure settings. If you know that what
you're doing is safe, or have been advised by your IT department that what you're doing is safe, you may ignore these
warnings.

Disabling SSL verification via conda settings

In addition to disabling SSL via environment variables, you can disable it by setting ssl_verify to false in your config
files. To do so, run the following commands to disable and enable it:

conda config --set ssl_verify False
Run conda commands with SSL disabled
conda config --set ssl_verify True

Using non-standard certificates

Using conda behind a firewall may require using a non-standard set of certificates, which requires custom settings.

If you are using a non-standard set of certificates, then the requests package requires the setting of
REQUESTS_CA_BUNDLE. If you receive an error with self-signed certifications, you may consider unsetting
REQUESTS_CA_BUNDLE as well as CURL_CA_BUNDLE and disabling SSL verification to create a conda environment
over HTTP.

You may need to set the conda environment to use the root certificate provided by your company rather than conda’s
generic ones.

One workflow to resolve this on macOS is:

• Open Chrome, got to any website, click on the lock icon on the left of the URL. Click on «Certificate» on the
dropdown. In the next window you see a stack of certificates. The uppermost (aka top line in window) is the root
certificate (e.g. Zscaler Root CA).

• Open macOS keychain, click on «Certificates» and choose among the many certificates the root certificate that
you just identified. Export this to any folder of your choosing.

• Convert this certificate with OpenSSL: openssl x509 -inform der -in /path/to/your/certificate.
cer -out /path/to/converted/certificate.pem

• For a quick check, set your shell to acknowledge the certificate: export REQUESTS_CA_BUNDLE=/path/to/
converted/certificate.pem

• To set this permanently, open your shell profile (e.g. .bashrc or .zshrc) and add this line: export
REQUESTS_CA_BUNDLE=/path/to/converted/certificate.pem.Now exit your terminal/shell and reopen.
Check again.

4.1. User guide 69

https://conda.io/projects/conda/en/latest/user-guide/configuration/disable-ssl-verification.html

conda, Release 24.3.1.dev75

Improving interoperability with pip

The conda 4.6.0 release added improved support for interoperability between conda and pip. This feature is still exper-
imental and is therefore off by default.

With this interoperability, conda can use pip-installed packages to satisfy dependencies, cleanly remove pip-installed
software, and replace them with conda packages when appropriate.

If you’d like to try the feature, you can set this .condarc setting:

conda config --set pip_interop_enabled True

Note: Setting pip_interop_enabled to True may slow down conda.

Even without activating this feature, conda now understands pip metadata more intelligently. For example, if we create
an environment with conda:

conda create -y -n some_pip_test python=3.7 imagesize=1.0

Then we update imagesize in that environment using pip:

conda activate some_pip_test
pip install -U imagesize

Prior to conda 4.6.0, the conda list command returned ambiguous results:

imagesize 1.1.0

imagesize 1.0.0 py37_0

Conda 4.6.0 now shows only one entry for imagesize (the newer pip entry):

imagesize 1.1.0 pypi_0 pypi

Using the free channel

The free channel contains packages created prior to September 26, 2017. Prior to conda 4.7, the free channel was part
of the defaults channel. Read more about the defaults channel.

Removing the free channel reduced conda's search space and hid old software. That old software could have incom-
patible constraint information. Read more about why we made this change.

If you still need the content from the free channel to reproduce old environments, you can re-add the channel following
the directions below.

70 Chapter 4. Contributors welcome

https://www.anaconda.com/why-we-removed-the-free-channel-in-conda-4-7/

conda, Release 24.3.1.dev75

Adding the free channel to defaults

If you want to add the free channel back into your default list, use the command:

conda config --set restore_free_channel true

The order of the channels is important. Using the above command will restore the free channel in the correct order.

Changing .condarc

You can also add the free channel back into your defaults by changing the .condarc file itself.

Add the following to the conda section of your .condarc file:

restore_free_channel: true

Read more about Using the .condarc conda configuration file.

Package name changes

Some packages that are available in the free channel have different names in the main channel.

Package name in free Package name in main

dateutil python-dateutil
gcc gcc_linux-64 and similar
pil pillow
ipython-notebook now installable via notebook, a metapackage could be created
Ipython-qtconsole now installable via qtconsole, a metapackage could be created
beautiful-soup beautifulsoup4
pydot-ng pydot

Troubleshooting

You may encounter some errors, such as UnsatisfiableError or a PackagesNotFoundError.

An example of this error is:

$ conda create -n test -c file:///Users/jsmith/anaconda/conda-bld bad_pkg
Collecting package metadata: done
Solving environment: failed

UnsatisfiableError: The following specifications were found to be in conflict:
- cryptography=2.6.1 -> openssl[version='>=1.1.1b,<1.1.2a']
- python=3.7.0 -> openssl[version='>=1.0.2o,<1.0.3a']

Use "conda search <package> --info" to see the dependencies for each package.

This can occur if:

• you’re trying to install a package that is only available in free and not in main.

• you have older environments in files you want to recreate. If those spec files reference packages that are in free,
they will not show up.

4.1. User guide 71

conda, Release 24.3.1.dev75

• a package is dependent upon files found only in the free channel. Conda will not let you install the package if it
cannot install the dependency, which the package requires to work.

If you encounter these errors, consider using a newer package than the one in free. If you want those older versions,
you can add the free channel back into your defaults.

The following pages have information on how conda can be customized further through configuration.

Using the .condarc conda configuration file
Learn how to use a settings file (.condarc) to override defaults and maintain settings across shell sessions

Settings
View a list and definition of all the configuration settings that can be used within conda

Administering a multi-user conda installation
How to set up conda as a system administrator for use by multiple users

Mirroring channels
Explore how to configure your own channel server mirror with conda

Disable SSL Verification
Disabling SSL may be necessary in very limited circumstances; learn how here

Using non-standard certificates
Install and configure non-standard certifications for use with conda

Pip interoperability (experimental)
An experimental feature that makes conda operate better with pip (no longer supported)

Free channel (deprecated)
Explanation of our deprecation of the free channel and how to restore it

4.1.5 Concepts

Commands

The conda command is the primary interface for managing installations of various packages. It can:

• Query and search the Anaconda package index and current Anaconda installation.

• Create new conda environments.

• Install and update packages into existing conda environments.

Tip: You can abbreviate many frequently used command options that are preceded by 2 dashes (--) to just 1 dash and
the first letter of the option. So --name and --envs can be written as -n and -e respectively.

For full usage of each command, including abbreviations, see commands. You can see the same information at the
command line by viewing the command-line help.

72 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Packages

What is a package?

A package is a compressed tarball file (.tar.bz2) or .conda file that contains:

• system-level libraries.

• Python or other modules.

• executable programs and other components.

• metadata under the info/ directory.

• a collection of files that are installed directly into an install prefix.

Conda keeps track of the dependencies between packages and platforms. The conda package format is identical across
platforms and operating systems.

Only files, including symbolic links, are part of a conda package. Directories are not included. Directories are created
and removed as needed, but you cannot create an empty directory from the tar archive directly.

.conda file format

The .conda file format was introduced in conda 4.7 as a more compact, and thus faster, alternative to a tarball.

The .conda file format consists of an outer, uncompressed ZIP-format container, with 2 inner compressed .tar files.

For the .conda format's initial internal compression format support, we chose Zstandard (zstd). The actual compression
format used does not matter, as long as the format is supported by libarchive. The compression format may change in
the future as more advanced compression algorithms are developed and no change to the .conda format is necessary.
Only an updated libarchive would be required to add a new compression format to .conda files.

These compressed files can be significantly smaller than their bzip2 equivalents. In addition, they decompress much
more quickly. .conda is the preferred file format to use where available, although we continue to provide .tar.bz2 files
in tandem.

Read more about the introduction of the .conda file format.

Note: In conda 4.7 and later, you cannot use package names that end in “.conda” as they conflict with the .conda file
format for packages.

Using packages

• You may search for packages

conda search scipy

• You may install a package

conda install scipy

• You may build a package after installing conda-build

conda build my_fun_package

4.1. User guide 73

https://www.anaconda.com/understanding-and-improving-condas-performance/
https://docs.conda.io/projects/conda-build/en/latest/index.html

conda, Release 24.3.1.dev75

Package structure

.
bin

pyflakes
info

LICENSE.txt
files
index.json
paths.json
recipe

lib
python3.5

• bin contains relevant binaries for the package.

• lib contains the relevant library files (eg. the .py files).

• info contains package metadata.

Metapackages

When a conda package is used for metadata alone and does not contain any files, it is referred to as a metapackage.
The metapackage may contain dependencies to several core, low-level libraries and can contain links to software files
that are automatically downloaded when executed. Metapackages are used to capture metadata and make complicated
package specifications simpler.

An example of a metapackage is "anaconda," which collects together all the packages in the Anaconda installer. The
command conda create -n envname anaconda creates an environment that exactly matches what would be cre-
ated from the Anaconda installer. You can create metapackages with the conda metapackage command. Include the
name and version in the command.

Anaconda metapackage

The Anaconda metapackage is used in the creation of the Anaconda Distribution installers so that they have a set
of packages associated with them. Each installer release has a version number, which corresponds to a particular
collection of packages at specific versions. That collection of packages at specific versions is encapsulated in the
Anaconda metapackage.

The Anaconda metapackage contains several core, low-level libraries, including compression, encryption, linear alge-
bra, and some GUI libraries.

Read more about the Anaconda metapackage and Anaconda Distribution.

74 Chapter 4. Contributors welcome

https://docs.anaconda.com/free/anaconda/
https://www.anaconda.com/whats-in-a-name-clarifying-the-anaconda-metapackage/

conda, Release 24.3.1.dev75

Mutex metapackages

A mutex metapackage is a very simple package that has a name. It need not have any dependencies or build steps. Mutex
metapackages are frequently an "output" in a recipe that builds some variant of another package. Mutex metapackages
function as a tool to help achieve mutual exclusivity among packages with different names.

Let's look at some examples for how to use mutex metapackages to build NumPy against different BLAS implementa-
tions.

Building NumPy with BLAS variants

If you build NumPy with MKL, you also need to build SciPy, scikit-learn, and anything else using BLAS also with
MKL. It is important to ensure that these “variants” (packages built with a particular set of options) are installed together
and never with an alternate BLAS implementation. This is to avoid crashes, slowness, or numerical problems. Lining
up these libraries is both a build-time and an install-time concern. We’ll show how to use metapackages to achieve this
need.

Let's start with the metapackage blas=1.0=mkl: https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/
e699b12/recipe/meta.yaml#L108-L112

Note that mkl is a string of blas.

That metapackage is automatically added as a dependency using run_exportswhen someone uses the mkl-devel pack-
age as a build-time dependency: https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/
meta.yaml#L124

By the same token, here’s the metapackage for OpenBLAS: https://github.com/AnacondaRecipes/openblas-feedstock/
blob/ae5af5e/recipe/meta.yaml#L127-L131

And the run_exports for OpenBLAS, as part of openblas-devel: https://github.com/AnacondaRecipes/
openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L100

Fundamentally, conda’s model of mutual exclusivity relies on the package name. OpenBLAS and MKL are obviously
not the same package name, and thus are not mutually exclusive. There’s nothing stopping conda from installing both at
once. There’s nothing stopping conda from installing NumPy with MKL and SciPy with OpenBLAS. The metapackage
is what allows us to achieve the mutual exclusivity. It unifies the options on a single package name, but with a different
build string. Automating the addition of the metapackage with run_exports helps ensure the library consumers
(package builders who depend on libraries) will have correct dependency information to achieve the unified runtime
library collection.

Installing NumPy with BLAS variants

To specify which variant of NumPy that you want, you could potentially specify the BLAS library you want:

conda install numpy mkl

However, that doesn’t actually preclude OpenBLAS from being chosen. Neither MKL nor its dependencies are mutually
exclusive (meaning they do not have similar names and different version/build-string).

This pathway may lead to some ambiguity and solutions with mixed BLAS, so using the metapackage is recommended.
To specify MKL-powered NumPy in a non-ambiguous way, you can specify the mutex package (either directly or
indirectly):

conda install numpy “blas=*=mkl”

4.1. User guide 75

https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L108-L112
https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L108-L112
https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L124
https://github.com/AnacondaRecipes/intel_repack-feedstock/blob/e699b12/recipe/meta.yaml#L124
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L131
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L131
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L100
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L100

conda, Release 24.3.1.dev75

There is a simpler way to address this, however. For example, you may want to try another package that has the desired
mutex package as a dependency.

OpenBLAS has this with its “nomkl” package: https://github.com/AnacondaRecipes/openblas-feedstock/blob/
ae5af5e/recipe/meta.yaml#L133-L147

Nothing should use “nomkl” as a dependency. It is strictly a utility for users to facilitate switching from MKL (which
is the default) to OpenBLAS.

How did MKL become the default? The solver needs a way to prioritize some packages over others. We achieve that
with an older conda feature called track_features that originally served a different purpose.

Track_features

One of conda’s optimization goals is to minimize the number of track_features needed to specify the desired specs. By
adding track_features to one or more of the options, conda will de-prioritize it or “weigh it down.” The lowest priority
package is the one that would cause the most track_features to be activated in the environment. The default package
among many variants is the one that would cause the least track_features to be activated.

There is a catch, though: any track_features must be unique. No two packages can provide the same track_feature. For
this reason, our standard practice is to attach track_features to the metapackage associated with what we want to be
non-default.

Take another look at the OpenBLAS recipe: https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/
recipe/meta.yaml#L127-L137

This attached track_features entry is why MKL is chosen over OpenBLAS. MKL does not have any track_features
associated with it. If there are 3 options, you would attach 0 track_features to the default, then 1 track_features for the
next preferred option, and finally 2 for the least preferred option. However, since you generally only care about the one
default, it is usually sufficient to add 1 track_feature to all options other than the default option.

More info

For reference, the Visual Studio version alignment on Windows also uses mutex metapackages. https://github.com/
AnacondaRecipes/aggregate/blob/9635228/vs2017/meta.yaml#L24

Noarch packages

Noarch packages are packages that are not architecture specific and therefore only have to be built once. Noarch
packages are either generic or Python. Noarch generic packages allow users to distribute docs, datasets, and source
code in conda packages. Noarch Python packages are described below.

Declaring these packages as noarch in the build section of the meta.yaml reduces shared CI resources. Therefore,
all packages that qualify to be noarch packages should be declared as such.

76 Chapter 4. Contributors welcome

https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L133-L147
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L133-L147
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L137
https://github.com/AnacondaRecipes/openblas-feedstock/blob/ae5af5e/recipe/meta.yaml#L127-L137
https://github.com/AnacondaRecipes/aggregate/blob/9635228/vs2017/meta.yaml#L24
https://github.com/AnacondaRecipes/aggregate/blob/9635228/vs2017/meta.yaml#L24

conda, Release 24.3.1.dev75

Noarch Python

The noarch: python directive in the build section makes pure-Python packages that only need to be built once.

Noarch Python packages cut down on the overhead of building multiple different pure Python packages on different
architectures and Python versions by sorting out platform and Python version-specific differences at install time.

In order to qualify as a noarch Python package, all of the following criteria must be fulfilled:

• No compiled extensions.

• No post-link, pre-link, or pre-unlink scripts.

• No OS-specific build scripts.

• No Python version-specific requirements.

• No skips except for Python version. If the recipe is py3 only, remove skip statement and add version constraint
on Python in host and run section.

• 2to3 is not used.

• Scripts argument in setup.py is not used.

• If console_script entrypoints are in setup.py, they are listed in meta.yaml.

• No activate scripts.

• Not a dependency of conda.

Note: While noarch: python does not work with selectors, it does work with version constraints. skip: True
[py2k] can sometimes be replaced with a constrained Python version in the host and run subsections, for example:
python >=3 instead of just python.

Note: Only console_script entry points have to be listed in meta.yaml. Other entry points do not conflict with
noarch and therefore do not require extra treatment.

Read more about conda's noarch packages.

Link and unlink scripts

You may optionally execute scripts before and after the link and unlink steps. For more information, see Adding pre-
link, post-link, and pre-unlink scripts.

More information

For more information, go for a deeper dive in our managing packages guide. Learn more about package metadata,
repository structure and index, and package match specifications at Package specifications.

4.1. User guide 77

https://www.anaconda.com/condas-new-noarch-packages/
https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html
https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html

conda, Release 24.3.1.dev75

Package specification

Package metadata

The info/ directory contains all metadata about a package. Files in this location are not installed under the install
prefix. Although you are free to add any file to this directory, conda only inspects the content of the files discussed
below.

Info

• files

– a list of all the files in the package (not included in info/)

• index.json

– metadata about the package including platform, version, dependencies, and build info

{
"arch": "x86_64",
"build": "py37hfa4b5c9_1",
"build_number": 1,
"depends": [
"depend > 1.1.1"

],
"license": "BSD 3-Clause",
"name": "fun-packge",
"platform": "linux",
"subdir": "linux-64",
"timestamp": 1535416612069,
"version": "0.0.0"

}

• paths.json

– a list of files in the package, along with their associated SHA-256, size in bytes, and the type of path (eg.
hardlink vs. softlink)

{
"paths": [
{
"_path": "lib/python3.7/site-packages/fun-packge/__init__.py",
"path_type": "hardlink",
"sha256": "76f3b6e34feeb651aff33ca59e0279c4eadce5a50c6ad93b961c846f7ba717e9",
"size_in_bytes": 2067

},
{
"_path": "lib/python3.7/site-packages/fun-packge/__config__.py",
"path_type": "hardlink",
"sha256": "348e3602616c1fe4c84502b1d8cf97c740d886002c78edab176759610d287f06",
"size_in_bytes": 87519

},
...

}

78 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

info/index.json

This file contains basic information about the package, such as name, version, build string, and dependencies. The
content of this file is stored in repodata.json, which is the repository index file, hence the name index.json. The
JSON object is a dictionary containing the keys shown below. The filename of the conda package is composed of the
first 3 values, as in: <name>-<version>-<build>.tar.bz2.

Key Type Description
name string The lowercase name of the package. May contain the "-" character.
version string The package version. May not contain "-". Conda acknowledges PEP

440.
build string The build string. May not contain "-". Differentiates builds of packages

with otherwise identical names and versions, such as:
• A build with other dependencies, such as Python 3.4 instead of

Python 2.7.
• A bug fix in the build process.
• Some different optional dependencies, such as MKL versus AT-

LAS linkage. Nothing in conda actually inspects the build string.
Strings such as np18py34_1 are designed only for human read-
ability and conda never parses them.

build_number integer A non-negative integer representing the build number of the package.
Unlike the build string, the build_number is inspected by conda. Conda
uses it to sort packages that have otherwise identical names and versions
to determine the latest one. This is important because new builds that
contain bug fixes for the way a package is built may be added to a repos-
itory.

depends list of strings A list of dependency specifications, where each element is a string, as
outlined in Package match specifications.

arch string Optional. The architecture the package is built for.
EXAMPLE: x86_64
Conda currently does not use this key.

platform string Optional. The OS that the package is built for.
EXAMPLE: osx
Conda currently does not use this key. Packages for a specific architec-
ture and platform are usually distinguished by the repository subdirec-
tory that contains them---see Repository structure and index.

info/files

Lists all files that are part of the package itself, 1 per line. All of these files need to get linked into the environment. Any
files in the package that are not listed in this file are not linked when the package is installed. The directory delimiter
for the files in info/files should always be "/", even on Windows. This matches the directory delimiter used in the
tarball.

4.1. User guide 79

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

conda, Release 24.3.1.dev75

info/has_prefix

Optional file. Lists all files that contain a hard-coded build prefix or placeholder prefix, which needs to be replaced by
the install prefix at installation time.

Note: Due to the way the binary replacement works, the placeholder prefix must be longer than the install prefix.

Each line of this file should be either a path, in which case it is considered a text file with the default placeholder
/opt/anaconda1anaconda2anaconda3, or a space-separated list of placeholder, mode, and path, where:

• Placeholder is the build or placeholder prefix.

• Mode is either text or binary.

• Path is the relative path of the file to be updated.

EXAMPLE: On Windows:

"Scripts/script1.py"
"C:\Users\username\anaconda\envs_build" text "Scripts/script2.bat"
"C:/Users/username/anaconda/envs/_build" binary "Scripts/binary"

EXAMPLE: On macOS or Linux:

bin/script.sh
/Users/username/anaconda/envs/_build binary bin/binary
/Users/username/anaconda/envs/_build text share/text

Note: The directory delimiter for the relative path must always be "/", even on Windows. The placeholder may contain
either "\" or "/" on Windows, but the replacement prefix will match the delimiter used in the placeholder. The default
placeholder /opt/anaconda1anaconda2anaconda3 is an exception, being replaced with the install prefix using the
native path delimiter. On Windows, the placeholder and path always appear in quotes to support paths with spaces.

info/license.txt

Optional file. The software license for the package.

info/no_link

Optional file. Lists all files that cannot be linked - either soft-linked or hard-linked - into environments and are copied
instead.

80 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

info/about.json

Optional file. Contains the entries in the about section of the meta.yaml file. The following keys are added to info/
about.json if present in the build recipe:

• home

• dev_url

• doc_url

• license_url

• license

• summary

• description

• license_family

info/recipe

A directory containing the full contents of the build recipe.

meta.yaml.rendered

The fully rendered build recipe. See conda render.

This directory is present only when the the include_recipe flag is True in the build section.

Repository structure and index

A conda repository - or channel - is a directory tree, usually served over HTTPS, which has platform subdirectories,
each of which contain conda packages and a repository index. The index file repodata.json lists all conda packages
in the platform subdirectory. Use conda index to create such an index from the conda packages within a directory. It
is simple mapping of the full conda package filename to the dictionary object in info/index.json described in link
scripts.

In the following example, a repository provides the conda package misc-1.0-np17py27_0.tar.bz2 on 64-bit Linux
and 32-bit Windows:

<some path>/linux-64/repodata.json
repodata.json.bz2
misc-1.0-np17py27_0.tar.bz2

/win-32/repodata.json
repodata.json.bz2
misc-1.0-np17py27_0.tar.bz2

Note: Both conda packages have identical filenames and are distinguished only by the repository subdirectory that
contains them.

4.1. User guide 81

https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#about-section
https://docs.conda.io/projects/conda-build/en/latest/resources/commands/conda-render.html
https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html#build-section
https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html
https://docs.conda.io/projects/conda-build/en/latest/resources/link-scripts.html

conda, Release 24.3.1.dev75

Package match specifications

This match specification is not the same as the syntax used at the command line with conda install, such as conda
install python=3.9. Internally, conda translates the command line syntax to the spec defined in this section.

EXAMPLE: python=3.9 is translated to python 3.9*.

Package dependencies are specified using a match specification. A match specification is a space-separated string of
1, 2, or 3 parts:

• The first part is always the exact name of the package.

• The second part refers to the version and may contain special characters:

– | means OR.

EXAMPLE: 1.0|1.2 matches version 1.0 or 1.2

– * matches 0 or more characters in the version string. In terms of regular expressions, it is the same as
r.*````.

EXAMPLE: 1.0|1.4* matches 1.0, 1.4 and 1.4.1b2, but not 1.2.

– <, >, <=, >=, == and != are relational operators on versions, which are compared using PEP-440. For
example, <=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1. == and != are exact equality.

Pre-release versioning is also supported such that >1.0b4 will match 1.0b5 and 1.0rc1 but not 1.0b4 or
1.0a5.

EXAMPLE: <=1.0 matches 0.9, 0.9.1, and 1.0, but not 1.0.1.

– , means AND.

EXAMPLE: >=2,<3 matches all packages in the 2 series. 2.0, 2.1 and 2.9 all match, but 3.0 and 1.0 do not.

– , has higher precedence than |, so >=1,<2|>3 means greater than or equal to 1 AND less than 2 or greater
than 3, which matches 1, 1.3 and 3.0, but not 2.2.

Conda parses the version by splitting it into parts separated by |. If the part begins with <, >, =, or !, it is parsed
as a relational operator. Otherwise, it is parsed as a version, possibly containing the "*" operator.

• The third part is always the exact build string. When there are 3 parts, the second part must be the exact version.

Remember that the version specification cannot contain spaces, as spaces are used to delimit the package, version,
and build string in the whole match specification. python >= 2.7 is an invalid match specification. Furthermore,
python>=2.7 is matched as any version of a package named python>=2.7.

When using the command line, put double quotes around any package version specification that contains the space
character or any of the following characters: <, >, *, or |.

EXAMPLE:

conda install numpy=1.11
conda install numpy==1.11
conda install "numpy>1.11"
conda install "numpy=1.11.1|1.11.3"
conda install "numpy>=1.8,<2"

82 Chapter 4. Contributors welcome

https://www.python.org/dev/peps/pep-0440/

conda, Release 24.3.1.dev75

Examples

The OR constraint "numpy=1.11.1|1.11.3" matches with 1.11.1 or 1.11.3.

The AND constraint "numpy>=1.8,<2" matches with 1.8 and 1.9 but not 2.0.

The fuzzy constraint numpy=1.11 matches 1.11, 1.11.0, 1.11.1, 1.11.2, 1.11.18, and so on.

The exact constraint numpy==1.11 matches 1.11, 1.11.0, 1.11.0.0, and so on.

The build string constraint "numpy=1.11.2=*nomkl*" matches the NumPy 1.11.2 packages without MKL but not the
normal MKL NumPy 1.11.2 packages.

The build string constraint "numpy=1.11.1|1.11.3=py36_0" matches NumPy 1.11.1 or 1.11.3 built for Python 3.6 but
not any versions of NumPy built for Python 3.5 or Python 2.7.

The following are all valid match specifications for numpy-1.8.1-py27_0:

• numpy

• numpy 1.8*

• numpy 1.8.1

• numpy >=1.8

• numpy ==1.8.1

• numpy 1.8|1.8*

• numpy >=1.8,<2

• numpy >=1.8,<2|1.9

• numpy 1.8.1 py27_0

• numpy=1.8.1=py27_0

Version ordering

The class VersionOrder(object) implements an order relation between version strings.

Version strings can contain the usual alphanumeric characters (A-Za-z0-9), separated into components by dots and
underscores. Empty segments (i.e. two consecutive dots, a leading/trailing underscore) are not permitted. An optional
epoch number - an integer followed by ! - can precede the actual version string (this is useful to indicate a change in
the versioning scheme itself). Version comparison is case-insensitive.

Supported version strings

Conda supports six types of version strings:

• Release versions contain only integers, e.g. 1.0, 2.3.5.

• Pre-release versions use additional letters such as a or rc, for example 1.0a1, 1.2.beta3, 2.3.5rc3.

• Development versions are indicated by the string dev, for example 1.0dev42, 2.3.5.dev12.

• Post-release versions are indicated by the string post, for example 1.0post1, 2.3.5.post2.

• Tagged versions have a suffix that specifies a particular property of interest, e.g. 1.1.parallel. Tags can be
added to any of the preceding 4 types. As far as sorting is concerned, tags are treated like strings in pre-release
versions.

4.1. User guide 83

conda, Release 24.3.1.dev75

• An optional local version string separated by + can be appended to the main (upstream) version string. It is only
considered in comparisons when the main versions are equal, but otherwise handled in exactly the same manner.

Predictable version ordering

To obtain a predictable version ordering, it is crucial to keep the version number scheme of a given package consistent
over time. Conda considers prerelease versions as less than release versions.

• Version strings should always have the same number of components (except for an optional tag suffix or local
version string).

• Letters/Strings indicating non-release versions should always occur at the same position.

Before comparison, version strings are parsed as follows:

• They are first split into epoch, version number, and local version number at ! and + respectively. If there is no !,
the epoch is set to 0. If there is no +, the local version is empty.

• The version part is then split into components at . and _.

• Each component is split again into runs of numerals and non-numerals

• Subcomponents containing only numerals are converted to integers.

• Strings are converted to lowercase, with special treatment for dev and post.

• When a component starts with a letter, the fillvalue 0 is inserted to keep numbers and strings in phase, resulting
in 1.1.a1' == 1.1.0a1'.

• The same is repeated for the local version part.

Examples:

1.2g.beta15.rc => [[0], [1], [2, 'g'], [0, 'beta', 15], [0, 'rc']]

1!2.15.1_ALPHA => [[1], [2], [15], [1, '_alpha']]

The resulting lists are compared lexicographically, where the following rules are applied to each pair of corresponding
subcomponents:

• Integers are compared numerically.

• Strings are compared lexicographically, case-insensitive.

• Strings are smaller than integers, except

– dev versions are smaller than all corresponding versions of other types.

– post versions are greater than all corresponding versions of other types.

• If a subcomponent has no correspondent, the missing correspondent is treated as integer 0 to ensure '1.1' ==
1.1.0'.

The resulting order is:

0.4
< 0.4.0
< 0.4.1.rc
== 0.4.1.RC # case-insensitive comparison
< 0.4.1
< 0.5a1
< 0.5b3
< 0.5C1 # case-insensitive comparison

(continues on next page)

84 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

< 0.5
< 0.9.6
< 0.960923
< 1.0
< 1.1dev1 # special case ``dev``
< 1.1a1
< 1.1.0dev1 # special case ``dev``
== 1.1.dev1 # 0 is inserted before string
< 1.1.a1
< 1.1.0rc1
< 1.1.0
== 1.1
< 1.1.0post1 # special case ``post``
== 1.1.post1 # 0 is inserted before string
< 1.1post1 # special case ``post``
< 1996.07.12
< 1!0.4.1 # epoch increased
< 1!3.1.1.6
< 2!0.4.1 # epoch increased again

Some packages (most notably OpenSSL) have incompatible version conventions. In particular, OpenSSL interprets
letters as version counters rather than pre-release identifiers. For OpenSSL, the relation 1.0.1 < 1.0.1a => True
for OpenSSL holds, whereas conda packages use the opposite ordering. You can work around this problem by
appending a dash to plain version numbers:

1.0.1a => 1.0.1post.a # ensure correct ordering for OpenSSL

Package search and install specifications

Conda supports the following specifications for conda search and conda install.

Package search

conda search for a specific package or set of packages can be accomplished in several ways. This section includes
information on the standard specification and the use of key-value pairs.

Standard specification

channel
(Optional) Can either be a channel name or URL. Channel names may include letters, numbers, dashes, and
underscores.

4.1. User guide 85

conda, Release 24.3.1.dev75

subdir
(Optional) A subdirectory of a channel. Many subdirs are used for architectures, but this is not required. Must
have a channel and backslash preceding it. For example: main/noarch

name
(Required) Package name. May include the * wildcard. For example, *py* returns all packages that have "py"
in their names, such as "numpy", "pytorch", "python", etc.

version
(Optional) Package version. May include the * wildcard or a version range(s) in single quotes. For example:
numpy=1.17.* returns all numpy packages with a version containing "1.17." and numpy>1.17,<1.19.2 returns
all numpy packages with versions greater than 1.17 and less than 1.19.2.

build
(Optional) Package build name. May include the * wildcard. For example, numpy 1.17.3 py38* returns all
version 1.17.3 numpy packages with a build name that contains the text "py38".

Key-value pairs

Package searches can also be performed using what is called "key-value pair notation", which has different rules than
the Standard specification example image. The search below will return the same list of packages as the standard
specification.

$ conda search "numpy[channel=conda-forge, subdir=linux-64, version=1.17.*, build=py38*]"

This notation supports the following key-value pairs:

- build # validated via GlobStrMatch
- build_number # validated via BuildNumberMatch
- channel # validated via ChannelMatch
- features # validated via FeatureMatch
- fn # validated via ExactStrMatch
- license # validated via CaseInsensitiveStrMatch
- license_family # validated via CaseInsensitiveStrMatch
- md5 # validated via ExactStrMatch
- name # validated via GlobLowerStrMatch
- sha256 # validated via ExactStrMatch
- subdir # validated via ExactStrMatch
- track_features # validated via FeatureMatch
- url # validated via ExactStrMatch
- version # validated via VersionSpec

Key-value pair notation can be used at the same time as standard notation.

$ conda search "conda-forge::numpy=1.17.3[subdir=linux-64, build=py38*]"

Warning: Any search values using the key-value pair notation will override values in the rest of the search string.
For example, conda search numpy 1.17.3[version=1.19.2] will return packages with the version 1.19.2.

86 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Package installation

When you're installing packages, conda recommends being as concrete as possible. Using * wildcards and version
ranges during an install will most likely cause a conflict.

However, * wildcards can still be helpful in an install command when used sparingly.

Installing with wildcards

Let's say you are working on a project that requires version 2.3 of a package. If you upgrade to 2.4 or 3.0, your project
will break. You're also using an environment file to create your environment.

In the version 2.3.1, 2 is the major version, 3 is the minor version, and 1 is the patch. Patches typically contain
bug fixes, so if you want to keep version 2.3 in your environment without updating to 2.4 or 3.0, but want to take
advantage of any bug fixes, using 2.3.* in your environment file would be helpful to you.

Concrete install example

Let's take the search from the Package search section.

$ conda search "conda-forge/linux-64::numpy 1.17.* py38*"

This returns the following:

Loading channels: done
Name Version Build Channel
numpy 1.17.3 py38h95a1406_0 conda-forge
numpy 1.17.5 py38h18fd61f_1 conda-forge
numpy 1.17.5 py38h95a1406_0 conda-forge

You can then choose a specific version and build, if necessary, and edit your conda install command accordingly.

$ conda install "conda-forge/linux-64::numpy 1.17.5 py38h95a1406_0"

Channels

What is a "channel"?

Channels are the locations where packages are stored. They serve as the base for hosting and managing packages. Conda
packages are downloaded from remote channels, which are URLs to directories containing conda packages. The conda
command searches a set of channels. By default, packages are automatically downloaded and updated from the default
channel, which may require a paid license, as described in the repository terms of service. The conda-forge channel
is free for all to use. You can modify which remote channels are automatically searched; this feature is beneficial when
maintaining a private or internal channel. For details, see how to modify your channel lists.

We use conda-forge as an example channel. Conda-forge is a community channel made up of thousands of contributors.
Conda-forge itself is analogous to PyPI but with a unified, automated build infrastructure and more peer review of
recipes.

4.1. User guide 87

https://repo.anaconda.com/pkgs/
https://repo.anaconda.com/pkgs/
https://www.anaconda.com/terms-of-service
https://conda-forge.org/

conda, Release 24.3.1.dev75

Specifying channels when installing packages

• From the command line use --channel

$ conda install scipy --channel conda-forge

You may specify multiple channels by passing the argument multiple times:

$ conda install scipy --channel conda-forge --channel bioconda

Priority decreases from left to right - the first argument is higher priority than the second.

• From the command line use --override-channels to only search the specified channel(s), rather than any channels
configured in .condarc. This also ignores conda's default channels.

$ conda search scipy --channel file:/<path to>/local-channel --override-channels

• In .condarc, use the key channels to see a list of channels for conda to search for packages.

Learn more about managing channels.

Conda clone channel RSS feed

We offer a RSS feed that represents all the things that have been cloned by the channel clone and are now available
behind the CDN (content delivery network). The RSS feed shows what has happened on a rolling, two-week time frame
and is useful for seeing where packages are or if a sync has been run.

Let's look at the conda-forge channel RSS feed as an example.

In that feed, it will tell you every time that it runs a sync. The feed includes other entries for packages that were added
or removed. Each entry is formatted to show the subdirectory the package is from, the action that was taken (addition
or removal), and the name of the package. Everything has a publishing date, per standard RSS practice.

<rss version="0.91">
<channel>
<title>conda-forge updates</title>
<link>https://anaconda.org</link>
<description>Updates in the last two weeks</description>
<language>en</language>
<copyright>Copyright 2019, Anaconda, Inc.</copyright>
<pubDate>30 Jul 2019 19:45:47 UTC</pubDate>
<item>
<title>running sync</title>
<pubDate>26 Jul 2019 19:26:36 UTC</pubDate>

</item>
<item>
<title>linux-64:add:jupyterlab-1.0.4-py36_0.tar.bz2</title>
<pubDate>26 Jul 2019 19:26:36 UTC</pubDate>

</item>
<item>
<title>linux-64:add:jupyterlab-1.0.4-py37_0.tar.bz2</title>
<pubDate>26 Jul 2019 19:26:36 UTC</pubDate>

</item>

88 Chapter 4. Contributors welcome

https://conda-static.anaconda.org/conda-forge/rss.xml

conda, Release 24.3.1.dev75

Environments

An environment is a directory that contains a specific collection of packages that you have installed. For example, you
may have one environment with NumPy 1.7 and its dependencies, and another environment with NumPy 1.6 for legacy
testing. If you change one environment, your other environments are not affected. You can easily activate or deactivate
environments, which is how you switch between them. You can also share your environment with someone by giving
them a copy of your environment.yaml file. For more information, see Managing environments.

Conda directory structure

ROOT_DIR

The directory that Anaconda or Miniconda was installed into.

EXAMPLES:

/opt/Anaconda #Linux
C:\Anaconda #Windows

/pkgs

Also referred to as PKGS_DIR. This directory contains decompressed packages, ready to be linked in conda environ-
ments. Each package resides in a subdirectory corresponding to its canonical name.

/envs

The system location for additional conda environments to be created.

The following subdirectories comprise the default Anaconda environment:

/bin

/include

/lib

/share

Other conda environments usually contain the same subdirectories as the default environment.

Virtual environments

A virtual environment is a tool that helps to keep dependencies required by different projects separate by creating
isolated spaces for them that contain per-project dependencies for them.

Users can create virtual environments using one of several tools such as Pipenv or Poetry, or a conda virtual environ-
ment. Pipenv and Poetry are based around Python's built-in venv library, whereas conda has its own notion of virtual
environments that is lower-level (Python itself is a dependency provided in conda environments).

Scroll to the right in the table below.

4.1. User guide 89

conda, Release 24.3.1.dev75

Some other traits are:

Python virtual environment Conda virtual environment
Libraries Statically link, vendor libraries in wheels, or

use apt/yum/brew/etc.
Install system-level libraries as conda depen-
dencies.

System Depend on base system install of Python. Python is independent from system.
Extending environ-
ment

Extend environment with pip. Extended environment with conda or pip.

Non-Python de-
pendencies

Manages non-Python dependencies (R, Perl,
arbitrary executables).

Tracking depen-
dencies

Tracks binary dependencies explicitly.

Why use venv-based virtual environments

• You prefer their workflow or spec formats.

• You prefer to use the system Python and libraries.

• Your project maintainers only publish to PyPI, and you prefer packages that come more directly from the project
maintainers, rather than someone else providing builds based on the same code.

Why use conda virtual environments?

• You want control over binary compatibility choices.

• You want to utilize newer language standards, such as C++ 17.

• You need libraries beyond what the system Python offers.

• You want to manage packages from languages other than Python in the same space.

Workflow differentiators

Some questions to consider as you determine your preferred workflow and virtual environment:

• Is your environment shared across multiple code projects?

• Does your environment live alongside your code or in a separate place?

• Do your install steps involve installing any external libraries?

• Do you want to ship your environment as an archive of some sort containing the actual files of the environment?

90 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Package system differentiators

There are potential benefits for choosing PyPI or conda.

PyPI has one global namespace and distributed ownership of that namespace. Because of this, it is easier within PyPI
to have single sources for a package directly from package maintainers.

Conda has unlimited namespaces (channels) and distributed ownership of a given channel. As such, it is easier to
ensure binary compatibility within a channel using conda.

Installing with conda

Conda packages can be installed by running the following command:

conda install <package>

When conda installs a package, it is automatically added to your active environment. These packages are collections of
files and directories that make up everything you need to use that particular library or software. For Python packages,
these are primarily Python files that can be imported into other Python applications, but for compiled software packages,
such as ffmpeg, these are typically binary executables you use directly on your computer.

Note
If you would like to learn more about how environments are structured, head over to conda environments.

Below is a more precise overview of everything that happens during the installation process for a single package:

• Currently configured channels (e.g. defaults or conda-forge) are read in order of priority

• Repodata for these configured channels is downloaded and read

• The repodata is searched for the package, starting with the highest priority channel first

• Once the package is found, conda makes a separate download request and then installs it

• This process then repeats for each of the package's dependencies, if there are any

A graphic illustration of this process is shown below:

4.1. User guide 91

conda, Release 24.3.1.dev75

92 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Conda update versus conda install

conda update updates packages to the latest compatible version. conda install can be used to install any version.

Example:

• If Python 2.7.0 is currently installed, and the latest version of Python 2 is 2.7.5, then conda update python
installs Python 2.7.5. It does not install Python 3.

• If Python 3.7.0 is currently installed, and the latest version of Python is 3.9.0, then conda install python=3
installs Python 3.9.0.

Conda uses the same rules for other packages. conda update always installs the highest version with the same major
version number, whereas conda install always installs the highest version.

Installing conda packages offline

To install conda packages offline, run: conda install /path-to-package/package-filename.tar.bz2/

If you prefer, you can create a /tar/ archive file containing many conda packages and install them all with one command:
conda install /packages-path/packages-filename.tar

Note: If an installed package does not work, it may be missing dependencies that need to be resolved manually.

Installing packages directly from the file does not resolve dependencies.

Installing conda packages with a specific build number

If you want to install conda packages with the correct package specification, try pkg_name=version=build_string.
Read more about build strings and package naming conventions. Learn more about package specifications and meta-
data.

For example, if you want to install llvmlite 0.31.0dev0 on Python 3.7.8, you would enter:

conda install -c numba/label/dev llvmlite=0.31.0dev0=py37_8

Performance

Conda's performance can be affected by a variety of things. Unlike many package managers, Anaconda’s repositories
generally don’t filter or remove old packages from the index. This allows old environments to be easily recreated.
However, it does mean that the index metadata is always growing, and thus conda becomes slower as the number of
packages increases.

4.1. User guide 93

https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html#index-2
https://docs.conda.io/projects/conda-build/en/latest/resources/package-spec.html#package-metadata
https://docs.conda.io/projects/conda-build/en/latest/resources/package-spec.html#package-metadata

conda, Release 24.3.1.dev75

How a package is installed

While you are waiting, conda is doing a lot of work installing the packages. At any point along these steps, performance
issues may arise.

Conda follows these steps when installing a package:

1. Downloading and processing index metadata.

2. Reducing the index.

3. Expressing the package data and constraints as a SAT problem.

4. Running the solver.

5. Downloading and extracting packages.

6. Verifying package contents.

7. Linking packages from package cache into environments.

Therefore, if you're experiencing a slowdown, evaluate the following questions to identify potential causes:

• Are you creating a new environment or installing into an existing one?

• Does your environment have pip-installed dependencies in it?

• What channels are you using?

• What packages are you installing?

• Is the channel metadata sane?

• Are channels interacting in bad ways?

Improving conda performance

To address these challenges, you can move packages to archive channels and follow the methods below to present conda
with a smaller, simpler view than all available packages.

To speed up conda, we offer the following recommendations.

Are you:
• Using conda-forge?

– Use conda-metachannel to reduce conda’s problem size.

• Using bioconda?
– Use conda-metachannel to reduce conda’s problem size.

– Read more about docker images.

• Specifying very broad package specs?
– Be more specific. Letting conda filter more candidates makes it faster. For example, instead of
numpy, we recommend numpy=1.15 or, even better, numpy=1.15.4.

– If you are using R, instead of specifying only r-essentials, specify r-base=3.5
r-essentials.

• Feeling frustrated with “verifying transaction” and also feeling lucky?
– Run conda config --set safety_checks disabled.

• Getting strange mixtures of defaults and conda-forge?

94 Chapter 4. Contributors welcome

https://github.com/bioconda/bioconda-recipes/issues/13774

conda, Release 24.3.1.dev75

– Run conda config --set channel_priority strict.

– This also makes things go faster by eliminating possible mixed solutions.

• Observing that an Anaconda or Miniconda installation is getting slower over time?
– Create a fresh environment. As environments grow, they become harder and harder to solve.

Working with small, dedicated environments can be much faster.

Read more about how we made conda faster.

Set strict channel priority

Setting strict channel priority makes it so that if a package exists on a channel, conda will ignore all packages with the
same name on lower priority channels.

This can dramatically reduce package search space and reduces the use of improperly constrained packages.

One thing to consider is that setting strict channel priority may make environments unsatisfiable. Learn more about
Strict channel priority.

4.1. User guide 95

https://www.anaconda.com/how-we-made-conda-faster-4-7/

conda, Release 24.3.1.dev75

Reduce the index

One option for speeding up conda is to reduce the index. The index is reduced by conda based upon the user's input
specs. It's likely that your repodata contains package data that is not used in the solving stage. Filtering out these
unnecessary packages before solving can save time.

Making your input specifications more specific improves the effectiveness of the index reduction and, thus, speeds up
the process. Listing a version and build string for each of your specs can dramatically reduce the number of packages
that are considered when solving so that the SAT doesn’t have as much work to do.

Reducing the index:
• Reduces unnecessary input into generating solver clauses.

• Reduces solve complexity.

• Prefers newer packages that apply constraints.

Read more on Understanding and Improving Conda's Performance.

Conda for data scientists

Conda is useful for any packaging process but it stands out from other package and environment management systems
through its utility for data science.

Conda’s benefits include:

• Providing prebuilt packages which avoid the need to deal with compilers or figuring out how to set up a specific
tool.

• Managing one-step installation of tools that are more challenging to install (such as TensorFlow or IRAF).

• Allowing you to provide your environment to other people across different platforms, which supports the repro-
ducibility of research workflows.

• Allowing the use of other package management tools, such as pip, inside conda environments where a library or
tools are not already packaged for conda.

• Providing commonly used data science libraries and tools, such as R, NumPy, SciPy, and TensorFlow. These are
built using optimized, hardware-specific libraries (such as Intel’s MKL or NVIDIA’s CUDA) which speed up
performance without code changes.

Read more about how conda supports data scientists.

Plugins

In order to enable customization and extra features that are compatible with and discoverable by conda (but do not
necessarily ship as a default part of the conda codebase), an official conda plugin mechanism has been implemented as
of version 22.11.0.

96 Chapter 4. Contributors welcome

https://www.anaconda.com/understanding-and-improving-condas-performance/
https://carpentries-incubator.github.io/introduction-to-conda-for-data-scientists/

conda, Release 24.3.1.dev75

Implementation

Plugins in conda integrate the "hook + entry point" structure by utilizing the Pluggy Python framework. This imple-
mentation can be broken down via the following two steps:

• Define the hook(s) to be registered

• Register the plugin under the conda entrypoint namespace

Hook

Below is an example of a very basic plugin "hook":

Listing 1: my_plugin.py

import conda.plugins

@conda.plugins.hookimpl
def conda_subcommands(): ...

Packaging using a pyproject.toml file

Below is an example that configures setuptools using a pyproject.toml file (note that the setup.py file is optional
if a pyproject.toml file is defined, and thus will not be discussed here):

Listing 2: pyproject.toml

[build-system]
requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"

[project]
name = "my-conda-plugin"
version = "1.0.0"
description = "My conda plugin"
requires-python = ">=3.7"
dependencies = ["conda"]

[project.entry-points."conda"]
my-conda-plugin = "my_plugin"

Conda plugins use cases

The new conda plugin API ecosystem brings about many possibilities, including but not limited to:

• Custom subcommands

• Support for packaging-related topics (e.g., virtual packages)

• Development environment integrations (e.g., shells)

• Alternative dependency solver backends

4.1. User guide 97

https://pluggy.readthedocs.io/en/stable/

conda, Release 24.3.1.dev75

• Network adapters

• Build system integrations

• Non-Python language support (e.g., C, Rust)

• Experimental features that are not currently covered by conda

Benefits of conda plugins

A conda plugin ecosystem enables contributors across the conda community to develop and share new features, thus
bringing about more functionality and focus on the user experience. Though the list below is by no means exhaustive,
some of the benefits of conda plugins include:

• Support for a better distribution of maintenance in the conda community

• Enabling third party contributors to use official APIs instead of having to divert to workarounds and wrappers

• The ability to extend conda internals via official APIs

• Lowering the barrier for contributions from other stakeholders in the conda ecosystem

• ... and much more!

In this section, we provide you with detailed information about the fundamental concepts in conda, including informa-
tion about packages, channels, environments, and plugins, among others.

Commands
Conda commands are your interface for interacting with everything

Packages
Learn about the different forms a package can take

Package specification
Learn about exactly what belongs in a package and what the different metadata files mean

Package search and install
The search specifications for a package (for the conda install and conda search commands)

Channels
Learn about channels and how they host packages

Environments
Learn about how environments work and how they differ from Python's virtual environments

Installing with conda
Take a deep dive into exactly what happens during an installation with conda

Performance
Understand what impacts the performance and speed of conda and how to improve it

Conda for data scientists
See why conda is a such a valuable tool for data scientists

Plugins
The behavior of conda can be extended via plugins; learn more here

98 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.1.6 Troubleshooting

Using conda in Windows Batch script exits early

In conda 4.6+, the way that you interact with conda goes through a batch script (%PREFIX%\condabin\conda.bat).
Unfortunately, this means it's a little complicated to use conda from other batch scripts. When using batch scripts from
within batch scripts, you must prefix your command with CALL. If you do not do this, your batch script that calls conda
will exit immediately after the conda usage. In other words, if you write this in a .bat file:

conda create myenv python
conda activate myenv
echo test

Neither the activation, nor the echo will happen. You must write this in your batch script:

CALL conda create myenv python
CALL conda activate myenv
echo test

This is known behavior with cmd.exe, and we have not found any way to change it. https://stackoverflow.com/questions/
4798879/how-do-i-run-a-batch-script-from-within-a-batch-script/4798965

NumPy MKL library load failed

Error messages like

Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll

or

The ordinal 241 could not be located in the the dynamic link library

Cause

NumPy is unable to load the correct MKL or Intel OpenMP runtime libraries. This is almost always caused by one of
two things:

1. The environment with NumPy has not been activated.

2. Another software vendor has installed MKL or Intel OpenMP (libiomp5md.dll) files into the
C:\Windows\System32 folder. These files are being loaded before Anaconda's and they're not compati-
ble.

Solution

If you are not activating your environments, start with doing that. There's more info at Activating environments. If you
are still stuck, you may need to consider more drastic measures.

1. Remove any MKL-related files from C:\Windows\System32. We recommend renaming them to add
.bak to the filename to effectively hide them. Observe if any other software breaks. Try moving the
DLL files alongside the .exe of the software that broke. If it works again, you can keep things in the
moved state - Anaconda doesn't need MKL in System32, and no other software should need it either.
If you identify software that is installing software here, please contact the creators of that software.

4.1. User guide 99

https://stackoverflow.com/questions/4798879/how-do-i-run-a-batch-script-from-within-a-batch-script/4798965
https://stackoverflow.com/questions/4798879/how-do-i-run-a-batch-script-from-within-a-batch-script/4798965

conda, Release 24.3.1.dev75

Inform them that their practice of installing MKL to a global location is fragile and is breaking other
people's software and wasting a lot of time. See the list of guilty parties below.

2. You may try a special DLL loading mode that Anaconda builds into Python. This changes the DLL
search path from System32 first to System32 as another entry on PATH, allowing libraries in your
conda environment to be found before the libraries in System32. Control of this feature is done
with environment variables. Only Python builds beyond these builds will react to these environment
variables:

• Python 2.7.15 build 14

• Python 3.6.8 build 7

• Python 3.7.2 build 8

To update Python from the defaults channel:

conda update -c defaults python

Note: Anaconda has built special patches into its builds of Python to enable this functionality. If you
get your Python package from somewhere else (e.g. conda-forge), these flags may not do anything.

Control environment variables:

• CONDA_DLL_SEARCH_MODIFICATION_ENABLE

• CONDA_DLL_SEARCH_MODIFICATION_DEBUG

• CONDA_DLL_SEARCH_MODIFICATION_NEVER_ADD_WINDOWS_DIRECTORY

• CONDA_DLL_SEARCH_MODIFICATION_NEVER_ADD_CWD

To set variables on Windows, you may use either the CLI or a Windows GUI.

• CLI: https://superuser.com/questions/79612/setting-and-getting-windows-environment-variables-from-the-command-prompt/
79614

• GUI: http://www.dowdandassociates.com/blog/content/howto-set-an-environment-variable-in-windows-gui/

These should be set to a value of 1 to enable them. For example, in a terminal:

set CONDA_DLL_SEARCH_MODIFICATION_ENABLE=1

Note: Only CONDA_DLL_SEARCH_MODIFICATION_ENABLE should be set finally.

List of known software that installs Intel libraries to C:\Windows\System32:

• Amplitube, by IK Multimedia

• ASIO4ALL, by Michael Tippach

If you find others, please let us know. If you're on this list and you want to fix things, let us know. In either case, the
conda issue tracker at https://github.com/conda/conda/issues is the best way to reach us.

100 Chapter 4. Contributors welcome

https://superuser.com/questions/79612/setting-and-getting-windows-environment-variables-from-the-command-prompt/79614
https://superuser.com/questions/79612/setting-and-getting-windows-environment-variables-from-the-command-prompt/79614
http://www.dowdandassociates.com/blog/content/howto-set-an-environment-variable-in-windows-gui/
https://github.com/conda/conda/issues

conda, Release 24.3.1.dev75

SSL connection errors

This is a broad umbrella of errors with many causes. Here are some we've seen.

CondaHTTPError: HTTP 000 CONNECTION FAILED

If you're on Windows and you see this error, look a little further down in the error text. Do you see something like
this?:

SSLError(MaxRetryError('HTTPSConnectionPool(host=\'repo.anaconda.com\', port=443): Max␣
→˓retries exceeded with url: /pkgs/r/win-32/repodata.json.bz2 (Caused by SSLError("Can\
→˓'t connect to HTTPS URL because the SSL module is not available."))'))

The key part there is the last bit:

Caused by SSLError("Can\'t connect to HTTPS URL because the SSL module is not available.
→˓")

Conda is having problems because it can't find the OpenSSL libraries that it needs.

Cause

You may observe this error cropping up after a conda update. More recent versions of conda and more recent builds of
Python are more strict about requiring activation of environments. We're working on better error messages for them,
but here's the story for now. Windows relies on the PATH environment variable as the way to locate libraries that are not
in the immediate folder, and also not in the C:\Windows\System32 folder. Searching for libraries in the PATH folders
goes from left to right. If you choose to put Anaconda's folders on PATH, there are several of them:

• (install root)

• (install root)/Library/mingw-w64/bin

• (install root)/Library/usr/bin

• (install root)/Library/bin

• (install root)/Scripts

• (install root)/bin

• (install root)/condabin

Early installers for Anaconda put these on PATH. That was ultimately fragile because Anaconda isn't the only software
on the system. If other software had similarly named executables or libraries, and came earlier on PATH, Anaconda
could break. On the flip side, Anaconda could break other software if Anaconda were earlier in the PATH order
and shadowed any other executables or libraries. To make this easier, we began recommending "activation" instead
of modifying PATH. Activation is a tool where conda sets your PATH, and also runs any custom package scripts
which are often used to set additional environment variables that are necessary for software to run (e.g. JAVA_HOME).
Because activation runs only in a local terminal session (as opposed to the permanent PATH entry), it is safe to put
Anaconda's PATH entries first. That means that Anaconda's libraries get higher priority when you're running Anaconda
but Anaconda doesn't interfere with other software when you're not running Anaconda.

Anaconda's Python interpreter included a patch for a long time that added the (install root)/Library/bin folder to that
Python's PATH. Unfortunately, this interfered with reasoning about PATH at all when using that Python interpreter.
We removed that patch in Python 3.7.0, and we regret that this has caused problems for people who are not activating
their environments and who otherwise do not have the proper entries on PATH. We're experimenting with approaches

4.1. User guide 101

conda, Release 24.3.1.dev75

that will allow our executables to be less dependent on PATH and more self-aware of their needed library load paths.
For now, though, the only solutions to this problem are to manage PATH properly.

Our humble opinion is that activation is the easiest way to ensure that things work. See more information on activation
in Activating environments.

Solution

Use shells opened from Anaconda Navigator. If you use a GUI IDE and you see this error, ask the developers of your
IDE to add activation for conda environments.

SSL certificate errors

Cause

Installing packages may produce a "connection failed" error if you do not have the certificates for a secure connection
to the package repository.

Solution

Pip can use the --use-feature=truststore option to use the operating system certificate store. This may be of help
in typically corporate environments with https traffic inspection, where the corporate CA is installed in the operating
system certificate store:

pip install --use-feature=truststore

Conda has a similar option:

conda config --set ssl_verify truststore

Alternatively, pip can use the --trusted-host option to indicate that the URL of the repository is trusted:

pip install --trusted-host pypi.org

Conda has three similar options.

1. The option --insecure or -k ignores certificate validation errors for all hosts.

Running conda create --help shows:

Networking Options:
-k, --insecure Allow conda to perform "insecure" SSL connections and

transfers. Equivalent to setting 'ssl_verify' to
'False'.

2. The configuration option ssl_verify can be set to False.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled and conda operations

(continues on next page)

102 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

will fail if a required URL's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.
#
ssl_verify: true

Running conda config --set ssl_verify false modifies ~/.condarc and sets the -k flag for all future
conda operations performed by that user. Running conda config --help shows other configuration scope
options.

When using conda config, the user's conda configuration file at ~/.condarc is used by default. The
flag --system will instead write to the system configuration file for all users at <CONDA_BASE_ENV>/
.condarc. The flag --env will instead write to the active conda environment's configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no environment is active, the user con-
figuration file is used.

3. The configuration option ssl_verify can be used to install new certificates.

Running conda config --describe ssl_verify shows:

ssl_verify (bool, str)
aliases: verify_ssl
conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required URL's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.
#
ssl_verify: true

Your network administrator can give you a certificate bundle for your network's firewall. Then ssl_verify
can be set to the path of that certificate authority (CA) bundle and package installation operations will complete
without connection errors.

When using conda config, the user's conda configuration file at ~/.condarc is used by default. The
flag --system will instead write to the system configuration file for all users at <CONDA_BASE_ENV>/
.condarc. The flag --env will instead write to the active conda environment's configuration file at
<PATH_TO_ACTIVE_CONDA_ENV>/.condarc. If --env is used and no environment is active, the user con-
figuration file is used.

SSL verification errors

Cause

This error may be caused by lack of activation on Windows or expired certifications:

SSL verification error: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.
→˓c:590)

4.1. User guide 103

conda, Release 24.3.1.dev75

Solution

Make sure your conda is up-to-date: conda --version

If not, run: conda update conda

Try using the operating system certificate store. Set you ssl_verify variable to truststore using the following
command:

conda config --set ssl_verify truststore

If using the operating system certificate store does not solve your issue, temporarily set your ssl_verify variable to
false, upgrade the requests package, and then set ssl_verify back to true using the following commands:

conda config --set ssl_verify false
conda update requests
conda config --set ssl_verify true

You can also set ssl_verify to a string path to a certificate, which can be used to verify SSL connections. Modify
your .condarc and include the following:

ssl_verify: path-to-cert/chain/filename.ext

If the repository uses a self-signed certificate, use the actual path to the certificate. If the repository is signed by a
private certificate authority (CA), the file needs to include the root certificate and any intermediate certificates.

Permission denied errors during installation

Cause

The umask command determines the mask settings that control how file permissions are set for newly created files. If
you have a very restrictive umask, such as 077, you get "permission denied" errors.

Solution

Set a less restrictive umask before calling conda commands. Conda was intended as a user space tool, but often users
need to use it in a global environment. One place this can go awry is with restrictive file permissions. Conda creates
links when you install files that have to be read by others on the system.

To give yourself full permissions for files and directories but prevent the group and other users from having access:

1. Before installing, set the umask to 007.

2. Install conda.

3. Return the umask to the original setting:

umask 007
conda install
umask 077

For more information on umask, see http://en.wikipedia.org/wiki/Umask.

104 Chapter 4. Contributors welcome

http://en.wikipedia.org/wiki/Umask

conda, Release 24.3.1.dev75

Permission denied errors after using sudo conda command

Solution

Once you run conda with sudo, you must use sudo forever. We recommend that you NEVER run conda with sudo.

Already installed error message

Cause

If you are trying to fix conda problems without removing the current installation and you try to reinstall Miniconda or
Anaconda to fix it, you get an error message that Miniconda or Anaconda is already installed and you cannot continue.

Solution

Install using the --force option.

Download and install the appropriate Miniconda for your operating system from the Miniconda download page using
the force option --force or -f:

bash Miniconda3-latest-MacOSX-x86_64.sh -f

Note: Substitute the appropriate filename and version for your operating system.

Note: Be sure that you install to the same location as your existing install so it overwrites the core conda files and does
not install a duplicate in a new folder.

Conda reports that a package is installed, but it appears not to be

Sometimes conda claims that a package is already installed but it does not appear to be, for example, a Python package
that gives ImportError.

There are several possible causes for this problem, each with its own solution.

Cause

You are not in the same conda environment as your package.

4.1. User guide 105

https://docs.anaconda.com/free/miniconda/

conda, Release 24.3.1.dev75

Solution

1. Make sure that you are in the same conda environment as your package. The conda info command tells you
what environment is currently active under default environment.

2. Verify that you are using the Python from the correct environment by running:

import sys

print(sys.prefix)

Cause

For Python packages, you have set the PYTHONPATH or PYTHONHOME variable. These environment variables cause
Python to load files from locations other than the standard ones. Conda works best when these environment variables
are not set, as their typical use cases are obviated by conda environments and a common issue is that they cause Python
to pick up the wrong or broken versions of a library.

Solution

For Python packages, make sure you have not set the PYTHONPATH or PYTHONHOME variables. The command conda
info -a displays the values of these environment variables.

• To unset these environment variables temporarily for the current terminal session, run unset PYTHONPATH.

• To unset them permanently, check for lines in the files:

– If you use bash---~/.bashrc, ~/.bash_profile, ~/.profile.

– If you use zsh---~/.zshrc.

– If you use PowerShell on Windows, the file output by $PROFILE.

Cause

You have site-specific directories or, for Python, you have so-called site-specific files. These are typically located in
~/.local on macOS and Linux. For a full description of the locations of site-specific packages, see PEP 370. As with
PYTHONPATH, Python may try importing packages from this directory, which can cause issues.

Solution

For Python packages, remove site-specific directories and site-specific files.

106 Chapter 4. Contributors welcome

http://legacy.python.org/dev/peps/pep-0370/

conda, Release 24.3.1.dev75

Cause

For C libraries, the following environment variables have been set:

• macOS---DYLD_LIBRARY_PATH.

• Linux---LD_LIBRARY_PATH.

These act similarly to PYTHONPATH for Python. If they are set, they can cause libraries to be loaded from locations other
than the conda environment. Conda environments obviate most use cases for these variables. The command conda
info -a shows what these are set to.

Solution

Unset DYLD_LIBRARY_PATH or LD_LIBRARY_PATH.

Cause

Occasionally, an installed package becomes corrupted. Conda works by unpacking the packages in the pkgs directory
and then hard-linking them to the environment. Sometimes these get corrupted, breaking all environments that use
them. They also break any additional environments since the same files are hard-linked each time.

Solution

Run the command conda install -f to unarchive the package again and relink it. It also does an MD5 verification
on the package. Usually if this is different it is because your channels have changed and there is a different package
with the same name, version, and build number.

Note: This breaks the links to any other environments that already had this package installed, so you have to reinstall
it there, too. It also means that running conda install -f a lot can use up significant disk space if you have many
environments.

Note: The -f flag to conda install (--force) implies --no-deps, so conda install -f package does not
reinstall any of the dependencies of package.

pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty

Cause

The local version of conda needs updating.

4.1. User guide 107

conda, Release 24.3.1.dev75

Solution

Force reinstall conda. A useful way to work off the development version of conda is to run python setup.py
develop on a checkout of the conda GitHub repository. However, if you are not regularly running git pull, it
is a good idea to un-develop, as you will otherwise not get any regular updates to conda. The normal way to do this is
to run python setup.py develop -u.

However, this command does not replace the conda script itself. With other packages, this is not an issue, as you can
just reinstall them with conda, but conda cannot be used if conda is installed.

The fix is to use the ./bin/conda executable in the conda git repository to force reinstall conda. That is, run ./bin/
conda install -f conda. You can then verify with conda info that you have the latest version of conda, and not
a git checkout. The version should not include any hashes.

macOS error "ValueError unknown locale: UTF-8"

Cause

This is a bug in the macOS Terminal app that shows up only in certain locales. Locales are country-language combi-
nations.

Solution

1. Open Terminal in /Applications/Utilities

2. Clear the Set locale environment variables on startup checkbox.

This sets your LANG environment variable to be empty. This may cause Terminal to use incorrect settings for your
locale. The locale command in Terminal tells you what settings are used.

To use the correct language, add a line to your bash profile, which is typically ~/.profile:

export LANG=your-lang

Note: Replace your-lang with the correct locale specifier for your language.

The command locale -a displays all the specifiers. For example, the language code for US English is en_US.UTF-8.
The locale affects what translations are used when they are available and also how dates, currencies, and decimals are
formatted.

108 Chapter 4. Contributors welcome

https://github.com/conda/conda

conda, Release 24.3.1.dev75

4.1. User guide 109

conda, Release 24.3.1.dev75

AttributeError or missing getproxies

When running a command such as conda update ipython, you may get an AttributeError: 'module'
object has no attribute 'getproxies'.

Cause

This can be caused by an old version of requests or by having the PYTHONPATH environment variable set.

Solution

Update requests and be sure PYTHONPATH is not set:

1. Run conda info -a to show the requests version and various environment variables such as PYTHONPATH.

2. Update the requests version with pip install -U requests.

3. Clear PYTHONPATH:

• On Windows, clear it the environment variable settings.

• On macOS and Linux, clear it by removing it from the bash profile and restarting the shell.

Shell commands open from the wrong location

When you run a command within a conda environment, conda does not access the correct package executable.

Cause

In both bash and zsh, when you enter a command, the shell searches the paths in PATH one by one until it finds the
command. The shell then caches the location, which is called hashing in shell terminology. When you run command
again, the shell does not have to search the PATH again.

The problem is that before you installed the program, you ran a command which loaded and hashed another version
of that program in some other location on the PATH, such as /usr/bin. Then you installed the program using conda
install, but the shell still had the old instance hashed.

Solution

Reactivate the environment or run hash -r (in bash) or rehash (in zsh).

When you run conda activate, conda automatically runs hash -r in bash and rehash in zsh to clear the hashed
commands, so conda finds things in the new path on the PATH. But there is no way to do this when conda install
is run because the command must be run inside the shell itself, meaning either you have to run the command yourself
or used a source file that contains the command.

This is a relatively rare problem, since this happens only in the following circumstances:

1. You activate an environment or use the root environment, and then run a command from somewhere else.

2. Then you conda install a program, and then try to run the program again without running activate or
deactivate.

110 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

The command type command_name always tells you exactly what is being run. This is better than which
command_name, which ignores hashed commands and searches the PATH directly. The hash is reset by conda
activate or by hash -r in bash or rehash in zsh.

Programs fail due to invoking conda Python instead of system Python

Cause

After installing Anaconda or Miniconda, programs that run python switch from invoking the system Python to invoking
the Python in the root conda environment. If these programs rely on the system Python to have certain configurations
or dependencies that are not in the root conda environment Python, the programs may crash. For example, some users
of the Cinnamon desktop environment on Linux Mint have reported these crashes.

Solution

Edit your .bash_profile and .bashrc files so that the conda binary directory, such as ~/miniconda3/bin, is no
longer added to the PATH environment variable. You can still run conda activate and conda deactivate by
using their full path names, such as ~/miniconda3/bin/conda.

You may also create a folder with symbolic links to conda activate and conda deactivate and then edit your .
bash_profile or .bashrc file to add this folder to your PATH. If you do this, running python will invoke the system
Python, but running conda commands, conda activate MyEnv, conda activate root, or conda deactivate
will work normally.

After running conda activate to activate any environment, including after running conda activate root, run-
ning python will invoke the Python in the active conda environment.

UnsatisfiableSpecifications error

Cause

Some conda package installation specifications are impossible to satisfy. For example, conda create -n tmp
python=3 wxpython=3 produces an "Unsatisfiable Specifications" error because wxPython 3 depends on Python
2.7, so the specification to install Python 3 conflicts with the specification to install wxPython 3.

When an unsatisfiable request is made to conda, conda shows a message such as this one:

The following specifications were found to be in conflict:
- python 3*
- wxpython 3* -> python 2.7*
Use ``conda search <package> --info`` to see the dependencies
for each package.

This indicates that the specification to install wxpython 3 depends on installing Python 2.7, which conflicts with the
specification to install Python 3.

4.1. User guide 111

conda, Release 24.3.1.dev75

Solution

Use conda search wxpython --info or conda search 'wxpython=3' --info to show information about this
package and its dependencies:

wxpython 3.0 py27_0

file name : wxpython-3.0-py27_0.tar.bz2
name : wxpython
version : 3.0
build number: 0
build string: py27_0
channel : defaults
size : 34.1 MB
date : 2014-01-10
fn : wxpython-3.0-py27_0.tar.bz2
license_family: Other
md5 : adc6285edfd29a28224c410a39d4bdad
priority : 2
schannel : defaults
url : https://repo.continuum.io/pkgs/free/osx-64/wxpython-3.0-py27_0.tar.bz2
dependencies:

python 2.7*
python.app

By examining the dependencies of each package, you should be able to determine why the installation request produced
a conflict and modify the request so it can be satisfied without conflicts. In this example, you could install wxPython
with Python 2.7:

conda create -n tmp python=2.7 wxpython=3

Package installation fails from a specific channel

Cause

Sometimes it is necessary to install a specific version from a specific channel because that version is not available from
the default channel.

Solution

The following example describes the problem in detail and its solution.

Suppose you have a specific need to install the Python cx_freeze module with Python 3.4. A first step is to create a
Python 3.4 environment:

conda create -n py34 python=3.4

Using this environment you should first attempt:

conda install -n py34 cx_freeze

However, when you do this you get the following error:

112 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata
Solving package specifications: .
Error: Package missing in current osx-64 channels:
- cx_freeze

You can search for packages on anaconda.org with

anaconda search -t conda cx_freeze

The message indicates that cx_freeze cannot be found in the default package channels. However, there may be a
community-created version available and you can search for it by running the following command:

$ anaconda search -t conda cx_freeze
Using Anaconda Cloud api site https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:

Name	Version	Package Types	Platforms
inso/cx_freeze | 4.3.3 | conda | linux-64
pyzo/cx_freeze | 4.3.3 | conda | linux-64, win-32, win-64,␣

→˓linux-32, osx-64
: http://cx-freeze.sourceforge.net/

silg2/cx_freeze | 4.3.4 | conda | linux-64
: create standalone executables from Python␣

→˓scripts
takluyver/cx_freeze | 4.3.3 | conda | linux-64

Found 4 packages

In this example, there are 4 different places that you could try to get the package. None of them are officially supported
or endorsed by Anaconda, but members of the conda community have provided many valuable packages. If you want
to go with public opinion, then the web interface provides more information:

Notice that the pyzo organization has by far the most downloads, so you might choose to use their package. If so, you
can add their organization's channel by specifying it on the command line:

$ conda create -c pyzo -n cxfreeze_py34 cx_freeze python=3.4
Using Anaconda Cloud api site https://api.anaconda.org
Fetching package metadata:
Solving package specifications:

Package plan for installation in environment /Users/username/anaconda/envs/cxfreeze_py34:

The following packages will be downloaded:

package	build
cx_freeze-4.3.3 | py34_4 1.8 MB
setuptools-20.7.0 | py34_0 459 KB

(continues on next page)

4.1. User guide 113

https://anaconda.org/search?q=cx_freeze

conda, Release 24.3.1.dev75

114 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

--
Total: 2.3 MB

The following NEW packages will be INSTALLED:

cx_freeze: 4.3.3-py34_4
openssl: 1.0.2h-0
pip: 8.1.1-py34_1
python: 3.4.4-0
readline: 6.2-2
setuptools: 20.7.0-py34_0
sqlite: 3.9.2-0
tk: 8.5.18-0
wheel: 0.29.0-py34_0
xz: 5.0.5-1
zlib: 1.2.8-0

Now you have a software environment sandbox created with Python 3.4 and cx_freeze.

Conda automatically upgrades to unwanted version

When making a Python package for an app, you create an environment for the app from a file req.txt that sets a certain
version, such as python=2.7.9. However, when you conda install your package, it automatically upgrades to a
later version, such as 2.7.10.

Cause

If you make a conda package for the app using conda-build, you can set dependencies with specific version numbers.
The requirements lines that say - python could be - python ==2.7.9 instead. It is important to have 1 space before
the == operator and no space after.

Solution

Exercise caution when coding version requirements.

Conda upgrade error

Cause

Downgrading conda from 4.6.1 to 4.5.x and then trying to conda install conda or conda upgrade conda will
produce a solving and upgrade error similar to the following:

Solving environment: failed
CondaUpgradeError: This environment has previously been operated on by a conda version␣
→˓that's newer than the conda currently being used. A newer version of conda is required.
target environment location: /opt/conda
current conda version: 4.5.9
minimum conda version: 4.6

4.1. User guide 115

conda, Release 24.3.1.dev75

Solution

Change the .condarc file. Set the parameter by editing the .condarc file directly: allow_conda_downgrades:
true in conda version 4.5.12. This will then let you upgrade. If you have something older than 4.5.12, install conda
4.6.1 again from the package cache.

EXAMPLE: If my conda info says package cache : /opt/conda/pkgs and my Python version is 3.7, then on the command
line, type conda install /opt/conda/pkgs/conda-4.6.1-py37_0.tar.bz2 to resolve the issue.

ValidationError: Invalid value for timestamp

Cause

This happens when certain packages are installed with conda 4.3.28, and then conda is downgraded to 4.3.27 or earlier.

Solution

See https://github.com/conda/conda/issues/6096.

Unicode error after installing Python 2

Example: UnicodeDecodeError: 'ascii' codec can't decode byte 0xd3 in position 1: ordinal not in range(128)

Cause

Python 2 is incapable of handling unicode properly, especially on Windows. In this case, if any character in your PATH
env. var contains anything that is not ASCII then you see this exception.

Solution

Remove all non-ASCII from PATH or switch to Python 3.

Windows environment has not been activated

Cause

You may receive a warning message if you have not activated your environment:

Warning:
This Python interpreter is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation

116 Chapter 4. Contributors welcome

https://github.com/conda/conda/issues/6096

conda, Release 24.3.1.dev75

Solution

If you receive this warning, you need to activate your environment. To do so on Windows, on a terminal via PowerShell
or the Command Prompt, run: call <your anaconda/miniconda install location>\Scripts\activate
base.

The system cannot find the path specified on Windows

Cause

PATH does not contain entries for all of the necessary conda directories. PATH may have too many entries from 3rd
party software adding itself to PATH at install time, despite the user not needing to run the software via PATH lookup.

Solution

Strip PATH to have fewer entries and activate your environment.

If there's some software that needs to be found on PATH (you run it via the CLI), we recommend that you create your
own batch files to set PATH dynamically within a console session, rather than permanently modifying PATH in the
system settings.

For example, a new conda prompt batch file that first strips PATH, then calls the correct activation procedure could
look like:

set
PATH=”%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\
→˓System32\WindowsPowerShell\v1.0\;<3rd-party-entries>”
call “<miniconda/anaconda root>\Scripts\activate”

If you need to run 3rd party software (software other than Windows built-ins and Anaconda) from this custom conda
prompt, then you should add those entries (and only those strictly necessary) to the set PATH entry above. Note that
only the quotes wrapping the entire expression should be there. That is how variables are properly set in batch scripts,
and these account for any spaces in any entries in PATH. No additional quotes should be within the value assigned to
PATH.

To make 3rd party software take precedence over the same-named programs as supplied by conda, add it to PATH after
activating conda:

set
“PATH=%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\
→˓System32\WindowsPowerShell\v1.0\”
call “<miniconda/anaconda root>\Scripts\activate”
set “PATH=<3rd-party-entries>;%PATH%”

To make conda software take precedence, call the activation script last. Because activation prepends the conda envi-
ronment PATH entries, they have priority.

set
PATH=”%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;%SYSTEMROOT%\
→˓System32\WindowsPowerShell\v1.0\;<3rd-party-entries>”
call “<miniconda/anaconda root>\Scripts\activate”

4.1. User guide 117

conda, Release 24.3.1.dev75

4.1.7 Cheat sheet

See the conda cheatsheet PDF (1 MB) for a single-page summary of the most important information about using
conda (link always points to the latest version).

Versions

• conda 4.14.x (latest)

• conda 4.12.x

• conda 4.6.x

In this guide, you will learn the about the common tasks involved with using the conda package manager.

4.1.8 First steps

If you are brand new to conda, then these are guides that you will want to start with first:

Installing conda
Follow these instructions to get a working installation of conda on your computer

Getting started
Learn the essential commands you need in your day-to-day usage of conda

Using conda for your project
A tutorial explaining how to use conda in your projects

See also:
Check out Anaconda's free course on conda basics to learn even more.

4.1.9 Learn more

Configuring conda
Reference and explanation for all the ways you can configure conda

Working with packages
Learn how to search for and use conda packages

Working with environments
Learn how to create, update, remove, and export your conda environments

4.1.10 Additional resources

Cheat sheet
Commonly used commands organized into a PDF

Troubleshooting
Various solutions to commonly encountered problems

118 Chapter 4. Contributors welcome

https://learning.anaconda.cloud/conda-basics

conda, Release 24.3.1.dev75

4.2 Configuration

##
Channel Configuration
##

channels (sequence: primitive)
aliases: channel
env var string delimiter: ','
The list of conda channels to include for relevant operations.
#
channels:
- defaults

channel_alias (str)
The prepended url location to associate with channel names.
#
channel_alias: https://conda.anaconda.org

channel_settings (sequence: map)
env var string delimiter: ','
A list of mappings that allows overriding certain settings for a
single channel. Each list item should include at least the "channel"
key and the setting you would like to override.
#
channel_settings: []

default_channels (sequence: primitive)
env var string delimiter: ','
The list of channel names and/or urls used for the 'defaults'
multichannel.
#
default_channels:
- https://repo.anaconda.com/pkgs/main
- https://repo.anaconda.com/pkgs/r

override_channels_enabled (bool)
Permit use of the --override-channels command-line flag.
#
override_channels_enabled: true

allowlist_channels (sequence: primitive)
aliases: whitelist_channels
env var string delimiter: ','
The exclusive list of channels allowed to be used on the system. Use
of any other channels will result in an error. If conda-build channels
are to be allowed, along with the --use-local command line flag, be
sure to include the 'local' channel in the list. If the list is empty
or left undefined, no channel exclusions will be enforced.
#
allowlist_channels: []

(continues on next page)

4.2. Configuration 119

conda, Release 24.3.1.dev75

(continued from previous page)

custom_channels (map: primitive)
A map of key-value pairs where the key is a channel name and the value
is a channel location. Channels defined here override the default
'channel_alias' value. The channel name (key) is not included in the
channel location (value). For example, to override the location of
the 'conda-forge' channel where the url to repodata is
https://anaconda-repo.dev/packages/conda-forge/linux-64/repodata.json,
add an entry 'conda-forge: https://anaconda-repo.dev/packages'.
#
custom_channels:
pkgs/pro: https://repo.anaconda.com

custom_multichannels (map: sequence)
A multichannel is a metachannel composed of multiple channels. The two
reserved multichannels are 'defaults' and 'local'. The 'defaults'
multichannel is customized using the 'default_channels' parameter. The
'local' multichannel is a list of file:// channel locations where
conda-build stashes successfully-built packages. Other multichannels
can be defined with custom_multichannels, where the key is the
multichannel name and the value is a list of channel names and/or
channel urls.
#
custom_multichannels: {}

migrated_channel_aliases (sequence: primitive)
env var string delimiter: ','
A list of previously-used channel_alias values. Useful when switching
between different Anaconda Repository instances.
#
migrated_channel_aliases: []

migrated_custom_channels (map: primitive)
A map of key-value pairs where the key is a channel name and the value
is the previous location of the channel.
#
migrated_custom_channels: {}

add_anaconda_token (bool)
aliases: add_binstar_token
In conjunction with the anaconda command-line client (installed with
`conda install anaconda-client`), and following logging into an
Anaconda Server API site using `anaconda login`, automatically apply a
matching private token to enable access to private packages and
channels.
#
add_anaconda_token: true

allow_non_channel_urls (bool)
Warn, but do not fail, when conda detects a channel url is not a valid
channel.
#
allow_non_channel_urls: false

(continues on next page)

120 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

restore_free_channel (bool)
" Add the "free" channel back into defaults, behind
"main" in priority. The "free" channel was removed
from the collection of default channels in conda 4.7.0.
#
restore_free_channel: false

repodata_fns (sequence: primitive)
env var string delimiter: ','
Specify filenames for repodata fetching. The default is
('current_repodata.json', 'repodata.json'), which tries a subset of
the full index containing only the latest version for each package,
then falls back to repodata.json. You may want to specify something
else to use an alternate index that has been reduced somehow.
#
repodata_fns:
- current_repodata.json
- repodata.json

use_only_tar_bz2 (NoneType, bool)
A boolean indicating that only .tar.bz2 conda packages should be
downloaded. This is forced to True if conda-build is installed and
older than 3.18.3, because older versions of conda break when conda
feeds it the new file format.
#
use_only_tar_bz2:

repodata_threads (int)
Threads to use when downloading and reading repodata. When not set,
defaults to None, which uses the default ThreadPoolExecutor behavior.
#
repodata_threads: 0

fetch_threads (int)
Threads to use when downloading packages. When not set, defaults to
None, which uses the default ThreadPoolExecutor behavior.
#
fetch_threads: 0

experimental (sequence: primitive)
env var string delimiter: ','
List of experimental features to enable.
#
experimental: []

no_lock (bool)
Disable index cache lock (defaults to enabled).
#
no_lock: false

repodata_use_zst (bool)

(continues on next page)

4.2. Configuration 121

conda, Release 24.3.1.dev75

(continued from previous page)

Disable check for `repodata.json.zst`; use `repodata.json` only.
#
repodata_use_zst: true

##
Basic Conda Configuration
##

envs_dirs (sequence: primitive)
aliases: envs_path
env var string delimiter: ':'
The list of directories to search for named environments. When
creating a new named environment, the environment will be placed in
the first writable location.
#
envs_dirs: []

pkgs_dirs (sequence: primitive)
env var string delimiter: ','
The list of directories where locally-available packages are linked
from at install time. Packages not locally available are downloaded
and extracted into the first writable directory.
#
pkgs_dirs: []

default_threads (int)
Threads to use by default for parallel operations. Default is None,
which allows operations to choose themselves. For more specific
control, see the other *_threads parameters: * repodata_threads -
for fetching/loading repodata * verify_threads - for verifying
package contents in transactions * execute_threads - for carrying
out the unlinking and linking steps
#
default_threads: 0

##
Network Configuration
##

client_ssl_cert (NoneType, str)
aliases: client_cert
A path to a single file containing a private key and certificate (e.g.
.pem file). Alternately, use client_ssl_cert_key in conjunction with
client_ssl_cert for individual files.
#
client_ssl_cert:

client_ssl_cert_key (NoneType, str)
aliases: client_cert_key
Used in conjunction with client_ssl_cert for a matching key file.

(continues on next page)

122 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

#
client_ssl_cert_key:

local_repodata_ttl (bool, int)
For a value of False or 0, always fetch remote repodata (HTTP 304
responses respected). For a value of True or 1, respect the HTTP
Cache-Control max-age header. Any other positive integer values is the
number of seconds to locally cache repodata before checking the remote
server for an update.
#
local_repodata_ttl: 1

offline (bool)
Restrict conda to cached download content and file:// based urls.
#
offline: false

proxy_servers (map: primitive)
A mapping to enable proxy settings. Keys can be either (1) a
scheme://hostname form, which will match any request to the given
scheme and exact hostname, or (2) just a scheme, which will match
requests to that scheme. Values are are the actual proxy server, and
are of the form 'scheme://[user:password@]host[:port]'. The optional
'user:password' inclusion enables HTTP Basic Auth with your proxy.
#
proxy_servers: {}

remote_connect_timeout_secs (float)
The number seconds conda will wait for your client to establish a
connection to a remote url resource.
#
remote_connect_timeout_secs: 9.15

remote_max_retries (int)
The maximum number of retries each HTTP connection should attempt.
#
remote_max_retries: 3

remote_backoff_factor (int)
The factor determines the time HTTP connection should wait for
attempt.
#
remote_backoff_factor: 1

remote_read_timeout_secs (float)
Once conda has connected to a remote resource and sent an HTTP
request, the read timeout is the number of seconds conda will wait for
the server to send a response.
#
remote_read_timeout_secs: 60.0

ssl_verify (bool, str)

(continues on next page)

4.2. Configuration 123

conda, Release 24.3.1.dev75

(continued from previous page)

aliases: verify_ssl
Conda verifies SSL certificates for HTTPS requests, just like a web
browser. By default, SSL verification is enabled, and conda operations
will fail if a required url's certificate cannot be verified. Setting
ssl_verify to False disables certification verification. The value for
ssl_verify can also be (1) a path to a CA bundle file, (2) a path to a
directory containing certificates of trusted CA, or (3) 'truststore'
to use the operating system certificate store.
#
ssl_verify: true

##
Solver Configuration
##

aggressive_update_packages (sequence: primitive)
env var string delimiter: ','
A list of packages that, if installed, are always updated to the
latest possible version.
#
aggressive_update_packages:
- ca-certificates
- certifi
- openssl

auto_update_conda (bool)
aliases: self_update
Automatically update conda when a newer or higher priority version is
detected.
#
auto_update_conda: true

channel_priority (ChannelPriority)
Accepts values of 'strict', 'flexible', and 'disabled'. The default
value is 'flexible'. With strict channel priority, packages in lower
priority channels are not considered if a package with the same name
appears in a higher priority channel. With flexible channel priority,
the solver may reach into lower priority channels to fulfill
dependencies, rather than raising an unsatisfiable error. With channel
priority disabled, package version takes precedence, and the
configured priority of channels is used only to break ties. In
previous versions of conda, this parameter was configured as either
True or False. True is now an alias to 'flexible'.
#
channel_priority: flexible

create_default_packages (sequence: primitive)
env var string delimiter: ','
Packages that are by default added to a newly created environments.
#
create_default_packages: []

(continues on next page)

124 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

disallowed_packages (sequence: primitive)
aliases: disallow
env var string delimiter: '&'
Package specifications to disallow installing. The default is to allow
all packages.
#
disallowed_packages: []

force_reinstall (bool)
Ensure that any user-requested package for the current operation is
uninstalled and reinstalled, even if that package already exists in
the environment.
#
force_reinstall: false

pinned_packages (sequence: primitive)
env var string delimiter: '&'
A list of package specs to pin for every environment resolution. This
parameter is in BETA, and its behavior may change in a future release.
#
pinned_packages: []

pip_interop_enabled (bool)
Allow the conda solver to interact with non-conda-installed python
packages.
#
pip_interop_enabled: false

track_features (sequence: primitive)
env var string delimiter: ','
A list of features that are tracked by default. An entry here is
similar to adding an entry to the create_default_packages list.
#
track_features: []

solver (str)
aliases: experimental_solver
A string to choose between the different solver logics implemented in
conda. A solver logic takes care of turning your requested packages
into a list of specs to add and/or remove from a given environment,
based on their dependencies and specified constraints.
#
solver: libmamba

##
Package Linking and Install-time Configuration
##

allow_softlinks (bool)
When allow_softlinks is True, conda uses hard-links when possible, and

(continues on next page)

4.2. Configuration 125

conda, Release 24.3.1.dev75

(continued from previous page)

soft-links (symlinks) when hard-links are not possible, such as when
installing on a different filesystem than the one that the package
cache is on. When allow_softlinks is False, conda still uses hard-
links when possible, but when it is not possible, conda copies files.
Individual packages can override this setting, specifying that certain
files should never be soft-linked (see the no_link option in the build
recipe documentation).
#
allow_softlinks: false

always_copy (bool)
aliases: copy
Register a preference that files be copied into a prefix during
install rather than hard-linked.
#
always_copy: false

always_softlink (bool)
aliases: softlink
Register a preference that files be soft-linked (symlinked) into a
prefix during install rather than hard-linked. The link source is the
'pkgs_dir' package cache from where the package is being linked.
WARNING: Using this option can result in corruption of long-lived
conda environments. Package caches are *caches*, which means there is
some churn and invalidation. With this option, the contents of
environments can be switched out (or erased) via operations on other
environments.
#
always_softlink: false

path_conflict (PathConflict)
The method by which conda handle's conflicting/overlapping paths
during a create, install, or update operation. The value must be one
of 'clobber', 'warn', or 'prevent'. The '--clobber' command-line flag
or clobber configuration parameter overrides path_conflict set to
'prevent'.
#
path_conflict: clobber

rollback_enabled (bool)
Should any error occur during an unlink/link transaction, revert any
disk mutations made to that point in the transaction.
#
rollback_enabled: true

safety_checks (SafetyChecks)
Enforce available safety guarantees during package installation. The
value must be one of 'enabled', 'warn', or 'disabled'.
#
safety_checks: warn

extra_safety_checks (bool)

(continues on next page)

126 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

Spend extra time validating package contents. Currently, runs sha256
verification on every file within each package during installation.
#
extra_safety_checks: false

signing_metadata_url_base (NoneType, str)
Base URL for obtaining trust metadata updates (i.e., the `*.root.json`
and `key_mgr.json` files) used to verify metadata and (eventually)
package signatures.
#
signing_metadata_url_base:

shortcuts (bool)
Allow packages to create OS-specific shortcuts (e.g. in the Windows
Start Menu) at install time.
#
shortcuts: true

shortcuts_only (sequence: primitive)
env var string delimiter: ','
Create shortcuts only for the specified package names.
#
shortcuts_only: []

non_admin_enabled (bool)
Allows completion of conda's create, install, update, and remove
operations, for non-privileged (non-root or non-administrator) users.
#
non_admin_enabled: true

separate_format_cache (bool)
Treat .tar.bz2 files as different from .conda packages when filenames
are otherwise similar. This defaults to False, so that your package
cache doesn't churn when rolling out the new package format. If you'd
rather not assume that a .tar.bz2 and .conda from the same place
represent the same content, set this to True.
#
separate_format_cache: false

verify_threads (int)
Threads to use when performing the transaction verification step.
When not set, defaults to 1.
#
verify_threads: 0

execute_threads (int)
Threads to use when performing the unlink/link transaction. When not
set, defaults to 1. This step is pretty strongly I/O limited, and you
may not see much benefit here.
#
execute_threads: 0

(continues on next page)

4.2. Configuration 127

conda, Release 24.3.1.dev75

(continued from previous page)

##
Conda-build Configuration
##

bld_path (str)
The location where conda-build will put built packages. Same as
'croot', but 'croot' takes precedence when both are defined. Also used
in construction of the 'local' multichannel.
#
bld_path: ''

croot (str)
The location where conda-build will put built packages. Same as
'bld_path', but 'croot' takes precedence when both are defined. Also
used in construction of the 'local' multichannel.
#
croot: ''

anaconda_upload (NoneType, bool)
aliases: binstar_upload
Automatically upload packages built with conda build to anaconda.org.
#
anaconda_upload:

conda_build (map: primitive)
aliases: conda-build
General configuration parameters for conda-build.
#
conda_build: {}

##
Output, Prompt, and Flow Control Configuration
##

always_yes (NoneType, bool)
aliases: yes
Automatically choose the 'yes' option whenever asked to proceed with a
conda operation, such as when running `conda install`.
#
always_yes:

auto_activate_base (bool)
Automatically activate the base environment during shell
initialization.
#
auto_activate_base: true

auto_stack (int)
Implicitly use --stack when using activate if current level of nesting
(as indicated by CONDA_SHLVL environment variable) is less than or

(continues on next page)

128 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

equal to specified value. 0 or false disables automatic stacking, 1 or
true enables it for one level.
#
auto_stack: 0

changeps1 (bool)
When using activate, change the command prompt ($PS1) to include the
activated environment.
#
changeps1: true

env_prompt (str)
Template for prompt modification based on the active environment.
Currently supported template variables are '{prefix}', '{name}', and
'{default_env}'. '{prefix}' is the absolute path to the active
environment. '{name}' is the basename of the active environment
prefix. '{default_env}' holds the value of '{name}' if the active
environment is a conda named environment ('-n' flag), or otherwise
holds the value of '{prefix}'. Templating uses python's str.format()
method.
#
env_prompt: '({default_env}) '

json (bool)
Ensure all output written to stdout is structured json.
#
json: false

notify_outdated_conda (bool)
Notify if a newer version of conda is detected during a create,
install, update, or remove operation.
#
notify_outdated_conda: true

quiet (bool)
Disable progress bar display and other output.
#
quiet: false

report_errors (NoneType, bool)
Opt in, or opt out, of automatic error reporting to core maintainers.
Error reports are anonymous, with only the error stack trace and
information given by `conda info` being sent.
#
report_errors:

show_channel_urls (NoneType, bool)
Show channel URLs when displaying what is going to be downloaded.
#
show_channel_urls:

verbosity (int)

(continues on next page)

4.2. Configuration 129

conda, Release 24.3.1.dev75

(continued from previous page)

aliases: verbose
Sets output log level. 0 is warn. 1 is info. 2 is debug. 3 is trace.
#
verbosity: 0

unsatisfiable_hints (bool)
A boolean to determine if conda should find conflicting packages in
the case of a failed install.
#
unsatisfiable_hints: true

unsatisfiable_hints_check_depth (int)
An integer that specifies how many levels deep to search for
unsatisfiable dependencies. If this number is 1 it will complete the
unsatisfiable hints fastest (but perhaps not the most complete). The
higher this number, the longer the generation of the unsat hint will
take. Defaults to 3.
#
unsatisfiable_hints_check_depth: 2

number_channel_notices (int)
Sets the number of channel notices to be displayed when running
commands the "install", "create", "update", "env create", and "env
update" . Defaults to 5. In order to completely suppress channel
notices, set this to 0.
#
number_channel_notices: 5

##
Plugin Configuration
##

no_plugins (bool)
Disable all currently-registered plugins, except built-in conda
plugins.
#
no_plugins: false

4.3 Commands

Conda provides many commands for managing packages and environments. The links on this page provide help for
each command. You can also access help from the command line with the --help flag:

conda install --help

The following commands are part of conda:

130 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.3.1 conda clean

Remove unused packages and caches.

usage: conda clean [-h] [-a] [-i] [-p] [-t] [-f] [-c [TEMPFILES ...]] [-l]
[--json] [-v] [-q] [-d] [-y]

Removal Targets

-a, --all Remove index cache, lock files, unused cache packages, tarballs, and logfiles.

-i, --index-cache Remove index cache.

-p, --packages Remove unused packages from writable package caches. WARNING: This does
not check for packages installed using symlinks back to the package cache.

-t, --tarballs Remove cached package tarballs.

-f, --force-pkgs-dirs Remove all writable package caches. This option is not included with the --all
flag. WARNING: This will break environments with packages installed using
symlinks back to the package cache.

-c, --tempfiles Remove temporary files that could not be deleted earlier due to being in-use. The
argument for the --tempfiles flag is a path (or list of paths) to the environment(s)
where the tempfiles should be found and removed.

-l, --logfiles Remove log files.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

Examples:

conda clean --tarballs

4.3. Commands 131

conda, Release 24.3.1.dev75

4.3.2 conda compare

Compare packages between conda environments.

usage: conda compare [-h] [--json] [-v] [-q] [-n ENVIRONMENT | -p PATH] file

Positional Arguments

file Path to the environment file that is to be compared against.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Examples:

Compare packages in the current environment with respect to 'environment.yml' located in the current working direc-
tory:

conda compare environment.yml

Compare packages installed into the environment 'myenv' with respect to 'environment.yml' in a different directory:

conda compare -n myenv path/to/file/environment.yml

4.3.3 conda config

Modify configuration values in .condarc.

This is modeled after the git config command. Writes to the user .condarc file (/home/docs/.condarc) by default. Use
the --show-sources flag to display all identified configuration locations on your computer.

usage: conda config [-h] [--json] [-v] [-q] [--system | --env | --file FILE]
[--show [SHOW ...] | --show-sources | --validate |
--describe [DESCRIBE ...] | --write-default]
[--get [KEY ...] | --append KEY VALUE | --prepend KEY
VALUE | --set KEY VALUE | --remove KEY VALUE |
--remove-key KEY | --stdin]

132 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Config File Location Selection

Without one of these flags, the user config file at '/home/docs/.condarc' is used.

--system Write to the system .condarc file at '/home/docs/checkouts/readthedocs.org/user_builds/continuumio-
conda/envs/latest/.condarc'.

--env Write to the active conda environment .condarc file (<no active environment>). If
no environment is active, write to the user config file (/home/docs/.condarc).

--file Write to the given file.

Config Subcommands

--show Display configuration values as calculated and compiled. If no arguments given,
show information for all configuration values.

--show-sources Display all identified configuration sources.

--validate Validate all configuration sources. Iterates over all .condarc files and checks for
parsing errors.

--describe Describe given configuration parameters. If no arguments given, show informa-
tion for all configuration parameters.

--write-default Write the default configuration to a file. Equivalent to conda config --describe >
~/.condarc.

Config Modifiers

--get Get a configuration value.

--append Add one configuration value to the end of a list key.

--prepend, --add Add one configuration value to the beginning of a list key.

--set Set a boolean or string key.

--remove Remove a configuration value from a list key.
This removes all instances of the value.

--remove-key Remove a configuration key (and all its values).

--stdin Apply configuration information given in yaml format piped through stdin.

See conda config --describe or https://conda.io/docs/config.html for details on all the options that can go in .condarc.

Examples:

Display all configuration values as calculated and compiled:

4.3. Commands 133

https://conda.io/docs/config.html

conda, Release 24.3.1.dev75

conda config --show

Display all identified configuration sources:

conda config --show-sources

Print the descriptions of all available configuration options to your command line:

conda config --describe

Print the description for the "channel_priority" configuration option to your command line:

conda config --describe channel_priority

Add the conda-canary channel:

conda config --add channels conda-canary

Set the output verbosity to level 3 (highest) for the current activate environment:

conda config --set verbosity 3 --env

Add the 'conda-forge' channel as a backup to 'defaults':

conda config --append channels conda-forge

4.3.4 conda create

Create a new conda environment from a list of specified packages.

To use the newly-created environment, use 'conda activate envname'. This command requires either the -n NAME or
-p PREFIX option.

usage: conda create [-h] [--clone ENV] (-n ENVIRONMENT | -p PATH) [-c CHANNEL]
[--use-local] [--override-channels]
[--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
[--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
[--strict-channel-priority] [--no-channel-priority]
[--no-deps | --only-deps] [--no-pin] [--copy]
[--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
[-k] [--offline] [--json] [-v] [-q] [-d] [-y]
[--download-only] [--show-channel-urls] [--file FILE]
[--no-default-packages] [--subdir SUBDIR]
[--solver {classic}] [-m] [--dev]
[package_spec ...]

134 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Positional Arguments

package_spec List of packages to install or update in the conda environment.

Named Arguments

--clone Create a new environment as a copy of an existing local environment.

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. --file=file1 --file=file2).

-m, --mkdir --mkdir is pending deprecation and will be removed in 25.3. Redundant argument.

--dev Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is
mainly for use during tests where we test new conda sources against old Python
versions.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

4.3. Commands 135

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

--subdir, --platform Possible choices: emscripten-wasm32, wasi-wasm32, freebsd-64, linux-32,
linux-64, linux-aarch64, linux-armv6l, linux-armv7l, linux-ppc64, linux-ppc64le,
linux-riscv64, linux-s390x, osx-64, osx-arm64, win-32, win-64, win-arm64, zos-
z

Use packages built for this platform. The new environment will be configured to
remember this choice. Should be formatted like 'osx-64', 'linux-32', 'win-64', and
so on. Defaults to the current (native) platform.

Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config --show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to broken
environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--no-default-packages Ignore create_default_packages in the .condarc file.

--solver Possible choices: classic

Choose which solver backend to use.

Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

--no-shortcuts Don't install start menu shortcuts

--shortcuts-only Install shortcuts only for this package name. Can be used several times.

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

136 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config --show
show_channel_urls.

Examples:

Create an environment containing the package 'sqlite':

conda create -n myenv sqlite

Create an environment (env2) as a clone of an existing environment (env1):

conda create -n env2 --clone path/to/file/env1

4.3.5 conda doctor

Display a health report for your environment.

usage: conda doctor [-v] [-h] [-n ENVIRONMENT | -p PATH]

Named Arguments

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

4.3. Commands 137

conda, Release 24.3.1.dev75

4.3.6 conda env

usage: conda env [-h] command ...

Positional Arguments

command Possible choices: config, create, export, list, remove, update

conda env config

Configure a conda environment.

usage: conda env config [-h] {vars} ...

Examples:

conda env config vars list
conda env config --append channels conda-forge

conda env config vars

Interact with environment variables associated with Conda environments.

usage: conda env config vars [-h] {list,set,unset} ...

Examples:

conda env config vars list -n my_env
conda env config vars set MY_VAR=something OTHER_THING=ohhhhya
conda env config vars unset MY_VAR

conda env config vars list

List environment variables for a conda environment.

usage: conda env config vars list [-h] [-n ENVIRONMENT | -p PATH] [--json]
[-v] [-q]

138 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Example:

conda env config vars list -n my_env

conda env config vars set

Set environment variables for a conda environment.

usage: conda env config vars set [-h] [-n ENVIRONMENT | -p PATH] [vars ...]

Positional Arguments

vars Environment variables to set in the form <KEY>=<VALUE> separated by spaces

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Example:

conda env config vars set MY_VAR=weee

4.3. Commands 139

conda, Release 24.3.1.dev75

conda env config vars unset

Unset environment variables for a conda environment.

usage: conda env config vars unset [-h] [-n ENVIRONMENT | -p PATH] [vars ...]

Positional Arguments

vars Environment variables to unset in the form <KEY> separated by spaces

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Example:

conda env config vars unset MY_VAR

conda env create

Create an environment based on an environment definition file.

If using an environment.yml file (the default), you can name the environment in the first line of the file with 'name:
envname' or you can specify the environment name in the CLI command using the -n/--name argument. The name
specified in the CLI will override the name specified in the environment.yml file.

Unless you are in the directory containing the environment definition file, use -f to specify the file path of the environ-
ment definition file you want to use.

usage: conda env create [-h] [-f FILE] [-n ENVIRONMENT | -p PATH] [-C] [-k]
[--offline] [--no-default-packages] [--json] [-v] [-q]
[-d] [-y] [--solver {classic}] [--subdir SUBDIR]
[remote_definition]

Positional Arguments

remote_definition Remote environment definition / IPython notebook

140 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Named Arguments

-f, --file Environment definition file (default: environment.yml)

--no-default-packages Ignore create_default_packages in the .condarc file.

--solver Possible choices: classic

Choose which solver backend to use.

--subdir, --platform Possible choices: emscripten-wasm32, wasi-wasm32, freebsd-64, linux-32,
linux-64, linux-aarch64, linux-armv6l, linux-armv7l, linux-ppc64, linux-ppc64le,
linux-riscv64, linux-s390x, osx-64, osx-arm64, win-32, win-64, win-arm64, zos-
z

Use packages built for this platform. The new environment will be configured to
remember this choice. Should be formatted like 'osx-64', 'linux-32', 'win-64', and
so on. Defaults to the current (native) platform.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

Examples:

conda env create
conda env create -n envname
conda env create folder/envname

(continues on next page)

4.3. Commands 141

conda, Release 24.3.1.dev75

(continued from previous page)

conda env create -f /path/to/environment.yml
conda env create -f /path/to/requirements.txt -n envname
conda env create -f /path/to/requirements.txt -p /home/user/envname

conda env export

Export a given environment

usage: conda env export [-h] [-c CHANNEL] [--override-channels]
[-n ENVIRONMENT | -p PATH] [-f FILE] [--no-builds]
[--ignore-channels] [--json] [-v] [-q]
[--from-history]

Named Arguments

-c, --channel Additional channel to include in the export

--override-channels Do not include .condarc channels

-f, --file File name or path for the exported environment. Note: This will silently overwrite
any existing file of the same name in the current directory.

--no-builds Remove build specification from dependencies

--ignore-channels Do not include channel names with package names.

--from-history Build environment spec from explicit specs in history

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

conda export
conda export --file FILE_NAME

142 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

conda env list

List the Conda environments.

usage: conda env list [-h] [--json] [-v] [-q]

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

conda env list
conda env list --json

conda env remove

Remove an environment.

Removes a provided environment. You must deactivate the existing environment before you can remove it.

usage: conda env remove [-h] [-n ENVIRONMENT | -p PATH] [--solver {classic}]
[--json] [-v] [-q] [-d] [-y]

Named Arguments

--solver Possible choices: classic

Choose which solver backend to use.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

4.3. Commands 143

conda, Release 24.3.1.dev75

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

Examples:

conda env remove --name FOO
conda env remove -n FOO

conda env update

Update the current environment based on environment file.

usage: conda env update [-h] [-n ENVIRONMENT | -p PATH] [-f FILE] [--prune]
[--json] [-v] [-q] [--solver {classic}]
[remote_definition]

Positional Arguments

remote_definition remote environment definition / IPython notebook

Named Arguments

-f, --file environment definition (default: environment.yml)

--prune remove installed packages not defined in environment.yml

--solver Possible choices: classic

Choose which solver backend to use.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

144 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

conda env update
conda env update -n=foo
conda env update -f=/path/to/environment.yml
conda env update --name=foo --file=environment.yml
conda env update vader/deathstar

4.3.7 conda info

Display information about current conda install.

usage: conda info [-h] [--json] [-v] [-q] [-a] [--base] [-e] [-s]
[--unsafe-channels]

Named Arguments

-a, --all --all is deprecated and will be removed in 24.9. Use --verbose instead.

--base Display base environment path.

-e, --envs List all known conda environments.

-s, --system List environment variables.

--unsafe-channels Display list of channels with tokens exposed.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

4.3. Commands 145

conda, Release 24.3.1.dev75

4.3.8 conda init

Initialize conda for shell interaction.

usage: conda init [-h] [--all] [--user] [--no-user] [--system] [--reverse]
[--json] [-v] [-q] [-d]
[SHELLS ...]

Positional Arguments

SHELLS Possible choices: bash, fish, tcsh, xonsh, zsh, powershell

One or more shells to be initialized. If not given, the default value is 'bash' on
unix and 'cmd.exe' & 'powershell' on Windows. Use the '--all' flag to initialize all
shells. Available shells: ['bash', 'fish', 'powershell', 'tcsh', 'xonsh', 'zsh']

Named Arguments

--all Initialize all currently available shells.

-d, --dry-run Only display what would have been done.

setup type

--user Initialize conda for the current user (default).

--no-user Don't initialize conda for the current user.

--system Initialize conda for all users on the system.

--reverse Undo effects of last conda init.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Key parts of conda's functionality require that it interact directly with the shell within which conda is being invoked.
The conda activate and conda deactivate commands specifically are shell-level commands. That is, they affect the state
(e.g. environment variables) of the shell context being interacted with. Other core commands, like conda create and
conda install, also necessarily interact with the shell environment. They're therefore implemented in ways specific to
each shell. Each shell must be configured to make use of them.

This command makes changes to your system that are specific and customized for each shell. To see the specific files
and locations on your system that will be affected before, use the '--dry-run' flag. To see the exact changes that are being
or will be made to each location, use the '--verbose' flag.

IMPORTANT: After running conda init, most shells will need to be closed and restarted for changes to take effect.

146 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.3.9 conda install

Install a list of packages into a specified conda environment.

This command accepts a list of package specifications (e.g, bitarray=0.8) and installs a set of packages consistent with
those specifications and compatible with the underlying environment. If full compatibility cannot be assured, an error
is reported and the environment is not changed.

Conda attempts to install the newest versions of the requested packages. To accomplish this, it may update some
packages that are already installed, or install additional packages. To prevent existing packages from updating, use
the --freeze-installed option. This may force conda to install older versions of the requested packages, and it does not
prevent additional dependency packages from being installed.

If you wish to skip dependency checking altogether, use the '--no-deps' option. This may result in an environment with
incompatible packages, so this option must be used with great caution.

conda can also be called with a list of explicit conda package filenames (e.g. ./lxml-3.2.0-py27_0.tar.bz2). Using
conda in this mode implies the --no-deps option, and should likewise be used with great caution. Explicit filenames
and package specifications cannot be mixed in a single command.

usage: conda install [-h] [--revision REVISION] [-n ENVIRONMENT | -p PATH]
[-c CHANNEL] [--use-local] [--override-channels]
[--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
[--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
[--strict-channel-priority] [--no-channel-priority]
[--no-deps | --only-deps] [--no-pin] [--copy]
[--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
[-k] [--offline] [--json] [-v] [-q] [-d] [-y]
[--download-only] [--show-channel-urls] [--file FILE]
[--solver {classic}] [--force-reinstall]
[--freeze-installed | --update-deps | -S | --update-all | --update-

→˓specs]
[-m] [--clobber] [--dev]
[package_spec ...]

Positional Arguments

package_spec List of packages to install or update in the conda environment.

Named Arguments

--revision Revert to the specified REVISION.

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. --file=file1 --file=file2).

--dev Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is
mainly for use during tests where we test new conda sources against old Python
versions.

4.3. Commands 147

conda, Release 24.3.1.dev75

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config --show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to broken
environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--solver Possible choices: classic

Choose which solver backend to use.

--force-reinstall Ensure that any user-requested package for the current operation is uninstalled and
reinstalled, even if that package already exists in the environment.

148 Chapter 4. Contributors welcome

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

--freeze-installed, --no-update-deps Do not update or change already-installed dependencies.

--update-deps Update dependencies that have available updates.

-S, --satisfied-skip-solve Exit early and do not run the solver if the requested specs are satisfied. Also
skips aggressive updates as configured by the 'aggressive_update_packages' con-
fig setting. Use 'conda info --describe aggressive_update_packages' to view your
setting. --satisfied-skip-solve is similar to the default behavior of 'pip install'.

--update-all, --all Update all installed packages in the environment.

--update-specs Update based on provided specifications.

Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

--no-shortcuts Don't install start menu shortcuts

--shortcuts-only Install shortcuts only for this package name. Can be used several times.

-m, --mkdir --mkdir is pending deprecation and will be removed in 25.3. Use conda create
instead.

--clobber Allow clobbering (i.e. overwriting) of overlapping file paths within packages and
suppress related warnings.

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config --show
show_channel_urls.

4.3. Commands 149

conda, Release 24.3.1.dev75

Examples:

Install the package 'scipy' into the currently-active environment:

conda install scipy

Install a list of packages into an environment, myenv:

conda install -n myenv scipy curl wheel

Install a specific version of 'python' into an environment, myenv:

conda install -p path/to/myenv python=3.11

4.3.10 conda list

List installed packages in a conda environment.

usage: conda list [-h] [-n ENVIRONMENT | -p PATH] [--json] [-v] [-q]
[--show-channel-urls] [--reverse] [-c] [-f] [--explicit]
[--md5] [-e] [-r] [--no-pip]
[regex]

Positional Arguments

regex List only packages matching this regular expression.

Named Arguments

--show-channel-urls Show channel urls. Overrides the value given by conda config --show
show_channel_urls.

--reverse List installed packages in reverse order.

-c, --canonical Output canonical names of packages only.

-f, --full-name Only search for full names, i.e., ^<regex>$. --full-name NAME is identical to
regex '^NAME$'.

--explicit List explicitly all installed conda packages with URL (output may be used by
conda create --file).

--md5 Add MD5 hashsum when using --explicit.

-e, --export Output explicit, machine-readable requirement strings instead of human-readable
lists of packages. This output may be used by conda create --file.

-r, --revisions List the revision history.

--no-pip Do not include pip-only installed packages.

150 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

List all packages in the current environment:

conda list

List all packages in reverse order:

conda list --reverse

List all packages installed into the environment 'myenv':

conda list -n myenv

List all packages that begin with the letters "py", using regex:

conda list ^py

Save packages for future use:

conda list --export > package-list.txt

Reinstall packages from an export file:

conda create -n myenv --file package-list.txt

4.3.11 conda notices

Retrieve latest channel notifications.

Conda channel maintainers have the option of setting messages that users will see intermittently. Some of these notices
are informational while others are messages concerning the stability of the channel.

usage: conda notices [-h] [-c CHANNEL] [--use-local] [--override-channels]
[--repodata-fn REPODATA_FNS] [--experimental {jlap,lock}]
[--no-lock] [--repodata-use-zst | --no-repodata-use-zst]
[--json] [-v] [-q]

4.3. Commands 151

conda, Release 24.3.1.dev75

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

conda notices

conda notices -c defaults

152 Chapter 4. Contributors welcome

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

4.3.12 conda package

Create low-level conda packages. (EXPERIMENTAL)

usage: conda package [-h] [-n ENVIRONMENT | -p PATH] [-w PATH [PATH ...]] [-r]
[-u] [--pkg-name PKG_NAME] [--pkg-version PKG_VERSION]
[--pkg-build PKG_BUILD]

Named Arguments

-w, --which Given some file's PATH, print which conda package the file came from.

-r, --reset Remove all untracked files and exit.

-u, --untracked Display all untracked files and exit.

--pkg-name Designate package name of the package being created.

--pkg-version Designate package version of the package being created.

--pkg-build Designate package build number of the package being created.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

4.3.13 conda remove

Remove a list of packages from a specified conda environment.

Use --all flag to remove all packages and the environment itself.

This command will also remove any package that depends on any of the specified packages as well---unless a replace-
ment can be found without that dependency. If you wish to skip this dependency checking and remove just the requested
packages, add the '--force' option. Note however that this may result in a broken environment, so use this with caution.

usage: conda remove [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
[--override-channels] [--repodata-fn REPODATA_FNS]
[--experimental {jlap,lock}] [--no-lock]
[--repodata-use-zst | --no-repodata-use-zst] [--features]
[--force-remove] [--no-pin] [--solver {classic}] [-C] [-k]
[--offline] [--json] [-v] [-q] [-d] [-y] [--all]
[--keep-env] [--dev]
[package_name ...]

4.3. Commands 153

conda, Release 24.3.1.dev75

Positional Arguments

package_name Package names to remove from the environment.

Named Arguments

--all Remove all packages, i.e., the entire environment.

--keep-env Used with --all, delete all packages but keep the environment.

--dev Use sys.executable -m conda in wrapper scripts instead of CONDA_EXE. This is
mainly for use during tests where we test new conda sources against old Python
versions.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

154 Chapter 4. Contributors welcome

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

Solver Mode Modifiers

--features Remove features (instead of packages).

--force-remove, --force Forces removal of a package without removing packages that depend on it.
Using this option will usually leave your environment in a broken and inconsistent
state.

--no-pin Ignore pinned package(s) that apply to the current operation. These
pinned packages might come from a .condarc file or a file in
<TARGET_ENVIRONMENT>/conda-meta/pinned.

--solver Possible choices: classic

Choose which solver backend to use.

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

Examples:

Remove the package 'scipy' from the currently-active environment:

conda remove scipy

Remove a list of packages from an environemnt 'myenv':

conda remove -n myenv scipy curl wheel

Remove all packages from environment myenv and the environment itself:

conda remove -n myenv --all

Remove all packages from the environment myenv but retain the environment:

4.3. Commands 155

conda, Release 24.3.1.dev75

conda remove -n myenv --all --keep-env

4.3.14 conda rename

Rename an existing environment.

This command renames a conda environment via its name (-n/--name) or its prefix (-p/--prefix).

The base environment and the currently-active environment cannot be renamed.

usage: conda rename [-h] [-n ENVIRONMENT | -p PATH] [--force] [-d] destination

Positional Arguments

destination New name for the conda environment.

Named Arguments

--force Force rename of an environment.

-d, --dry-run Only display what would have been done by the current command, arguments,
and other flags.

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Examples:

conda rename -n test123 test321

conda rename --name test123 test321

conda rename -p path/to/test123 test321

conda rename --prefix path/to/test123 test321

156 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.3.15 conda run

Run an executable in a conda environment.

usage: conda run [-h] [-n ENVIRONMENT | -p PATH] [-v] [--dev]
[--debug-wrapper-scripts] [--cwd CWD] [--no-capture-output]
...

Positional Arguments

executable_call Executable name, with additional arguments to be passed to the executable on
invocation.

Named Arguments

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

--dev Sets CONDA_EXE to python -m conda, assuming the current working directory
contains the root of conda development sources. This is mainly for use during
tests where we test new conda sources against old Python versions.

--debug-wrapper-scripts When this is set, where implemented, the shell wrapper scriptswill use the
echo command to print debugging information to stderr (standard error).

--cwd Current working directory for command to run in. Defaults to the user's current
working directory if no directory is specified.

--no-capture-output, --live-stream Don't capture stdout/stderr (standard out/standard error).

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

Example:

$ conda create -y -n my-python-env python=3
$ conda run -n my-python-env python --version

4.3.16 conda search

Search for packages and display associated information using the MatchSpec format.

MatchSpec is a query language for conda packages.

4.3. Commands 157

conda, Release 24.3.1.dev75

usage: conda search [-h] [--envs] [-i] [--subdir SUBDIR]
[--skip-flexible-search] [-c CHANNEL] [--use-local]
[--override-channels] [--repodata-fn REPODATA_FNS]
[--experimental {jlap,lock}] [--no-lock]
[--repodata-use-zst | --no-repodata-use-zst] [-C] [-k]
[--offline] [--json] [-v] [-q]

Named Arguments

--envs Search all of the current user's environments. If run as Administrator (on Win-
dows) or UID 0 (on unix), search all known environments on the system.

-i, --info Provide detailed information about each package.

--subdir, --platform Search the given subdir. Should be formatted like 'osx-64', 'linux-32', 'win-64',
and so on. The default is to search the current platform.

--skip-flexible-search Do not perform flexible search if initial search fails.

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

158 Chapter 4. Contributors welcome

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

Examples:

Search for a specific package named 'scikit-learn':

conda search scikit-learn

Search for packages containing 'scikit' in the package name:

conda search *scikit*

Note that your shell may expand '*' before handing the command over to conda. Therefore, it is sometimes necessary
to use single or double quotes around the query:

conda search '*scikit'
conda search "*scikit*"

Search for packages for 64-bit Linux (by default, packages for your current platform are shown):

conda search numpy[subdir=linux-64]

Search for a specific version of a package:

conda search 'numpy>=1.12'

Search for a package on a specific channel:

conda search conda-forge::numpy
conda search 'numpy[channel=conda-forge, subdir=osx-64]'

4.3. Commands 159

conda, Release 24.3.1.dev75

4.3.17 conda update

Update conda packages to the latest compatible version.

This command accepts a list of package names and updates them to the latest versions that are compatible with all other
packages in the environment.

Conda attempts to install the newest versions of the requested packages. To accomplish this, it may update some
packages that are already installed, or install additional packages. To prevent existing packages from updating, use
the --no-update-deps option. This may force conda to install older versions of the requested packages, and it does not
prevent additional dependency packages from being installed.

usage: conda update [-h] [-n ENVIRONMENT | -p PATH] [-c CHANNEL] [--use-local]
[--override-channels] [--repodata-fn REPODATA_FNS]
[--experimental {jlap,lock}] [--no-lock]
[--repodata-use-zst | --no-repodata-use-zst]
[--strict-channel-priority] [--no-channel-priority]
[--no-deps | --only-deps] [--no-pin] [--copy]
[--no-shortcuts] [--shortcuts-only SHORTCUTS_ONLY] [-C]
[-k] [--offline] [--json] [-v] [-q] [-d] [-y]
[--download-only] [--show-channel-urls] [--file FILE]
[--solver {classic}] [--force-reinstall]
[--freeze-installed | --update-deps | -S | --update-all | --update-

→˓specs]
[--clobber]
[package_spec ...]

Positional Arguments

package_spec List of packages to install or update in the conda environment.

Named Arguments

--file Read package versions from the given file. Repeated file specifications can be
passed (e.g. --file=file1 --file=file2).

Target Environment Specification

-n, --name Name of environment.

-p, --prefix Full path to environment location (i.e. prefix).

160 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Channel Customization

-c, --channel Additional channel to search for packages. These are URLs searched in the order
they are given (including local directories using the 'file://' syntax or simply a
path like '/home/conda/mychan' or '../mychan'). Then, the defaults or channels
from .condarc are searched (unless --override-channels is given). You can use
'defaults' to get the default packages for conda. You can also use any name and
the .condarc channel_alias value will be prepended. The default channel_alias is
https://conda.anaconda.org/.

--use-local Use locally built packages. Identical to '-c local'.

--override-channels Do not search default or .condarc channels. Requires --channel.

--repodata-fn Specify file name of repodata on the remote server where your channels are con-
figured or within local backups. Conda will try whatever you specify, but will
ultimately fall back to repodata.json if your specs are not satisfiable with what
you specify here. This is used to employ repodata that is smaller and reduced in
time scope. You may pass this flag more than once. Leftmost entries are tried
first, and the fallback to repodata.json is added for you automatically. For more
information, see conda config --describe repodata_fns.

--experimental Possible choices: jlap, lock

jlap: Download incremental package index data from repodata.jlap; implies 'lock'.
lock: use locking when reading, updating index (repodata.json) cache. Now en-
abled.

--no-lock Disable locking when reading, updating index (repodata.json) cache.

--repodata-use-zst, --no-repodata-use-zst Check for/do not check for repodata.json.zst. Enabled by
default. (default: Null)

Solver Mode Modifiers

--strict-channel-priority Packages in lower priority channels are not considered if a package with the
same name appears in a higher priority channel.

--no-channel-priority Package version takes precedence over channel priority. Overrides the value
given by conda config --show channel_priority.

--no-deps Do not install, update, remove, or change dependencies. This WILL lead to broken
environments and inconsistent behavior. Use at your own risk.

--only-deps Only install dependencies.

--no-pin Ignore pinned file.

--solver Possible choices: classic

Choose which solver backend to use.

--force-reinstall Ensure that any user-requested package for the current operation is uninstalled and
reinstalled, even if that package already exists in the environment.

--freeze-installed, --no-update-deps Do not update or change already-installed dependencies.

--update-deps Update dependencies that have available updates.

4.3. Commands 161

file://
https://conda.anaconda.org/

conda, Release 24.3.1.dev75

-S, --satisfied-skip-solve Exit early and do not run the solver if the requested specs are satisfied. Also
skips aggressive updates as configured by the 'aggressive_update_packages' con-
fig setting. Use 'conda info --describe aggressive_update_packages' to view your
setting. --satisfied-skip-solve is similar to the default behavior of 'pip install'.

--update-all, --all Update all installed packages in the environment.

--update-specs Update based on provided specifications.

Package Linking and Install-time Options

--copy Install all packages using copies instead of hard- or soft-linking.

--no-shortcuts Don't install start menu shortcuts

--shortcuts-only Install shortcuts only for this package name. Can be used several times.

--clobber Allow clobbering of overlapping file paths within packages, and suppress related
warnings.

Networking Options

-C, --use-index-cache Use cache of channel index files, even if it has expired. This is useful if you don't
want conda to check whether a new version of the repodata file exists, which will
save bandwidth.

-k, --insecure Allow conda to perform "insecure" SSL connections and transfers. Equivalent to
setting 'ssl_verify' to 'false'.

--offline Offline mode. Don't connect to the Internet.

Output, Prompt, and Flow Control Options

--json Report all output as json. Suitable for using conda programmatically.

-v, --verbose Can be used multiple times. Once for detailed output, twice for INFO logging,
thrice for DEBUG logging, four times for TRACE logging.

-q, --quiet Do not display progress bar.

-d, --dry-run Only display what would have been done.

-y, --yes Sets any confirmation values to 'yes' automatically. Users will not be asked to
confirm any adding, deleting, backups, etc.

--download-only Solve an environment and ensure package caches are populated, but exit prior to
unlinking and linking packages into the prefix.

--show-channel-urls Show channel urls. Overrides the value given by conda config --show
show_channel_urls.

Examples:

conda update -n myenv scipy

162 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.3.18 Conda vs. pip vs. virtualenv commands

If you have used pip and virtualenv in the past, you can use conda to perform all of the same operations. Pip is a package
manager and virtualenv is an environment manager. conda is both.

Scroll to the right to see the entire table.

4.3. Commands 163

conda, Release 24.3.1.dev75

Task Conda package and environ-
ment manager command

Pip package manager com-
mand

Virtualenv environment man-
ager command

Install a
package

conda install
$PACKAGE_NAME

pip install
$PACKAGE_NAME

X

Update a
package

conda update --name
$ENVIRONMENT_NAME
$PACKAGE_NAME

pip install --upgrade
$PACKAGE_NAME

X

Update
package
manager

conda update conda Linux/macOS: pip install
-U pip Win: python -m pip
install -U pip

X

Unin-
stall a
package

conda remove --name
$ENVIRONMENT_NAME
$PACKAGE_NAME

pip uninstall
$PACKAGE_NAME

X

Create
an envi-
ronment

conda create --name
$ENVIRONMENT_NAME python

X cd $ENV_BASE_DIR;
virtualenv
$ENVIRONMENT_NAME

Activate
an envi-
ronment

conda activate
$ENVIRONMENT_NAME*

X source $ENV_BASE_DIR/
$ENVIRONMENT_NAME/bin/
activate

Deacti-
vate an
environ-
ment

conda deactivate X deactivate

Search
avail-
able
pack-
ages

conda search
$SEARCH_TERM

pip search $SEARCH_TERM X

Install
package
from
specific
source

conda install --channel
$URL $PACKAGE_NAME

pip install --index-url
$URL $PACKAGE_NAME

X

List
installed
pack-
ages

conda list --name
$ENVIRONMENT_NAME

pip list X

Create
require-
ments
file

conda list --export pip freeze X

List all
environ-
ments

conda info --envs X Install virtualenv wrapper, then
lsvirtualenv

Install
other
package
manager

conda install pip pip install conda X

Install
Python

conda install python=x.x X X

Update
Python

conda update python* X X

164 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

* conda activate only works on conda 4.6 and later versions. For conda versions prior to 4.6, type:

• Windows: activate

• Linux and macOS: source activate

* conda update python updates to the most recent in the series, so any Python 2.x would update to the latest 2.x
and any Python 3.x to the latest 3.x.

4.4 Release notes

This information is drawn from the GitHub conda project changelog: https://github.com/conda/conda/blob/main/
CHANGELOG.md

4.4.1 24.3.0 (2024-03-12)

Enhancements

• Show first few characters of undecodeable response if repodata.json raises JSONDecodeError. (#11804)

• Update conda.gateways.subprocess.subprocess_call to use text=True to avoid manual encod-
ing/decoding. (#13240)

• Add a new plugin hook giving plugin authors the ability to define new settings. (#13554)

• Optimize module imports to speed up conda activate. (#13567 via #13568)

• Move conda env export to conda export and alias the old command to the new command. (#13577)

• Report progress while running conda install --revision <idx>. (#13611)

• Add conda.testing.tmp_channel pytest fixture to create a temporary local channel for testing. (#13634)

Bug fixes

• Print traceback on KeyboardInterrupt instead of raising another AttributeError exception, when conda
debugging logs are enabled. (#13531)

• Parse integer channel notice IDs as str instead of raising an exception. (#13543)

• Add direct runtime dependency on zstandard for use when downloading repodata.json.zst. (#13551)

• Fallback to repodata.json if repodata.json.zst cannot be decompressed as zstandard. (#13558)

• conda rename command no longer throws an error when conda is not active. (#13565)

• Fallback to repodata.json from repodata.json.zst on most 4xx error codes. (#13573)

• Fix excess resource usage by log handling when fetching repodata. (#13541 via #13628)

• Re-enable --subdir and --platform flags to be available for conda env create command. (#13632)

• Fix __archspec virtual package on Windows to return microarchitecture instead of the default x86_64.
(#13641)

4.4. Release notes 165

https://github.com/conda/conda/blob/main/CHANGELOG.md
https://github.com/conda/conda/blob/main/CHANGELOG.md

conda, Release 24.3.1.dev75

Deprecations

• Discontinue custom docker images. Use images provided by Anaconda Inc. or conda-forge instead. (#13162)

• Mark conda.common.compat.encode_arguments as pending deprecation. (#13240)

• Remove conda.export.handle_proxy_407. (#13629)

• Mark conda.testing.integration.make_temp_channel as pending deprecation. Use conda.testing.
tmp_channel fixture instead. (#13634)

• Mark conda.testing.integration.running_a_python_capable_of_unicode_subprocessing as
pending deprecation. (#13634)

• Mark conda.testing.integration.set_tmpdir as pending deprecation. Use tmp_path, conda.
testing.path_factory, or conda.testing.tmp_env instead. (#13634)

• Mark conda.testing.integration._get_temp_prefix as pending deprecation. Use tmp_path, conda.
testing.path_factory, or conda.testing.tmp_env instead. (#13634)

• Mark conda.testing.integration.make_temp_prefix as pending deprecation. Use tmp_path, conda.
testing.path_factory, or conda.testing.tmp_env instead. (#13634)

• Mark conda.testing.integration.FORCE_temp_prefix as pending deprecation. Use tmp_path, conda.
testing.path_factory, or conda.testing.tmp_env instead. (#13634)

• Mark conda.testing.integration.create_temp_location as pending deprecation. Use tmp_path or
conda.testing.path_factory instead. (#13634)

• Mark conda.testing.integration.tempdir as pending deprecation. Use tmp_path or conda.testing.
path_factory instead. (#13634)

• Mark conda.testing.integration.reload_config as pending deprecation. Use conda.base.context.
reset_context instead. (#13634)

• Postpone conda.base.context.Context.conda_exe deprecation to conda 24.9. (#13634)

• Postpone conda.testing.integration.run_command deprecation to conda 25.3. (#13634)

• Postpone loading subcommands from executables deprecation to conda 25.3. (#13634)

• Remove vendored conda._vendor.boltons. Use boltons package instead. (#12681 via #13634)

• Remove conda.auxlib.packaging. Use a modern build system instead; see https://packaging.python.org/en/
latest/tutorials/packaging-projects#creating-pyproject-toml for more details. (#12681 via #13634)

• Remove conda env create --force. Use conda env create --yes instead. (#12681 via #13634)

• Remove conda info PACKAGE. Use conda search PACKAGE --info instead. (#12681 via #13634)

• Remove conda.core.subdir_data.fetch_repodata_remote_request. Use conda.core.
subdir_data.SubdirData.repo_fetch.fetch_latest_parsed instead." (#12681 via #13634)

• Remove conda.exports.memoized. Use functools.lru_cache instead. (#12681 via #13634)

• Remove conda.gateways.disk.read._digest_path. Use conda.gateways.disk.read.compute_sum
instead. (#12681 via #13634)

• Remove conda.gateways.disk.read.compute_md5sum. Use conda.gateways.disk.read.
compute_sum(path, "md5") instead. (#12681 via #13634)

• Remove conda.gateways.disk.read.compute_sha256sum. Use conda.gateways.disk.read.
compute_sum(path, "sha256") instead. (#12681 via #13634)

• Remove conda.instructions.PREFIX. (#12681 via #13634)

166 Chapter 4. Contributors welcome

https://hub.docker.com/r/continuumio/miniconda3
https://hub.docker.com/r/condaforge/miniforge3
https://packaging.python.org/en/latest/tutorials/packaging-projects#creating-pyproject-toml
https://packaging.python.org/en/latest/tutorials/packaging-projects#creating-pyproject-toml

conda, Release 24.3.1.dev75

• Remove conda.instructions.PREFIX_CMD. (#12681 via #13634)

• Remove conda.testing.encode_for_env_var. (#12681 via #13634)

• Remove conda.testing.conda_check_versions_aligned. (#12681 via #13634)

• Remove conda.testing.helpers.run_inprocess_conda_command. Use conda.testing.tmp_env in-
stead. (#12681 via #13634)

• Remove conda.testing.helpers.capture_json_with_argv. (#12681 via #13634)

• Remove conda.testing.integration.get_conda_list_tuple. Use conda.core.prefix_data.
PrefixData.get instead. (#12681 via #13634)

• Remove conda.utils.md5_file. Use conda.gateways.disk.read.compute_sum(path, "md5") in-
stead. (#12681 via #13634)

• Remove conda.utils.hashsum_file. Use conda.gateways.disk.read.compute_sum instead. (#12681
via #13634)

• Remove conda.utils.safe_open. Use open instead. (#12681 via #13634)

• Remove python -m conda_env. Use conda env or python -m conda env instead. (#12681 via #13634)

• Remove conda_env.env.load_from_directory. (#12681 via #13634)

• Remove conda_env.pip_util.get_pip_version. (#12681 via #13634)

• Remove conda_env.pip_util.PipPackage. (#12681 via #13634)

• Remove conda_env.pip_util.installed. (#12681 via #13634)

• Remove conda_env.pip_util._canonicalize_name. (#12681 via #13634)

• Remove conda_env.pip_util.add_pip_installed. (#12681 via #13634)

Docs

• Update the navigation links for Miniconda. (#13572)

Other

• Remove dev/* scripts in favor of conda-incubator/setup-miniconda GitHub Action in .github/
workflows/tests.yml. (#13162)

• Stop chaining commands for steps in .github/workflows/tests.yml. (#12418 via #13162)

• Modernize tests. (#13547, #13292)

• Run GitHub tests workflow also on osx-arm64 (aka Apple Silicon) runners. Enable osx-arm64 canary builds.
Fix or disable broken tests. (#13617)

• Upload stable release artifacts to GitHub releases during releases. (#13399)

4.4. Release notes 167

conda, Release 24.3.1.dev75

Contributors

• @beeankha

• @conda-bot

• @dbast

• @dholth

• @FFY00

• @isuruf

• @jaimergp

• @jezdez

• @jjhelmus

• @kenodegard

• @zklaus made their first contribution in https://github.com/conda/conda/pull/13579

• @ForgottenProgramme

• @mbargull

• @travishathaway

• @pre-commit-ci[bot]

4.4.2 24.1.2 (2024-02-15)

Bug fixes

• Fix deprecated fetch_repodata_remote_request when repodata_use_zst is enabled. (#13595)

Contributors

• @dholth

4.4.3 24.1.1 (2024-02-12)

Bug fixes

• Fallback to repodata.json if repodata.json.zst cannot be decompressed as zstandard. (#13558)

• Fallback to repodata.json from repodata.json.zst on most 4xx error codes. (#13573)

168 Chapter 4. Contributors welcome

https://github.com/conda/conda/pull/13579

conda, Release 24.3.1.dev75

Contributors

• @dholth

4.4.4 24.1.0 (2024-01-24)

Special announcement

The conda_env.* modules have been merged into the conda package!

To improve the integration of the conda env subcommand (previously standalone), we’ve moved its code into the
conda package, while allowing old conda env commands to still work via Python import redirects. This is a first step
of many to improving the user experience of the conda command line interface related to environment management.
(#13168)

Enhancements

• Verify signatures on to-be-installed packages instead of on all packages. (#11545, #13053)

• Add new pre-solves and post-solves plugin hooks. (#13053)

• Add support for Python 3.12. (#13072)

• Check repodata.json.zst for faster repodata downloads. (#13256)

• Add --skip-flexible-search option in conda search to skip flexible search. (#13315)

• Provide a more useful warning when attempting to rename a non-existent prefix. (#13387)

• Add a new flag --keep-env to be used with conda remove --all. It allows users to delete all packages in
the environment while retaining the environment itself. (#13419)

• Add a Y/N prompt warning users that conda env remove and conda remove --all deletes not only the
conda packages but the entirety of the specified environment. (#13440)

• Add --repodata-use-zst/--no-repodata-use-zst flag to control repodata.json.zst check; corre-
sponding repodata_use_zst: true/false for .condarc. Default is to check for repodata.json.zst.
Disable if remote returns unparseable repodata.json.zst instead of correct data or 404. (#13504)

Bug fixes

• Create the ~/.conda directory before trying to write to the environments.txt file. (#13338)

• Ensure PackageRecord.timestamp is dumped in milliseconds. (#13483)

• Fix error when setting a non-default repodata filename via CONDA_REPODATA_FNS. (#13490)

• Fix the config file location where the integrated Anaconda client gateway loads user configuration from. This is
a regression introduced in conda 23.11.0 when the platformdirs library was adopted. (#13517 via #13520)

• Interpret missing Cache-Control header as max-age=0 instead of exception. (#13522)

4.4. Release notes 169

conda, Release 24.3.1.dev75

Deprecations

• Mark conda_env/cli/common as pending deprecation. Use conda.cli.common instead. (#13168)

• Mark conda_env/cli/main_config as pending deprecation. Use conda.cli.main_env_config instead.
(#13168)

• Mark conda_env/cli/main_create as pending deprecation. Use conda.cli.main_env_create instead.
(#13168)

• Mark conda_env/cli/main_export as pending deprecation. Use conda.cli.main_env_export instead.
(#13168)

• Mark conda_env/cli/main_list as pending deprecation. Use conda.cli.main_env_list instead.
(#13168)

• Mark conda_env/cli/main_remove as pending deprecation. Use conda.cli.main_env_remove instead.
(#13168)

• Mark conda_env/cli/main_update as pending deprecation. Use conda.cli.main_env_update instead.
(#13168)

• Mark conda_env/cli/main_vars as pending deprecation. Use conda.cli.main_env_vars instead.
(#13168)

• Mark conda_env/env as pending deprecation. Use conda.env.env instead. (#13168)

• Mark conda_env/installers/base as pending deprecation. Use conda.env.installers.base instead.
(#13168)

• Mark conda_env/installers/conda as pending deprecation. Use conda.env.installers.conda instead.
(#13168)

• Mark conda_env/installers/pip as pending deprecation. Use conda.env.installers.pip instead.
(#13168)

• Mark conda_env/pip_util as pending deprecation. Use conda.env.pip_util instead. (#13168)

• Mark conda_env/specs as pending deprecation. Use conda.env.specs instead. (#13168)

• Mark conda_env/specs/binstar as pending deprecation. Use conda.env.specs.binstar instead.
(#13168)

• Mark conda_env/specs/requirements as pending deprecation. Use conda.env.specs.requirements
instead. (#13168)

• Mark conda_env/specs/yaml_file as pending deprecation. Use conda.env.specs.yaml_file instead.
(#13168)

• Mark conda.testing.integration.make_temp_package_cache as pending deprecation. (#13511)

Docs

• Update Getting Started documentation in User Guide. (#13190)

• Add GoatCounter (https://www.goatcounter.com/) as an analytics tool. (#13384)

• Add type hints and doc strings to conda.cli.main_info. (#13445)

• Add type hints and doc strings to conda.cli.main_search. (#13465)

170 Chapter 4. Contributors welcome

https://www.goatcounter.com/

conda, Release 24.3.1.dev75

Other

• Add type hinting for VersionOrder class. (#13380)

• Re-enable and apply pyupgrade via ruff. (#13272, #13433)

• Start tracking performance in continuous integration and automatically report about it in pull requests. (#13460)

• Add tmp_pkgs_dir fixture to replace make_temp_package_cache. (#13511)

• Improve lock API for the repodata cache. (#13455)

Contributors

• @beeankha

• @conda-bot

• @dbast

• @dholth

• @jaimergp

• @jezdez

• @johnnynunez

• @kathatherine

• @kenodegard

• @ForgottenProgramme

• @marcoesters

• @mfansler

• @schuylermartin45 made their first contribution in https://github.com/conda/conda/pull/13385

• @travishathaway

• @pre-commit-ci[bot]

• @samhaese made their first contribution in https://github.com/conda/conda/pull/13465

4.4.5 23.11.0 (2023-11-30)

Special announcement

New menuinst v2 support!

conda has supported Start menu items on Windows for a long time. This is what allows users to open up their Miniconda
prompt on CMD (Command Prompt) with an initialized conda session. This menu item (or shortcut) creation logic is
provided by the menuinst package.

With the release of 23.11.0, conda now supports menuinst v2, which enables the same experience across Windows,
Linux, and macOS. This means package builders will be able to provide desktop icons across all operating systems,
which can be especially useful for GUI applications. See the documentation for more details.

If you don’t want conda to create shortcuts, you can disable it via:

• shortcuts: false entry in your .condarc configuration

4.4. Release notes 171

https://github.com/conda/conda/pull/13385
https://github.com/conda/conda/pull/13465
https://github.com/conda/menuinst/releases/tag/2.0.0
https://github.com/conda/menuinst/releases/tag/2.0.0
https://conda.github.io/menuinst/

conda, Release 24.3.1.dev75

• CONDA_SHORTCUTS=false environment variable

• --no-shortcuts command-line flag

Enhancements

• Add support for menuinst v2, enabling shortcuts across all platforms (Windows, Linux, macOS) using a new
JSON schema (see CEP-11). Retain support for old v1-style JSON menus. (#11882)

• Stop using vendored chardet package by requests/pip; explicitly depend on charset_normalizer.
(#13171)

• Introduce a new plugin hook, CondaHealthCheck, as part of conda doctor. (#13186)

• Include activate and deactivate in the --help command list. (#13191)

• Prioritize download of larger packages to prevent smaller ones from waiting. (#13248)

• Display the used solver in conda info output for debugging purposes. (#13265)

• Add __conda virtual package. (#13266)

• Switch from appdirs to platformdirs. (#13306)

• Implement resume capability for interrupted package downloads. (#8695)

Bug fixes

• Log expected JLAP range-request errors at info level, occurring when the remote file has rolled over. (#12913)

• Fix a bug causing an error when options like --debug are used without specifying a command. (#13232)

• Improve CTRL-C (cancellation) handling for parallel download threads. (#13234)

• Allow overriding of CONDA_FETCH_THREADS/fetch_threads to set parallel package downloads beyond the
default 5. (#13263)

• Require requests >=2.28 for enhanced response.json() exception handling. (#13346)

• Apply callback=reset_context in conda.plan to resolve conda-build + conda-libmamba-solver in-
compatibilities. (conda-libmamba-solver#393 and conda-libmamba-solver#386 via #13357)

Deprecations

• Deprecate conda.plugins.subcommands.doctor.health_checks.display_health_checks function.
(#13186)

• Deprecate conda.plugins.subcommands.doctor.health_checks.display_report_heading function.
(#13186)

• Remove ruamel_yaml fallback; use ruamel.yaml exclusively. (#13218)

• Deprecate conda.gateways.anaconda_client.EnvAppDirs in favor of platformdirs. (#13306)

• Mark conda._vendor.cpuinfo for pending deprecation. (#13313)

• Deprecate conda._vendor.distro in favor of the distro package. (#13317)

172 Chapter 4. Contributors welcome

https://github.com/conda-incubator/ceps/blob/main/cep-11.md
https://github.com/conda/conda-libmamba-solver/issues/393
https://github.com/conda/conda-libmamba-solver/issues/386

conda, Release 24.3.1.dev75

Docs

• Add the conda-sphinx-theme to the conda documentation. (#13298)

• Update specific pages to remove redundant TOC entries. (#13298)

• Include instructions on updating conda in the main README.md. (#13343)

Other

• Add a lighter weight s3 test; update embedded test package index. (#13085)

• Refactor code to use lazy imports for all relative imports in conda.cli.main_*, and separate argparse configura-
tion functions from conda.cli.conda_argparse to their respective conda.cli.main_* modules. (#13173)

• Move custom argparse.Actions to conda.cli.actions (e.g., NullCountAction), and relocate helper arg-
parse functions to conda.cli.helpers (e.g., add_parser_prefix). (#13173)

• Update upper bound for ruamel.yaml to <0.19 following the release of 0.18. (#13258)

• Replace black with ruff format in pre-commit. (#13272)

Contributors

• @AniketP04 made their first contribution in https://github.com/conda/conda/pull/13224

• @beeankha

• @13rac1 made their first contribution in https://github.com/conda/conda/pull/13191

• @conda-bot

• @dholth

• @eltociear

• @jaimergp

• @jezdez

• @kathatherine

• @kenodegard

• @kennethlaskoski made their first contribution in https://github.com/conda/conda/pull/13322

• @ForgottenProgramme

• @marcoesters

• @opoplawski

• @scruel made their first contribution in https://github.com/conda/conda/pull/13274

• @travishathaway

• @gfggithubleet made their first contribution in https://github.com/conda/conda/pull/13270

• @pre-commit-ci[bot]

4.4. Release notes 173

https://github.com/conda/conda/pull/13224
https://github.com/conda/conda/pull/13191
https://github.com/conda/conda/pull/13322
https://github.com/conda/conda/pull/13274
https://github.com/conda/conda/pull/13270

conda, Release 24.3.1.dev75

4.4.6 23.10.0 (2023-10-30)

Special announcement

This is an announcement about an important change in conda’s functionality:

With this 23.10.0 release we are changing the default solver of conda to conda-libmamba-solver!

The previously “classic” solver is based on pycosat/Picosat and will remain part of conda for the foreseeable future, a
fallback is possible and available.

Why are we switching the solver?

In short: to make conda faster and more accurate.

A “solver” is the core component of most package managers; it calculates which dependencies (and which version of
those dependencies) to install when a user requests to install a package from a package repository. To address growth-
related challenges within the conda ecosystem, the conda maintainers, alongside partners Anaconda, Quansight and
QuantStack, introduced a new conda dependency solver based on the Mamba project in December 2022.

Since July 2023, the conda-libmamba-solver plugin has been included in all major conda ecosystem installers (mini-
forge, miniconda, mambaforge and Anaconda Distribution), but was disabled by default. As soon as these installers are
updated to contain conda 23.10.0 or later, they will automatically default to using the conda-libmamba-solver plugin.

What can I do if this update doesn’t work for me?

If the new solver is not working as you expect:

• Check if the behavior you are observing is a known issue or a deliberate change.

• If that’s not the case, please consider submitting a bug report or feature request in the conda-libmamba-solver
repository.

• If necessary, you can go back to using the classic solver without modifying your conda installation:

– When possible, pass the command line option --solver=classic to your conda calls.

– Otherwise (e.g. for conda build ... or constructor ...), set the environment variable
CONDA_SOLVER=classic.

– For permanent changes, use the conda configuration system: conda config --set solver classic.

Where can I learn more about conda-libmamba-solver?

The documentation of the conda-libmamba-solver plugin can be found on conda.github.io/conda-libmamba-solver.

For more information about the conda-libmamba-solver rollout plan, please also see our blog post from earlier this
year.

174 Chapter 4. Contributors welcome

https://github.com/conda/pycosat
http://fmv.jku.at/picosat/
https://mamba.readthedocs.io
https://github.com/conda/conda-libmamba-solver
https://github.com/conda/conda-libmamba-solver/issues/283
https://conda.github.io/conda-libmamba-solver/libmamba-vs-classic/#intentional-deviations-from-classic
https://github.com/conda/conda-libmamba-solver/issues/new/choose
https://github.com/conda/conda-libmamba-solver/issues/new/choose
https://conda.github.io/conda-libmamba-solver/
https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout
https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout

conda, Release 24.3.1.dev75

Enhancements

• Provide --platform and --subdir flags to create environments for non-native platforms, remembering that
choice in future operations. (#11505 via #11794)

• IMPORTANT: Set solver: libmamba as the new default solver. (#12984)

Bug fixes

• Check name of symlink, not its target against valid configuration file names (condarc, .condarc, or *.yml/
yaml). (#12956)

• Have conda doctor ignore blank lines in ~/.conda/environments.txt. (#12984)

Deprecations

• Mark conda.cli.main.generate_parser as pending deprecation. Use conda.cli.conda_argparse.
generate_parser instead. (#13144)

• Mark conda.auxlib.collection.firstitem as pending deprecation. (#13144)

• Mark conda.auxlib.collection.call_each as pending deprecation. (#13144)

• Mark conda.auxlib.compat.NoneType as pending deprecation. (#13144)

• Mark conda.auxlib.compat.primative_types as pending deprecation. (#13144)

• Mark conda.auxlib.compat.utf8_writer as pending deprecation. (#13144)

• Mark conda.auxlib.exceptions.AuthenticationError as pending deprecation. (#13144)

• Mark conda.auxlib.exceptions.NotFoundError as pending deprecation. (#13144)

• Mark conda.auxlib.exceptions.InitializationError as pending deprecation. (#13144)

• Mark conda.auxlib.exceptions.SenderError as pending deprecation. (#13144)

• Mark conda.auxlib.exceptions.AssignmentError as pending deprecation. (#13144)

• Mark conda.auxlib.type_coercion.boolify_truthy_string_ok as pending deprecation. (#13144)

• Mark conda.auxlib.type_coercion.listify as pending deprecation. (#13144)

• Mark conda.models.dist.IndexRecord as pending deprecation for removal in 24.9. (#13193)

• Mark conda.exports.fetch_index as pending deprecation for removal in 24.9. Use conda.core.index.
fetch_index instead. (#13194)

Other

• Constrain minimum conda-build version to >=3.27. (#13177)

4.4. Release notes 175

conda, Release 24.3.1.dev75

Contributors

• @conda-bot

• @dholth

• @jaimergp

• @jezdez

• @kenodegard

• @timhoffm

• @pre-commit-ci[bot]

4.4.7 23.9.0 (2023-09-27)

Special announcement

This is an announcement about an important and positive future change in conda’s functionality:

We will change the default solver of conda to conda-libmamba-solver in a special 23.10.0 release in
the near future!

You can already benefit from it today by configuring your conda installation to use it (e.g. by running conda config
--set solver libmamba).

The current “classic” solver is based on pycosat/Picosat and will remain part of conda for the foreseeable future, a
fallback is possible and available (see below).

Plan to change the default solver

Here is our updated plan to change the default solver, to better follow CEP 8 and reduce the potential impact on conda
users:

• The upcoming, special 23.10.0 release will be dedicated to the switch of the default solver to libmamba.

• Users will be able to opt out of the libmamba solver and use the classic solver instead, by using one of these
options:

– the --solver=classic command line option,

– the CONDA_SOLVER=classic environment variable or

– running conda config --set solver classic.

• All development of conda-libmamba-solver plugin happens in the conda-libmamba-solver repo, including
issue tracking.

• The documentation of the conda-libmamba-solver plugin can be found on conda.github.io/conda-libmamba-
solver.

For more information about the conda-libmamba-solver rollout plan, please also see our blog post from earlier this
year.

176 Chapter 4. Contributors welcome

https://conda.github.io/conda-libmamba-solver/
https://conda.github.io/conda-libmamba-solver/getting-started/#usage
https://github.com/conda/pycosat
http://fmv.jku.at/picosat/
https://github.com/conda-incubator/ceps/blob/main/cep-8.md
https://github.com/conda/conda-libmamba-solver
https://conda.github.io/conda-libmamba-solver/
https://conda.github.io/conda-libmamba-solver/
https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout
https://conda.org/blog/2023-07-05-conda-libmamba-solver-rollout

conda, Release 24.3.1.dev75

Context

A “solver” is the core component of most package managers; it calculates which dependencies (and which version of
those dependencies) to install when a user requests to install a package from a package repository. To address growth-
related challenges within the conda ecosystem, the conda maintainers, alongside partners Anaconda, Quansight and
QuantStack, introduced a new conda dependency solver based on the Mamba project in December 2022.

Since July 2023, that conda-libmamba-solver plugin has been included in and automatically installed with all major
conda ecosystem installers (miniforge, miniconda, mambaforge and Anaconda Distribution), with the default solver
configuration unchanged.

Enhancements

• Improve speed of fish shell initialization. (#12811)

• Directly suppress use of binstar (conda) token when fetching trust metadata. (#12889)

• Add a new “auth handler” plugin hook for conda. (#12911)

• Lock index cache metadata by default. Added --no-lock option in case of problems, should not be necessary.
Older --experimental=lock no longer has an effect. (#12920)

• Add context.register_envs option to control whether to register environments in ~/.conda/
environments.txt when they are created. Defaults to true. (#12924)

• Inject a new detailed output verbosity level (i.e., the old debug level -vv is now -vvv). (#12985, #12977, #12420,
#13036)

• Add support for truststore to the ssl_verify config option, enabling conda to use the operating system
certificate store (requires Python 3.10 or later). (#13075 and #13149)

• Add emscripten-wasm32 and wasi-wasm32 platforms to known platforms. (#13095)

• Adds the py.typed marker file to the conda package for compliance with PEP-561. (#13107)

• Import boto3 only when S3 channels are used, saving startup time. (#12914)

Bug fixes

• When using pip dependencies with conda env create, check the directory permissions before writing to disk.
(#11610)

• Hide InsecureRequestWarning for JLAP when CONDA_SSL_VERIFY=false, matching non-JLAP behavior.
(#12731)

• Disallow ability to create a conda environment with a colon in the prefix. (#13044)

• Fix AttributeError logging response with nonexistent request when using JLAP with file:/// URIs.
(#12966)

• Do not show progress bars in non-interactive runs for cleaner logs. (#12982)

• Fix S3 bucket name. (#12989)

• Default --json and --debug to NULL so as to not override CONDA_JSON and CONDA_DEBUG environment vari-
ables. (#12987)

• XonshActivator now uses source-bash in non-interactive mode to avoid side-effects from interactively
loaded RC files. (#13012)

• Fix conda remove --all --json output. (#13019)

4.4. Release notes 177

https://mamba.readthedocs.io
https://github.com/conda/conda-libmamba-solver

conda, Release 24.3.1.dev75

• Update test data to stop triggering security scanners’ false-positives. (#13034)

• Fix performance regression of basic commands (e.g., conda info) on WSL. (#13035)

• Configure conda to ignore “Retry-After” header to avoid the scenarios when this value is very large and causes
conda to hang indefinitely. (#13050)

• Treat JSONDecodeError on repodata.info.json as a warning, equivalent to a missing repodata.info.
json. (#13056)

• Fix sorting error for conda config --show-sources --json. (#13076)

• Catch OSError in find_commands to account for incorrect PATH entries on Windows. (#13125)

• Catch a NotWritableError when trying to find the first writable package cache dir. (#9609)

• conda env update --prune uses only the specs coming from environment.yml file and ignores the history
specs. (#9614)

Deprecations

• Removed conda.another_unicode(). (#12948)

• Removed conda._vendor.toolz. (#12948, #13141)

• Removed conda._vendor.tqdm. (#12948)

• Removed conda.auxlib.decorators.memoized decorator. (#12948)

• Removed conda.base.context.Context.experimental_solver. (#12948)

• Removed conda.base.context.Context.conda_private. (#12948)

• Removed conda.base.context.Context.cuda_version. (#12948)

• Removed conda.base.context.get_prefix(). (#12948)

• Removed conda.cli.common.ensure_name_or_prefix(). (#12948)

• Removed --experimental-solver command line option. (#12948)

• Removed conda.common.cuda module. (#12948)

• Removed conda.common.path.explode_directories(already_split). (#12948)

• Removed conda.common.url.escape_channel_url(). (#12948)

• Removed conda.core.index.check_whitelist(). (#12948)

• Removed conda.core.solve._get_solver_class(). (#12948)

• Removed conda.core.subdir_data.read_mod_and_etag(). (#12948)

• Removed conda.gateways.repodata.RepodataState.load(). (#12948)

• Removed conda.gateways.repodata.RepodataState.save(). (#12948)

• Removed conda.lock module. (#12948)

• Removed conda_env.cli.common.stdout_json(). (#12948)

• Removed conda_env.cli.common.get_prefix(). (#12948)

• Removed conda_env.cli.common.find_prefix_name(). (#12948)

• Remove import of deprecated cgi module by deprecating ftp STOR support. (#13013)

178 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• Require boto3 for S3 support and drop support for the older boto as it doesn’t support our minimum required
version of Python. (#13112)

• Reduce startup delay from deprecations module by using sys._getframe() instead of inspect.stack().
(#12919)

Other

• Use Ruff linter in pre-commit configuration (#12279)

• Remove unused cache_path arguments from RepoInterface/JlapRepoInterface; replaced by cache ob-
ject. (#12927)

Contributors

• @beenje

• @beeankha

• @chbrandt

• @chenghlee

• @conda-bot

• @dbast

• @dholth

• @duncanmmacleod

• @gforsyth

• @eltociear

• @jaimergp

• @jezdez

• @jmcarpenter2 made their first contribution in https://github.com/conda/conda/pull/13034

• @kenodegard

• @ForgottenProgramme

• @Mon-ius made their first contribution in https://github.com/conda/conda/pull/12811

• @otaithleigh made their first contribution in https://github.com/conda/conda/pull/13035

• @psteyer made their first contribution in https://github.com/conda/conda/pull/11610

• @tarcisioe made their first contribution in https://github.com/conda/conda/pull/9614

• @travishathaway

• @wolfv made their first contribution in https://github.com/conda/conda/pull/13095

• @zeehio made their first contribution in https://github.com/conda/conda/pull/13075

• @pre-commit-ci[bot]

4.4. Release notes 179

https://github.com/conda/conda/pull/13034
https://github.com/conda/conda/pull/12811
https://github.com/conda/conda/pull/13035
https://github.com/conda/conda/pull/11610
https://github.com/conda/conda/pull/9614
https://github.com/conda/conda/pull/13095
https://github.com/conda/conda/pull/13075

conda, Release 24.3.1.dev75

4.4.8 23.7.4 (2023-09-12)

Enhancements

• Use os.scandir() to find conda subcommands without stat() overhead. (#13033, #13067)

Bug fixes

• Fix S3 bucket name in test suite. (#12989)

• Fix performance regression of basic commands (e.g., conda info) on WSL. (#13035)

• Catch PermissionError raised by conda.cli.find_commands.find_commands when user’s $PATH con-
tains restricted paths. (#13062, #13089)

• Fix sorting error for conda config --show-sources --json. (#13076)

Contributors

• @beeankha

• @dholth

• @kenodegard

• @otaithleigh made their first contribution in https://github.com/conda/conda/pull/13035

4.4.9 23.7.3 (2023-08-21)

Bug fixes

• Fix regression for supporting conda executable plugins installed into non-base environments. (#13006)

Contributors

• @kenodegard

4.4.10 23.7.2 (2023-07-27)

Bug fixes

• Fix regression in parsing --json and --debug flags for executable plugins. (#12935, #12936)

180 Chapter 4. Contributors welcome

https://github.com/conda/conda/pull/13035

conda, Release 24.3.1.dev75

Contributors

• @kenodegard

4.4.11 23.7.1 (2023-07-26)

Bug fixes

• Patch parsed args with pre_args to correctly parse --json and --debug arguments. (#12928, #12929)

Contributors

• @jezdez

• @kenodegard

4.4.12 23.7.0 (2023-07-25)

Enhancements

• Add conda.deprecations.DeprecationHandler.action helper to deprecate argparse.Actions.
(#12493)

• Add support for the FreeBSD operating system and register freebsd-64 as a known subdirectory for FreeBSD
on x86-64. (#12647)

• Do not mock $CONDA_PREFIX when --name or --prefix is provided. (#12696)

• Add support for sha256 filters in the MatchSpec syntax (e.g. *[sha256=f453db4ffe2271ec492a2913af4e61d4a6c118201f07de757df0eff769b65d2e]).
(#12654 via #12707)

• Add a new health check to conda doctor detecting altered packages in an environment by comparing expected
and computed sha256 checksums. (#12757)

• Add new pre_commands and post_commands plugin hooks allowing plugins to run code before and after conda
subcommands. (#12712, #12758, #12864)

• Stop using distutils directly in favor of the vendored version in setuptools 60 and later or standard library
equivalents. (#11136)

• Add a CITATION.cff file to the root of the repository to make it easier for users to cite conda. (#12781)

• Add optional CondaSubcommand.configure_parser allowing third-party plugins to hook into conda’s argu-
ment parser. (#12814)

• Only display third-party subcommands in conda --help and not for every other subcommand. (#12814,
#12740)

• Add a new config option, no_plugins, a --no-plugins command line flag, and a CONDA_NO_PLUGINS envi-
ronment variable that disables external plugins for built-in conda commands. (#12748)

• Register plugins using their canonical/fully-qualified name instead of the easily spoofable entry point name.
(#12869)

• De-duplicate plugin and legacy subcommands in conda --help. (#12893)

• Implement a 2-phase parser to better handle plugin disabling (via --no-plugins). (#12910)

• Refactor subcommand parsing to use a greedy parser since argparse.REMAINDER has known issues. (#12910)

4.4. Release notes 181

https://github.com/python/cpython/issues/61252

conda, Release 24.3.1.dev75

Bug fixes

• Use requests.exceptions.JSONDecodeError for ensuring compatibility with different json implementa-
tions used by requests. This fixes a bug that caused only the first of multiple given source URLs to be tried. This
also raises the minimum required requests version to 2.27.0. (#12683)

• Don’t export __osx virtual package when CONDA_OVERRIDE_OSX="". (#12715)

• Fix erroneous conda deactivate behavior of unsetting preexisting environment variables that are identical to
those set during conda activate. (#12769)

• Correct third-party subcommands to receive remaining arguments instead of a blanket sys.argv[2:] which
broke conda_cli testing. (#12814, #12910)

Deprecations

• Mark conda.base.context.context.root_dir as pending deprecation. Use conda.base.context.
context.root_prefix instead. (#12701)

• Mark conda.plugins.subcommands.doctor.cli.get_prefix as pending deprecation. Use conda.base.
context.context.target_prefix instead. (#12725)

• Mark conda.models.leased_path_entry.LeasedPathEntry as pending deprecation. (#12735)

• Mark conda.models.enums.LeasedPathType as pending deprecation. (#12735)

• Mark conda.common.temporary_content_in_file as pending deprecation. Use tempfile instead.
(#12795)

• Mark conda.cli.python_api as pending deprecation. Use conda.testing.conda_cli fixture instead.
(#12796)

Docs

• Document how to use the new pre_commands and post_commands plugin hooks. (#12712, #12758)

• Add docstrings to all public modules. (#12792)

• Auto-generate API docs using sphinx-autoapi. (#12798)

• Convert all manual redirects into config using sphinx-reredirects. (#12798)

• Revise the plugins index page to make it easier to understand how to create a conda plugin. (#12802)

• Add missing conda env CLI docs. (#12841)

Other

• Update tests/cli/test_main_rename.py to use latest fixtures. (#12517)

• Update tests/test_activate.py to test the new behavior. (#12769)

• Re-enable all conda_env tests and remove irrelevant tests. (#12813)

• Convert all unittest-style tests to pytest-style. (#12819)

• Convert tests/test-recipes into local noarch packages instead of relying on conda-test channel and local
builds. (#12879)

182 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Contributors

• @beeankha

• @conda-bot

• @dariocurr

• @jaimergp

• @jezdez

• @johanneskoester made their first contribution in https://github.com/conda/conda/pull/12683

• @jjhelmus

• @kalawac made their first contribution in https://github.com/conda/conda/pull/12738

• @kenodegard

• @schackartk made their first contribution in https://github.com/conda/conda/pull/12781

• @lesteve made their first contribution in https://github.com/conda/conda/pull/12715

• @ForgottenProgramme

• @marcoesters made their first contribution in https://github.com/conda/conda/pull/12863

• @mpotane made their first contribution in https://github.com/conda/conda/pull/11740

• @mattkram made their first contribution in https://github.com/conda/conda/pull/12730

• @morremeyer made their first contribution in https://github.com/conda/conda/pull/12871

• @mcg1969

• @travishathaway

• @pre-commit-ci[bot]

4.4.13 23.5.2 (2023-07-13)

Bug fixes

• Correct native_path_to_unix failure to handle no paths (e.g., an empty string or an empty iterable). (#12880)

Contributors

• @kenodegard

4.4.14 23.5.1 (2023-07-12)

Bug fixes

• Add (back) the cygpath fallback logic since cygpath is not always available on Windows. (#12873)

4.4. Release notes 183

https://github.com/conda/conda/pull/12683
https://github.com/conda/conda/pull/12738
https://github.com/conda/conda/pull/12781
https://github.com/conda/conda/pull/12715
https://github.com/conda/conda/pull/12863
https://github.com/conda/conda/pull/11740
https://github.com/conda/conda/pull/12730
https://github.com/conda/conda/pull/12871

conda, Release 24.3.1.dev75

Contributors

• @kenodegard

4.4.15 23.5.0 (2023-05-17)

Enhancements

• Add conda doctor subcommand plugin. (#474)

• Add Python 3.11 support. (#12256)

• Add conda list --reverse to return a reversed list of installed packages. (#11954)

• Switch from setup.py to pyproject.toml and use Hatchling for our build system. (#12509)

• Optimize which Python modules get imported during conda activate calls to make it faster. (#12550)

• Add conda_cli fixture to replace conda.testing.helpers.run_inprocess_conda_command and conda.
testing.integration.run_command. (#12592)

• Add tmp_env fixture to replace conda.testing.integration.make_temp_env. (#12592)

• Add path_factory fixture to replace custom prefix logic like conda.testing.integration.
_get_temp_prefix and conda.testing.integration.make_temp_prefix. (#12592)

• Refactor the way that the Activator classes are defined in conda/activate.py. (#12627)

• Warn about misconfiguration when signature verification is enabled. (#12639)

Bug fixes

• conda clean no longer fails if we failed to get the file stats. (#12536)

• Provide fallback version if conda.deprecations.DeprecationHandler receives a bad version. (#12541)

• Ensure the default value for defaults includes msys2 when context.subdir is win-* on non-Windows
platforms. (#12555)

• Avoid TypeError when non-string types are written to the index cache metadata. (#12562)

• conda.core.package_cache_data.UrlsData.get_url no longer fails when package_path has .conda
extension. (#12516)

• Stop pre-converting paths to Unix style on Windows in conda.sh, so that they are prefix replaceable upon
installation, which got broken by #12509. It also relies on cygpath at runtime, which all msys2/cygwin bash
versions on Windows should have available. (#12627)

Deprecations

• Mark conda_env.pip_util.get_pip_version as pending deprecation. (#12492)

• Mark conda_env.pip_util.PipPackage as pending deprecation. (#12492)

• Mark conda_env.pip_util.installed as pending deprecation. (#12492)

• Mark conda_env.pip_util._canonicalize_name as pending deprecation. (#12492)

• Mark conda_env.pip_util.add_pip_installed as pending deprecation. (#12492)

• Mark conda_env.env.load_from_directory as pending deprecation. (#12492)

184 Chapter 4. Contributors welcome

https://pypi.org/project/hatchling/

conda, Release 24.3.1.dev75

• Mark python -m conda_env.cli.main as pending deprecation. Use conda env instead. (#12492)

• Mark python -m conda_env as pending deprecation. Use conda env instead. (#12492)

• Mark conda.auxlib.packaging for deprecation in 24.3.0. (#12509)

• Rename index cache metadata file .state.json to .info.json to track draft CEP. (#12669)

• Mark conda.testing.integration.get_conda_list_tuple as pending deprecation. Use conda.core.
prefix_data.PrefixData().get() instead. (#12676)

• Mark conda.testing.encode_for_env_var as pending deprecation. (#12677)

• Mark conda.testing.integration.temp_chdir as pending deprecation. Use monkeypatch.chdir in-
stead. (#12678)

Docs

• Change the README example from IPython Notebook and NumPy to PyTorch. (#12579)

• Discuss options available to properly configure mirrored channels. (#12583, #12641)

• Add flake8-docstrings to pre-commit. (#12620)

Other

• Update retry language in flexible solve and repodata logs to be less ominous. (#12612)

• Improve repodata / subdir_data programming interface (#12521). Index cache metadata has changed to .
info.json to better align with the draft CEP. Improve cache locking when using jlap. Improve jlap logging.
(#12572)

• Format with black and replaced pre-commit’s darker hook with black. (#12554)

• Format with isort and add pre-commit isort hook. (#12554)

• Add functional tests around conda’s content trust code. (#11805)

• Enable flake8 checks that are now handled by black. (#12620)

Contributors

• @beeankha

• @chbrandt made their first contribution in https://github.com/conda/conda/pull/12419

• @chenghlee

• @conda-bot

• @dholth

• @THEdavehogue made their first contribution in https://github.com/conda/conda/pull/12612

• @HeavenEvolved made their first contribution in https://github.com/conda/conda/pull/12496

• @eltociear

• @jaimergp

• @jezdez

• @johnnynunez made their first contribution in https://github.com/conda/conda/pull/12256

4.4. Release notes 185

https://github.com/conda-incubator/ceps/pull/48
https://github.com/conda/conda/pull/12419
https://github.com/conda/conda/pull/12612
https://github.com/conda/conda/pull/12496
https://github.com/conda/conda/pull/12256

conda, Release 24.3.1.dev75

• @kenodegard

• @ForgottenProgramme

• @pkmooreanaconda

• @tl-hbk made their first contribution in https://github.com/conda/conda/pull/12604

• @vic-ma made their first contribution in https://github.com/conda/conda/pull/12579

• @pre-commit-ci[bot]

• @sausagenoods made their first contribution in https://github.com/conda/conda/pull/12631

4.4.16 23.3.1 (2023-03-28)

Enhancements

• Fix and re-enable binstar tests. Replace custom property caching with functools.cached_property.
(#12495)

Bug fixes

• Restore default argument for SubdirData method used by conda-index. (#12513)

• Include conda.gateways.repodata.jlap submodule in package. (#12545)

Other

• Add linux-s390x to multi-arch ci/dev container. (#12498)

• Expose a MINIO_RELEASE environment variable to provide a way to pin minio versions in CI setup scripts.
(#12525)

• Add jsonpatch dependency to support --experimental=jlap feature. (#12528)

Contributors

• @conda-bot

• @dbast

• @dholth

• @jaimergp

• @kenodegard

• @ForgottenProgramme

186 Chapter 4. Contributors welcome

https://github.com/conda/conda/pull/12604
https://github.com/conda/conda/pull/12579
https://github.com/conda/conda/pull/12631

conda, Release 24.3.1.dev75

4.4.17 23.3.0 (2023-03-14)

Enhancements

• Allow the use of environment variables for channel urls in environment.yaml. (#10018)

• Improved error message for conda env create if the environment file is missing. (#11883)

• Stop using toolz.dicttoolz.merge and toolz.dicttoolz.merge_with. (#12039)

• Add support for incremental repodata.json updates with --experimental=jlap on the command line or
experimental: ["jlap"] in .condarc (#12090). Note: switching between “use jlap” and “don’t use jlap”
invalidates the cache.

• Added a new conda.deprecations module for easier & standardized deprecation. Includes decorators to mark
functions, modules, classes, and arguments for deprecation and functions to mark modules, constants, and topics
for deprecation. (#12125)

• Adds a new channel_settings configuration parameter that will be used to override arbitrary settings on per-
channel basis. (#12239)

• Improve speed of repodata.json parsing by deferring creation of individual PackageRecord objects. (#8500)

• Refactor subcommand argument parsing to make it easier to understand. This calls the plugin before invoking
the default argument parsing. (#12285)

• Handle I/O errors raised while retrieving channel notices. (#12312)

• Add support for the 64-bit RISC-V architecture on Linux. (#12319)

• Update vendored version of py-cpuinfo to 0.9.0. (#12319)

• Improved code coverage. (#12346, #12457, #12469)

• Add a note about use_only_tar_bz2 being enabled on PackagesNotFoundError exceptions. (#12353)

• Added to conda CLI help that conda remove -n <myenv> --all can be used to delete environments.
(#12378)

• Handle Python import errors gracefully when loading conda plugins from entrypoints. (#12460)

Bug fixes

• Fixed errors when renaming without an active environment. (#11915)

• Prevent double solve attempt if PackagesNotFoundError is raised. (#12201)

• Virtual packages follow context.subdir instead of platform.system() to enable cross-platform installa-
tions. (#12219)

• Don’t export __glibc virtual package when CONDA_OVERRIDE_GLIBC="". (#12267)

• Fix arg_parse pass-through for --version and --help in conda.xsh. (#12344)

• Filter out None path values from pwd.getpwall() on Unix systems, for users without home directories, when
running as root. (#12063)

• Catch ChunkedEncodingError exceptions to prevent network error tracebacks hitting the output. (#12196 via
#12487)

• Fix race conditions in mkdir_p_sudo_safe. (#12490)

4.4. Release notes 187

conda, Release 24.3.1.dev75

Deprecations

• Drop toolz.itertoolz.unique in favor of custom conda.common.iterators.unique implementation.
(#12252)

• Stop using OrderedDict/odict since dict preserves insert order since Python 3.7. (#12254)

• Mark conda._vendor.boltons for deprecation in 23.9.0. (#12272, #12482)

• Mark conda_exe in context.py and a topic in print_package_info cli/main_info.py for official dep-
recation. (#12398)

• Remove unused chain, methodcaller, mkdtemp, StringIO imports in conda.common.compat; apply other
fixes from ruff --fix . in the test suite. (#12294)

• Remove unused optimization for searching packages based on *[track_features=<feature name>].
(#12314)

• Remove Notebook spec support from conda env; this was deprecated already and scheduled to be remove in
version 4.5. (#12307)

• Mark conda_exe in context.py and a topic in print_package_info cli/main_info.py for official dep-
recation. (#12276)

• Marking conda.utils.hashsum_file as pending deprecation. Use conda.gateways.disk.read.
compute_sum instead. (#12414)

• Marking conda.utils.md5_file as pending deprecation. Use conda.gateways.disk.read.
compute_sum(path, "md5") instead. (#12414)

• Marking conda.gateways.disk.read.compute_md5sum as pending deprecation. Use conda.gateways.
disk.read.compute_sum(path, "md5") instead. (#12414)

• Marking conda.gateways.disk.read.compute_sha256sum as pending deprecation. Use conda.
gateways.disk.read.compute_sum(path, "sha256") instead. (#12414)

• Drop Python 3.7 support. (#12436)

Docs

• Added docs for conda.deprecations. (#12452)

• Updated some instances of “Anaconda Cloud” to be “Anaconda.org”. (#12238)

• Added documentation on the specifications for conda search and conda install. (#12304)

• Mark conda.utils.safe_open for deprecation. Use builtin open instead. (#12415)

Other

• Update <cache key>.json.state repodata.json cache format; check mtime against cached repodata.
json. (#12090)

• Skip redundant tar --no-same-owner when running as root on Linux, since newer
conda-package-handling avoids setting ownership from the archive. (#12231)

• Add additional extensions to conda.common.path for future use. (#12261)

• Pass --cov in test runner scripts but not in setup.cfg defaults, for easier debugging. (#12268)

• Constrain conda-build to at least >=3.18.3, released 2019-06-20. (#12309)

188 Chapter 4. Contributors welcome

http://Anaconda.org

conda, Release 24.3.1.dev75

• Improve start.bat Windows development script. (#12311)

• Provide conda-forge-based Docker images and fix the bundled minio binary. (#12335)

• Add support for conda-forge-based CI runtimes. On Linux (all architectures), unit & integration tests will use
Python 3.10. On Windows, Python 3.8. On macOS, only the unit tests are run with conda-forge (instead of
defaults!), using Python 3.9. (#12350, #12447 via #12448)

• Fix testing data issue where the subdir entry in some files was mismatched. (#12389)

• Initialize conda after installing test requirements during CI. (#12446)

• Speedup pre-commit by a factor of 15 by removing ignored hooks (pylint/bandit). This locally reduces
the pre-commit runtime from ~43sec to 2.9sec and thus makes it possible to run pre-commit in a loop during
development to constantly provide feedback and style the code. (#12466)

Contributors

• @AdrianFreundQC made their first contribution in https://github.com/conda/conda/pull/11883

• @sanzoghenzo made their first contribution in https://github.com/conda/conda/pull/12074

• @beeankha

• @conda-bot

• @dbast

• @dholth

• @FelisNivalis made their first contribution in https://github.com/conda/conda/pull/11915

• @gforsyth made their first contribution in https://github.com/conda/conda/pull/12344

• @eltociear made their first contribution in https://github.com/conda/conda/pull/12377

• @jaimergp

• @jezdez

• @jjhelmus

• @kannanjayachandran made their first contribution in https://github.com/conda/conda/pull/12363

• @kathatherine

• @kenodegard

• @ForgottenProgramme

• @ryanskeith made their first contribution in https://github.com/conda/conda/pull/12439

• @31Sanskrati made their first contribution in https://github.com/conda/conda/pull/12371

• @travishathaway

• @pre-commit-ci[bot]

4.4. Release notes 189

https://github.com/conda/conda/pull/11883
https://github.com/conda/conda/pull/12074
https://github.com/conda/conda/pull/11915
https://github.com/conda/conda/pull/12344
https://github.com/conda/conda/pull/12377
https://github.com/conda/conda/pull/12363
https://github.com/conda/conda/pull/12439
https://github.com/conda/conda/pull/12371

conda, Release 24.3.1.dev75

4.4.18 23.1.0 (2023-01-17)

Bug fixes

• Detect CUDA driver version in subprocess. (#11667)

• Fixes the behavior of the --no-user flag in conda init so that a user’s .bashrc, etc. remains unaltered, as
expected. (#11949)

• Fix several more user facing MatchSpec crashes that were identified by fuzzing efforts. (#12099)

• Lock sys.stdout to avoid corrupted --json multithreaded download progress. (#12231)

Docs

• Optional Bash completion support has been removed starting in v4.4.0, and not just deprecated. (#11171)

• Documented optional channel::package syntax for specifying dependencies in environment.yml files.
(#11890)

Other

• Refactor repodata.json fetching; update on-disk cache format. Based on work by @FFY00. (#11600)

• Environment variable overwriting WARNING is printed only if the env vars are different from those specified in
the OS. (#12128)

• Added conda-libmamba-solver run constraint. (#12156)

• Updated ruamel.yaml version. (#12156)

• Added tqdm dependency. (#12191)

• Use itertools.chain.from_iterable instead of equivalent tlz.concat. (#12165)

• Use toolz.unique instead of vendored copy. (#12165)

• Use itertools.islice instead of toolz.take. (#12165)

• Update CI test workflow to only run test suite when code changes occur. (#12180)

• Added Python 3.10 canary builds. (#12184)

Contributors

• @beeankha

• @dholth

• @dariocurr made their first contribution in https://github.com/conda/conda/pull/12128

• @FFY00 made their first contribution in https://github.com/conda/conda/pull/11600

• @jezdez

• @jay-tau made their first contribution in https://github.com/conda/conda/pull/11738

• @kenodegard

• @pkmooreanaconda

• @sven6002 made their first contribution in https://github.com/conda/conda/pull/12162

190 Chapter 4. Contributors welcome

https://github.com/conda/conda/pull/12128
https://github.com/conda/conda/pull/11600
https://github.com/conda/conda/pull/11738
https://github.com/conda/conda/pull/12162

conda, Release 24.3.1.dev75

• @ReveStobinson made their first contribution in https://github.com/conda/conda/pull/12213

• @travishathaway

• @XuehaiPan made their first contribution in https://github.com/conda/conda/pull/11667

• @xylar made their first contribution in https://github.com/conda/conda/pull/11949

• @pre-commit-ci[bot]

4.4.19 22.11.1 (2022-12-06)

Bug fixes

• Restore default virtual package specs as in 22.9.0 (#12148)

– re-add __unix/__win packages

– restore __archspec version/build string composition

Other

• Skip test suite for non-code changes. (#12141)

Contributors

• @LtDan33

• @jezdez

• @kenodegard

• @mbargull

• @travishathaway

4.4.20 22.11.0 (2022-11-23)

Enhancements

• Add LD_PRELOAD to env variable list. (#10665)

• Improve CLI warning about updating conda. (#11300)

• Conda’s initialize block in the user’s profiles will check whether the conda executable exists before calling the
conda hook. (#11374)

• Switch to tqdm as a real dependency. (#12005)

• Add a new plugin mechanism. (#11435)

• Add an informative message if explicit install fails due to requested packages not being in the cache. (#11591)

• Download and extract packages in parallel. Greatly speeds up package downloads when latency is high. Con-
trolled by the new fetch_threads config parameter, defaulting to 5 parallel downloads. Thanks @shuges-uk
for reporting. (#11841)

• Add a new plugin hook for virtual packages and convert existing code for virtual packages (from index.py) into
plugins. (#11854)

4.4. Release notes 191

https://github.com/conda/conda/pull/12213
https://github.com/conda/conda/pull/11667
https://github.com/conda/conda/pull/11949
http://index.py

conda, Release 24.3.1.dev75

• Require ruamel.yaml. (#11868, #11837)

• Stop using toolz.accumulate. (#12020)

• Stop using toolz.groupby. (#11913)

• Remove vendored six package. (#11979)

• Add the ability to extend the solver backends with the conda_solvers plugin hook. (#11993)

• Stop using toolz.functoolz.excepts. (#12016)

• Stop using toolz.itertoolz.concatv. (#12020)

• Also try UTF16 and UTF32 encodings when replacing the prefix. (#9946)

Bug fixes

• conda env update would ask for user input and hang when working with pip installs of git repos and the repo
was previously checked out. Tell pip not to ask for user input for that case. (#11818)

• Fix for conda update and conda install issues related to channel notices. (#11852)

• Signature verification printed Nonewhen disabled, changes default metadata_signature_status to an empty
string instead. (#11944)

• Fix importlib warnings when importing conda.cli.python_api on python=3.10. (#11975)

• Several user facing MatchSpec crashes were identified by fuzzing efforts. (#11999)

• Apply minimal fixes to deal with these (and similar) crashes. (#12014)

• Prevent conda from using /bin/sh + exec trick for its own entry point, which drops $PS1 on some shells
(#11885, #11893 via #12043).

• Handle CTRL+C during package downloading more gracefully. (#12056)

• Prefer the outer name when a MatchSpec specifies a package’s name twice package-name[name=package-name]
(#12062)

Deprecations

• Add a pending deprecation warning for when importing tqdm from conda._vendor. (#12005)

• Drop ruamel_yaml and ruamel_yaml_conda in favor of ruamel.yaml. (#11837)

• context.experimental_solver is now marked for pending deprecation. It is replaced by context.
solver. The same applies to the --experimental-solver flag, the CONDA_EXPERIMENTAL_SOLVER en-
vironment variable, and the ExperimentalSolverChoice enum, which will be replaced by --solver,
EXPERIMENTAL_SOLVER and SolverChoice, respectively. (#11889)

• Mark context.conda_private as pending deprecation. (#12101)

192 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Docs

• Add corresponding documentation for the new plugins mechanism. (#11435)

• Update conda cheatsheet for the 4.14.0 release. The cheatsheet now includes an example for conda rename.
(#11768)

• Document conda-build package format v2, also known as the .conda-format. (#11881)

• Remove allow_other_channels config option from documentation, as the option no longer exists. (#11866)

• Fix bad URL to “Introduction to conda for Data Scientists” course in conda docs. (#9782)

Other

• Add a comment to the code that explains why .bashrc is modified on Linux and .bash_profile is modified on
Windows/macOS when executing conda init. (#11849)

• Add --mach and --arch options to dev/start. (#11851)

• Remove encoding pragma in file headers, as it’s not needed in Python 3 anymore. (#11880)

• Refactor conda init SHELLS as argparse choices. (#11897)

• Drop pragma fixes from pre-commit checks. (#11909)

• Add pyupgrade to pre-commit checks. This change affects many files. Existing pull requests may need to be
updated, rebased, or merged to address conflicts. (#11909)

• Add aarch64 and ppc64le as additional CI platforms for smoke testing. (#11911)

• Serve package files needed for testing using local server. (#12024)

• Update canary builds to guarantee builds for the commits that trigger workflow. (#12040)

Contributors

• @arq0017 made their first contribution in https://github.com/conda/conda/pull/11810

• @beeankha

• @conda-bot

• @dbast

• @dholth

• @erykoff

• @consideRatio made their first contribution in https://github.com/conda/conda/pull/12028

• @jaimergp

• @jezdez

• @kathatherine

• @kenodegard

• @ForgottenProgramme made their first contribution in https://github.com/conda/conda/pull/11926

• @hmaarrfk made their first contribution in https://github.com/conda/conda/pull/9946

• @NikhilRaverkar made their first contribution in https://github.com/conda/conda/pull/11842

4.4. Release notes 193

https://github.com/conda/conda/pull/11810
https://github.com/conda/conda/pull/12028
https://github.com/conda/conda/pull/11926
https://github.com/conda/conda/pull/9946
https://github.com/conda/conda/pull/11842

conda, Release 24.3.1.dev75

• @pavelzw made their first contribution in https://github.com/conda/conda/pull/11849

• @pkmooreanaconda made their first contribution in https://github.com/conda/conda/pull/12014

• @fragmede made their first contribution in https://github.com/conda/conda/pull/11818

• @SatyamVyas04 made their first contribution in https://github.com/conda/conda/pull/11870

• @timhoffm

• @travishathaway

• @dependabot made their first contribution in https://github.com/conda/conda/pull/11965

• @pre-commit-ci[bot]

• @wulmer

4.4.21 22.9.0 (2022-09-14)

Special announcement

If you have been following the conda project previously, you will notice a change in our version number for this release.
We have officially switched to the CalVer versioning system as agreed upon in CEP 8 (Conda Enhancement Proposal).

Please read that CEP for more information, but here is a quick synopsis. We hope that this versioning system and our
release schedule will help make our releases more predictable and transparent to the community going forward. We are
now committed to making at least one release every two months, but keep in mind that we can (and most likely will)
be making minor version releases within this window.

Enhancements

• Replace vendored toolz with toolz dependency. (#11589, #11700)

• Update bundled Python launchers for Windows (conda/shell/cli-*.exe) to match the ones found in conda-
build. (#11676)

• Add win-arm64 as a known platform (subdir). (#11778)

Bug fixes

• Remove extra prefix injection related to the shell interface breaking conda run. (#11666)

• Better support for shebang instructions in prefixes with spaces. (#11676)

• Fix noarch entry points in Unicode-containing prefixes on Windows. (#11694)

• Ensure that exceptions that are raised show up properly instead of resulting in a blank [y/N] prompt. (#11746)

194 Chapter 4. Contributors welcome

https://github.com/conda/conda/pull/11849
https://github.com/conda/conda/pull/12014
https://github.com/conda/conda/pull/11818
https://github.com/conda/conda/pull/11870
https://github.com/conda/conda/pull/11965
https://calver.org/
https://github.com/conda-incubator/ceps/blob/main/cep-8.md

conda, Release 24.3.1.dev75

Deprecations

• Mark conda._vendor.toolz as pending deprecation. (#11704)

• Removes vendored version of urllib3. (#11705)

Docs

• Added conda capitalization standards to CONTRIBUTING file. (#11712)

Other

• Add arm64 support to development script . ./dev/start. (#11752)

• Update canary-release version to resolve canary build issue. (#11761)

• Renamed canary recipe from conda.recipe to recipe. (#11774)

Contributors

• @beeankha

• @chenghlee

• @conda-bot

• @dholth

• @isuruf

• @jaimergp

• @jezdez

• @razzlestorm made their first contribution in https://github.com/conda/conda/pull/11736

• @jakirkham

• @kathatherine

• @kenodegard

• @scdub made their first contribution in https://github.com/conda/conda/pull/11816

• @travishathaway

• @pre-commit-ci[bot]

4.4.22 4.14.0 (2022-08-02)

Enhancements

• Only star activated environment in conda info --envs/conda env list. (#10764)

• Adds new sub-command, conda notices, for retrieving channel notices. (#11462)

• Notices will be intermittently shown after running, install, create, update, env create or env update.
New notices will only be shown once. (#11462)

• Implementation of a new rename subcommand. (#11496)

4.4. Release notes 195

https://github.com/conda/conda/pull/11736
https://github.com/conda/conda/pull/11816

conda, Release 24.3.1.dev75

• Split SSLError from HTTPError to help resolve HTTP 000 errors. (#11564)

• Include the invalid package name in the error message. (#11601)

• Bump requests version (>=2.20.1) and drop monkeypatching. (#11643)

• Rename whitelist_channels to allowlist_channels. (#11647)

• Always mention channel when notifying about a new conda update. (#11671)

Bug fixes

• Correct a misleading conda --help error message. (#11625)

• Fix support for CUDA version detection on WSL2. (#11626)

• Fixed the bug when providing empty environment.yml to conda env create command. (#11556, #11630)

• Fix MD5 hash generation for FIPS-enabled systems. (#11658)

• Fixed TypeError encountered when logging is set to DEBUG and the package’s JSON cannot be read. (#11679)

Deprecations

• conda.cli.common.ensure_name_or_prefix is pending deprecation in a future release. (#11490)

• Mark conda.lock as pending deprecation. (#11571)

• Remove lgtm.com config. (#11572)

• Remove Python 2.7 conda.common.url.is_ipv6_address_win_py27 implementation. (#11573)

• Remove redundant conda.resolve.dashlist definition. (#11578)

• Mark conda_env.cli.common.get_prefix and conda.base.context.get_prefix as pending depreca-
tion in favor of conda.base.context.determine_target_prefix. (#11594)

• Mark conda_env.cli.common.stdout_json as pending deprecation in favor of conda.cli.common.
stdout_json. (#11595)

• Mark conda_env.cli.common.find_prefix_name as pending deprecation. (#11596)

• Mark conda.auxlib.decorators.memoize as pending deprecation in favor of functools.lru_cache.
(#11597)

• Mark conda.exports.memoized as pending deprecation in favor of functools.lru_cache. (#11597)

• Mark conda.exports.handle_proxy_407 as pending deprecation. (#11597)

• Refactor conda.activate._Activator.get_export_unset_vars to use **kwargs instead of
OrderedDict. (#11649)

• Mark conda.another_to_unicode as pending deprecation. (#11678)

196 Chapter 4. Contributors welcome

http://lgtm.com

conda, Release 24.3.1.dev75

Docs

• Corresponding documentation of notices subcommand. (#11462)

• Corresponding documentation of rename subcommand. (#11496)

• Correct docs URL to https://docs.conda.io. (#11508)

• Updated the list of environment variables that can now expand in the Use Condarc section. (#11514)

• Include notice that the “All Users” installation option in the Anaconda Installer is no longer available due to
security concerns. (#11528)

• Update conda-zsh-completeion link. (#11541)

• Missing pip as a dependency when including a pip-installed dependency. (#11543)

• Convert README.rst to README.md. (#11544)

• Updated docs and CLI help to include information on conda init arguments. (#11574)

• Added docs for writing integration tests. (#11604)

• Updated conda env create CLI documentation description and examples to be more helpful. (#11611)

Other

• Display tests summary in CI. (#11558)

• Update Dockerfile and ci-images.yml flow to build multi arch images. (#11560)

• Rename master branch to main. (#11570)

Contributors

• @drewja made their first contribution in #11614

• @beeankha

• @topherocity made their first contribution in #11658

• @conda-bot

• @dandv made their first contribution in #11636

• @dbast

• @dholth

• @deepyaman made their first contribution in #11598

• @dogukanteber made their first contribution in #11556/#11630

• @jaimergp

• @kathatherine

• @kenodegard

• @nps1ngh made their first contribution in #10764

• @pseudoyim made their first contribution in #11528

• @SamStudio8 made their first contribution in #11679

• @SamuelWN made their first contribution in #11543

4.4. Release notes 197

https://docs.conda.io
https://docs.conda.io/projects/conda/en/latest/user-guide/configuration/use-condarc.html#expansion-of-environment-variables
https://github.com/ContinuumIO/anaconda-distribution-installer/commit/301e84f84b63d654045d4d7871b726de39fc9bb5
https://github.com/conda-incubator/conda-zsh-completion

conda, Release 24.3.1.dev75

• @spencermathews made their first contribution in #11508

• @timgates42

• @timhoffm made their first contribution in #11601

• @travishathaway

• @esc

• @pre-commit-ci[bot]

4.4.23 4.13.0 (2022-05-19)

Enhancements

• Introducing conda clean --logfiles to remove logfiles generated by conda-libmamba-solver. (#11387)

• Add the solver name and version to the user-agent. (#11415, #11455)

• Attempt parsing HTTP errors as a JSON and extract error details. If present, prefer these details instead of those
hard-coded. (#11440)

Bug fixes

• Fix inconsistencies with conda clean --dryrun (#11385)

• Standardize tarball & package finding in conda clean (#11386, #11391)

• Fix escape_channel_url logic on Windows (#11416)

• Use ‘Accept’ header, not ‘Content-Type’ in GET header (#11446)

• Allow extended user-agent collection to fail but log the exception (#11455)

Deprecations

• Removing deprecated conda.cli.activate. Originally deprecated in conda 4.6.0 in May 2018. (#11309)

• Removing deprecated conda.compat. Originally deprecated in conda 4.6.0 in May 2018. (#11322)

• Removing deprecated conda.install. Originally deprecated in conda 4.6.0 in May 2018. (#11323)

• Removing deprecated conda.cli.main_help. Originally deprecated in conda 4.6.0 in May 2018. (#11325)

• Removed unused conda.auxlib.configuration. (#11349)

• Removed unused conda.auxlib.crypt. (#11349)

• Removed unused conda.auxlib.deprecation. (#11349)

• Removed unused conda.auxlib.factory. (#11349)

• Removed minimally used conda.auxlib.path. (#11349)

• Removed conda.exports.CrossPlatformStLink, a Windows Python <3.2 fix for os.lstat.st_nlink.
(#11351)

• Remove Python 2.7 and other legacy code (#11364)

• conda run --live-stream aliases conda run --no-capture-output. (#11422)

• Removes unused exceptions. (#11424)

198 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• Combines conda_env.exceptions with conda.exceptions. (#11425)

• Drop Python 3.6 support. (#11453)

• Remove outdated test test_init_dev_and_NoBaseEnvironmentError (#11469)

Docs

• Initial implementation of deep dive docs (#11059)

• Correction of RegisterPython description in Windows Installer arguments. (#11312)

• Added autodoc documentation for conda compare. (#11336)

• Remove duplicated instruction in manage-python.rst (#11381)

• Updated conda cheatsheet. (#11443)

• Fix typos throughout the codebase (#11448)

• Fix conda activate example (#11471)

• Updated conda 4.12 cheatsheet with new anaconda distribution version (#11479)

Other

• Add Python 3.10 as a test target. (#10992)

• Replace custom conda._vendor with vendoring (#11290)

• Replace conda.auxlib.collection.frozendict with vendored frozendict (#11398)

• Reorganize and new tests for conda.cli.main_clean (#11360)

• Removing vendored usage of urllib3 and instead implementing our own wrapper around std. lib urllib (#11373)

• Bump vendored py-cpuinfo version 4.0.0 → 8.0.0. (#11393)

• Add informational Codecov status checks (#11400)

Contributors

• @beeankha made their first contribution in #11469

• @ChrisPanopoulos made their first contribution in #11312

• @conda-bot

• @dholth

• @jaimergp

• @jezdez

• @kathatherine made their first contribution in #11443

• @kenodegard

• @kianmeng made their first contribution in #11448

• @simon9500 made their first contribution in #11381

• @thomasrockhu-codecov made their first contribution in #11400

• @travishathaway made their first contribution in #11373

4.4. Release notes 199

https://github.com/pradyunsg/vendoring

conda, Release 24.3.1.dev75

• @pre-commit-ci[bot]

4.4.24 4.12.0 (2022-03-08)

Enhancements

• Add support for libmamba integrations. (#11193)

This is a new experimental and opt-in feature that allows use of the new conda-libmamba-solver for an improved
user experience, based on the libmamba community project - the library version of the mamba package manager.

Please follow these steps to try out the new libmamba solver integration:

1. Make sure you have conda-libmamba-solver installed in your conda base environment.

2. Try out the solver using the --experimental-solver=libmamba command line option.

E.g. with a dry-run to install the scipy package:

conda create -n demo scipy --dry-run --experimental-solver=libmamba

Or install in an activated conda environment:

conda activate my-environment
conda install scipy --experimental-solver=libmamba

• Make sure that conda env update -f sets env vars from the referenced yaml file. (#10652)

• Improve command line argument quoting, especially for conda run. (#11189)

• Allow conda run to work in read-only environments. (#11215)

• Add support for prelink_message. (#11123)

• Added conda.CONDA_SOURCE_ROOT. (#11182)

Bug fixes

• Refactored conda.utils.ensure_comspec_set into conda.utils.get_comspec. (#11168)

• Refactored conda.cli.common.is_valid_prefix into conda.cli.common.validate_prefix. (#11172)

• Instantiate separate S3 session for thread-safety. (#11038)

• Change overly verbose info log to debug. (#11260)

• Remove five.py and update metaclass definitions. (#11267)

• Remove unnecessary conditional in setup.py (#11013)

200 Chapter 4. Contributors welcome

https://github.com/conda-incubator/conda-libmamba-solver
https://github.com/mamba-org/mamba
https://github.com/conda-incubator/conda-libmamba-solver
http://five.py
http://setup.py

conda, Release 24.3.1.dev75

Docs

• Clarify on AIE messaging in download.rst. (#11221)

• Fix conda environment variable echo, update example versions. (#11237)

• Fixed link in docs. (#11268)

• Update profile examples. (#11278)

• Fix typos. (#11070)

• Document conda run command. (#11299)

Other

• Added macOS to continuous integration. (#10875)

• Added ability to build per-pullrequest review builds. (#11135)

• Improved subprocess handling on Windows. (#11179)

• Add CONDA_SOURCE_ROOT env var. (#11182)

• Automatically check copyright/license disclaimer & encoding pragma. (#11183)

• Development environment per Python version. (#11233)

• Add concurrency group to cancel GHA runs on repeated pushes to branch/PR. (#11258)

• Only run GHAs on non-forks. (#11265)

Contributors

• @opoplawski

• @FaustinCarter

• @jaimergp

• @rhoule-anaconda

• @jezdez

• @hajapy

• @erykoff

• @uwuvalon

• @kenodegard

• @manics

• @NaincyKumariKnoldus

• @autotmp

• @yuvipanda

• @astrojuanlu

• @marcelotrevisani

4.4. Release notes 201

conda, Release 24.3.1.dev75

4.4.25 4.11.0 (2021-11-22)

Enhancements

• Allow channel_alias to interpolate environment variables.

• Support running conda with PyPy on Windows.

• Add ability to add, append and prepend to sequence values when using the conda config subcommand.

• Support Python 3.10 in version parser.

• Add XDG_CONFIG_HOME to the conda search path following the XDG Base Directory Specification (XDGBDS).

Bug fixes

• Fix the PowerShell activator to not show an error when unsetting environment variables.

• Remove superfluous eval statements in fish shell integration.

• Indent the conda fish integration file using fish_indent.

• Fix handling of environment variables containing equal signs (=).

• Handle permission errors when listing all known prefixes.

• Catch Unicode decoding errors when parsing conda-meta files.

• Fix handling write errors when trying to create package cache or env directories.

Docs

• Update path of conda repo in RHEL based systems to /etc/yum.repos.d/conda.repo.

• Fix the advanced pip example to stop using the now invalid file: prefix.

• Minor docs cleanup and adding Code of Conduct.

• Add auto-built architecture documentation for conda based on the C4 Model. See the conda documentation for
more information.

• Expand the contributing documentation with a section about static code analysis and code linting.

• Add developer guide section to the documentation, including a conda architecture overview.

• Stop referring to updating anaconda when conda update fails with an error.

Other

• Build Docker images periodically on GitHub Actions for the continuous integration testing on Linux, storing
them on GitHub Packages’s registry for reduced latency and cost when using Docker Hub.

• Simplify the Linux GitHub actions workflows by combining used shell scripts.

• Add periodic GitHub Actions workflow to review old issues in the conda issue tracker and mark them as stale if
no feedback is provided in a sensible amount of time, eventually closing them.

• Add periodic GitHub Actions workflow to lock the comment threads of old issues and pull requests in the conda
GitHub repository to surface regressions with new issues instead.

• Refactor test suite to use more GitHub Actions runners in parallel, reducing total run time by 50%.

202 Chapter 4. Contributors welcome

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://c4model.com
https://docs.conda.io/projects/conda/en/latest/dev-guide/
https://docs.conda.io/projects/conda/en/latest/architecture.html

conda, Release 24.3.1.dev75

• Switched the issue tracker to use forms with additional questions for bug reporters to help in ticket triage.

• Add and automatically run pre-commit as part of the CI system to improve the code quality continuously and
raise issues in contributed patches early on.

The used code linters are: flake8, pylint and bandit.

The Python code formatter black is used as well but is only enforced on changed code in a commit and not to the
whole code base at once.

• Automatically build the conda package upon the successful merge into the master branch and upload it to the
conda-canary channel on anaconda.org.

To try conda out simply run:

conda install -c conda-canary/label/dev conda

• Automate adding new issues to public GitHub project board to facilitate issue triage.

• Update GitHub issue and pull request labels to be more consistent.

• Start using rever for release management.

• (preview) Enable one-click gitpod and GitHub Codespaces setup for Linux development.

Contributors

• Benjamin Bertrand

• Chawye Hsu

• Cheng H. Lee

• Dan Meador

• Daniel Bast

• Daniel Holth

• Gregor Kržmanc

• Hsin-Hsiang Peng

• Ilan Cosman

• Isuru Fernando

• Jaime Rodríguez-Guerra

• Jan-Benedikt Jagusch

• Jannis Leidel

• John Flavin

• Jonas Haag

• Ken Odegard

• Kfir Zvi

• Mervin Fansler

• bfis

• mkincaid

4.4. Release notes 203

https://flake8.pycqa.org/
https://pylint.org/
https://bandit.readthedocs.io/
https://black.readthedocs.io/
http://anaconda.org
https://github.com/orgs/conda/projects/4
https://regro.github.io/rever-docs/

conda, Release 24.3.1.dev75

• pre-commit CI

4.4.26 4.10.3 (2021-06-29)

Bug fixes

• Reverts “Don’t create an unused S3 client at import time (#10516)” in 4.10.2 that introduced a regression for
users using S3 based channels. (#10756)

4.4.27 4.10.2 (2021-06-25)

Enhancements

• Add --dry-run option to conda env create (#10635)

• Print warning about pip-installed dependencies only once (#10638)

• Explicit install now respects --download-only flag (#10688)

• Bump vendored tqdm version (#10721)

Bug fixes

• Fix changeps1 handling for PowerShell (#10624)

• Handle unbound $PS1 so sh activation does not fail with set -u (#10701)

• Fix sh activation so $PATH is properly restored on errors (#10631)

• Fix -c option handling so defaults channel is not always re-added (#10735)

• Fix artifact verification-related warnings and errors (#10627, #10677)

• Fix log level used in conda/core/prefix_data.py (#9998)

• Fix log level used when fetching artifact verification metadata (#10621)

• Don’t create an unused S3 client at import time (#10516)

• Don’t load binstar_client until needed (#10692)

• Reflect dropping of older Python versions in setup.py (#10642)

Docs

• Merge release notes and changelog to reduce maintenance burden (#10745)

• Add mentions to PyPy, Anaconda terms of service (#10329, #10712)

• Update Python versions in examples (#10329, #10744)

• Update install macOS instructions (#10728)

204 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Contributors

• @AlbertDeFusco

• @awwad

• @casperdcl

• @cgranade

• @chenghlee

• @ColemanTom

• @dan-hook

• @dbast

• @ericpre

• @HedgehogCode

• @jamesp

• @jezdez

• @johnhany97

• @lightmare

• @mattip

• @maxerbubba

• @mrakitin

• @stinos

• @thermokarst

4.4.28 4.10.1 (2021-04-12)

Bug fixes

• Fix version detection for __linux virtual package (#10599)

• Fix import from conda_content_trust (#10589)

• Fix how URL for verification metadata files are constructed (#10617)

• Partially fix profile $PATH setup on MSYS2 (#10459)

• Remove .empty directory even when rsync is not installed (#10331)

4.4. Release notes 205

conda, Release 24.3.1.dev75

Contributors

• @awwad

• @chenghlee

• @codepage949

• @niklasholm

4.4.29 4.10.0 (2021-03-30)

NOTE: This release formally drops support for Python 2.7 and Python < 3.6.

Enhancements

• Add pilot support for metadata signatures and verification (#10578)

• Add __linux virtual package (#10552, #10561)

• Support nested keys when using conda config --get (#10447, #10572)

• Support installing default packages when using conda env create (#10530)

• Support HTTP sources for conda env update -f (#10536)

• Make macOS code signing operations less verbose (#10372)

Bug fixes

• Fix conda search crashing on Python 3.9 (#10542)

• Allow {channel}::pip to satisfy pip requirements (#10550)

• Support {host}:{port} specifications in environment YAML files (#10417)

• Fall back to system .condarc if user .condarc is absent (#10479)

• Try UTF-16 if UTF-8 fails when reading environment YAML files (#10356)

• Properly parse Python version >= 3.10 (#10478)

• Fix zsh initialization when $ZDOTDIR is defined (#10413)

• Fix path handling for csh (#10410)

• Fix setup.py requirement for vendored ruamel_yaml_conda (#10441)

• Fix errors when pickling vendored auxlib objects (#10386)

206 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Docs

• Document the __unix and __windows virtual packages (#10511)

• Update list of supported and default versions of Python (#10531)

• Favor using pip instead of setup.py when setting up CI (#10308)

Miscellaneous

• CI: drop Python 2.7 and add Python 3.9 (#10548)

Contributors

• @awwad

• @BastianZim

• @beenje

• @bgobbi

• @blubs

• @chenghlee

• @cjmartian

• @ericpre

• @erykoff

• @felker

• @giladmaya

• @jamesmyatt

• @mingwandroid

• @opoplawski

• @saadparwaiz1

• @saucoide

4.4.30 4.9.2 (2020-11-10)

Enhancements

• Use vendored tqdm in conda.resolve for better consistency (#10337)

4.4. Release notes 207

conda, Release 24.3.1.dev75

Bug fixes

• Revert to previous naming scheme for repodata cache files when use_only_tar_bz2 config option is false
(#10350)

Docs

• Fix missing release notes (#10342)

• Fix permission errors when configuring deb repositories (#10347)

Contributors

• @chenghlee

• @csoja

• @dylanmorroll

• @sscherfke

4.4.31 4.9.1 (2020-10-26)

Enhancements

• Respect PEP 440 ~= “compatible release” clause (#10313)

Bug fixes

• Remove preload_openssl for Win32 (#10298)

• Add if exist to Windows registry hook (#10305)

Contributors

• @mingwandroid

4.4.32 4.9.0 (2020-10-19)

Enhancements

• Add osx-arm64 as a recognized platform (#10128, #10134, #10137)

• Resign files modified during installation on ARM64 macOS (#10260)

• Add __archspec virtual package to identify CPU microarchitecture (#9930)

• Add __unix and __win virtual packages (#10214)

• Add --no-capture--output option to conda run (#9646)

• Add --live-stream option to conda run (#10270)

• Export and import environment variables set using conda env config (#10169)

208 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• Cache repodata from file:// channels (#9730)

• Do not relink already-installed packages (#10208)

• Speed up JSON formatting in logz module (#10189)

Bug fixes:

• Stop env remove --dry-run from actually removing environments (#10261)

• Virtual package requirements are now considered by the solver (#10057)

• Fix cached filename processing when using only tar.bz2 (#10193)

• Stop showing solver hints about CUDA when it is not a dependency (#10275)

• Ignore virtual packages when checking environment consistency (#10196)

• Fix config --json output errors in certain circumstances (#10194)

• More consistent error handling by conda shell (#10238)

• Bump vendored version of tqdm to fix various threading and I/O bugs (#10266)

Docs

• Correctly state default /AddToPath option in Windows installer (#10179)

• Fix typos in --repodata-fn help text (#10279)

Miscellaneous

• Update CI infrastructure to use GitHub Actions (#10176, #10186, #10234)

• Update README badge to show GitHub Actions status (#10254)

Contributors

• @AlbertDeFusco

• @angloyna

• @bbodenmiller

• @casperdcl

• @chenghlee

• @chrisburr

• @cjmartian

• @dhirschfeld

• @ericpre

• @gabrielcnr

• @InfiniteChai

• @isuruf

• @jjhelmus

4.4. Release notes 209

conda, Release 24.3.1.dev75

• @LorcanHamill

• @maresb

• @mingwandroid

• @mlline00

• @xhochy

• @ydmytryk

4.4.33 4.8.5 (2020-09-14)

Enhancements

• Add osx-arm64 as a recognized platform (#10128, #10134)

Contributors

• @isuruf

• @jjhelmus

4.4.34 4.8.4 (2020-08-06)

Enhancements

• Add linux-ppc64 as a recognized platform (#9797, #9877)

• Add linux-s390x as a recognized platform (#9933, #10051)

• Add spinner to pip installer (#10032)

• Add support for running conda in PyPy (#9764)

• Support creating conda environments using remote specification files (#9835)

• Allow request retries on various HTTP errors (#9919)

• Add compare command for environments against a specification file (#10022)

• Add (preliminary) support for JSON-format activation (#8727)

• Properly handle the CURL_CA_BUNDLE environment variable (#10078)

• More uniformly handle $CONDA_PREFIX when exporting environments (#10092)

• Enable trailing _ to anchor OpenSSL-like versions (#9859)

• Replace listdir and glob with scandir (#9889)

• Ignore virtual packages when searching for constrained packages (#10117)

• Add virtual packages to be considered in the solver (#10057)

210 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug fixes:

• Prevent remove --all from deleting non-environment directories (#10086)

• Prevent create --dry-run --yes from deleting existing environments (#10090)

• Remove extra newline from environment export file (#9649)

• Print help on incomplete conda env config command rather than crashing (#9660)

• Correctly set exit code/errorlevel when conda run exits (#9665)

• Send “inconsistent environment” warnings to stderr to avoid breaking JSON output (#9738)

• Fix output formatting from post-link scripts (#9841)

• Fix URL parsing for channel subdirs (#9844)

• Fix conda env export -f sometimes producing empty output files (#9909)

• Fix handling of Python releases with two-digit minor versions (#9999)

• Do not use gid to determine if user is an admin on *nix platforms (#10002)

• Suppress spurious xonsh activation warnings (#10005)

• Fix crash when running conda update --all on a nonexistent environment (#10028)

• Fix collections import for Python 3.8 (#10093)

• Fix regex-related deprecation warnings (#10093, #10096)

• Fix logic error when running under Python 2.7 on 64-bit platforms (#10108)

• Fix Python 3.8 leaked semaphore issue (#10115)

Docs

• Fix formatting and typos (#9623, #9689, #9898, #10042)

• Correct location for yum repository configuration files (#9988)

• Clarify usage for the --channel option (#10054)

• Clarify Python is not installed by default into new environments (#10089)

Miscellaneous

• Fixes to tests and CI pipelines (#9842, #9863, #9938, #9960, #10010)

• Remove conda-forge dependencies for developing conda (#9857, #9871)

• Audit YAML usage for safe_load vs round_trip_load (#9902)

4.4. Release notes 211

conda, Release 24.3.1.dev75

Contributors

• @alanhdu

• @angloyna

• @Anthchirp

• @Arrowbox

• @bbodenmiller

• @beenje

• @bernardoduarte

• @birdsarah

• @bnemanich

• @chenghlee

• @ChihweiLHBird

• @cjmartian

• @ericpre

• @error404-beep

• @esc

• @hartb

• @hugobuddel

• @isuruf

• @jjhelmus

• @kalefranz

• @mingwandroid

• @mlline00

• @mparry

• @mrocklin

• @necaris

• @pdnm

• @pradghos

• @ravigumm

• @Reissner

• @scopatz

• @sidhant007

• @songmeixu

• @speleo3

• @tomsaleeba

• @WinstonPais

212 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.35 4.8.3 (2020-03-13)

Docs

• Add release notes for 4.8.2 to docs (#9632)

• Fix typos in docs (#9637, #9643)

• Grammatical and formatting changes (#9647)

Bug fixes:

• Account for channel is specs (#9748)

Contributors

• @bernardoduarte

• @forrestwaters

• @jjhelmus

• @msarahan

• @rrigdon

• @timgates42

4.4.36 4.8.2 (2020-01-24)

Enhancements

• Solver messaging improvements (#9560)

Docs

• Added precedence and conflict info (#9565)

• Added how to set env variables with config API (#9536)

• Updated user guide, deleted Overview, minor clean up (#9581)

• Add code of conduct (#9601, #9602, #9603, #9603, #9604 #9605)

Bug fixes:

• change fish prompt only if changeps1 is true (#7000)

• make frozendict JSON serializable (#9539)

• Conda env create empty dir (#9543)

4.4. Release notes 213

conda, Release 24.3.1.dev75

Contributors

• @msarahan

• @jjhelmus

• @rrigdon

• @soapy1

• @teake

• @csoja

• @kfranz

4.4.37 4.8.1 (2019-12-19)

Enhancements

• improve performance for conda run by avoiding Popen.communicate (#9381)

• Put conda keyring in /usr/share/keyrings on Debian (#9424)

• refactor common.logic to fix some bugs and prepare for better modularity (#9427)

• Support nested configuration (#9449)

• Support Object configuration parameters (#9465)

• Use freeze_installed to speed up conda env update (#9511)

• add networking args to conda env create (#9525)

Docs

• fix string concatenation running words together regarding CONDA_EXE (#9411)

• Fix typo (“list” -> “info”) (#9433)

• typo in condarc key envs_dirs (#9478)

• Clarify channel priority and package sorting (#9492)

• improve description of DLL loading verification and activating environments (#9453)

• Installing with specific build number (#9534)

Bug fixes:

• Fix calling python api run_command with list and string arguments (#9331)

• revert init bash completion (#9421)

• set tmp to shortened path that excludes spaces (#9409)

• avoid function redefinition upon resourcing conda.fish (#9444)

• propagate pip error level when creating envs with conda env (#9460)

• fix incorrect chown call (#9464)

• Add subdir to PackageRecord dist_str (#9418)

214 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• Fix running conda activate in multiple processes on windows (#9477)

• Don’t check in pkgs for trash (#9472)

• remove setuptools from run_constrained in recipe (#9485)

• Fix __conda_activate function to correctly return exit code (#9532)

• fix overly greedy capture done by subprocess for conda run (#9537)

Contributors

• @AntoinePrv

• @brettcannon

• @bwildenhain

• @cjmartian

• @felker

• @forrestwaters

• @gilescope

• @isuruf

• @jeremyjliu

• @jjhelmus

• @jhultman

• @marcuscaisey

• @mbargull

• @mingwandroid

• @msarahan

• @okhoma

• @osamoylenko

• @rrigdon

• @rulerofthehuns

• @soapy1

• @tartansandal

4.4.38 4.8.0 (2019-11-04)

Enhancements

• retry downloads if they fail, controlled by remote_max_retries and remote_backoff_factor configuration
values (#9318)

• redact authentication information in some URLs (#9341)

• add osx version virtual package , __osx (#9349)

• add glibc virtual package, __glibc (#9358)

4.4. Release notes 215

conda, Release 24.3.1.dev75

Docs

• removeed references to MD5s from docs (#9247)

• Add docs on CONDA_DLL_SEARCH_MODIFICATION_ENABLED (#9286)

• document threads, spec history and configuration (#9327)

• more documentation on channels (#9335)

• document the .condarc search order (#9369)

• various minor documentation fixes (#9238, #9248, #9267, #9334, #9351, #9372, #9378, #9388, #9391, #9393)

Bug fixes

• fix issues with xonsh activation on Windows (#8246)

• remove unsupported --lock argument from conda clean (#8310)

• do not add sys_prefix_path to failed activation or deactivation (#9282)

• fix csh setenv command (#9284)

• do not memorize PackageRecord.combined_depends (#9289)

• use CONDA_INTERNAL_OLDPATH rather than OLDPATH in activation script (#9303)

• fixes xonsh activation and tab completion (#9305)

• fix what channels are queried when context.offline is True (#9385)

Contributors

• @analog-cbarber

• @andreasg123

• @beckermr

• @bryant1410

• @colinbrislawn

• @felker

• @forrestwaters

• @gabrielcnr

• @isuruf

• @jakirkham

• @jeremyjliu

• @jjhelmus

• @jooh

• @jpigla

• @marcelotrevisani

• @melund

216 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• @mfansler

• @mingwandroid

• @msarahan

• @rrigdon

• @scopatz

• @soapy1

• @WillyChen123

• @xhochy

4.4.39 4.7.12 (2019-09-12)

Enhancements

• add support for env file creation based on explicit specs in history (#9093)

• detect prefix paths when -p nor -n not given (#9135)

• Add config parameter to disable conflict finding (for faster time to errors) (#9190)

Bug fixes

• fix race condition with creation of repodata cache dir (#9073)

• fix ProxyError expected arguments (#9123)

• makedirs to initialize .conda folder when registering env - fixes permission errors with .conda folders not existing
when package cache gets created (#9215)

• fix list duplicates errors in reading repodata/prefix data (#9132)

• fix neutered specs not being recorded in history, leading to unsatisfiable environments later (#9147)

• Standardize “conda env list” behavior between platforms (#9166)

• add JSON output to conda env create/update (#9204)

• speed up finding conflicting specs (speed regression in 4.7.11) (#9218)

Contributors

• @beenje

• @Bezier89

• @cjmartian

• @forrestwaters

• @jjhelmus

• @martin-raden

• @msarahan

• @nganani

4.4. Release notes 217

conda, Release 24.3.1.dev75

• @rrigdon

• @soapy1

• @WesRoach

• @zheaton

4.4.40 4.7.11 (2019-08-06)

Enhancements

• add config for control of number of threads. These can be set in condarc or using environment vari-
ables. Names/default values are: default_threads/None, repodata_threads/None, verify_threads/1,
execute_threads/1 (#9044)

Bug fixes

• fix repodata_fns from condarc not being respected (#8998)

• Fix handling of UpdateModifiers other than FREEZE_INSTALLED (#8999)

• Improve conflict finding graph traversal (#9006)

• Fix setuptools being removed due to conda run_constrains (#9014)

• Avoid calling find_conflicts until all retries are spent (#9015)

• refactor _conda_activate.bat in hopes of improving behavior in parallel environments (#9021)

• Add support for local version specs in PYPI installed packages (#9025)

• fix boto3 initialization race condition (#9037)

• Fix return condition in package_cache_data (#9039)

• utilize libarchive_enabled attribute provided by conda-package-handling to fall back to .tar.bz2 files only. (#9041,
#9053)

• Fix menu creation on windows having race condition, leading to popups about python.exe not being found
(#9044)

• Improve list error when egg-link leads to extra egg-infos (#9045)

• Fix incorrect RemoveError when operating on an env that has one of conda’s deps, but is not the env in which
the current conda in use resides (#9054)

Docs

• Document new package format better

• Document conda init command

• Document availability of RSS feed for CDN-backed channels that clone

218 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Contributors

• @Bezier89

• @forrestwaters

• @hajapy

• @ihnorton

• @matthewwardrop

• @msarahan

• @rogererens

• @rrigdon

• @soapy1

4.4.41 4.7.10 (2019-07-19)

Bug fixes

• fix merging of specs

• fix bugs in building of chains in prefix graph

Contributors

• @msarahan

4.4.42 4.7.9 (2019-07-18)

Bug fixes

• fix Non records in comprehension

• fix potential keyerror in depth-first search

• fix PackageNotFound attribute error

Contributors

• @jjhelmus

• @msarahan

4.4. Release notes 219

conda, Release 24.3.1.dev75

4.4.43 4.7.8 (2019-07-17)

Improvements

• improve unsatisfiable messages - try to group and explain output better. Remove lots of extraneous stuff that was
showing up in 4.7.7 (#8910)

• preload openssl on windows to avoid library conflicts and missing library issues (#8949)

Bug fixes

• fix handling of channels where more than one channel contains packages with similar name, subdir, version and
build_number. This was causing mysterious unsatisfiable errors for some users. (#8938)

• reverse logic check in checking channel equality, because == is not reciprocal to != with py27 (no __ne__)
(#8938)

• fix an infinite loop or otherwise large process with building the unsatisfiable info. Improve the depth-first search
implementation. (#8941)

• streamline fallback paths to unfrozen solve in case frozen fails. (#8942)

• Environment activation output only shows conda activate envname now, instead of sometimes showing just
activate. (#8947)

Contributors

• @forrestwaters

• @jjhelmus

• @katietz

• @msarahan

• @rrigdon

• @soapy1

4.4.44 4.7.7 (2019-07-12)

Improvements

• When an update command doesn’t do anything because installed software conflicts with the update, information
about the conflict is shown, rather than just saying “all requests are already satisfied” (#8899)

220 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug fixes

• fix missing package_type attr in finding virtual packages (#8917)

• fix parallel operations of loading index to preserve channel ordering (#8921, #8922)

• filter PrefixRecords out from PackageRecords when making a graph to show unsatisfiable deps. Fixes comparison
error between mismatched types. (#8924)

• install entry points before running post-link scripts, because post link scripts may depend on entry points. (#8925)

Contributors

• @jjhelmus

• @msarahan

• @rrigdon

• @soapy1

4.4.45 4.7.6 (2019-07-11)

Improvements

• Improve cuda virtual package conflict messages to show the __cuda virtual package as part of the conflict (#8834)

• add additional debugging info to Resolve.solve (#8895)

Bug fixes

• deduplicate error messages being shown for post-link scripts. Show captured stdout/stderr on failure (#8833)

• fix the checkout step in the Windows dev env setup instructions (#8827)

• bail out early when implicit python pinning renders an explicit spec unsatisfiable (#8834)

• handle edge cases in pinned specs better (#8843)

• extract package again if url is None (#8868)

• update docs regarding indexing and subdirs (#8874)

• remove warning about conda-build needing an update that was bothering people (#8884)

• only add repodata fn into cache key when fn is not repodata.json (#8900)

• allow conda to be downgraded with an explicit spec (#8892)

• add target to specs from historic specs (#8901)

• improve message when solving with a repodata file before repodata.json fails (#8907)

• fix distutils usage for “which” functionality. Fix inability to change python version in envs with noarch packages
(#8909)

• fix anaconda metapackage being removed because history matching was too restrictive (#8911)

• make freezing less aggressive; add fallback to non-frozen solve (#8912)

4.4. Release notes 221

conda, Release 24.3.1.dev75

Contributors

• @forrestwaters

• @jjhelmus

• @mcopes73

• @msarahan

• @richardjgowers

• @rrigdon

• @soapy1

• @twinssbc

4.4.46 4.7.5 (2019-06-24)

Improvements

• improve wording in informational message when a particular *_repodata.json can’t be found. No need for
alarm. (#8808)

Bug fixes

• restore tests being run on win-32 appveyor (#8801)

• fix Dist class handling of .conda files (#8816)

• fix strict channel priority handling when a package is unsatisfiable and thus not present in the collection (#8819)

• handle JSONDecodeError better when package is corrupted at extract time (#8820)

Contributors

• @dhirschfeld

• @msarahan

• @rrigdon

4.4.47 4.7.4 (2019-06-19)

Improvements

• Revert to and improve the unsatisfiability determination from 4.7.2 that was reverted in 4.7.3. It’s faster. (#8783)

222 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug fixes

• fix tcsh/csh init scripts (#8792)

Docs improvements

• clean up docs of run_command

• fix broken links

• update docs environment.yaml file to update conda-package-handling

• conda logo favicon

• update strict channel priority info

• noarch package content ported from conda-forge

• add info about conda-forge

• remove references to things as they were before conda 4.1. That was a long time ago. This is not a history book.

Contributors

• @jjhelmus

• @msarahan

• @rrigdon

• @soapy1

4.4.48 4.7.3 (2019-06-14)

Bug fixes

• target prefix overrid applies to entry points in addition to replacements in standard files (#8769)

• Revert to solver-based unsatisfiability determination (#8775)

• fix renaming of existing prompt function in powershell (#8774)

Contributors

• @jjhelmus

• @msarahan

• @rrigdon

• @ScottEvtuch

4.4. Release notes 223

conda, Release 24.3.1.dev75

4.4.49 4.7.2 (2019-06-10)

Behavior changes

• unsatisfiability is determined in a slightly different way now. It no longer uses the SAT solver, but rather deter-
mines whether any specs have no candidates at all after running through get_reduced_index. This has been faster
in benchmarks, but we welcome further data from your use cases about whether this was a good change. (#8741)

• when using the --only-deps flag for the install command, conda now explicitly records those specs in your
history. This primarily serves to reduce conda accidentally removing packages that you have actually requested.
(#8766)

Improvements

• UnsatisfiableError messages are now grouped into categories and explained a bit better. (#8741)

• –repodata-fn argument can be passed multiple times to have more fallback paths. repodata_fns conda config
setting does the same thing, but saves you from needing to do it for every command invocation. (#8741)

Bug fixes

• fix channel flip-flopping that was happening when adding a channel other than earlier ones (#8741)

• refactor flow control for multiple repodata files to not use exceptions (#8741)

• force conda to use only old .tar.bz2 files if conda-build <3.18.3 is installed. Conda-build breaks when inspecting
file contents, and this is fixed in conda-build 3.18.3 (#8741)

• use --force when using rsync to improve behavior with folders that may exist in the destination somehow. (#8750)

• handle EPERM errors when renaming, because MacOS lets you remove or create files, but not rename them.
Thanks Apple. (#8755)

• fix conda removing packages installed via install with --only-deps flag when either update or remove com-
mands are run. See behavior changes above. (#8766)

Contributors

• @csosborn

• @jjhelmus

• @katietz

• @msarahan

• @rrigdon

224 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.50 4.7.1 (2019-05-30)

Improvements

• Base initial solver specs map on explicitly requested specs (new and historic) (#8689)

• Improve anonymization of automatic error reporting (#8715)

• Add option to keep using .tar.bz2 files, in case new .conda isn’t working for whatever reason (#8723)

Bug fixes

• fix parsing hyphenated PyPI specs (change hyphens in versions to .) (#8688)

• fix PrefixRecord creation when file inputs are .conda files (#8689)

• fix PrefixRecord creation for pip-installed packages (#8689)

• fix progress bar stopping at 75% (no extract progress with new libarchive) (#8689)

• preserve pre-4.7 download() interface in conda.exports (#8698)

• virtual packages (such as cuda) are represented by leading double underscores by convention, to avoid confusion
with existing single underscore packages that serve other purposes (#8738)

Deprecations/Breaking Changes

• The --prune flag no longer does anything. Pruning is implicitly the standard behavior now as a result of the
initial solver specs coming from explicitly requested specs. Conda will remove packages that are not explicitly
requested and are not required directly or indirectly by any explicitly installed package.

Docs improvements

• Document removal of the free channel from defaults (#8682)

• Add reference to conda config --describe (#8712)

• Add a tutorial for .condarc modification (#8737)

Contributors

• @alexhall

• @cjmartian

• @kalefranz

• @martinkou

• @msarahan

• @rrigdon

• @soapy1

4.4. Release notes 225

conda, Release 24.3.1.dev75

4.4.51 4.7.0 (2019-05-17)

Improvements

• Implement support for “virtual” CUDA packages, to make conda consider the system-installed CUDA driver and
act accordingly (#8267)

• Support and prefer new .conda file format where available (#8265, #8639)

• Use comma-separated env names in prompt when stacking envs (#8431)

• show valid choices in error messages for enums (#8602)

• freeze already-installed packages when running conda install as a first attempt, to speed up the solve in
existing envs. Fall back to full solve as necessary (#8260, #8626)

• add optimization criterion to prefer arch over noarch packages when otherwise equivalent (#8267)

• Remove free channel from defaults collection. Add restore_free_channel config parameter if you want to
keep it. (#8579)

• Improve unsatisfiable hints (#8638)

• Add capability to use custom repodata filename, for smaller subsets of repodata (#8670)

• Parallelize SubdirData readup (#8670)

• Parallelize transaction verification and execution (#8670)

Bug fixes

• Fix PATH handling with deactivate.d scripts (#8464)

• Fix usage of deprecated collections ABCs (#)

• fix tcsh/csh initialization block (#8591)

• fix missing CWD display in powershell prompt (#8596)

• wrap_subprocess_call: fallback to sh if no bash (#8611)

• move TemporaryDirectory to avoid importing from conda.compat (#8671)

• fix missing conda-package-handling dependency in dev/start (#8624)

• fix path_to_url string index out of range error (#8265)

• fix conda init for xonsh (#8644)

• fix fish activation (#8645)

• improve error handling for read-only filesystems (#8665, #8674)

• break out of minimization when bisection has nowhere to go (#8672)

• Handle None values for link channel name gracefully (#8680)

226 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Contributors

• @chrisburr

• @EternalPhane

• @jjhelmus

• @kalefranz

• @mbargull

• @msarahan

• @rrigdon

• @scopatz

• @seibert

• @soapy1

• @nehaljwani

• @nh3

• @teake

• @yuvalreches

4.4.52 4.6.14 (2019-04-17)

Bug fixes

• export extra function in powershell Conda.psm1 script (fixes anaconda powershell prompt) (#8570)

Contributors

• @msarahan

4.4.53 4.6.13 (2019-04-16)

Bug fixes

• disable test_legacy_repodata on win-32 (missing dependencies) (#8540)

• Fix activation problems on windows with bash, powershell, and batch. Improve tests. (#8550, #8564)

• pass -U flag to for pip dependencies in conda env when running “conda env update” (#8542)

• rename conda.common.os to conda.common._os to avoid shadowing os built-in (#8548)

• raise exception when pip subprocess fails with conda env (#8562)

• fix installing recursive requirements.txt files in conda env specs with python 2.7 (#8562)

• Don’t modify powershell prompt when “changeps1” setting in condarc is False (#8465)

4.4. Release notes 227

conda, Release 24.3.1.dev75

Contributors

• @dennispg

• @jjhelmus

• @jpgill86

• @mingwandroid

• @msarahan

• @noahp

4.4.54 4.6.12 (2019-04-10)

Bug fixes

• Fix compat import warning (#8507)

• Adjust collections import to avoid deprecation warning (#8499)

• Fix bug in CLI tests (#8468)

• Disallow the number sign in environment names (#8521)

• Workaround issues with noarch on certain repositories (#8523)

• Fix activation on Windows when spaces are in path (#8503)

• Fix conda init profile modification for powershell (#8531)

• Point conda.bat to condabin (#8517)

• Fix various bugs in activation (#8520, #8528)

Docs improvements

• Fix links in README (#8482)

• Changelogs for 4.6.10 and 4.6.11 (#8502)

Contributors

@Bezier89 @duncanmmacleod @ivigamberdiev @javabrett @jjhelmus @katietz @mingwandroid @msarahan @ne-
haljwani @rrigdon

4.4.55 4.6.11 (2019-04-04)

Bug fixes

• Remove sys.prefix from front of PATH in basic_posix (#8491)

• add import to fix conda.core.index.get_index (#8495)

228 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Docs improvements

• Changelogs for 4.6.10

Contributors

• @jjhelmus

• @mingwandroid

• @msarahan

4.4.56 4.6.10 (2019-04-01)

Bug fixes

• Fix python-3 only FileNotFoundError usage in initialize.py (#8470)

• Fix more JSON encode errors for the _Null data type (#8471)

• Fix non-posix-compliant == in conda.sh (#8475, #8476)

• improve detection of pip dependency in environment.yml files to avoid warning message (#8478)

• fix condabin\conda.bat use of dp0, making PATH additions incorrect (#8480)

• init_fish_user: don’t assume config file exists (#8481)

• Fix for chcp output ending with . (#8484)

Docs improvements

• Changelogs for 4.6.8, 4.6.9

Contributors

• @duncanmmacleod

• @nehaljwani

• @ilango100

• @jjhelmus

• @mingwandroid

• @msarahan

• @rrigdon

4.4. Release notes 229

http://initialize.py
http://conda.sh

conda, Release 24.3.1.dev75

4.4.57 4.6.9 (2019-03-29)

Improvements

• Improve CI for docs commits (#8387, #8401, #8417)

• Implement conda init --reverse to undo rc file and registry changes (#8400)

• Improve handling of unicode systems (#8342, #8435)

• Force the “COMSPEC” environment variable to always point to cmd.exe on windows. This was an implicit
assumption that was not always true. (#8457, #8461)

Bug fixes

• Add central C:/ProgramData/conda as a search path on Windows (#8272)

• remove direct use of ruamel_yaml (prefer internal abstraction, yaml_load) (#8392)

• Fix/improve conda init support for fish shell (#8437)

• Improve solver behavior in the presence of inconsistent environments (such as pip as a conda dependency of
python, but also installed via pip itself) (#8444)

• Handle read-only filesystems for environments.txt (#8451, #8453)

• Fix conda env commands involving pip-installed dependencies being installed into incorrect locations (#8435)

Docs improvements

• updated cheatsheet (#8402)

• updated color theme (#8403)

Contributors

• @blackgear

• @dhirschfeld

• @jakirkham

• @jjhelmus

• @katietz

• @mingwandroid

• @msarahan

• @nehaljwani

• @rrigdon

• @soapy1

• @spamlrot-tic

230 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.58 4.6.8 (2019-03-06)

Bug fixes

• detect when parser fails to parse arguments (#8328)

• separate post-link script running from package linking. Do linking of all packages first, then run any post-link
scripts after all packages are present. Ideally, more forgiving in presence of cycles. (#8350)

• quote path to temporary requirements files generated by conda env. Fixes issues with spaces. (#8352)

• improve some exception handling around checking for presence of folders in extraction of tarballs (#8360)

• fix reporting of packages when channel name is None (#8379)

• fix the post-creation helper message from “source activate” to “conda activate” (#8370)

• Add safety checks for directory traversal exploits in tarfiles. These may be disabled using the safety_checks
configuration parameter. (#8374)

Docs improvements

• document MKL DLL hell and new Python env vars to control DLL search behavior (#8315)

• add github template for reporting speed issues (#8344)

• add in better use of sphinx admonitions (notes, warnings) for better accentuation in docs (#8348)

• improve skipping CI builds when only docs changes are involved (#8336)

Contributors

• @albertmichaelj

• @jjhelmus

• @matta9001

• @msarahan

• @rrigdon

• @soapy1

• @steffenvan

4.4.59 4.6.7 (2019-02-21)

Bug fixes

• skip scanning folders for contents during reversal of transactions. Just ignore folders. A bit messier, but a lot
faster. (#8266)

• fix some logic in renaming trash files to fix permission errors (#8300)

• wrap pip subprocess calls in conda-env more cleanly and uniformly (#8307)

• revert conda prepending to PATH in cli main file on windows (#8307)

• simplify conda run code to use activation subprocess wrapper. Fix a few conda tests to use conda run. (#8307)

4.4. Release notes 231

conda, Release 24.3.1.dev75

Docs improvements

• fixed duplicated “to” in managing envs section (#8298)

• flesh out docs on activation (#8314)

• correct git syntax for adding a remote in dev docs (#8316)

• unpin sphinx version in docs requirements (#8317)

Contributors

• @jjhelmus

• @MarckK

• @msarahan

• @rrigdon

• @samgd

4.4.60 4.6.6 (2019-02-18)

Bug fixes

• fix incorrect syntax prepending to PATH for conda CLI functionality (#8295)

• fix rename_tmp.bat operating on folders, leading to hung interactive dialogs. Operate only on files. (#8295)

Contributors

• @mingwandroid

• @msarahan

4.4.61 4.6.5 (2019-02-15)

Bug fixes

• Make super in resolve.py python 2 friendly (#8280)

• support unicode paths better in activation scripts on Windows (#)

• set PATH for conda.bat to include Conda’s root prefix, so that libraries can be found when using conda when the
root env is not activated (#8287, #8292)

• clean up warnings/errors about rsync and trash files (#8290)

232 Chapter 4. Contributors welcome

http://resolve.py

conda, Release 24.3.1.dev75

Contributors

• @jjhelmus

• @mingwandroid

• @msarahan

• @rrigdon

4.4.62 4.6.4 (2019-02-13)

Improvements

• allow configuring location of instrumentation records (#7849)

• prepend conda-env pip commands with env activation to fix library loading (#8263)

Bug fixes

• resolve #8176 SAT solver choice error handling (#8248)

• document pip_interop_enabled config parameter (#8250)

• ensure prefix temp files are inside prefix (#8253)

• ensure script_caller is bound before use (#8254)

• fix overzealous removal of folders after cleanup of failed post-link scripts (#8259)

• fix #8264: Allow ‘int’ datatype for values to non-sequence parameters (#8268)

Deprecations/Breaking Changes

• remove experimental featureless_minimization_disabled feature flag (#8249)

Contributors

• @davemasino

• @geremih

• @jjhelmus

• @kalefranz

• @msarahan

• @minrk

• @nehaljwani

• @prusse-martin

• @rrigdon

• @soapy1

4.4. Release notes 233

conda, Release 24.3.1.dev75

4.4.63 4.6.3 (2019-02-07)

Improvements

• Implement -stack switch for powershell usage of conda (#8217)

• Enable system-wide initialization for conda shell support (#8219)

• Activate environments prior to running post-link scripts (#8229)

• Instrument more solve calls to prioritize future optimization efforts (#8231)

• print more env info when searching in envs (#8240)

Bug fixes

• resolve #8178, fix conda pip interop assertion error with egg folders (#8184)

• resolve #8157, fix token leakage in errors and config output (#8163)

• resolve #8185, fix conda package filtering with embedded/vendored python metadata (#8198)

• resolve #8199, fix errors on .* in version specs that should have been specific to the ~= operator (#8208)

• fix .bat scripts for handling paths on Windows with spaces (#8215)

• fix powershell scripts for handling paths on Windows with spaces (#8222)

• handle missing rename script more gracefully (especially when updating/installing conda itself) (#8212)

Contributors

• @dhirschfeld

• @jjhelmus

• @kalefranz

• @msarahan

• @murrayreadccdc

• @nehaljwani

• @rrigdon

• @soapy1

4.4.64 4.6.2 (2019-01-29)

Improvements

• Documentation restructuring/improvements (#8139, #8143)

• rewrite rm_rf to use native system utilities and rename trash files (#8134)

234 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug fixes

• fix UnavailableInvalidChannel errors when only noarch subdir is present (#8154)

• document, but disable the allow_conda_downgrades flag, pending re-examination of the warning, which was
blocking conda operations after an upgrade-downgrade cycle across minor versions. (#8160)

• fix conda env export missing pip entries without use of pip interop enabled setting (#8165)

Contributors

• @jjhelmus

• @msarahan

• @nehaljwani

• @rrigdon

4.4.65 4.5.13 (2019-01-29)

Improvements

• document the allow_conda_downgrades configuration parameter (#8034)

• remove conda upgrade message (#8161)

Contributors

• @msarahan

• @nehaljwani

4.4.66 4.6.1 (2019-01-21)

Improvements

• optimizations in get_reduced_index (#8117, #8121, #8122)

Bug Fixes

• fix faulty onerror call for rm (#8053)

• fix activate.bat to use more direct call to conda.bat (don’t require conda init; fix non-interactive script) (#8113)

4.4. Release notes 235

conda, Release 24.3.1.dev75

Contributors

• @jjhelmus

• @msarahan

• @pv

4.4.67 4.6.0 (2019-01-15)

New Feature Highlights

• resolve #7053 preview support for conda operability with pip; disabled by default (#7067, #7370, #7710, #8050)

• conda initialize (#6518, #7388, #7629)

• resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl config (#7195, #7226, #7233)

• resolve #7087 add non-conda-installed python packages into PrefixData (#7067, #7370)

• resolve #2682 add ‘conda run’ preview support (#7320, #7625)

• resolve #626 conda wrapper for PowerShell (#7794, #7829)

Deprecations/Breaking Changes

• resolve #6915 remove ‘conda env attach’ and ‘conda env upload’ (#6916)

• resolve #7061 remove pkgs/pro from defaults (#7162)

• resolve #7078 add deprecation warnings for ‘conda.cli.activate’, ‘conda.compat’, and ‘conda.install’ (#7079)

• resolve #7194 add ‘–stack’ flag to ‘conda activate’; remove max_shlvl config (#7195)

• resolve #6979, #7086 remove Dist from majority of project (#7216, #7252)

• fix #7362 remove --license from conda info and related code paths (#7386)

• resolve #7309 deprecate ‘conda info package_name’ (#7310)

• remove ‘conda clean --source-cache’ and defer to conda-build (#7731)

• resolve #7724 move windows package cache and envs dirs back to .conda directory (#7725)

• disallow env names with colons (#7801)

Improvements

• import speedups (#7122)

• –help cleanup (#7120)

• fish autocompletion for conda env (#7101)

• remove reference to ‘system’ channel (#7163)

• add http error body to debug information (#7160)

• warn creating env name with space is not supported (#7168)

• support complete MatchSpec syntax in environment.yml files (#7178)

• resolve #4274 add option to remove an existing environment with ‘conda create’ (#7133)

236 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• add ability for conda prompt customization via ‘env_prompt’ config param (#7047)

• resolve #7063 add license and license_family to MatchSpec for ‘conda search’ (#7064)

• resolve #7189 progress bar formatting improvement (#7191)

• raise log level for errors to error (#7229)

• add to conda.exports (#7217)

• resolve #6845 add option -S / --satisfied-skip-solve to exit early for satisfied specs (#7291)

• add NoBaseEnvironmentError and DirectoryNotACondaEnvironmentError (#7378)

• replace menuinst subprocessing by ctypes win elevation (4.6.0a3) (#7426)

• bump minimum requests version to stable, unbundled release (#7528)

• resolve #7591 updates and improvements from namespace PR for 4.6 (#7599)

• resolve #7592 compatibility shims (#7606)

• user-agent context refactor (#7630)

• solver performance improvements with benchmarks in common.logic (#7676)

• enable fuzzy-not-equal version constraint for pip interop (#7711)

• add -d short option for --dry-run (#7719)

• add --force-pkgs-dirs option to conda clean (#7719)

• address #7709 ensure --update-deps unlocks specs from previous user requests (#7719)

• add package timestamp information to output of ‘conda search --info’ (#7722)

• resolve #7336 ‘conda search’ tries “fuzzy match” before showing PackagesNotFound (#7722)

• resolve #7656 strict channel priority via ‘channel_priority’ config option or --strict-channel-priority CLI flag
(#7729)

• performance improvement to cache hash value on PackageRecord (#7715)

• resolve #7764 change name of ‘condacmd’ dir to ‘condabin’; use on all platforms (#7773)

• resolve #7782 implement PEP-440 ‘~=’ compatible release operator (#7783)

• disable timestamp prioritization when not needed (#7894, #8012)

• compile pyc files for noarch packages in batches (#8015)

• disable per-file sha256 safety checks by default; add extra_safety_checks condarc option to enable them (#8017)

• shorten retries for file removal on windows, where in-use files can’t be removed (#8024)

• expand env vars in custom_channels, custom_multichannels, default_channels,
migrated_custom_channels, and whitelist_channels (#7826)

• encode repodata to utf-8 while caching, to fix unicode characters in repodata (#7873)

4.4. Release notes 237

conda, Release 24.3.1.dev75

Bug Fixes

• fix #7107 verify hangs when a package is corrupted (#7131)

• fix #7145 progress bar uses stderr instead of stdout (#7146)

• fix typo in conda.fish (#7152)

• fix #2154 conda remove should complain if requested removals don’t exist (#7135)

• fix #7094 exit early for --dry-run with explicit and clone (#7096)

• fix activation script sort order (#7176)

• fix #7109 incorrect chown with sudo (#7180)

• fix #7210 add suppressed --mkdir back to ‘conda create’ (fix for 4.6.0a1) (#7211)

• fix #5681 conda env create / update when --file does not exist (#7385)

• resolve #7375 enable conda config --set update_modifier (#7377)

• fix #5885 improve conda env error messages and add extra tests (#7395)

• msys2 path conversion (#7389)

• fix autocompletion in fish (#7575)

• fix #3982 following 4.4 activation refactor (#7607)

• fix #7242 configuration load error message (#7243)

• fix conda env compatibility with pip 18 (#7612)

• fix #7184 remove conflicting specs to find solution to user’s active request (#7719)

• fix #7706 add condacmd dir to cmd.exe path on first activation (#7735)

• fix #7761 spec handling errors in 4.6.0b0 (#7780)

• fix #7770 ‘conda list regex’ only applies regex to package name (#7784)

• fix #8076 load metadata from index to resolve inconsistent envs (#8083)

Non-User-Facing Changes

• resolve #6595 use OO inheritance in activate.py (#7049)

• resolve #7220 pep8 project renamed to pycodestyle (#7221)

• proxy test routine (#7308)

• add .mailmap and .cla-signers (#7361)

• add copyright headers (#7367)

• rename common.platform to common.os and split among windows, linux, and unix utils (#7396)

• fix windows test failures when symlink not available (#7369)

• test building conda using conda-build (#7251)

• solver test metadata updates (#7664)

• explicitly add Mapping, Sequence to common.compat (#7677)

• add debug messages to communicate solver stages (#7803)

• add undocumented sat_solver config parameter (#7811)

238 Chapter 4. Contributors welcome

http://activate.py

conda, Release 24.3.1.dev75

Preview Releases

• 4.6.0a1 at d5bec21d1f64c3bc66c2999cfc690681e9c46177 on 2018-04-20

• 4.6.0a2 at c467517ca652371ebc4224f0d49315b7ec225108 on 2018-05-01

• 4.6.0b0 at 21a24f02b2687d0895de04664a4ec23ccc75c33a on 2018-09-07

• 4.6.0b1 at 1471f043eed980d62f46944e223f0add6a9a790b on 2018-10-22

• 4.6.0rc1 at 64bde065f8343276f168d2034201115dff7c5753 on 2018-12-31

Contributors

• @cgranade

• @fabioz

• @geremih

• @goanpeca

• @jesse-

• @jjhelmus

• @kalefranz

• @makbigc

• @mandeep

• @mbargull

• @msarahan

• @nehaljwani

• @ohadravid

• @teake

4.4.68 4.5.12 (2018-12-10)

Improvements

• backport ‘allow_conda_downgrade’ configuration parameter, default is False (#7998)

• speed up verification by disabling per-file sha256 checks (#8017)

• indicate Python 3.7 support in setup.py file (#8018)

• speed up solver by reduce the size of reduced index (#8016)

• speed up solver by skipping timestamp minimization when not needed (#8012)

• compile pyc files more efficiently, will speed up install of noarch packages (#8025)

• avoid waiting for removal of files on Windows when possible (#8024)

4.4. Release notes 239

http://setup.py

conda, Release 24.3.1.dev75

Bug Fixes

• update integration tests for removal of ‘features’ key (#7726)

• fix conda.bat return code (#7944)

• ensure channel name is not NoneType (#8021)

Contributors

• @debionne

• @jjhelmus

• @kalefranz

• @msarahan

• @nehaljwani

4.4.69 4.5.11 (2018-08-21)

Improvements

• resolve #7672 compatibility with ruamel.yaml 0.15.54 (#7675)

Contributors

• @CJ-Wright

• @mbargull

4.4.70 4.5.10 (2018-08-13)

Bug Fixes

• fix conda env compatibility with pip 18 (#7627)

• fix py37 compat 4.5.x (#7641)

• fix #7451 don’t print name, version, and size if unknown (#7648)

• replace glob with fnmatch in PrefixData (#7645)

Contributors

• @jesse-

• @nehaljwani

240 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.71 4.5.9 (2018-07-30)

Improvements

• resolve #7522 prevent conda from scheduling downgrades (#7598)

• allow skipping feature maximization in resolver (#7601)

Bug Fixes

• fix #7559 symlink stat in localfs adapter (#7561)

• fix #7486 activate with no PATH set (#7562)

• resolve #7522 prevent conda from scheduling downgrades (#7598)

Contributors

• @kalefranz

• @loriab

4.4.72 4.5.8 (2018-07-10)

Bug Fixes

• fix #7524 should_bypass_proxies for requests 2.13.0 and earlier (#7525)

Contributors

• @kalefranz

4.4.73 4.5.7 (2018-07-09)

Improvements

• resolve #7423 add upgrade error for unsupported repodata_version (#7415)

• raise CondaUpgradeError for conda version downgrades on environments (#7517)

Bug Fixes

• fix #7505 temp directory for UnlinkLinkTransaction should be in target prefix (#7516)

• fix #7506 requests monkeypatch fallback for old requests versions (#7515)

4.4. Release notes 241

conda, Release 24.3.1.dev75

Contributors

• @kalefranz

• @nehaljwani

4.4.74 4.5.6 (2018-07-06)

Bug Fixes

• resolve #7473 py37 support (#7499)

• fix #7494 History spec parsing edge cases (#7500)

• fix requests 2.19 incompatibility with NO_PROXY env var (#7498)

• resolve #7372 disable http error uploads and CI cleanup (#7498, #7501)

Contributors

• @kalefranz

4.4.75 4.5.5 (2018-06-29)

Bug Fixes

• fix #7165 conda version check should be restricted to channel conda is from (#7289, #7303)

• fix #7341 ValueError n cannot be negative (#7360)

• fix #6691 fix history file parsing containing comma-joined version specs (#7418)

• fix msys2 path conversion (#7471)

Contributors

• @goanpeca

• @kalefranz

• @mingwandroid

• @mbargull

4.4.76 4.5.4 (2018-05-14)

Improvements

• resolve #7189 progress bar improvement (#7191 via #7274)

242 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug Fixes

• fix twofold tarball extraction, improve progress update (#7275)

• fix #7253 always respect copy LinkType (#7269)

Contributors

• @jakirkham

• @kalefranz

• @mbargull

4.4.77 4.5.3 (2018-05-07)

Bug Fixes

• fix #7240 conda’s configuration context is not initialized in conda.exports (#7244)

4.4.78 4.5.2 (2018-04-27)

Bug Fixes

• fix #7107 verify hangs when a package is corrupted (#7223)

• fix #7094 exit early for --dry-run with explicit and clone (#7224)

• fix activation/deactivation script sort order (#7225)

4.4.79 4.5.1 (2018-04-13)

Improvements

• resolve #7075 add anaconda.org search message to PackagesNotFoundError (#7076)

• add CondaError details to auto-upload reports (#7060)

Bug Fixes

• fix #6703,#6981 index out of bound when running deactivate on fish shell (#6993)

• properly close over $_CONDA_EXE variable (#7004)

• fix condarc map parsing with comments (#7021)

• fix #6919 csh prompt (#7041)

• add _file_created attribute (#7054)

• fix handling of non-ascii characters in custom_multichannels (#7050)

• fix #6877 handle non-zero return in CSH (#7042)

• fix #7040 update tqdm to version 4.22.0 (#7157)

4.4. Release notes 243

http://anaconda.org

conda, Release 24.3.1.dev75

4.4.80 4.5.0 (2018-03-20)

New Feature Highlights

• A new flag, ‘–envs’, has been added to ‘conda search’. In this mode, ‘conda search’ will look for the package
query in existing conda environments on your system. If ran as UID 0 (i.e. root) on unix systems or as an
Administrator user on Windows, all known conda environments for all users on the system will be searched. For
example, ‘conda search --envs openssl’ will show the openssl version and environment location for all conda-
installed openssl packages.

Deprecations/Breaking Changes

• resolve #6886 transition defaults from repo.continuum.io to repo.anaconda.com (#6887)

• resolve #6192 deprecate ‘conda help’ in favor of --help CLI flag (#6918)

• resolve #6894 add http errors to auto-uploaded error reports (#6895)

Improvements

• resolve #6791 conda search --envs (#6794)

• preserve exit status in fish shell (#6760)

• resolve #6810 add CONDA_EXE environment variable to activate (#6923)

• resolve #6695 outdated conda warning respects --quiet flag (#6935)

• add instructions to activate default environment (#6944)

API

• resolve #5610 add PrefixData, SubdirData, and PackageCacheData to conda/api.py (#6922)

Bug Fixes

• channel matchspec fixes (#6893)

• fix #6930 add missing return statement to S3Adapter (#6931)

• fix #5802, #6736 enforce disallowed_packages configuration parameter (#6932)

• fix #6860 infinite recursion in resolve.py for empty track_features (#6928)

• set encoding for PY2 stdout/stderr (#6951)

• fix #6821 non-deterministic behavior from MatchSpec merge clobbering (#6956)

• fix #6904 logic errors in prefix graph data structure (#6929)

244 Chapter 4. Contributors welcome

http://repo.continuum.io
http://repo.anaconda.com
http://resolve.py

conda, Release 24.3.1.dev75

Non-User-Facing Changes

• fix several lgtm.com flags (#6757, #6883)

• cleanups and refactors for conda 4.5 (#6889)

• unify location of record types in conda/models/records.py (#6924)

• resolve #6952 memoize url search in package cache loading (#6957)

4.4.81 4.4.11 (2018-02-23)

Improvements

• resolve #6582 swallow_broken_pipe context manager and Spinner refactor (#6616)

• resolve #6882 document max_shlvl (#6892)

• resolve #6733 make empty env vars sequence-safe for sequence parameters (#6741)

• resolve #6900 don’t record conda skeleton environments in environments.txt (#6908)

Bug Fixes

• fix potential error in ensure_pad(); add more tests (#6817)

• fix #6840 handle error return values in conda.sh (#6850)

• use conda.gateways.disk for misc.py imports (#6870)

• fix #6672 don’t update conda during conda-env operations (#6773)

• fix #6811 don’t attempt copy/remove fallback for rename failures (#6867)

• fix #6667 aliased posix commands (#6669)

• fix #6816 fish environment autocomplete (#6885)

• fix #6880 build_number comparison not functional in match_spec (#6881)

• fix #6910 sort key prioritizes build string over build number (#6911)

• fix #6914, #6691 conda can fail to update packages even though newer versions exist (#6921)

• fix #6899 handle Unicode output in activate commands (#6909)

4.4.82 4.4.10 (2018-02-09)

Bug Fixes

• fix #6837 require at least futures 3.0.0 (#6855)

• fix #6852 ensure temporary path is writable (#6856)

• fix #6833 improve feature mismatch metric (via 4.3.34 #6853)

4.4. Release notes 245

http://lgtm.com
http://conda.sh
http://misc.py

conda, Release 24.3.1.dev75

4.4.83 4.4.9 (2018-02-06)

Improvements

• resolve #6632 display package removal plan when deleting an env (#6801)

Bug Fixes

• fix #6531 don’t drop credentials for conda-build workaround (#6798)

• fix external command execution issue (#6789)

• fix #5792 conda env export error common in path (#6795)

• fix #6390 add CorruptedEnvironmentError (#6778)

• fix #5884 allow --insecure CLI flag without contradicting meaning of ssl_verify (#6782)

• fix MatchSpec.match() accepting dict (#6808)

• fix broken Anaconda Prompt for users with spaces in paths (#6825)

• JSONDecodeError was added in Python 3.5 (#6848)

• fix #6796 update PATH/prompt on reactivate (#6828)

• fix #6401 non-ascii characters on windows using expanduser (#6847)

• fix #6824 import installers before invoking any (#6849)

4.4.84 4.4.8 (2018-01-25)

Improvements

• allow falsey values for default_python to avoid pinning python (#6682)

• resolve #6700 add message for no space left on device (#6709)

• make variable ‘sourced’ local for posix shells (#6726)

• add column headers to conda list results (#5726)

Bug Fixes

• fix #6713 allow parenthesis in prefix path for conda.bat (#6722)

• fix #6684 --force message (#6723)

• fix #6693 KeyError with ‘–update-deps’ (#6694)

• fix aggressive_update_packages availability (#6727)

• fix #6745 don’t truncate channel priority map in conda installer (#6746)

• add workaround for system Python usage by lsb_release (#6769)

• fix #6624 can’t start new thread (#6653)

• fix #6628 ‘conda install --rev’ in conda 4.4 (#6724)

• fix #6707 FileNotFoundError when extracting tarball (#6708)

246 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• fix #6704 unexpected token in conda.bat (#6710)

• fix #6208 return for no pip in environment (#6784)

• fix #6457 env var cleanup (#6790)

• fix #6645 escape paths for argparse help (#6779)

• fix #6739 handle unicode in environment variables for py2 activate (#6777)

• fix #6618 RepresenterError with ‘conda config --set’ (#6619)

• fix #6699 suppress memory error upload reports (#6776)

• fix #6770 CRLF for cmd.exe (#6775)

• fix #6514 add message for case-insensitive filesystem errors (#6764)

• fix #6537 AttributeError value for url not set (#6754)

• fix #6748 only warn if unable to register environment due to EACCES (#6752)

4.4.85 4.4.7 (2018-01-08)

Improvements

• resolve #6650 add upgrade message for unicode errors in python 2 (#6651)

Bug Fixes

• fix #6643 difference between ‘==’ and ‘exact_match_’ (#6647)

• fix #6620 KeyError(u’CONDA_PREFIX’,) (#6652)

• fix #6661 remove env from environments.txt (#6662)

• fix #6629 ‘conda update --name’ AssertionError (#6656)

• fix #6630 repodata AssertionError (#6657)

• fix #6626 add setuptools as constrained dependency (#6654)

• fix #6659 conda list explicit should be dependency sorted (#6671)

• fix #6665 KeyError for channel ‘’ (#6668, #6673)

• fix #6627 AttributeError on ‘conda activate’ (#6655)

4.4.86 4.4.6 (2017-12-31)

Bug Fixes

• fix #6612 do not assume Anaconda Python on Windows nor Library\bin hack (#6615)

• recipe test improvements and associated bug fixes (#6614)

4.4. Release notes 247

conda, Release 24.3.1.dev75

4.4.87 4.4.5 (2017-12-29)

Bug Fixes

• fix #6577, #6580 single quote in PS1 (#6585)

• fix #6584 os.getcwd() FileNotFound (#6589)

• fix #6592 deactivate command order (#6602)

• fix #6579 python not recognized as command (#6588)

• fix #6572 cached repodata PermissionsError (#6573)

• change instances of ‘root’ to ‘base’ (#6598)

• fix #6607 use subprocess rather than execv for conda command extensions (#6609)

• fix #6581 git-bash activation (#6587)

• fix #6599 space in path to base prefix (#6608)

4.4.88 4.4.4 (2017-12-24)

Improvements

• add SUDO_ env vars to info reports (#6563)

• add additional information to the #6546 exception (#6551)

Bug Fixes

• fix #6548 ‘conda update’ installs packages not in prefix #6550

• fix #6546 update after creating an empty env (#6568)

• fix #6557 conda list FileNotFoundError (#6558)

• fix #6554 package cache FileNotFoundError (#6555)

• fix #6529 yaml parse error (#6560)

• fix #6562 repodata_record.json permissions error stack trace (#6564)

• fix #6520 --use-local flag (#6526)

4.4.89 4.4.3 (2017-12-22)

Improvements

• adjust error report message (#6534)

248 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug Fixes

• fix #6530 package cache JsonDecodeError / ValueError (#6533)

• fix #6538 BrokenPipeError (#6540)

• fix #6532 remove anaconda metapackage hack (#6539)

• fix #6536 ‘conda env export’ for old versions of pip (#6535)

• fix #6541 py2 and unicode in environments.txt (#6542)

Non-User-Facing Changes

• regression tests for #6512 (#6515)

4.4.90 4.4.2 (2017-12-22)

Deprecations/Breaking Changes

• resolve #6523 don’t prune with --update-all (#6524)

Bug Fixes

• fix #6508 environments.txt permissions error stack trace (#6511)

• fix #6522 error message formatted incorrectly (#6525)

• fix #6516 hold channels over from get_index to install_actions (#6517)

4.4.91 4.4.1 (2017-12-21)

Bug Fixes

• fix #6512 reactivate does not accept arguments (#6513)

4.4.92 4.4.0 (2017-12-20)

Recommended change to enable conda in your shell

With the release of conda 4.4, we recommend a change to how the conda command is made available to your shell
environment. All the old methods still work as before, but you’ll need the new method to enable the new conda
activate and conda deactivate commands.

For the “Anaconda Prompt” on Windows, there is no change.

For Bourne shell derivatives (bash, zsh, dash, etc.), you likely currently have a line similar to

export PATH="/opt/conda/bin:$PATH"

in your ~/.bashrc file (or ~/.bash_profile file on macOS). The effect of this line is that your base environment
is put on PATH, but without actually activating that environment. (In 4.4 we’ve renamed the ‘root’ environment to
the ‘base’ environment.) With conda 4.4, we recommend removing the line where the PATH environment variable is
modified, and replacing it with

4.4. Release notes 249

conda, Release 24.3.1.dev75

. /opt/conda/etc/profile.d/conda.sh
conda activate base

In the above, it’s assumed that /opt/conda is the location where you installed miniconda or Anaconda. It may also
be something like ~/Anaconda3 or ~/miniconda2.

For system-wide conda installs, to make the conda command available to all users, rather than manipulating individual
~/.bashrc (or ~/.bash_profile) files for each user, just execute once

$ sudo ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh

This will make the conda command itself available to all users, but conda’s base (root) environment will not be activated
by default. Users will still need to run conda activate base to put the base environment on PATH and gain access
to the executables in the base environment.

After updating to conda 4.4, we also recommend pinning conda to a specific channel. For example, executing the
command

$ conda config --system --add pinned_packages conda-canary::conda

will make sure that whenever conda is installed or changed in an environment, the source of the package is always being
pulled from the conda-canary channel. This will be useful for people who use conda-forge, to prevent conda from
flipping back and forth between 4.3 and 4.4.

New Feature Highlights

• conda activate: The logic and mechanisms underlying environment activation have been reworked. With conda
4.4, conda activate and conda deactivate are now the preferred commands for activating and deactivating
environments. You’ll find they are much more snappy than the source activate and source deactivate
commands from previous conda versions. The conda activate command also has advantages of (1) being uni-
versal across all OSes, shells, and platforms, and (2) not having path collisions with scripts from other packages
like python virtualenv’s activate script.

• constrained, optional dependencies: Conda now allows a package to constrain versions of other packages
installed alongside it, even if those constrained packages are not themselves hard dependencies for that package.
In other words, it lets a package specify that, if another package ends up being installed into an environment,
it must at least conform to a certain version specification. In effect, constrained dependencies are a type of
“reverse” dependency. It gives a tool to a parent package to exclude other packages from an environment that
might otherwise want to depend on it.

Constrained optional dependencies are supported starting with conda-build 3.0 (via [conda/conda-
build#2001[(https://github.com/conda/conda-build/pull/2001)). A new run_constrained keyword, which
takes a list of package specs similar to the run keyword, is recognized under the requirements section of
meta.yaml. For backward compatibility with versions of conda older than 4.4, a requirement may be listed in
both the run and the run_constrained section. In that case older versions of conda will see the package as a
hard dependency, while conda 4.4 will understand that the package is meant to be optional.

Optional, constrained dependencies end up in repodata.json under a constrains keyword, parallel to the
depends keyword for a package’s hard dependencies.

• enhanced package query language: Conda has a built-in query language for searching for and matching pack-
ages, what we often refer to as MatchSpec. The MatchSpec is what users input on the command line when they
specify packages for create, install, update, and remove operations. With this release, MatchSpec (rather
than a regex) becomes the default input for conda search. We have also substantially enhanced our MatchSpec
query language.

For example,

250 Chapter 4. Contributors welcome

https://github.com/conda/conda-build/pull/2001

conda, Release 24.3.1.dev75

conda install conda-forge::python

is now a valid command, which specifies that regardless of the active list of channel priorities, the python pack-
age itself should come from the conda-forge channel. As before, the difference between python=3.5 and
python==3.5 is that the first contains a “fuzzy” version while the second contains an exact version. The fuzzy
spec will match all python packages with versions >=3.5 and <3.6. The exact spec will match only python
packages with version 3.5, 3.5.0, 3.5.0.0, etc. The canonical string form for a MatchSpec is thus

(channel::)name(version(build_string))

which should feel natural to experienced conda users. Specifications however are often necessarily more com-
plicated than this simple form can support, and for these situations we’ve extended the specification to include an
optional square bracket [] component containing comma-separated key-value pairs to allow matching on most
any field contained in a package’s metadata. Take, for example,

conda search 'conda-forge/linux-64::*[md5=e42a03f799131d5af4196ce31a1084a7]' --info

which results in information for the single package

cytoolz 0.8.2 py35_0

file name : cytoolz-0.8.2-py35_0.tar.bz2
name : cytoolz
version : 0.8.2
build string: py35_0
build number: 0
size : 1.1 MB
arch : x86_64
platform : Platform.linux
license : BSD 3-Clause
subdir : linux-64
url : https://conda.anaconda.org/conda-forge/linux-64/cytoolz-0.8.2-py35_0.
→˓tar.bz2
md5 : e42a03f799131d5af4196ce31a1084a7
dependencies:
- python 3.5*
- toolz >=0.8.0

The square bracket notation can also be used for any field that we match on outside the package name, and
will override information given in the “simple form” position. To give a contrived example, python==3.
5[version='>=2.7,<2.8'] will match 2.7.* versions and not 3.5.

• environments track user-requested state: Building on our enhanced MatchSpec query language, conda en-
vironments now also track and differentiate (a) packages added to an environment because of an explicit user
request from (b) packages brought into an environment to satisfy dependencies. For example, executing

conda install conda-forge::scikit-learn

will confine all future changes to the scikit-learn package in the environment to the conda-forge channel, until
the spec is changed again. A subsequent command conda install scikit-learn=0.18 would drop the
conda-forge channel restriction from the package. And in this case, scikit-learn is the only user-defined spec,
so the solver chooses dependencies from all configured channels and all available versions.

• errors posted to core maintainers: In previous versions of conda, unexpected errors resulted in a request for
users to consider posting the error as a new issue on conda’s github issue tracker. In conda 4.4, we’ve implemented

4.4. Release notes 251

conda, Release 24.3.1.dev75

a system for users to opt-in to sending that same error report via an HTTP POST request directly to the core
maintainers.

When an unexpected error is encountered, users are prompted with the error report followed by a [y/N] input.
Users can elect to send the report, with ‘no’ being the default response. Users can also permanently opt-in or
opt-out, thereby skipping the prompt altogether, using the boolean report_errors configuration parameter.

• various UI improvements: To push through some of the big leaps with transactions in conda 4.3, we accepted
some regressions on progress bars and other user interface features. All of those indicators of progress, and
more, have been brought back and further improved.

• aggressive updates: Conda now supports an aggressive_update_packages configuration parameter that
holds a sequence of MatchSpec strings, in addition to the pinned_packages configuration parameter. Cur-
rently, the default value contains the packages ca-certificates, certifi, and openssl. When manipulat-
ing configuration with the conda config command, use of the --system and --env flags will be especially
helpful here. For example,

conda config --add aggressive_update_packages defaults::pyopenssl --system

would ensure that, system-wide, solves on all environments enforce using the latest version of pyopenssl from
the defaults channel.

conda config --add pinned_packages python=2.7 --env

would lock all solves for the current active environment to python versions matching 2.7.*.

• other configuration improvements: In addition to conda config --describe, which shows detailed
descriptions and default values for all available configuration parameters, we have a new conda config
--write-default command. This new command simply writes the contents of conda config --describe
to a condarc file, which is a great starter template. Without additional arguments, the command will write to the
.condarc file in the user’s home directory. The command also works with the --system, --env, and --file
flags to write the contents to alternate locations.

Conda exposes a tremendous amount of flexibility via configuration. For more information, The Conda Config-
uration Engine for Power Users blog post is a good resource.

Deprecations/Breaking Changes

• the conda ‘root’ environment is now generally referred to as the ‘base’ environment

• Conda 4.4 now warns when available information about per-path sha256 sums and file sizes do not match the
recorded information. The warning is scheduled to be an error in conda 4.5. Behavior is configurable via the
safety_checks configuration parameter.

• remove support for with_features_depends (#5191)

• resolve #5468 remove --alt-hint from CLI API (#5469)

• resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5835)

• resolve #5842 add deprecation warnings for ‘conda env upload’ and ‘conda env attach’ (#5843)

252 Chapter 4. Contributors welcome

https://www.continuum.io/blog/developer-blog/conda-configuration-engine-power-users
https://www.continuum.io/blog/developer-blog/conda-configuration-engine-power-users

conda, Release 24.3.1.dev75

API

• Add Solver from conda.core.solver with three methods to conda.api (4.4.0rc1) (#5838)

Improvements

• constrained, optional dependencies (#4982)

• conda shell function (#5044, #5141, #5162, #5169, #5182, #5210, #5482)

• resolve #5160 conda xontrib plugin (#5157)

• resolve #1543 add support and tests for --no-deps and --only-deps (#5265)

• resolve #988 allow channel name to be part of the package name spec (#5365, #5791)

• resolve #5530 add ability for users to choose to post unexpected errors to core maintainers (#5531, #5571, #5585)

• Solver, UI, History, and Other (#5546, #5583, #5740)

• improve ‘conda search’ to leverage new MatchSpec query language (#5597)

• filter out unwritable package caches from conda clean command (#4620)

• envs_manager, requested spec history, declarative solve, and private env tests (#4676, #5114, #5094, #5145,
#5492)

• make python entry point format match pip entry points (#5010)

• resolve #5113 clean up CLI imports to improve process startup time (#4799)

• resolve #5121 add features/track_features support for MatchSpec (#5054)

• resolve #4671 hold verify backoff count in transaction context (#5122)

• resolve #5078 record package metadata after tarball extraction (#5148)

• resolve #3580 support stacking environments (#5159)

• resolve #3763, #4378 allow pip requirements.txt syntax in environment files (#3969)

• resolve #5147 add ‘config files’ to conda info (#5269)

• use --format=json to parse list of pip packages (#5205)

• resolve #1427 remove startswith ‘.’ environment name constraint (#5284)

• link packages from extracted tarballs when tarball is gone (#5289)

• resolve #2511 accept config information from stdin (#5309)

• resolve #4302 add ability to set map parameters with conda config (#5310)

• resolve #5256 enable conda config --get for all primitive parameters (#5312)

• resolve #1992 add short flag -C for --use-index-cache (#5314)

• resolve #2173 add --quiet option to conda clean (#5313)

• resolve #5358 conda should exec to subcommands, not subprocess (#5359)

• resolve #5411 add ‘conda config --write-default’ (#5412)

• resolve #5081 make pinned packages optional dependencies (#5414)

• resolve #5430 eliminate current deprecation warnings (#5422)

• resolve #5470 make stdout/stderr capture in python_api customizable (#5471)

4.4. Release notes 253

conda, Release 24.3.1.dev75

• logging simplifications/improvements (#5547, #5578)

• update license information (#5568)

• enable threadpool use for repodata collection by default (#5546, #5587)

• conda info now raises PackagesNotFoundError (#5655)

• index building optimizations (#5776)

• fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

• add constrained dependencies to conda’s own recipe (4.4.0rc1) (#5823)

• clean up parser imports (4.4.0rc2) (#5844)

• resolve #5983 add --download-only flag to create, install, and update (4.4.0rc2) (#5988)

• add ca-certificates and certifi to aggressive_update_packages default (4.4.0rc2) (#5994)

• use environments.txt to list all known environments (4.4.0rc2) (#6313)

• resolve #5417 ensure unlink order is correctly sorted (4.4.0) (#6364)

• resolve #5370 index is only prefix and cache in --offline mode (4.4.0) (#6371)

• reduce redundant sys call during file copying (4.4.0rc3) (#6421)

• enable aggressive_update_packages (4.4.0rc3) (#6392)

• default conda.sh to dash if otherwise can’t detect (4.4.0rc3) (#6414)

• canonicalize package names when comparing with pip (4.4.0rc3) (#6438)

• add target prefix override configuration parameter (4.4.0rc3) (#6413)

• resolve #6194 warn when conda is outdated (4.4.0rc3) (#6370)

• add information to displayed error report (4.4.0rc3) (#6437)

• csh wrapper (4.4.0) (#6463)

• resolve #5158 --override-channels (4.4.0) (#6467)

• fish update for conda 4.4 (4.4.0) (#6475, #6502)

• skip an unnecessary environments.txt rewrite (4.4.0) (#6495)

Bug Fixes

• fix some conda-build compatibility issues (#5089)

• resolve #5123 export toposort (#5124)

• fix #5132 signal handler can only be used in main thread (#5133)

• fix orphaned --clobber parser arg (#5188)

• fix #3814 don’t remove directory that’s not a conda environment (#5204)

• fix #4468 _license stack trace (#5206)

• fix #4987 conda update --all no longer displays full list of packages (#5228)

• fix #3489 don’t error on remove --all if environment doesn’t exist (#5231)

• fix #1509 bash doesn’t need full path for pre/post link/unlink scripts on unix (#5252)

• fix #462 add regression test (#5286)

254 Chapter 4. Contributors welcome

http://conda.sh

conda, Release 24.3.1.dev75

• fix #5288 confirmation prompt doesn’t accept no (#5291)

• fix #1713 ‘conda package -w’ is case dependent on Windows (#5308)

• fix #5371 try falling back to pip’s vendored requests if no requests available (#5372)

• fix #5356 skip root logger configuration (#5380)

• fix #5466 scrambled URL of non-alias channel with token (#5467)

• fix #5444 environment.yml file not found (#5475)

• fix #3200 use proper unbound checks in bash code and test (#5476)

• invalidate PrefixData cache on rm_rf for conda-build (#5491, #5499)

• fix exception when generating JSON output (#5628)

• fix target prefix determination (#5642)

• use proxy to avoid segfaults (#5716)

• fix #5790 incorrect activation message (4.4.0rc1) (#5820)

• fix #5808 assertion error when loading package cache (4.4.0rc1) (#5815)

• fix #5809 _pip_install_via_requirements got an unexpected keyword argument ‘prune’ (4.4.0rc1) (#5814)

• fix #5811 change safety_checks default to ‘warn’ for conda 4.4 (4.4.0rc1) (#5824)

• fix #5825 --json output format (4.4.0rc1) (#5831)

• fix force_reinstall for case when packages aren’t actually installed (4.4.0rc1) (#5836)

• fix #5680 empty pip subsection error in environment.yml (4.4.0rc2) (#6275)

• fix #5852 bad tokens from history crash conda installs (4.4.0rc2) (#6076)

• fix #5827 no error message on invalid command (4.4.0rc2) (#6352)

• fix exception handler for ‘conda activate’ (4.4.0rc2) (#6365)

• fix #6173 double prompt immediately after conda 4.4 upgrade (4.4.0rc2) (#6351)

• fix #6181 keep existing pythons pinned to minor version (4.4.0rc2) (#6363)

• fix #6201 incorrect subdir shown for conda search when package not found (4.4.0rc2) (#6367)

• fix #6045 help message and zsh shift (4.4.0rc3) (#6368)

• fix noarch python package resintall (4.4.0rc3) (#6394)

• fix #6366 shell activation message (4.4.0rc3) (#6369)

• fix #6429 AttributeError on ‘conda remove’ (4.4.0rc3) (#6434)

• fix #6449 problems with ‘conda info --envs’ (#6451)

• add debug exception for #6430 (4.4.0rc3) (#6435)

• fix #6441 NotImplementedError on ‘conda list’ (4.4.0rc3) (#6442)

• fix #6445 scale back directory activation in PWD (4.4.0rc3) (#6447)

• fix #6283 no-deps for conda update case (4.4.0rc3) (#6448)

• fix #6419 set PS1 in python code (4.4.0rc3) (#6446)

• fix #6466 sp_dir doesn’t exist (#6470)

• fix #6350 --update-all removes too many packages (4.4.0) (#6491)

4.4. Release notes 255

conda, Release 24.3.1.dev75

• fix #6057 unlink-link order for python noarch packages on windows 4.4.x (4.4.0) (#6494)

Non-User-Facing Changes

• eliminate index modification in Resolve init (#4333)

• new MatchSpec implementation (#4158, #5517)

• update conda.recipe for 4.4 (#5086)

• resolve #5118 organization and cleanup for 4.4 release (#5115)

• remove unused disk space check instructions (#5167)

• localfs adapter tests (#5181)

• extra config command tests (#5185)

• add coverage for confirm (#5203)

• clean up FileNotFoundError and DirectoryNotFoundError (#5237)

• add assertion that a path only has a single hard link before rewriting prefixes (#5305)

• remove pycrypto as requirement on windows (#5326)

• import cleanup, dead code removal, coverage improvements, and other housekeeping (#5472, #5474, #5480)

• rename CondaFileNotFoundError to PathNotFoundError (#5521)

• work toward repodata API (#5267)

• rename PackageNotFoundError to PackagesNotFoundError and fix message formatting (#5602)

• update conda 4.4 bld.bat windows recipe (#5573)

• remove last remnant of CondaEnvRuntimeError (#5643)

• fix typo (4.4.0rc2) (#6043)

• replace Travis-CI with CircleCI (4.4.0rc2) (#6345)

• key-value features (#5645); reverted in 4.4.0rc2 (#6347, #6492)

• resolve #6431 always add env_vars to info_dict (4.4.0rc3) (#6436)

• move shell inside conda directory (4.4.0) (#6479)

• remove dead code (4.4.0) (#6489)

4.4.93 4.3.34 (2018-02-09)

Bug Fixes

• fix #6833 improve feature mismatch metric (#6853)

256 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.94 4.3.33 (2018-01-24)

Bug Fixes

• fix #6718 broken ‘conda install --rev’ (#6719)

• fix #6765 adjust the feature score assigned to packages not installed (#6766)

4.4.95 4.3.32 (2018-01-10)

Improvements

• resolve #6711 fall back to copy/unlink for EINVAL, EXDEV rename failures (#6712)

Bug Fixes

• fix #6057 unlink-link order for python noarch packages on windows (#6277)

• fix #6509 custom_channels incorrect in ‘conda config --show’ (#6510)

4.4.96 4.3.31 (2017-12-15)

Improvements

• add delete_trash to conda_env create (#6299)

Bug Fixes

• fix #6023 assertion error for temp file (#6154)

• fix #6220 --no-builds flag for ‘conda env export’ (#6221)

• fix #6271 timestamp prioritization results in undesirable race-condition (#6279)

Non-User-Facing Changes

• fix two failing integration tests after anaconda.org API change (#6182)

• resolve #6243 mark root as not writable when sys.prefix is not a conda environment (#6274)

• add timing instrumentation (#6458)

4.4.97 4.3.30 (2017-10-17)

Improvements

• address #6056 add additional proxy variables to ‘conda info --all’ (#6083)

4.4. Release notes 257

http://anaconda.org

conda, Release 24.3.1.dev75

Bug Fixes

• address #6164 move add_defaults_to_specs after augment_specs (#6172)

• fix #6057 add additional detail for message ‘cannot link source that does not exist’ (#6082)

• fix #6084 setting default_channels from CLI raises NotImplementedError (#6085)

4.4.98 4.3.29 (2017-10-09)

Bug Fixes

• fix #6096 coerce to millisecond timestamps (#6131)

4.4.99 4.3.28 (2017-10-06)

Bug Fixes

• fix #5854 remove imports of pkg_resources (#5991)

• fix millisecond timestamps (#6001)

4.4.100 4.3.27 (2017-09-18)

Bug Fixes

• fix #5980 always delete_prefix_from_linked_data in rm_rf (#5982)

4.4.101 4.3.26 (2017-09-15)

Deprecations/Breaking Changes

• resolve #5922 prioritize channels within multi-channels (#5923)

• add https://repo.continuum.io/pkgs/main to defaults multi-channel (#5931)

Improvements

• add a channel priority minimization pass to solver logic (#5859)

• invoke cmd.exe with /D for pre/post link/unlink scripts (#5926)

• add boto3 use to s3 adapter (#5949)

258 Chapter 4. Contributors welcome

https://repo.continuum.io/pkgs/main

conda, Release 24.3.1.dev75

Bug Fixes

• always remove linked prefix entry with rm_rf (#5846)

• resolve #5920 bump repodata pickle version (#5921)

• fix msys2 activate and deactivate (#5950)

4.4.102 4.3.25 (2017-08-16)

Deprecations/Breaking Changes

• resolve #5834 change default value of ‘allow_softlinks’ from True to False (#5839)

Improvements

• add non-admin check to optionally disable non-privileged operation (#5724)

• add extra warning message to always_softlink configuration option (#5826)

Bug Fixes

• fix #5763 channel url string splitting error (#5764)

• fix regex for repodata _mod and _etag (#5795)

• fix uncaught OSError for missing device (#5830)

4.4.103 4.3.24 (2017-07-31)

Bug Fixes

• fix #5708 package priority sort order (#5733)

4.4.104 4.3.23 (2017-07-21)

Improvements

• resolve #5391 PackageNotFound and NoPackagesFoundError clean up (#5506)

Bug Fixes

• fix #5525 too many Nones in CondaHttpError (#5526)

• fix #5508 assertion failure after test file not cleaned up (#5533)

• fix #5523 catch OSError when home directory doesn’t exist (#5549)

• fix #5574 traceback formatting (#5580)

• fix #5554 logger configuration levels (#5555)

• fix #5649 create_default_packages configuration (#5703)

4.4. Release notes 259

conda, Release 24.3.1.dev75

4.4.105 4.3.22 (2017-06-12)

Improvements

• resolve #5428 clean up cli import in conda 4.3.x (#5429)

• resolve #5302 add warning when creating environment with space in path (#5477)

• for ftp connections, ignore host IP from PASV as it is often wrong (#5489)

• expose common race condition exceptions in exports for conda-build (#5498)

Bug Fixes

• fix #5451 conda clean --json bug (#5452)

• fix #5400 confusing deactivate message (#5473)

• fix #5459 custom subdir channel parsing (#5478)

• fix #5483 problem with setuptools / pkg_resources import (#5496)

4.4.106 4.3.21 (2017-05-25)

Bug Fixes

• fix #5420 conda-env update error (#5421)

• fix #5425 is admin on win int not callable (#5426)

4.4.107 4.3.20 (2017-05-23)

Improvements

• resolve #5217 skip user confirm in python_api, force always_yes (#5404)

Bug Fixes

• fix #5367 conda info always shows ‘unknown’ for admin indicator on Windows (#5368)

• fix #5248 drop plan description information that might not always be accurate (#5373)

• fix #5378 duplicate log messages (#5379)

• fix #5298 record has ‘build’, not ‘build_string’ (#5382)

• fix #5384 silence logging info to avoid interfering with JSON output (#5393)

• fix #5356 skip root/conda logger init for cli.python_api (#5405)

260 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Non-User-Facing Changes

• avoid persistent state after channel priority test (#5392)

• resolve #5402 add regression test for #5384 (#5403)

• clean up inner function definition inside for loop (#5406)

4.4.108 4.3.19 (2017-05-18)

Improvements

• resolve #3689 better error messaging for missing anaconda-client (#5276)

• resolve #4795 conda env export lacks -p flag (#5275)

• resolve #5315 add alias verify_ssl for ssl_verify (#5316)

• resolve #3399 add netrc existence/location to ‘conda info’ (#5333)

• resolve #3810 add --prefix to conda env update (#5335)

Bug Fixes

• fix #5272 conda env export ugliness under python2 (#5273)

• fix #4596 warning message from pip on conda env export (#5274)

• fix #4986 --yes not functioning for conda clean (#5311)

• fix #5329 unicode errors on Windows (#5328, #5357)

• fix sys_prefix_unfollowed for Python 3 (#5334)

• fix #5341 --json flag with conda-env (#5342)

• fix 5321 ensure variable PROMPT is set in activate.bat (#5351)

Non-User-Facing Changes

• test conda 4.3 with requests 2.14.2 (#5281)

• remove pycrypto as requirement on windows (#5325)

• fix typo avaialble -> available (#5345)

• fix test failures related to menuinst update (#5344, #5362)

4.4.109 4.3.18 (2017-05-09)

Improvements

• resolve #4224 warn when pysocks isn’t installed (#5226)

• resolve #5229 add --insecure flag to skip ssl verification (#5230)

• resolve #4151 add admin indicator to conda info on windows (#5241)

4.4. Release notes 261

conda, Release 24.3.1.dev75

Bug Fixes

• fix #5152 conda info spacing (#5166)

• fix --use-index-cache actually hitting the index cache (#5134)

• backport LinkPathAction verify from 4.4 (#5171)

• fix #5184 stack trace on invalid map configuration parameter (#5186)

• fix #5189 stack trace on invalid sequence config param (#5192)

• add support for the linux-aarch64 platform (#5190)

• fix repodata fetch with the --offline flag (#5146)

• fix #1773 conda remove spell checking (#5176)

• fix #3470 reduce excessive error messages (#5195)

• fix #1597 make extra sure --dry-run doesn’t take any actions (#5201)

• fix #3470 extra newlines around exceptions (#5200)

• fix #5214 install messages for ‘nothing_to_do’ case (#5216)

• fix #598 stack trace for condarc write permission denied (#5232)

• fix #4960 extra information when exception can’t be displayed (#5236)

• fix #4974 no matching dist in linked data for prefix (#5239)

• fix #5258 give correct element types for conda config --describe (#5259)

• fix #4911 separate shutil.copy2 into copy and copystat (#5261)

Non-User-Facing Changes

• resolve #5138 add test of rm_rf of symlinked files (#4373)

• resolve #4516 add extra trace-level logging (#5249, #5250)

• add tests for --update-deps flag (#5264)

4.4.110 4.3.17 (2017-04-24)

Improvements

• fall back to copy if hardlink fails (#5002)

• add timestamp metadata for tiebreaking conda-build 3 hashed packages (#5018)

• resolve #5034 add subdirs configuration parameter (#5030)

• resolve #5081 make pinned packages optional/constrained dependencies (#5088)

• resolve #5108 improve behavior and add tests for spaces in paths (#4786)

262 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug Fixes

• quote prefix paths for locations with spaces (#5009)

• remove binstar logger configuration overrides (#4989)

• fix #4969 error in DirectoryNotFoundError (#4990)

• fix #4998 pinned string format (#5011)

• fix #5039 collecting main_info shouldn’t fail on requests import (#5090)

• fix #5055 improve bad token message for anaconda.org (#5091)

• fix #5033 only re-register valid signal handlers (#5092)

• fix #5028 imports in main_list (#5093)

• fix #5073 allow client_ssl_cert{_key} to be of type None (#5096)

• fix #4671 backoff for package validate race condition (#5098)

• fix #5022 gnu_get_libc_version => linux_get_libc_version (#5099)

• fix #4849 package name match bug (#5103)

• fixes #5102 allow proxy_servers to be of type None (#5107)

• fix #5111 incorrect typify for str + NoneType (#5112)

Non-User-Facing Changes

• resolve #5012 remove CondaRuntimeError and RuntimeError (#4818)

• full audit ensuring relative import paths within project (#5090)

• resolve #5116 refactor conda/cli/activate.py to help menuinst (#4406)

4.4.111 4.3.16 (2017-03-30)

Improvements

• additions to configuration SEARCH_PATH to improve consistency (#4966)

• add ‘conda config --describe’ and extra config documentation (#4913)

• enable packaging pinning in condarc using pinned_packages config parameter as beta feature (#4921, #4964)

Bug Fixes

• fix #4914 handle directory creation on top of file paths (#4922)

• fix #3982 issue with CONDA_ENV and using powerline (#4925)

• fix #2611 update instructions on how to source conda.fish (#4924)

• fix #4860 missing information on package not found error (#4935)

• fix #4944 command not found error error (#4963)

4.4. Release notes 263

http://anaconda.org

conda, Release 24.3.1.dev75

4.4.112 4.3.15 (2017-03-20)

Improvements

• allow pkgs_dirs to be configured using conda config (#4895)

Bug Fixes

• remove incorrect elision of delete_prefix_from_linked_data() (#4814)

• fix envs_dirs order for read-only root prefix (#4821)

• fix break-point in conda clean (#4801)

• fix long shebangs when creating entry points (#4828)

• fix spelling and typos (#4868, #4869)

• fix #4840 TypeError reduce() of empty sequence with no initial value (#4843)

• fix zos subdir (#4875)

• fix exceptions triggered during activate (#4873)

4.4.113 4.3.14 (2017-03-03)

Improvements

• use cPickle in place of pickle for repodata (#4717)

• ignore pyc compile failure (#4719)

• use conda.exe for windows entry point executable (#4716, #4720)

• localize use of conda_signal_handler (#4730)

• add skip_safety_checks configuration parameter (#4767)

• never symlink executables using ORIGIN (#4625)

• set activate.bat codepage to CP_ACP (#4558)

Bug Fixes

• fix #4777 package cache initialization speed (#4778)

• fix #4703 menuinst PathNotFoundException (#4709)

• ignore permissions error if user_site can’t be read (#4710)

• fix #4694 don’t import requests directly in models (#4711)

• fix #4715 include resources directory in recipe (#4716)

• fix CondaHttpError for URLs that contain ‘%’ (#4769)

• bug fixes for preferred envs (#4678)

• fix #4745 check for info/index.json with package is_extracted (#4776)

• make sure url gets included in CondaHTTPError (#4779)

264 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• fix #4757 map-type configs set to None (#4774)

• fix #4788 partial package extraction (#4789)

Non-User-Facing Changes

• test coverage improvement (#4607)

• CI configuration improvements (#4713, #4773, #4775)

• allow sha256 to be None (#4759)

• add cache_fn_url to exports (#4729)

• add unicode paths for PY3 integration tests (#4760)

• additional unit tests (#4728, #4783)

• fix conda-build compatibility and tests (#4785)

4.4.114 4.3.13 (2017-02-17)

Improvements

• resolve #4636 environment variable expansion for pkgs_dirs (#4637)

• link, symlink, islink, and readlink for Windows (#4652, #4661)

• add extra information to CondaHTTPError (#4638, #4672)

Bug Fixes

• maximize requested builds after feature determination (#4647)

• fix #4649 incorrect assert statement concerning package cache directory (#4651)

• multi-user mode bug fixes (#4663)

Non-User-Facing Changes

• path_actions unit tests (#4654)

• remove dead code (#4369, #4655, #4660)

• separate repodata logic from index into a new core/repodata.py module (#4669)

4.4.115 4.3.12 (2017-02-14)

Improvements

• prepare conda for uploading to pypi (#4619)

• better general http error message (#4627)

• disable old python noarch warning (#4576)

4.4. Release notes 265

conda, Release 24.3.1.dev75

Bug Fixes

• fix UnicodeDecodeError for ensure_text_type (#4585)

• fix determination of if file path is writable (#4604)

• fix #4592 BufferError cannot close exported pointers exist (#4628)

• fix run_script current working directory (#4629)

• fix pkgs_dirs permissions regression (#4626)

Non-User-Facing Changes

• fixes for tests when conda-bld directory doesn’t exist (#4606)

• use requirements.txt and Makefile for travis-ci setup (#4600, #4633)

• remove hasattr use from compat functions (#4634)

4.4.116 4.3.11 (2017-02-09)

Bug Fixes

• fix attribute error in add_defaults_to_specs (#4577)

4.4.117 4.3.10 (2017-02-07)

Improvements

• remove .json from pickle path (#4498)

• improve empty repodata noarch warning and error messages (#4499)

• don’t add python and lua as default specs for private envs (#4529, #4533)

• let default_python be None (#4547, #4550)

Bug Fixes

• fix #4513 null pointer exception for channel without noarch (#4518)

• fix ssl_verify set type (#4517)

• fix bug for windows multiuser (#4524)

• fix clone with noarch python packages (#4535)

• fix ipv6 for python 2.7 on Windows (#4554)

266 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Non-User-Facing Changes

• separate integration tests with a marker (#4532)

4.4.118 4.3.9 (2017-01-31)

Improvements

• improve repodata caching for performance (#4478, #4488)

• expand scope of packages included by bad_installed (#4402)

• silence pre-link warning for old noarch (#4451)

• add configuration to optionally require noarch repodata (#4450)

• improve conda subprocessing (#4447)

• respect info/link.json (#4482)

Bug Fixes

• fix #4398 ‘hard’ was used for link type at one point (#4409)

• fixed “No matches for wildcard ‘$activate_d/*.fish’” warning (#4415)

• print correct activate/deactivate message for fish shell (#4423)

• fix ‘Dist’ object has no attribute ‘fn’ (#4424)

• fix noarch generic and add additional integration test (#4431)

• fix #4425 unknown encoding (#4433)

Non-User-Facing Changes

• fail CI on conda-build fail (#4405)

• run doctests (#4414)

• make index record mutable again (#4461)

• additional test for conda list --json (#4480)

4.4.119 4.3.8 (2017-01-23)

Bug Fixes

• fix #4309 ignore EXDEV error for directory renames (#4392)

• fix #4393 by force-renaming certain backup files if the path already exists (#4397)

4.4. Release notes 267

conda, Release 24.3.1.dev75

4.4.120 4.3.7 (2017-01-20)

Bug Fixes

• actually revert json output for leaky plan (#4383)

• fix not raising on pre/post-link error (#4382)

• fix find_commands and find_executable for symlinks (#4387)

4.4.121 4.3.6 (2017-01-18)

Bug Fixes

• fix ‘Uncaught backoff with errno 41’ warning on windows (#4366)

• revert json output for leaky plan (#4349)

• audit os.environ setting (#4360)

• fix #4324 using old dist string instead of dist object (#4361)

• fix #4351 infinite recursion via code in #4120 (#4370)

• fix #4368 conda -h (#4367)

• workaround for symlink race conditions on activate (#4346)

4.4.122 4.3.5 (2017-01-17)

Improvements

• add exception message for corrupt repodata (#4315)

Bug Fixes

• fix package not being found in cache after download (#4297)

• fix logic for Content-Length mismatch (#4311, #4326)

• use unicode_escape after etag regex instead of utf-8 (#4325)

• fix #4323 central condarc file being ignored (#4327)

• fix #4316 a bug in deactivate (#4316)

• pass target_prefix as env_prefix regardless of is_unlink (#4332)

• pass positional argument ‘context’ to BasicClobberError (#4335)

268 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Non-User-Facing Changes

• additional package pinning tests (#4317)

4.4.123 4.3.4 (2017-01-13)

Improvements

• vendor url parsing from urllib3 (#4289)

Bug Fixes

• fix some bugs in windows multi-user support (#4277)

• fix problems with channels of type (#4290)

• include aliases for first command-line argument (#4279)

• fix for multi-line FTP status codes (#4276)

Non-User-Facing Changes

• make arch in IndexRecord a StringField instead of EnumField

• improve conda-build compatibility (#4266)

4.4.124 4.3.3 (2017-01-10)

Improvements

• respect Cache-Control max-age header for repodata (#4220)

• add ‘local_repodata_ttl’ configurability (#4240)

• remove questionable “nothing to install” logic (#4237)

• relax channel noarch requirement for 4.3; warn now, raise in future feature release (#4238)

• add additional info to setup.py warning message (#4258)

Bug Fixes

• remove features properly (#4236)

• do not use IFS to find activate/deactivate scripts to source (#4239)

• fix #4235 print message to stderr (#4241)

• fix relative path to python in activate.bat (#4242)

• fix args.channel references (#4245, #4246)

• ensure cache_fn_url right pad (#4255)

• fix #4256 subprocess calls must have env wrapped in str (#4259)

4.4. Release notes 269

http://setup.py

conda, Release 24.3.1.dev75

4.4.125 4.3.2 (2017-01-06)

Deprecations/Breaking Changes

• Further refine conda channels specification. To verify if the url of a channel represents a valid conda channel,
we check that noarch/repodata.json and/or noarch/repodata.json.bz2 exist, even if empty. (#3739)

Improvements

• add new ‘path_conflict’ and ‘clobber’ configuration options (#4119)

• separate fetch/extract pass for explicit URLs (#4125)

• update conda homepage to conda.io (#4180)

Bug Fixes

• fix pre/post unlink/link scripts (#4113)

• fix package version regex and bug in create_link (#4132)

• fix history tracking (#4143)

• fix index creation order (#4131)

• fix #4152 conda env export failure (#4175)

• fix #3779 channel UNC path encoding errors on windows (#4190)

• fix progress bar (#4191)

• use context.channels instead of args.channel (#4199)

• don’t use local cached repodata for file:// urls (#4209)

Non-User-Facing Changes

• xfail anaconda token test if local token is found (#4124)

• fix open-ended test failures relating to python 3.6 release (#4145)

• extend timebomb for test_multi_channel_export (#4169)

• don’t unlink dists that aren’t in the index (#4130)

• add python 3.6 and new conda-build test targets (#4194)

4.4.126 4.3.1 (2016-12-19)

Improvements

• additional pre-transaction validation (#4090)

• export FileMode enum for conda-build (#4080)

• memoize disk permissions tests (#4091)

• local caching of repodata without remote server calls; new ‘repodata_timeout_secs’ configuration parameter
(#4094)

270 Chapter 4. Contributors welcome

http://conda.io

conda, Release 24.3.1.dev75

• performance tuning (#4104)

• add additional fields to dist object serialization (#4102)

Bug Fixes

• fix a noarch install bug on windows (#4071)

• fix a spec mismatch that resulted in python versions getting mixed during packaging (#4079)

• fix rollback linked record (#4092)

• fix #4097 keep split in PREFIX_PLACEHOLDER (#4100)

4.4.127 4.3.0 (2016-12-14) Safety

New Features

• Unlink and Link Packages in a Single Transaction: In the past, conda hasn’t always been safe and defensive
with its disk-mutating actions. It has gleefully clobbered existing files, and mid-operation failures leave envi-
ronments completely broken. In some of the most severe examples, conda can appear to “uninstall itself.” With
this release, the unlinking and linking of packages for an executed command is done in a single transaction. If
a failure occurs for any reason while conda is mutating files on disk, the environment will be returned its pre-
vious state. While we’ve implemented some pre-transaction checks (verifying package integrity for example),
it’s impossible to anticipate every failure mechanism. In some circumstances, OS file permissions cannot be
fully known until an operation is attempted and fails. And conda itself is not without bugs. Moving forward,
unforeseeable failures won’t be catastrophic. (#3833, #4030)

• Progressive Fetch and Extract Transactions: Like package unlinking and linking, the download and extract
phases of package handling have also been given transaction-like behavior. The distinction is the rollback on
error is limited to a single package. Rather than rolling back the download and extract operation for all packages,
the single-package rollback prevents the need for having to re-download every package if an error is encountered.
(#4021, #4030)

• Generic- and Python-Type Noarch/Universal Packages: Along with conda-build 2.1.0, a noarch/universal
type for python packages is officially supported. These are much like universal python wheels. Files in a python
noarch package are linked into a prefix just like any other conda package, with the following additional features

1. conda maps the site-packages directory to the correct location for the python version in the environment,

2. conda maps the python-scripts directory to either 𝑃𝑅𝐸𝐹𝐼𝑋/𝑏𝑖𝑛𝑜𝑟PREFIX/Scripts depending on plat-
form,

3. conda creates the python entry points specified in the conda-build recipe, and

4. conda compiles pyc files at install time when prefix write permissions are guaranteed.

Python noarch packages must be “fully universal.” They cannot have OS- or python version-specific dependen-
cies. They cannot have OS- or python version-specific “scripts” files. If these features are needed, traditional
conda packages must be used. (#3712)

• Multi-User Package Caches: While the on-disk package cache structure has been preserved, the core logic
implementing package cache handling has had a complete overhaul. Writable and read-only package caches are
fully supported. (#4021)

• Python API Module: An oft requested feature is the ability to use conda as a python library, obviating the need
to “shell out” to another python process. Conda 4.3 includes a conda.cli.python_api module that facilitates
this use case. While we maintain the user-facing command-line interface, conda commands can be executed
in-process. There is also a conda.exports module to facilitate longer-term usage of conda as a library across

4.4. Release notes 271

conda, Release 24.3.1.dev75

conda conda releases. However, conda’s python code is considered internal and private, subject to change at any
time across releases. At the moment, conda will not install itself into environments other than its original install
environment. (#4028)

• Remove All Locks: Locking has never been fully effective in conda, and it often created a false sense of security.
In this release, multi-user package cache support has been implemented for improved safety by hard-linking
packages in read-only caches to the user’s primary user package cache. Still, users are cautioned that undefined
behavior can result when conda is running in multiple process and operating on the same package caches and/or
environments. (#3862)

Deprecations/Breaking Changes

• Conda will refuse to clobber existing files that are not within the unlink instructions of the transaction. At the risk
of being user-hostile, it’s a step forward for conda. We do anticipate some growing pains. For example, conda
will not clobber packages that have been installed with pip (or any other package manager). In other instances,
conda packages that contain overlapping file paths but are from different package families will not install at the
same time. The --force command line flag is the escape hatch. Using --forcewill let your operation proceed,
but also makes clear that you want conda to do something it considers unsafe.

• Conda signed packages have been removed in 4.3. Vulnerabilities existed. An illusion of security is worse than
not having the feature at all. We will be incorporating The Update Framework into conda in a future feature
release. (#4064)

• Conda 4.4 will drop support for older versions of conda-build.

Improvements

• create a new “trace” log level enabled by -v -v -v or -vvv (#3833)

• allow conda to be installed with pip, but only when used as a library/dependency (#4028)

• the ‘r’ channel is now part of defaults (#3677)

• private environment support for conda (#3988)

• support v1 info/paths.json file (#3927, #3943)

• support v1 info/package_metadata.json (#4030)

• improved solver hint detection, simplified filtering (#3597)

• cache VersionOrder objects to improve performance (#3596)

• fix documentation and typos (#3526, #3572, #3627)

• add multikey configuration validation (#3432)

• some Fish autocompletions (#2519)

• reduce priority for packages removed from the index (#3703)

• add user-agent, uid, gid to conda info (#3671)

• add conda.exports module (#3429)

• make http timeouts configurable (#3832)

• add a pkgs_dirs config parameter (#3691)

• add an ‘always_softlink’ option (#3870, #3876)

• pre-checks for diskspace, etc for fetch and extract #(4007)

272 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• address #3879 don’t print activate message when quiet config is enabled (#3886)

• add zos-z subdir (#4060)

• add elapsed time to HTTP errors (#3942)

Bug Fixes

• account for the Windows Python 2.7 os.environ unicode aversion (#3363)

• fix link field in record object (#3424)

• anaconda api token bug fix; additional tests (#3673)

• fix #3667 unicode literals and unicode decode (#3682)

• add conda-env entrypoint (#3743)

• fix #3807 json dump on conda config --show --json (#3811)

• fix #3801 location of temporary hard links of index.json (#3813)

• fix invalid yml example (#3849)

• add arm platforms back to subdirs (#3852)

• fix #3771 better error message for assertion errors (#3802)

• fix #3999 spaces in shebang replacement (#4008)

• config --show-sources shouldn’t show force by default (#3891)

• fix #3881 don’t install conda-env in clones of root (#3899)

• conda-build dist compatibility (#3909)

Non-User-Facing Changes

• remove unnecessary eval (#3428)

• remove dead install_tar function (#3641)

• apply PEP-8 to conda-env (#3653)

• refactor dist into an object (#3616)

• vendor appdirs; remove conda’s dependency on anaconda-client import (#3675)

• revert boto patch from #2380 (#3676)

• move and update ROOT_NO_RM (#3697)

• integration tests for conda clean (#3695, #3699)

• disable coverage on s3 and ftp requests adapters (#3696, #3701)

• github repo hygiene (#3705, #3706)

• major install refactor (#3712)

• remove test timebombs (#4012)

• LinkType refactor (#3882)

• move CrossPlatformStLink and make available as export (#3887)

• make Record immutable (#3965)

4.4. Release notes 273

conda, Release 24.3.1.dev75

• project housekeeping (#3994, #4065)

• context-dependent setup.py files (#4057)

4.4.128 4.2.17 (unreleased)

Improvements

• silence pre-link warning for old noarch 4.2.x backport (#4453)

Bug Fixes

• remove incorrect elision of delete_prefix_from_linked_data() (#4813)

• fix CB #1825 context clobbering (#4867)

• fix #5101 api->conda regex substitution for Anaconda API channels (#5100)

Non-User-Facing Changes

• build 4.2.x against conda-build 2.1.2 and enforce passing (#4462)

4.4.129 4.2.16 (2017-01-20)

Improvements

• vendor url parsing from urllib3 (#4289)

• workaround for symlink race conditions on activate (#4346)

Bug Fixes

• do not replace \ with / in file:// URLs on Windows (#4269)

• include aliases for first command-line argument (#4279)

• fix for multi-line FTP status codes (#4276)

• fix errors with unknown type channels (#4291)

• change sys.exit to raise UpgradeError when info/files not found (#4388)

Non-User-Facing Changes

• start using doctests in test runs and coverage (#4304)

• additional package pinning tests (#4312)

274 Chapter 4. Contributors welcome

http://setup.py

conda, Release 24.3.1.dev75

4.4.130 4.2.15 (2017-01-10)

Improvements

• use ‘post’ instead of ‘dev’ for commits according to PEP-440 (#4234)

• do not use IFS to find activate/deactivate scripts to source (#4243)

• fix relative path to python in activate.bat (#4244)

Bug Fixes

• replace sed with python for activate and deactivate #4257

4.4.131 4.2.14 (2017-01-07)

Improvements

• use install.rm_rf for TemporaryDirectory cleanup (#3425)

• improve handling of local dependency information (#2107)

• add default channels to exports for Windows and Unix (#4103)

• make subdir configurable (#4178)

Bug Fixes

• fix conda/install.py single-file behavior (#3854)

• fix the api->conda substitution (#3456)

• fix silent directory removal (#3730)

• fix location of temporary hard links of index.json (#3975)

• fix potential errors in multi-channel export and offline clone (#3995)

• fix auxlib/packaging, git hashes are not limited to 7 characters (#4189)

• fix compatibility with requests >=2.12, add pyopenssl as dependency (#4059)

• fix #3287 activate in 4.1-4.2.3 clobbers non-conda PATH changes (#4211)

Non-User-Facing Changes

• fix open-ended test failures relating to python 3.6 release (#4166)

• allow args passed to cli.main() (#4193, #4200, #4201)

• test against python 3.6 (#4197)

4.4. Release notes 275

conda, Release 24.3.1.dev75

4.4.132 4.2.13 (2016-11-22)

Deprecations/Breaking Changes

• show warning message for pre-link scripts (#3727)

• error and exit for install of packages that require conda minimum version 4.3 (#3726)

Improvements

• double/extend http timeouts (#3831)

• let descriptive http errors cover more http exceptions (#3834)

• backport some conda-build configuration (#3875)

Bug Fixes

• fix conda/install.py single-file behavior (#3854)

• fix the api->conda substitution (#3456)

• fix silent directory removal (#3730)

• fix #3910 null check for is_url (#3931)

Non-User-Facing Changes

• flake8 E116, E121, & E123 enabled (#3883)

4.4.133 4.2.12 (2016-11-02)

Bug Fixes

• fix #3732, #3471, #3744 CONDA_BLD_PATH (#3747)

• fix #3717 allow no-name channels (#3748)

• fix #3738 move conda-env to ruamel_yaml (#3740)

• fix conda-env entry point (#3745 via #3743)

• fix again #3664 trash emptying (#3746)

4.4.134 4.2.11 (2016-10-23)

Improvements

• only try once for windows trash removal (#3698)

276 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Bug Fixes

• fix anaconda api token bug (#3674)

• fix #3646 FileMode enum comparison (#3683)

• fix #3517 conda install --mkdir (#3684)

• fix #3560 hack anaconda token coverup on conda info (#3686)

• fix #3469 alias envs_path to envs_dirs (#3685)

4.4.135 4.2.10 (2016-10-18)

Improvements

• add json output for conda info -s (#3588)

• ignore certain binary prefixes on windows (#3539)

• allow conda config files to have .yaml extensions or ‘condarc’ anywhere in filename (#3633)

Bug Fixes

• fix conda-build’s handle_proxy_407 import (#3666)

• fix #3442, #3459, #3481, #3531, #3548 multiple networking and auth issues (#3550)

• add back linux-ppc64le subdir support (#3584)

• fix #3600 ensure links are removed when unlinking (#3625)

• fix #3602 search channels by platform (#3629)

• fix duplicated packages when updating environment (#3563)

• fix #3590 exception when parsing invalid yaml (#3593 via #3634)

• fix #3655 a string decoding error (#3656)

Non-User-Facing Changes

• backport conda.exports module to 4.2.x (#3654)

• travis-ci OSX fix (#3615 via #3657)

4.4.136 4.2.9 (2016-09-27)

Bug Fixes

• fix #3536 conda-env messaging to stdout with --json flag (#3537)

• fix #3525 writing to sys.stdout with --json flag for post-link scripts (#3538)

• fix #3492 make NULL falsey with python 3 (#3524)

4.4. Release notes 277

conda, Release 24.3.1.dev75

4.4.137 4.2.8 (2016-09-26)

Improvements

• add “error” key back to json error output (#3523)

Bug Fixes

• fix #3453 conda fails with create_default_packages (#3454)

• fix #3455 --dry-run fails (#3457)

• dial down error messages for rm_rf (#3522)

• fix #3467 AttributeError encountered for map config parameter validation (#3521)

4.4.138 4.2.7 (2016-09-16)

Deprecations/Breaking Changes

• revert to 4.1.x behavior of conda list --export (#3450, #3451)

Bug Fixes

• don’t add binstar token if it’s given in the channel spec (#3427, #3440, #3444)

• fix #3433 failure to remove broken symlinks (#3436)

Non-User-Facing Changes

• use install.rm_rf for TemporaryDirectory cleanup (#3425)

4.4.139 4.2.6 (2016-09-14)

Improvements

• add support for client TLS certificates (#3419)

• address #3267 allow migration of channel_alias (#3410)

• conda-env version matches conda version (#3422)

Bug Fixes

• fix #3409 unsatisfiable dependency error message (#3412)

• fix #3408 quiet rm_rf (#3413)

• fix #3407 padding error messaging (#3416)

• account for the Windows Python 2.7 os.environ unicode aversion (#3363 via #3420)

278 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.140 4.2.5 (2016-09-08)

Deprecations/Breaking Changes

• partially revert #3041 giving conda config --add previous --prepend behavior (#3364 via #3370)

• partially revert #2760 adding back conda package command (#3398)

Improvements

• order output of conda config --show; make --json friendly (#3384 via #3386)

• clean the pid based lock on exception (#3325)

• improve file removal on all platforms (#3280 via #3396)

Bug Fixes

• fix #3332 allow download urls with :: in them (#3335)

• fix always_yes and not-set argparse args overriding other sources (#3374)

• fix ftp fetch timeout (#3392)

• fix #3307 add try/except block for touch lock (#3326)

• fix CONDA_CHANNELS environment variable splitting (#3390)

• fix #3378 CONDA_FORCE_32BIT environment variable (#3391)

• make conda info channel urls actually give urls (#3397)

• fix cio_test compatibility (#3395 via #3400)

4.4.141 4.2.4 (2016-08-18)

Bug Fixes

• fix #3277 conda list package order (#3278)

• fix channel priority issue with duplicated channels (#3283)

• fix local channel channels; add full conda-build unit tests (#3281)

• fix conda install with no package specified (#3284)

• fix #3253 exporting and importing conda environments (#3286)

• fix priority messaging on conda config --get (#3304)

• fix conda list --export; additional integration tests (#3291)

• fix conda update --all idempotence; add integration tests for channel priority (#3306)

4.4. Release notes 279

conda, Release 24.3.1.dev75

Non-User-Facing Changes

• additional conda-env integration tests (#3288)

4.4.142 4.2.3 (2016-08-11)

Improvements

• added zsh and zsh.exe to Windows shells (#3257)

Bug Fixes

• allow conda to downgrade itself (#3273)

• fix breaking changes to conda-build from 4.2.2 (#3265)

• fix empty environment issues with conda and conda-env (#3269)

Non-User-Facing Changes

• add integration tests for conda-env (#3270)

• add more conda-build smoke tests (#3274)

4.4.143 4.2.2 (2016-08-09)

Improvements

• enable binary prefix replacement on windows (#3262)

• add --verbose command line flag (#3237)

• improve logging and exception detail (#3237, #3252)

• do not remove empty environment without asking; raise an error when a named environment can’t be found
(#3222)

Bug Fixes

• fix #3226 user condarc not available on Windows (#3228)

• fix some bugs in conda config --show* (#3212)

• fix conda-build local channel bug (#3202)

• remove subprocess exiting message (#3245)

• fix comment parsing and channels in conda-env environment.yml (#3258, #3259)

• fix context error with conda-env (#3232)

• fix #3182 conda install silently skipping failed linking (#3184)

280 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.144 4.2.1 (2016-08-01)

Improvements

• improve an error message that can happen during conda install --revision (#3181)

• use clean sys.exit with user choice ‘No’ (#3196)

Bug Fixes

• critical fix for 4.2.0 error when no git is on PATH (#3193)

• revert #3171 lock cleaning on exit pending further refinement

• patches for conda-build compatibility with 4.2 (#3187)

• fix a bug in --show-sources output that ignored aliased parameter names (#3189)

Non-User-Facing Changes

• move scripts in bin to shell directory (#3186)

4.4.145 4.2.0 (2016-07-28) Configuration

New Features

• New Configuration Engine: Configuration and “operating context” are the foundation of conda’s functionality.
Conda now has the ability to pull configuration information from a multitude of on-disk locations, including
.d directories and a .condarc file within a conda environment), along with full CONDA_ environment variable
support. Helpful validation errors are given for improperly-specified configuration. Full documentation updates
pending. (#2537, #3160, #3178)

• New Exception Handling Engine: Previous releases followed a pattern of premature exiting (with hard calls to
sys.exit() when exceptional circumstances were encountered. This release replaces over 100 sys.exit calls
with python exceptions. For conda developers, this will result in tests that are easier to write. For developers
using conda, this is a first step on a long path toward conda being directly importable. For conda users, this will
eventually result in more helpful and descriptive errors messages. (#2899, #2993, #3016, #3152, #3045)

• Empty Environments: Conda can now create “empty” environments when no initial packages are specified,
alleviating a common source of confusion. (#3072, #3174)

• Conda in Private Env: Conda can now be configured to live within its own private environment. While it’s not
yet default behavior, this represents a first step toward separating the root environment into a “conda private”
environment and a “user default” environment. (#3068)

• Regex Version Specification: Regular expressions are now valid version specifiers. For example, ^1\.[5-8]\
.1$|2.2. (#2933)

4.4. Release notes 281

conda, Release 24.3.1.dev75

Deprecations/Breaking Changes

• remove conda init (#2759)

• remove conda package and conda bundle (#2760)

• deprecate conda-env repo; pull into conda proper (#2950, #2952, #2954, #3157, #3163, #3170)

• force use of ruamel_yaml (#2762)

• implement conda config --prepend; change behavior of --add to --append (#3041)

• exit on link error instead of logging it (#2639)

Improvements

• improve locking (#2962, #2989, #3048, #3075)

• clean up requests usage for fetching packages (#2755)

• remove excess output from conda --help (#2872)

• remove os.remove in update_prefix (#3006)

• better error behavior if conda is spec’d for a non-root environment (#2956)

• scale back try_write function on unix (#3076)

Bug Fixes

• remove psutil requirement, fixes annoying error message (#3135, #3183)

• fix #3124 add threading lock to memoize (#3134)

• fix a failure with multi-threaded repodata downloads (#3078)

• fix windows file url (#3139)

• address #2800, error with environment.yml and non-default channels (#3164)

Non-User-Facing Changes

• project structure enhancement (#2929, #3132, #3133, #3136)

• clean up channel handling with new channel model (#3130, #3151)

• add Anaconda Cloud / Binstar auth handler (#3142)

• remove dead code (#2761, #2969)

• code refactoring and additional tests (#3052, #3020)

• remove auxlib from project root (#2931)

• vendor auxlib 0.0.40 (#2932, #2943, #3131)

• vendor toolz 0.8.0 (#2994)

• move progressbar to vendor directory (#2951)

• fix conda.recipe for new quirks with conda-build (#2959)

• move captured function to common module (#3083)

282 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• rename CHANGELOG to md (#3087)

4.4.146 4.1.13 (unreleased)

• improve handling of local dependency information, #2107

• show warning message for pre-link scripts, #3727

• error and exit for install of packages that require conda minimum version 4.3, #3726

• fix conda/install.py single-file behavior, #3854

• fix open-ended test failures relating to python 3.6 release, #4167

• fix #3287 activate in 4.1-4.2.3 clobbers non-conda PATH changes, #4211

• fix relative path to python in activate.bat, #4244

4.4.147 4.1.12 (2016-09-08)

• fix #2837 “File exists” in symlinked path with parallel activations, #3210

• fix prune option when installing packages, #3354

• change check for placeholder to be more friendly to long PATH, #3349

4.4.148 4.1.11 (2016-07-26)

• fix PS1 backup in activate script, #3135 via #3155

• correct resolution for ‘handle failures in binstar_client more generally’, #3156

4.4.149 4.1.10 (2016-07-25)

• ignore symlink failure because of read-only file system, #3055

• backport shortcut tests, #3064

• fix #2979 redefinition of $SHELL variable, #3081

• fix #3060 --clone root --copy exception, #3080

4.4.150 4.1.9 (2016-07-20)

• fix #3104, add global BINSTAR_TOKEN_PAT

• handle failures in binstar_client more generally

4.4. Release notes 283

conda, Release 24.3.1.dev75

4.4.151 4.1.8 (2016-07-12)

• fix #3004 UNAUTHORIZED for url (null binstar token), #3008

• fix overwrite existing redirect shortcuts when symlinking envs, #3025

• partially revert no default shortcuts, #3032, #3047

4.4.152 4.0.11 2016-07-09

• allow auto_update_conda from sysrc, #3015 via #3021

4.4.153 4.1.7 (2016-07-07)

• add msys2 channel to defaults on Windows, #2999

• fix #2939 channel_alias issues; improve offline enforcement, #2964

• fix #2970, #2974 improve handling of file:// URLs inside channel, #2976

4.4.154 4.1.6 (2016-07-01)

• slow down exp backoff from 1 ms to 100 ms factor, #2944

• set max time on exp_backoff to ~6.5 sec,#2955

• fix #2914 add/subtract from PATH; kill folder output text, #2917

• normalize use of get_index behavior across clone/explicit, #2937

• wrap root prefix check with normcase, #2938

4.4.155 4.1.5 (2016-06-29)

• more conservative auto updates of conda #2900

• fix some permissions errors with more aggressive use of move_path_to_trash, #2882

• fix #2891 error if allow_other_channels setting is used, #2896

• fix #2886, #2907 installing a tarball directly from the package cache, #2908

• fix #2681, #2778 reverting #2320 lock behavior changes, #2915

4.4.156 4.0.10 (2016-06-29)

• fix #2846 revert the use of UNC paths; shorten trash filenames, #2859 via #2878

• fix some permissions errors with more aggressive use of move_path_to_trash, #2882 via #2894

284 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.157 4.1.4 (2016-06-27)

• fix #2846 revert the use of UNC paths; shorten trash filenames, #2859

• fix exp backoff on Windows, #2860

• fix #2845 URL for local file repos, #2862

• fix #2764 restore full path var on win; create to CONDA_PREFIX env var, #2848

• fix #2754 improve listing pip installed packages, #2873

• change root prefix detection to avoid clobbering root activate scripts, #2880

• address #2841 add lowest and highest priority indication to channel config output, #2875

• add SYMLINK_CONDA to planned instructions, #2861

• use CONDA_PREFIX, not CONDA_DEFAULT_ENV for activate.d, #2856

• call scripts with redirect on win; more error checking to activate, #2852

4.4.158 4.1.3 (2016-06-23)

• ensure conda-env auto update, along with conda, #2772

• make yaml booleans behave how everyone expects them to, #2784

• use accept-encoding for repodata; prefer repodata.json to repodata.json.bz2, #2821

• additional integration and regression tests, #2757, #2774, #2787

• add offline mode to printed info; use offline flag when grabbing channels, #2813

• show conda-env version in conda info, #2819

• adjust channel priority superseded list, #2820

• support epoch ! characters in command line specs, #2832

• accept old default names and new ones when canonicalizing channel URLs #2839

• push PATH, PS1 manipulation into shell scripts, #2796

• fix #2765 broken source activate without arguments, #2806

• fix standalone execution of install.py, #2756

• fix #2810 activating conda environment broken with git bash on Windows, #2795

• fix #2805, #2781 handle both file-based channels and explicit file-based URLs, #2812

• fix #2746 conda create --clone of root, #2838

• fix #2668, #2699 shell recursion with activate #2831

4.4. Release notes 285

http://install.py

conda, Release 24.3.1.dev75

4.4.159 4.1.2 (2016-06-17)

• improve messaging for “downgrades” due to channel priority, #2718

• support conda config channel append/prepend, handle duplicates, #2730

• remove --shortcuts option to internal CLI code, #2723

• fix an issue concerning space characters in paths in activate.bat, #2740

• fix #2732 restore yes/no/on/off for booleans on the command line, #2734

• fix #2642 tarball install on Windows, #2729

• fix #2687, #2697 WindowsError when creating environments on Windows, #2717

• fix #2710 link instruction in conda create causes TypeError, #2715

• revert #2514, #2695, disabling of .netrc files, #2736

• revert #2281 printing progress bar to terminal, #2707

4.4.160 4.1.1 (2016-06-16)

• add auto_update_conda config parameter, #2686

• fix #2669 conda config --add channels can leave out defaults, #2670

• fix #2703 ignore activate symlink error if links already exist, #2705

• fix #2693 install duplicate packages with older version of Anaconda, #2701

• fix #2677 respect HTTP_PROXY, #2695

• fix #2680 broken fish integration, #2685, #2694

• fix an issue with conda never exiting, #2689

• fix #2688 explicit file installs, #2708

• fix #2700 conda list UnicodeDecodeError, #2706

4.4.161 4.0.9 (2016-06-15)

• add auto_update_conda config parameter, #2686

4.4.162 4.1.0 (2016-06-14) Channel Priority

• clean up activate and deactivate scripts, moving back to conda repo, #1727, #2265, #2291, #2473, #2501, #2484

• replace pyyaml with ruamel_yaml, #2283, #2321

• better handling of channel collisions, #2323, #2369 #2402, #2428

• improve listing of pip packages with conda list, #2275

• re-license progressbar under BSD 3-clause, #2334

• reduce the amount of extraneous info in hints, #2261

• add --shortcuts option to install shortcuts on windows, #2623

• skip binary replacement on windows, #2630

286 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• don’t show channel urls by default in conda list, #2282

• package resolution and solver tweaks, #2443, #2475, #2480

• improved version & build matching, #2442, #2488

• print progress to the terminal rather than stdout, #2281

• verify version specs given on command line are valid, #2246

• fix for try_write function in case of odd permissions, #2301

• fix a conda search --spec error, #2343

• update User-Agent for conda connections, #2347

• remove some dead code paths, #2338, #2374

• fixes a thread safety issue with http requests, #2377, #2383

• manage BeeGFS hard-links non-POSIX configuration, #2355

• prevent version downgrades during removes, #2394

• fix conda info --json, #2445

• truncate shebangs over 127 characters using /usr/bin/env, #2479

• extract packages to a temporary directory then rename, #2425, #2483

• fix help in install, #2460

• fix re-install bug when sha1 differs, #2507

• fix a bug with file deletion, #2499

• disable .netrc files, #2514

• dont fetch index on remove --all, #2553

• allow track_features to be a string or a list in .condarc, #2541

• fix #2415 infinite recursion in invalid_chains, #2566

• allow channel_alias to be different than binstar, #2564

4.4.163 4.0.8 (2016-06-03)

• fix a potential problem with moving files to trash, #2587

4.4.164 4.0.7 (2016-05-26)

• workaround for boto bug, #2380

4.4. Release notes 287

conda, Release 24.3.1.dev75

4.4.165 4.0.6 (2016-05-11)

• log “custom” versions as updates rather than downgrades, #2290

• fixes a TypeError exception that can occur on install/update, #2331

• fixes an error on Windows removing files with long path names, #2452

4.4.166 4.0.5 (2016-03-16)

• improved help documentation for install, update, and remove, #2262

• fixes #2229 and #2250 related to conda update errors on Windows, #2251

• fixes #2258 conda list for pip packages on Windows, #2264

4.4.167 4.0.4 (2016-03-10)

• revert #2217 closing request sessions, #2233

4.4.168 4.0.3 (2016-03-10)

• adds a conda clean --all feature, #2211

• solver performance improvements, #2209

• fixes conda list for pip packages on windows, #2216

• quiets some logging for package downloads under python 3, #2217

• more urls for conda list --explicit, #1855

• prefer more “latest builds” for more packages, #2227

• fixes a bug with dependency resolution and features, #2226

4.4.169 4.0.2 (2016-03-08)

• fixes track_features in ~/.condarc being a list, see also #2203

• fixes incorrect path in lock file error #2195

• fixes issues with cloning environments, #2193, #2194

• fixes a strange interaction between features and versions, #2206

• fixes a bug in low-level SAT clause generation creating a preference for older versions, #2199

288 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.170 4.0.1 (2016-03-07)

• fixes an install issue caused by md5 checksum mismatches, #2183

• remove auxlib build dependency, #2188

4.4.171 4.0.0 (2016-03-04) Solver

• The solver has been retooled significantly. Performance should be improved in most circumstances, and a number
of issues involving feature conflicts should be resolved.

• conda update <package> now handles dependencies properly according to the setting of the “update_deps”
configuration: –update-deps: conda will also update any dependencies as needed to install the latest version of the
requested packages. The minimal set of changes required to achieve this is sought. –no-update-deps: conda will
update the packages only to the extent that no updates to the dependencies are required The previous behavior,
which would update the packages without regard to their dependencies, could result in a broken configuration,
and has been removed.

• Conda finally has an official logo.

• Fix conda clean --packages on Windows, #1944

• Conda sub-commands now support dashes in names, #1840

4.4.172 3.19.4 (unreleased)

• improve handling of local dependency information, #2107

• use install.rm_rf for TemporaryDirectory cleanup, #3425

• fix the api->conda substitution, #3456

• error and exit for install of packages that require conda minimum version 4.3, #3726

• show warning message for pre-link scripts, #3727

• fix silent directory removal, #3730

• fix conda/install.py single-file behavior, #3854

4.4.173 3.19.3 (2016-02-19)

• fix critical issue, see #2106

4.4.174 3.19.2 (2016-02-19)

• add basic activate/deactivate, conda activate/deactivate/ls for fish, see #545

• remove error when CONDA_FORCE_32BIT is set on 32-bit systems, #1985

• suppress help text for --unknown option, #2051

• fix issue with conda create --clone post-link scripts, #2007

• fix a permissions issue on windows, #2083

4.4. Release notes 289

conda, Release 24.3.1.dev75

4.4.175 3.19.1 (2016-02-01)

• resolve.py: properly escape periods in version numbers, #1926

• support for pinning Lua by default, #1934

• remove hard-coded test URLs, a module cio_test is now expected when CIO_TEST is set

4.4.176 3.19.0 (2015-12-17)

• OpenBSD 5.x support, #1891

• improve install CLI to make Miniconda -f work, #1905

4.4.177 3.18.9 (2015-12-10)

• allow chaining default_channels (only applies to “system” condarc), from from CLI, #1886

• improve default for --show-channel-urls in conda list, #1900

4.4.178 3.18.8 (2015-12-03)

• always attempt to delete files in rm_rf, #1864

4.4.179 3.18.7 (2015-12-02)

• simplify call to menuinst.install()

• add menuinst as dependency on Windows

• add ROOT_PREFIX to post-link (and pre_unlink) environment

4.4.180 3.18.6 (2015-11-19)

• improve conda clean when user lacks permissions, #1807

• make show_channel_urls default to True, #1771

• cleaner write tests, #1735

• fix documentation, #1709

• improve conda clean when directories don’t exist, #1808

4.4.181 3.18.5 (2015-11-11)

• fix bad menuinst exception handling, #1798

• add workaround for unresolved dependencies on Windows

290 Chapter 4. Contributors welcome

http://resolve.py

conda, Release 24.3.1.dev75

4.4.182 3.18.4 (2015-11-09)

• allow explicit file to contain MD5 hashsums

• add --md5 option to “conda list --explicit”

• stop infinite recursion during certain resolve operations, #1749

• add dependencies even if strictness == 3, #1766

4.4.183 3.18.3 (2015-10-15)

• added a pruning step for more efficient solves, #1702

• disallow conda-env to be installed into non-root environment

• improve error output for bad command input, #1706

• pass env name and setup cmd to menuinst, #1699

4.4.184 3.18.2 (2015-10-12)

• add “conda list --explicit” which contains the URLs of all conda packages to be installed, and can used with the
install/create --file option, #1688

• fix a potential issue in conda clean

• avoid issues with LookupErrors when updating Python in the root environment on Windows

• don’t fetch the index from the network with conda remove

• when installing conda packages directly, “conda install .tar.bz2”, unlink any installed package with that name
(not just the installed one)

• allow menu items to be installed in non-root env, #1692

4.4.185 3.18.1 (2015-09-28)

• fix: removed reference to win_ignore_root in plan module

4.4.186 3.18.0 (2015-09-28)

• allow Python to be updated in root environment on Windows, #1657

• add defaults to specs after getting pinned specs (allows to pin a different version of Python than what is installed)

• show what older versions are in the solutions in the resolve debug log

• fix some issues with Python 3.5

• respect --no-deps when installing from .tar or .tar.bz2

• avoid infinite recursion with NoPackagesFound and conda update --all --file

• fix conda update --file

• toposort: Added special case to remove ‘pip’ dependency from ‘python’

• show dotlog messages during hint generation with --debug

4.4. Release notes 291

conda, Release 24.3.1.dev75

• disable the max_only heuristic during hint generation

• new version comparison algorithm, which consistently compares any version string, and better handles version
strings using things like alpha, beta, rc, post, and dev. This should remove any inconsistent version comparison
that would lead to conda installing an incorrect version.

• use the trash in rm_rf, meaning more things will get the benefit of the trash system on Windows

• add the ability to pass the --file argument multiple times

• add conda upgrade alias for conda update

• add update_dependencies condarc option and --update-deps/–no-update-deps command line flags

• allow specs with conda update --all

• add --show-channel-urls and --no-show-channel-urls command line options

• add always_copy condarc option

• conda clean properly handles multiple envs directories. This breaks backwards compatibility with some of the
--json output. Some of the old –json keys are kept for backwards compatibility.

4.4.187 3.17.0 (2015-09-11)

• add windows_forward_slashes option to walk_prefix(), see #1513

• add ability to set CONDA_FORCE_32BIT environment variable, it should should only be used when running
conda-build, #1555

• add config option to makes the python dependency on pip optional, #1577

• fix an UnboundLocalError

• print note about pinned specs in no packages found error

• allow wildcards in AND-connected version specs

• print pinned specs to the debug log

• fix conda create --clone with create_default_packages

• give a better error when a proxy isn’t found for a given scheme

• enable running ‘conda run’ in offline mode

• fix issue where hardlinked cache contents were being overwritten

• correctly skip packages whose dependencies can’t be found with conda update --all

• use clearer terminology in -m help text.

• use splitlines to break up multiple lines throughout the codebase

• fix AttributeError with SSLError

292 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.188 3.16.0 (2015-08-10)

• rename binstar -> anaconda, see #1458

• fix --use-local when the conda-bld directory doesn’t exist

• fixed --offline option when using “conda create --clone”, see #1487

• don’t mask recursion depth errors

• add conda search --reverse-dependency

• check whether hardlinking is available before linking when using “python install.py --link” directly, see #1490

• don’t exit nonzero when installing a package with no dependencies

• check which features are installed in an environment via track_features, not features

• set the verify flag directly on CondaSession (fixes conda skeleton not respecting the ssl_verify option)

4.4.189 3.15.1 (2015-07-23)

• fix conda with older versions of argcomplete

• restore the --force-pscheck option as a no-op for backwards compatibility

4.4.190 3.15.0 (2015-07-22)

• sort the output of conda info package correctly

• enable tab completion of conda command extensions using argcomplete. Command extensions that import
conda should use conda.cli.conda_argparse.ArgumentParser instead of argparse.ArgumentParser. Otherwise,
they should enable argcomplete completion manually.

• allow psutil and pycosat to be updated in the root environment on Windows

• remove all mentions of pscheck. The --force-pscheck flag has been removed.

• added support for S3 channels

• fix color issues from pip in conda list on Windows

• add support for other machine types on Linux, in particular ppc64le

• add non_x86_linux_machines set to config module

• allow ssl_verify to accept strings in addition to boolean values in condarc

• enable --set to work with both boolean and string values

4.4.191 3.14.1 (2015-06-29)

• make use of Crypto.Signature.PKCS1_PSS module, see #1388

• note when features are being used in the unsatisfiable hint

4.4. Release notes 293

http://install.py

conda, Release 24.3.1.dev75

4.4.192 3.14.0 (2015-06-16)

• add ability to verify signed packages, see #1343 (and conda-build #430)

• fix issue when trying to add ‘pip’ dependency to old python packages

• provide option “conda info --unsafe-channels” for getting unobscured channel list, #1374

4.4.193 3.13.0 (2015-06-04)

• avoid the Windows file lock by moving files to a trash directory, #1133

• handle env dirs not existing in the Environments completer

• rename binstar.org -> anaconda.org, see #1348

• speed up ‘source activate’ by ~40%

4.4.194 3.12.0 (2015-05-05)

• correctly allow conda to update itself

• print which file leads to the “unable to remove file” error on Windows

• add support for the no_proxy environment variable, #1171

• add a much faster hint generation for unsatisfiable packages, which is now always enabled (previously it would
not run if there were more than ten specs). The new hint only gives one set of conflicting packages, rather than
all sets, so multiple passes may be necessary to fix such issues

• conda extensions that import conda should use conda.cli.conda_argparser.ArgumentParser instead of arg-
parse.ArgumentParser to conform to the conda help guidelines (e.g., all help messages should be capitalized
with periods, and the options should be preceded by “Options:” for the sake of help2man).

• add confirmation dialog to conda remove. Fixes conda remove --dry-run.

4.4.195 3.11.0 (2015-04-22)

• fix issue where forced update on Windows could cause a package to break

• remove detection of running processes that might conflict

• deprecate --force-pscheck (now a no-op argument)

• make conda search --outdated --names-only work, fixes #1252

• handle the history file not having read or write permissions better

• make multiple package resolutions warning easier to read

• add --full-name to conda list

• improvements to command help

294 Chapter 4. Contributors welcome

http://binstar.org
http://anaconda.org

conda, Release 24.3.1.dev75

4.4.196 3.10.1 (2015-04-06)

• fix logic in @memoized for unhashable args

• restored json cache of repodata, see #1249

• hide binstar tokens in conda info --json

• handle CIO_TEST='2 ’

• always find the solution with minimal number of packages, even if there are many solutions

• allow comments at the end of the line in requirement files

• don’t update the progressbar until after the item is finished running

• add conda/ to HTTP header User-Agent string

4.4.197 3.10.0 (2015-03-12)

• change default repo urls to be https

• add --offline to conda search

• add --names-only and --full-name to conda search

• add tab completion for packages to conda search

4.4.198 3.9.1 (2015-02-24)

• pscheck: check for processes in the current environment, see #1157

• don’t write to the history file if nothing has changed, see #1148

• conda update --all installs packages without version restrictions (except for Python), see #1138

• conda update --all ignores the anaconda metapackage, see #1138

• use forward slashes for file urls on Windows

• don’t symlink conda in the root environment from activate

• use the correct package name in the progress bar info

• use json progress bars for unsatisfiable dependencies hints

• don’t let requests decode gz files when downloaded

4.4.199 3.9.0 (2015-02-16)

• remove (de)activation scripts from conda, those are now in conda-env

• pip is now always added as a Python dependency

• allow conda to be installed into environments which start with _

• add argcomplete tab completion for environments with the -n flag, and for package names with install, update,
create, and remove

4.4. Release notes 295

conda, Release 24.3.1.dev75

4.4.200 3.8.4 (2015-02-03)

• copy (de)activate scripts from conda-env

• Add noarch (sub) directory support

4.4.201 3.8.3 (2015-01-28)

• simplified how ROOT_PREFIX is obtained in (de)activate

4.4.202 3.8.2 (2015-01-27)

• add conda clean --source-cache to clean the conda build source caches

• add missing quotes in (de)activate.bat, fixes problem in Windows when conda is installed into a directory with
spaces

• fix conda install --copy

4.4.203 3.8.1 (2015-01-23)

• add missing utf-8 decoding, fixes Python 3 bug when icondata to json file

4.4.204 3.8.0 (2015-01-22)

• move active script into conda-env, which is now a new dependency

• load the channel urls in the correct order when using concurrent.futures

• add optional ‘icondata’ key to json files in conda-meta directory, which contain the base64 encoded png file or
the icon

• remove a debug print statement

4.4.205 3.7.4 (2014-12-18)

• add --offline option to install, create, update and remove commands, and also add ability to set “offline: True” in
condarc file

• add conda uninstall as alias for conda remove

• add conda info --root

• add conda.pip module

• fix CONDARC pointing to non-existing file, closes issue #961

• make update -f work if the package is already up-to-date

• fix possible TypeError when printing an error message

• link packages in topologically sorted order (so that pre-link scripts can assume that the dependencies are installed)

• add --copy flag to install

• prevent the progressbar from crashing conda when fetching in some situations

296 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.206 3.7.3 (2014-11-05)

• conda install from a local conda package (or a tar fill which contains conda packages), will now also install the
dependencies listed by the installed packages.

• add SOURCE_DIR environment variable in pre-link subprocess

• record all created environments in ~/.conda/environments.txt

4.4.207 3.7.2 (2014-10-31)

• only show the binstar install message once

• print the fetching repodata dot after the repodata is fetched

• write the install and remove specs to the history file

• add ‘-y’ as an alias to ‘–yes’

• the --file option to conda config now defaults to os.environ.get(‘CONDARC’)

• some improvements to documentation (–help output)

• add user_rc_path and sys_rc_path to conda info --json

• cache the proxy username and password

• avoid warning about conda in pscheck

• make ~/.conda/envs the first user envs dir

4.4.208 3.7.1 (2014-10-07)

• improve error message for forgetting to use source with activate and deactivate, see issue #601

• don’t allow to remove the current environment, see issue #639

• don’t fail if binstar_client can’t be imported for other reasons, see issue #925

• allow spaces to be contained in conda run

• only show the conda install binstar hint if binstar is not installed

• conda info package_spec now gives detailed info on packages. conda info path has been removed, as it is dupli-
cated by conda package -w path.

4.4.209 3.7.0 (2014-09-19)

• faster algorithm for --alt-hint

• don’t allow channel_alias with allow_other_channels: false if it is set in the system .condarc

• don’t show long “no packages found” error with update --all

• automatically add the Binstar token to urls when the binstar client is installed and logged in

• carefully avoid showing the binstar token or writing it to a file

• be more careful in conda config about keys that are the wrong type

• don’t expect directories starting with conda- to be commands

4.4. Release notes 297

conda, Release 24.3.1.dev75

• no longer recommend to run conda init after pip installing conda. A pip installed conda will now work without
being initialized to create and manage other environments

• the rm function on Windows now works around access denied errors

• fix channel urls now showing with conda list with show_channel_urls set to true

4.4.210 3.6.4 (2014-09-08)

• fix removing packages that aren’t in the channels any more

• Pretties output for --alt-hint

4.4.211 3.6.3 (2014-09-04)

• skip packages that can’t be found with update --all

• add --use-local to search and remove

• allow --use-local to be used along with -c (–channels) and –override-channels. --override-channels now requires
either -c or –use-local

• allow paths in has_prefix to be quoted, to allow for spaces in paths on Windows

• retain Unix style path separators for prefixes in has_prefix on Windows (if the placeholder path uses /, replace it
with a path that uses /, not)

• fix bug in --use-local due to API changes in conda-build

• include user site directories in conda info -s

• make binary has_prefix replacement work with spaces after the prefix

• make binary has_prefix replacement replace multiple occurrences of the placeholder in the same null-terminated
string

• don’t show packages from other platforms as installed or cached in conda search

• be more careful about not warning about conda itself in pscheck

• Use a progress bar for the unsatisfiable packages hint generation

• Don’t use TemporaryFile in try_write, as it is too slow when it fails

• Ignore InsecureRequestWarning when ssl_verify is False

• conda remove removes features tracked by removed packages in track_features

4.4.212 3.6.2 (2014-08-20)

• add --use-index-cache to conda remove

• fix a bug where features (like mkl) would be selected incorrectly

• use concurrent.future.ThreadPool to fetch package metadata asynchronously in Python 3.

• do the retries in rm_rf on every platform

• use a higher cutoff for package name misspellings

• allow changing default channels in “system” .condarc

298 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.213 3.6.1 (2014-08-13)

• add retries to download in fetch module

• improved error messages for missing packages

• more robust rm_rf on Windows

• print multiline help for subcommands correctly

4.4.214 3.6.0 (2014-08-11)

• correctly check if a package can be hard-linked if it isn’t extracted yet

• change how the package plan is printed to better show what is new, updated, and downgraded

• use suggest_normalized_version in the resolve module. Now versions like 1.0alpha that are not directly recog-
nized by verlib’s NormalizedVersion are supported better

• conda run command, to run apps and commands from packages

• more complete --json API. Every conda command should fully support --json output now.

• show the conda_build and requests versions in conda info

• include packages from setup.py develop in conda list (with use_pip)

• raise a warning instead of dying when the history file is invalid

• use urllib.quote on the proxy password

• make conda search --outdated --canonical work

• pin the Python version during conda init

• fix some metadata that is written for Python during conda init

• allow comments in a pinned file

• allow installing and updating menuinst on Windows

• allow conda create with both --file and listed packages

• better handling of some nonexistent packages

• fix command line flags in conda package

• fix a bug in the ftp adapter

4.4.215 3.5.5 (2014-06-10)

• remove another instance pycosat version detection, which fails on Windows, see issue #761

4.4. Release notes 299

http://setup.py

conda, Release 24.3.1.dev75

4.4.216 3.5.4 (2014-06-10)

• remove pycosat version detection, which fails on Windows, see issue #761

4.4.217 3.5.3 (2014-06-09)

• fix conda update to correctly not install packages that are already up-to-date

• always fail with connection error in download

• the package resolution is now much faster and uses less memory

• add ssl_verify option in condarc to allow ignoring SSL certificate verification, see issue #737

4.4.218 3.5.2 (2014-05-27)

• fix bug in activate.bat and deactivate.bat on Windows

4.4.219 3.5.1 (2014-05-26)

• fix proxy support - conda now prompts for proxy username and password again

• fix activate.bat on Windows with spaces in the path

• update optional psutil dependency was updated to psutil 2.0 or higher

4.4.220 3.5.0 (2014-05-15)

• replace use of urllib2 with requests. requests is now a hard dependency of conda.

• add ability to only allow system-wise specified channels

• hide binstar from output of conda info

4.4.221 3.4.3 (2014-05-05)

• allow prefix replacement in binary files, see issue #710

• check if creating hard link is possible and otherwise copy, during install

• allow circular dependencies

4.4.222 3.4.2 (2014-04-21)

• conda clean --lock: skip directories that don’t exist, fixes #648

• fixed empty history file causing crash, issue #644

• remove timezone information from history file, fixes issue #651

• fix PackagesNotFound error for missing recursive dependencies

• change the default for adding cache from the local package cache - known is now the default and the option to
use index metadata from the local package cache is --unknown

• add --alt-hint as a method to get an alternate form of a hint for unsatisfiable packages

300 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• add conda package --ls-files to list files in a package

• add ability to pin specs in an environment. To pin a spec, add a file called pinned to the environment’s conda-meta
directory with the specs to pin. Pinned specs are always kept installed, unless the --no-pin flag is used.

• fix keyboard interrupting of external commands. Now keyboard interrupting conda build correctly removes the
lock file

• add no_link ability to conda, see issue #678

4.4.223 3.4.1 (2014-04-07)

• always use a pkgs cache directory associated with an envs directory, even when using -p option with an arbitrary
a prefix which is not inside an envs dir

• add setting of PYTHONHOME to conda info --system

• skip packages with bad metadata

4.4.224 3.4.0 (2014-04-02)

• added revision history to each environment:

– conda list --revisions

– conda install --revision

– log is stored in conda-meta/history

• allow parsing pip-style requirement files with --file option and in command line arguments, e.g. conda install
‘numpy>=1.7’, issue #624

• fix error message for --file option when file does not exist

• allow DEFAULTS in CONDA_ENVS_PATH, which expands to the defaults settings, including the condarc file

• don’t install a package with a feature (like mkl) unless it is specifically requested (i.e., that feature is already
enabled in that environment)

• add ability to show channel URLs when displaying what is going to be downloaded by setting
“show_channel_urls: True” in condarc

• fix the --quiet option

• skip packages that have dependencies that can’t be found

4.4.225 3.3.2 (2014-03-24)

• fix the --file option

• check install arguments before fetching metadata

• fix a printing glitch with the progress bars

• give a better error message for conda clean with no arguments

• don’t include unknown packages when searching another platform

4.4. Release notes 301

conda, Release 24.3.1.dev75

4.4.226 3.3.1 (2014-03-19)

• Fix setting of PS1 in activate.

• Add conda update --all.

• Allow setting CONDARC=’ ’ to use no condarc.

• Add conda clean --packages.

• Don’t include bin/conda, bin/activate, or bin/deactivate in conda package.

4.4.227 3.3.0 (2014-03-18)

• allow new package specification, i.e. ==, >=, >, <=, <, != separated by ‘,’ for example: >=2.3,<3.0

• add ability to disable self update of conda, by setting “self_update: False” in .condarc

• Try installing packages using the old way of just installing the maximum versions of things first. This provides
a major speedup of solving the package specifications in the cases where this scheme works.

• Don’t include python=3.3 in the specs automatically for the Python 3 version of conda. This allows you to do
“conda create -n env package” for a package that only has a Python 2 version without specifying “python=2”.
This change has no effect in Python 2.

• Automatically put symlinks to conda, activate, and deactivate in each environment on Unix.

• On Unix, activate and deactivate now remove the root environment from the PATH. This should prevent “bleed
through” issues with commands not installed in the activated environment but that are installed in the root en-
vironment. If you have “setup.py develop” installed conda on Unix, you should run this command again, as the
activate and deactivate scripts have changed.

• Begin work to support Python 3.4.

• Fix a bug in version comparison

• Fix usage of sys.stdout and sys.stderr in environments like pythonw on Windows where they are nonstandard file
descriptors.

4.4.228 3.2.1 (2014-03-12)

• fix installing packages with irrational versions

• fix installation in the api

• use a logging handler to print the dots

4.4.229 3.2.0 (2014-03-11)

• print dots to the screen for progress

• move logic functions from resolve to logic module

302 Chapter 4. Contributors welcome

http://setup.py

conda, Release 24.3.1.dev75

4.4.230 3.2.0a1 (2014-03-07)

• conda now uses pseudo-boolean constraints in the SAT solver. This allows it to search for all versions at once,
rather than only the latest (issue #491).

• Conda contains a brand new logic submodule for converting pseudo-boolean constraints into SAT clauses.

4.4.231 3.1.1 (2014-03-07)

• check if directory exists, fixed issue #591

4.4.232 3.1.0 (2014-03-07)

• local packages in cache are now added to the index, this may be disabled by using the --known option, which
only makes conda use index metadata from the known remote channels

• add --use-index-cache option to enable using cache of channel index files

• fix ownership of files when installing as root on Linux

• conda search: add ‘.’ symbol for extracted (cached) packages

4.4.233 3.0.6 (2014-02-20)

• fix ‘conda update’ taking build number into account

4.4.234 3.0.5 (2014-02-17)

• allow packages from create_default_packages to be overridden from the command line

• fixed typo install.py, issue #566

• try to prevent accidentally installing into a non-root conda environment

4.4.235 3.0.4 (2014-02-14)

• conda update: don’t try to update packages that are already up-to-date

4.4.236 3.0.3 (2014-02-06)

• improve the speed of clean --lock

• some fixes to conda config

• more tests added

• choose the first solution rather than the last when there are more than one, since this is more likely to be the one
you want.

4.4. Release notes 303

http://install.py

conda, Release 24.3.1.dev75

4.4.237 3.0.2 (2014-02-03)

• fix detection of prefix being writable

4.4.238 3.0.1 (2014-01-31)

• bug: not having track_features in condarc now uses default again

• improved test suite

• remove numpy version being treated special in plan module

• if the post-link.(bat|sh) fails, don’t treat it as though it installed, i.e. it is not added to conda-meta

• fix activate if CONDA_DEFAULT_ENV is invalid

• fix conda config --get to work with list keys again

• print the total download size

• fix a bug that was preventing conda from working in Python 3

• add ability to run pre-link script, issue #548

4.4.239 3.0.0 (2014-01-24)

• removed build, convert, index, and skeleton commands, which are now part of the conda-build project: https:
//github.com/conda/conda-build

• limited pip integration to conda list, that means conda install no longer calls pip install # !!!

• add ability to call sub-commands named ‘conda-x’

• The -c flag to conda search is now shorthand for --channel, not –canonical (this is to be consistent with other
conda commands)

• allow changing location of .condarc file using the CONDARC environment variable

• conda search now shows the channel that the package comes from

• conda search has a new --platform flag for searching for packages in other platforms.

• remove condarc warnings: issue #526#issuecomment-33195012

4.4.240 2.3.1 (2014-01-17)

• add ability create info/no_softlink

• add conda convert command to convert non-platform-dependent packages from one platform to another (exper-
imental)

• unify create, install, and update code. This adds many features to create and update that were previously only
available to install. A backwards incompatible change is that conda create -f now means --force, not –file.

304 Chapter 4. Contributors welcome

https://github.com/conda/conda-build
https://github.com/conda/conda-build

conda, Release 24.3.1.dev75

4.4.241 2.3.0 (2014-01-16)

• automatically prepend http://conda.binstar.org/ (or the value of channel_alias in the .condarc file) to channels
whenever the channel is not a URL or the word 'defaults or ‘system’

• recipes made with the skeleton pypi command will use setuptools instead of distribute

• re-work the setuptools dependency and entry_point logic so that non console_script entry_points for packages
with a dependency on setuptools will get correct build script with conda skeleton pypi

• add -m, --mkdir option to conda install

• add ability to disable soft-linking

4.4.242 2.2.8 (2014-01-06)

• add check for chrpath (on Linux) before build is started, see issue #469

• conda build: fixed ELF headers not being recognized on Python 3

• fixed issues: #467, #476

4.4.243 2.2.7 (2014-01-02)

• fixed bug in conda build related to lchmod not being available on all platforms

4.4.244 2.2.6 (2013-12-31)

• fix test section for automatic recipe creation from pypi using --build-recipe

• minor Py3k fixes for conda build on Linux

• copy symlinks as symlinks, issue #437

• fix explicit install (e.g. from output of conda list -e) in root env

• add pyyaml to the list of packages which can not be removed from root environment

• fixed minor issues: #365, #453

4.4.245 2.2.5 (2013-12-17)

• conda build: move broken packages to conda-bld/broken

• conda config: automatically add the ‘defaults’ channel

• conda build: improve error handling for invalid recipe directory

• add ability to set build string, issue #425

• fix LD_RUN_PATH not being set on Linux under Python 3, see issue #427, thanks peter1000

4.4. Release notes 305

http://conda.binstar.org/

conda, Release 24.3.1.dev75

4.4.246 2.2.4 (2013-12-10)

• add support for execution with the -m switch (issue #398), i.e. you can execute conda also as: python -m conda

• add a deactivate script for windows

• conda build adds .pth-file when it encounters an egg (TODO)

• add ability to preserve egg directory when building using build/preserve_egg_dir: True

• allow track_features in ~/.condarc

• Allow arbitrary source, issue #405

• fixed minor issues: #393, #402, #409, #413

4.4.247 2.2.3 (2013-12-03)

• add “foreign mode”, i.e. disallow install of certain packages when using a “foreign” Python, such as the system
Python

• remove activate/deactivate from source tarball created by sdist.sh, in order to not overwrite activate script from
virtualenvwrapper

4.4.248 2.2.2 (2013-11-27)

• remove ARCH environment variable for being able to change architecture

• add PKG_NAME, PKG_VERSION to environment when running build.sh, .-post-link.sh and .-pre-unlink.sh

4.4.249 2.2.1 (2013-11-15)

• minor fixes related to make conda pip installable

• generated conda meta-data missing ‘files’ key, fixed issue #357

4.4.250 2.2.0 (2013-11-14)

• add conda init command, to allow installing conda via pip

• fix prefix being replaced by placeholder after conda build on Unix

• add ‘use_pip’ to condarc configuration file

• fixed activate on Windows to set CONDA_DEFAULT_ENV

• allow setting “always_yes: True” in condarc file, which implies always using the --yes option whenever asked to
proceed

306 Chapter 4. Contributors welcome

http://sdist.sh
http://build.sh

conda, Release 24.3.1.dev75

4.4.251 2.1.0 (2013-11-07)

• fix rm_egg_dirs so that the .egg_info file can be a zip file

• improve integration with pip

– conda list now shows pip installed packages

– conda install will try to install via “pip install” if no conda package is available (unless --no-pip is provided)

– conda build has a new --build-recipe option which will create a recipe (stored in /conda-recipes) from pypi
then build a conda package (and install it)

– pip list and pip install only happen if pip is installed

• enhance the locking mechanism so that conda can call itself in the same process.

4.4.252 2.0.4 (2013-11-04)

• ensure lowercase name when generating package info, fixed issue #329

• on Windows, handle the .nonadmin files

4.4.253 2.0.3 (2013-10-28)

• update bundle format

• fix bug when displaying packages to be downloaded (thanks Crystal)

4.4.254 2.0.2 (2013-10-27)

• add --index-cache option to clean command, see issue #321

• use RPATH (instead of RUNPATH) when building packages on Linux

4.4.255 2.0.1 (2013-10-23)

• add --no-prompt option to conda skeleton pypi

• add create_default_packages to condarc (and --no-default-packages option to create command)

4.4.256 2.0.0 (2013-10-01)

• added user/root mode and ability to soft-link across filesystems

• added create --clone option for copying local environments

• fixed behavior when installing into an environment which does not exist yet, i.e. an error occurs

• fixed install --no-deps option

• added --export option to list command

• allow building of packages in “user mode”

• regular environment locations now used for build and test

• add ability to disallow specification names

4.4. Release notes 307

conda, Release 24.3.1.dev75

• add ability to read help messages from a file when install location is RO

• restore backwards compatibility of share/clone for conda-api

• add new conda bundle command and format

• pass ARCH environment variable to build scripts

• added progress bar to source download for conda build, issue #230

• added ability to use url instead of local file to conda install --file and conda create --file options

4.4.257 1.9.1 (2013-09-06)

• fix bug in new caching of repodata index

4.4.258 1.9.0 (2013-09-05)

• add caching of repodata index

• add activate command on Windows

• add conda package --which option, closes issue 163

• add ability to install file which contains multiple packages, issue 256

• move conda share functionality to conda package --share

• update documentation

• improve error messages when external dependencies are unavailable

• add implementation for issue 194: post-link or pre-unlink may append to a special file ${PREFIX}/.messages.txt
for messages, which is display to the user’s console after conda completes all actions

• add conda search --outdated option, which lists only installed packages for which newer versions are available

• fixed numerous Py3k issues, in particular with the build command

4.4.259 1.8.2 (2013-08-16)

• add conda build --check option

• add conda clean --lock option

• fixed error in recipe causing conda traceback, issue 158

• fixes conda build error in Python 3, issue 238

• improve error message when test command fails, as well as issue 229

• disable Python (and other packages which are used by conda itself) to be updated in root environment on Windows

• simplified locking, in particular locking should never crash conda when files cannot be created due to permission
problems

308 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.4.260 1.8.1 (2013-08-07)

• fixed conda update for no arguments, issue 237

• fix setting prefix before calling should_do_win_subprocess() part of issue 235

• add basic subversion support when building

• add --output option to conda build

4.4.261 1.8.0 (2013-07-31)

• add Python 3 support (thanks almarklein)

• add Mercurial support when building from source (thanks delicb)

• allow Python (and other packages which are used by conda itself) to be updated in root environment on Windows

• add conda config command

• add conda clean command

• removed the conda pip command

• improve locking to be finer grained

• made activate/deactivate work with zsh (thanks to mika-fischer)

• allow conda build to take tarballs containing a recipe as arguments

• add PKG_CONFIG_PATH to build environment variables

• fix entry point scripts pointing to wrong python when building Python 3 packages

• allow source/sha1 in meta.yaml, issue 196

• more informative message when there are unsatisfiable package specifications

• ability to set the proxy urls in condarc

• conda build asks to upload to binstar. This can also be configured by changing binstar_upload in condarc.

• basic tab completion if the argcomplete package is installed and eval “$(register-python-argcomplete conda)” is
added to the bash profile.

4.4.262 1.7.2 (2013-07-02)

• fixed conda update when packages include a post-link step which was caused by subprocess being lazily imported,
fixed by 0d0b860

• improve error message when ‘chrpath’ or ‘patch’ is not installed and needed by build framework

• fixed sharing/cloning being broken (issue 179)

• add the string LOCKERROR to the conda lock error message

4.4. Release notes 309

conda, Release 24.3.1.dev75

4.4.263 1.7.1 (2013-06-21)

• fix “executable” not being found on Windows when ending with .bat when launching application

• give a better error message from when a repository does not exist

4.4.264 1.7.0 (2013-06-20)

• allow ${PREFIX} in app_entry

• add binstar upload information after conda build finishes

4.4.265 1.7.0a2 (2013-06-20)

• add global conda lock file for only allowing one instance of conda to run at the same time

• add conda skeleton command to create recipes from PyPI

• add ability to run post-link and pre-unlink script

4.4.266 1.7.0a1 (2013-06-13)

• add ability to build conda packages from “recipes”, using the conda build command, for some examples, see:
https://github.com/ContinuumIO/conda-recipes

• fixed bug in conda install --force

• conda update command no longer uses anaconda as default package name

• add proxy support

• added application API to conda.api module

• add -c/–channel and --override-channels flags (issue 121).

• add default and system meta-channels, for use in .condarc and with -c (issue 122).

• fixed ability to install ipython=0.13.0 (issue 130)

4.4.267 1.6.0 (2013-06-05)

• update package command to reflect changes in repodata

• fixed refactoring bugs in share/clone

• warn when anaconda processes are running on install in Windows (should fix most permissions errors on Win-
dows)

310 Chapter 4. Contributors welcome

https://github.com/ContinuumIO/conda-recipes

conda, Release 24.3.1.dev75

4.4.268 1.6.0rc2 (2013-05-31)

• conda with no arguments now prints help text (issue 111)

• don’t allow removing conda from root environment

• conda update python does no longer update to Python 3, also ensure that conda itself is always installed into the
root environment (issue 110)

4.4.269 1.6.0rc1 (2013-05-30)

• major internal refactoring

• use new “depends” key in repodata

• uses pycosat to solve constraints more efficiently

• add hard-linking on Windows

• fixed linking across filesystems (issue 103)

• add conda remove --features option

• added more tests, in particular for new dependency resolver

• add internal DSL to perform install actions

• add package size to download preview

• add conda install --force and --no-deps options

• fixed conda help command

• add conda remove --all option for removing entire environment

• fixed source activate on systems where sourcing a gives “bash” as $0

• add information about installed versions to conda search command

• removed known “locations”

• add output about installed packages when update and install do nothing

• changed default when prompted for y/n in CLI to yes

4.4.270 1.5.2 (2013-04-29)

• fixed issue 59: bad error message when pkgs dir is not writable

4.4.271 1.5.1 (2013-04-19)

• fixed issue 71 and (73 duplicate): not being able to install packages starting with conda (such as ‘conda-api’)

• fixed issue 69 (not being able to update Python / NumPy)

• fixed issue 76 (cannot install mkl on OSX)

4.4. Release notes 311

conda, Release 24.3.1.dev75

4.4.272 1.5.0 (2013-03-22)

• add conda share and clone commands

• add (hidden) --output-json option to clone, share and info commands to support the conda-api package

• add repo sub-directory type ‘linux-armv6l’

4.4.273 1.4.6 (2013-03-12)

• fixed channel selection (issue #56)

4.4.274 1.4.5 (2013-03-11)

• fix issue #53 with install for meta packages

• add -q/–quiet option to update command

4.4.275 1.4.4 (2013-03-09)

• use numpy 1.7 as default on all platforms

4.4.276 1.4.3 (2013-03-09)

• fixed bug in conda.builder.share.clone_bundle()

4.4.277 1.4.2 (2013-03-08)

• feature selection fix for update

• Windows: don’t allow linking or unlinking python from the root environment because the file lock, see issue #42

4.4.278 1.4.1 (2013-03-07)

• fix some feature selection bugs

• never exit in activate and deactivate

• improve help and error messages

4.4.279 1.4.0 (2013-03-05)

• fixed conda pip NAME==VERSION

• added conda info --license option

• add source activate and deactivate commands

• rename the old activate and deactivate to link and unlink

• add ability for environments to track “features”

312 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• add ability to distinguish conda build packages from Anaconda packages by adding a “file_hash” meta-data field
in info/index.json

• add conda.builder.share module

4.4.280 1.3.5 (2013-02-05)

• fixed detecting untracked files on Windows

• removed backwards compatibility to conda 1.0 version

4.4.281 1.3.4 (2013-01-28)

• fixed conda installing itself into environments (issue #10)

• fixed non-existing channels being silently ignored (issue #12)

• fixed trailing slash in ~/.condarc file cause crash (issue #13)

• fixed conda list not working when ~/.condarc is missing (issue #14)

• fixed conda install not working for Python 2.6 environment (issue #17)

• added simple first cut implementation of remove command (issue #11)

• pip, build commands: only package up new untracked files

• allow a system-wide <sys.prefix>/.condarc (~/.condarc takes precedence)

• only add pro channel is no condarc file exists (and license is valid)

4.4.282 1.3.3 (2013-01-23)

• fix conda create not filtering channels correctly

• remove (hidden) --test and --testgui options

4.4.283 1.3.2 (2013-01-23)

• fix deactivation of packages with same build number note that conda upgrade did not suffer from this problem,
as was using separate logic

4.4.284 1.3.1 (2013-01-22)

• fix bug in conda update not installing new dependencies

4.4. Release notes 313

conda, Release 24.3.1.dev75

4.4.285 1.3.0 (2013-01-22)

• added conda package command

• added conda index command

• added -c, --canonical option to list and search commands

• fixed conda --version on Windows

• add this changelog

4.4.286 1.2.1 (2012-11-21)

• remove ambiguity from conda update command

4.4.287 1.2.0 (2012-11-20)

• “conda upgrade” now updates from AnacondaCE to Anaconda (removed upgrade2pro

• add versioneer

4.4.288 1.1.0 (2012-11-13)

• Many new features implemented by Bryan

4.4.289 1.0.0 (2012-09-06)

• initial release

4.5 Glossary

4.5.1 .condarc

The Conda Runtime Configuration file, an optional .yaml file that allows you to configure many aspects of conda,
such as which channels it searches for packages, proxy settings, and environment directories. A .condarc file is not
included by default, but it is automatically created in your home directory when you use the conda config command.
The .condarc file can also be located in a root environment, in which case it overrides any .condarc in the home
directory. For more information, see Using the .condarc conda configuration file and Administering a multi-user conda
installation. Pronounced "conda r-c".

314 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.5.2 Activate/Deactivate environment

Conda commands used to switch or move between installed environments. The conda activate command prepends
the path of your current environment to the PATH environment variable so that you do not need to type it each time.
deactivate removes it. Even when an environment is deactivated, you can still execute programs in that environment
by specifying their paths directly, as in ~/anaconda/envs/envname/bin/program_name. When an environment is
activated, you can execute the program in that environment with just program_name.

Note: Replace envname with the name of the environment and replace program_name with the name of the program.

4.5.3 Anaconda

A downloadable, free, open-source, high-performance, and optimized Python and R distribution. Anaconda includes
conda, conda-build, Python, and 250+ automatically installed, open-source scientific packages and their dependencies
that have been tested to work well together, including SciPy, NumPy, and many others. Use the conda install
command to easily install 7,500+ popular open-source packages for data science--including advanced and scientific
analytics--from the Anaconda repository. Use the conda command to install thousands more open-source packages.

Because Anaconda is a Python distribution, it can make installing Python quick and easy even for new users.

Available for Windows, macOS, and Linux, all versions of Anaconda are supported by the community.

See also Miniconda and conda.

4.5.4 Anaconda.org

A web-based, repository hosting service in the cloud. Packages created locally can be published to the cloud to be
shared with others. Anaconda.org is a public version of Anaconda Repository and was formerly known as Anaconda
Cloud.

4.5.5 Anaconda Navigator

A desktop graphical user interface (GUI) included in all versions of Anaconda that allows you to easily manage conda
packages, environments, channels, and notebooks without a command line interface (CLI). See more about Navigator.

4.5.6 Channels

The locations of the repositories where conda looks for packages. Channels may point to a Cloud repository or a
private location on a remote or local repository that you or your organization created. The conda channel command
has a default set of channels to search, beginning with https://repo.anaconda.com/pkgs/, which you may override, for
example, to maintain a private or internal channel. These default channels are referred to in conda commands and in
the .condarc file by the channel name "defaults."

4.5. Glossary 315

https://docs.anaconda.com/anacondaorg/
https://docs.anaconda.com/navigator/
https://repo.anaconda.com/pkgs/

conda, Release 24.3.1.dev75

4.5.7 conda

The package and environment manager program bundled with Anaconda that installs and updates conda packages and
their dependencies. Conda also lets you easily switch between conda environments on your local computer.

4.5.8 conda environment

A folder or directory that contains a specific collection of conda packages and their dependencies, so they can be
maintained and run separately without interference from each other. For example, you may use a conda environment
for only Python 2 and Python 2 packages, maintain another conda environment with only Python 3 and Python 3
packages, and maintain another for R language packages. Environments can be created from:

• The Navigator GUI

• The command line

• An environment specification file with the name your-environment-name.yml

4.5.9 conda package

A compressed file that contains everything that a software program needs in order to be installed and run, so that you
do not have to manually find and install each dependency separately. A conda package includes system-level libraries,
Python or R language modules, executable programs, and other components. You manage conda packages with conda.

4.5.10 conda repository

A cloud-based repository that contains 7,500+ open-source certified packages that are easily installed locally with the
conda install command. Anyone can access the repository from:

• The Navigator GUI

• A terminal using conda commands

• https://repo.anaconda.com/pkgs/

4.5.11 Metapackage

A metapackage is a very simple package that has at least a name and a version. It need not have any dependencies or
build steps. Metapackages may list dependencies to several core, low-level libraries and may contain links to software
files that are automatically downloaded when executed.

4.5.12 Miniconda

A free minimal installer for conda. Miniconda is a small, bootstrap version of Anaconda that includes only conda,
Python, the packages they depend on, and a small number of other useful packages, including pip, zlib, and a few
others. Use the conda install command to install 7,500+ additional conda packages from the Anaconda repository.

Miniconda is a Python distribution that can make installing Python quick and easy even for new users.

See also Anaconda and conda.

316 Chapter 4. Contributors welcome

https://repo.anaconda.com/pkgs/
https://docs.anaconda.com/free/miniconda/

conda, Release 24.3.1.dev75

4.5.13 Noarch package

A conda package that contains nothing specific to any system architecture, so it may be installed from any system.
When conda searches for packages on any system in a channel, conda checks both the system-specific subdirectory,
such as linux-64, and the noarch directory. Noarch is a contraction of "no architecture".

4.5.14 Package manager

A collection of software tools that automates the process of installing, updating, configuring, and removing computer
programs for a computer's operating system. Also known as a package management system. Conda is a package
manager.

4.5.15 Packages

Software files and information about the software, such as its name, the specific version, and a description, bundled
into a file that can be installed and managed by a package manager.

4.5.16 Plugins

Plugins, sometimes referred to as add-ons or extensions, are software or modules that add new functions to a host
program (e.g., conda) without directly altering the host program itself. Amongst other uses, plugins support is utilized
to enable third-party developers to extend an application, support easily adding new features, and to reduce the size of
an application by not loading unused features.

4.5.17 Repository

Any storage location from which software assets may be retrieved and installed on a local computer. See also Ana-
conda.org and conda repository.

4.5.18 Silent mode installation

When installing Miniconda or Anaconda in silent mode, screen prompts are not shown on screen and default settings
are automatically accepted.

4.6 Developer guide

4.6.1 Architecture

Conda is a complex system of many components and can be hard to understand for users and developers alike. The
following C4 model based architecture diagrams should help in that regard. As a refresher, the C4 model tries to
visualize complex software systems at different levels of detail, and explaining the functionality to different types of
audience.

Note: These diagrams represent the state of conda at the time when the documentation was automatically build as
part of the development process for conda 24.3.1.dev75 (Apr 25, 2024).

C4 stands for the for levels:

4.6. Developer guide 317

https://c4model.com/

conda, Release 24.3.1.dev75

1. Context

2. Container

3. Component

4. Code

Level 1: Context

This is the overview, 30,000 feet view on conda, to better understand how conda in the center of the diagram interacts
with other systems and how users relate to it.

More information about how to interpret this diagram can be found in the C4 model documentation about the System
Context diagram.

318 Chapter 4. Contributors welcome

https://c4model.com/
https://c4model.com/#SystemContextDiagram
https://c4model.com/#SystemContextDiagram

conda, Release 24.3.1.dev75

4.6. Developer guide 319

conda, Release 24.3.1.dev75

Level 2: Container

This level is zooming in to conda on a system level, which was in the center of the Level 1 diagram, to show the high-
level shape of the software architecture of and the various responsibilities in conda, including major technology choices
and communication patterns between the various containers.

More information about how to interpret the following diagrams can be found in the C4 model documentation about
the Container diagram.

Channels

The following diagram focuses on the channels container from the level 1 diagram.

320 Chapter 4. Contributors welcome

https://c4model.com/
https://c4model.com/#ContainerDiagram

conda, Release 24.3.1.dev75

4.6. Developer guide 321

conda, Release 24.3.1.dev75

Conda

The following diagram focuses on the conda container from the level 1 diagram.

Level 3: Component

Yet another zoom-in, in which individual containers from Level 2 are decomposed to show major building blocks in
conda and their interactions. Those building blocks are called components in the sense that they each have a higher
function and relate to an identifiable responsibility and implementation details.

322 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

4.6. Developer guide 323

conda, Release 24.3.1.dev75

More information about how to interpret this diagram can be found in the C4 model documentation about the Compo-
nent diagram.

Level 4: Code

This part is auto-generated based on the current code and shows how the code is structured and how it interacts. For
brevity this ignores a number of subsystems like the public API and exports modules, utility and vendor packages.

More information about how to interpret this diagram can be found in the C4 model documentation about the Code
diagram.

324 Chapter 4. Contributors welcome

https://c4model.com/
https://c4model.com/#ComponentDiagram
https://c4model.com/#ComponentDiagram
https://c4model.com/
https://c4model.com/#CodeDiagram
https://c4model.com/#CodeDiagram

conda, Release 24.3.1.dev75

4.6.2 Contributing to conda

Thank you for your interest in improving conda! Below, we describe how our development process works and how you
can be a part of it.

Already know how to contribute and need help setting up your development environment? Read the development
environment guide here

Hosted on GitHub

All development currently takes place on GitHub. This means we make extensive use of the project management tools
they provide such as issues and projects.

Code of Conduct

When you decide to contribute to this project, it is important to adhere to our code of conduct, which is currently the
NumFOCUS Code of Conduct. Please read it carefully.

Conda Contributor License Agreement

To begin contributing to this repository, you need to sign the Conda Contributor License Agreement (CLA). In case
you’re new to CLAs, this is a rather standard procedure for larger projects. Django and Python for example both use
similar agreements.

Click here to sign the Conda Contributor License Agreement.

A record of prior signatories is kept in a separate repo in conda’s GitHub organization.

Ways to contribute

Below are all the ways you can get involved in with conda.

Bug reports and feature requests

Bug reports and feature requests are always welcome. To file a new issue, head to the issue form.

It should be noted that conda-build issues need to be filed separately at its issue tracker.

For all other types of issues, please head to Anaconda.org’s “Report a Bug” page. For even more information and
documentation on everything related to Anaconda, head to the Support Center at Anaconda Nucleus.

Before submitting an issue via any of these channels, make sure to document it as well as possible and follow the
submission guidelines (this makes everyone’s job a lot easier!).

4.6. Developer guide 325

https://github.com/
https://github.com/conda/conda/issues
https://github.com/orgs/conda/projects
https://www.numfocus.org/code-of-conduct
https://www.djangoproject.com/foundation/cla/
https://www.python.org/psf/contrib/contrib-form/
https://conda.io/en/latest/contributing.html#conda-contributor-license-agreement
https://github.com/conda/infra/blob/main/.clabot
https://github.com/conda/conda/issues/new/choose
https://github.com/conda/conda-build/issues
https://anaconda.org/contact/report
https://anaconda.cloud/support-center

conda, Release 24.3.1.dev75

Contributing your changes to conda

Here are the steps you need to take to contribute to conda:

1. Signup for a GitHub account (if you haven’t already) and install Git on your system.

2. Sign the Conda Contributor License Agreement.

3. Fork the conda repository to your personal GitHub account by clicking the “Fork” button on https://github.com/
conda/conda and follow GitHub’s instructions.

4. Work on your proposed solution. Visit this page if you need help getting your development environment setup

5. When you are ready to submit a change, create a new pull request so that we can merge your changes to our
repository.

Issue sorting

Issue sorting is how we filter incoming issues and get them ready for active development. To see how this process
works for this project, read “The Issue Sorting Process at conda”.

The project maintainers are currently not seeking help with issue sorting, but this may change in the future

Conda capitalization standards

1. Conda should be written in lowercase, whether in reference to the tool, ecosystem, packages, or organization.

2. References to the conda command should use code formatting (i.e. conda).

3. If the use of conda is not a command and if conda is at the beginning of a sentence, conda should be uppercase.

Examples

In sentences

Beginning a sentence:

• Conda is an open-source package and environment management system.

• conda install can be used to install packages.

Conda in the middle of a sentence:

• If a newer version of conda is available, you can use conda update conda to update to that version.

• You can find conda packages within conda channels. The conda command can search these channels.

326 Chapter 4. Contributors welcome

https://github.com/signup
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://conda.io/en/latest/contributing.html#conda-contributor-license-agreement
https://github.com/conda/conda
https://github.com/conda/conda
https://github.com/conda/infra/blob/main/HOW_WE_USE_GITHUB.md

conda, Release 24.3.1.dev75

In titles and headers

Titles and headers should use the same capitalization and formatting standards as sentences.

In links

Links should use the same capitalization conventions as sentences. Because the conda docs currently use reStructured-
Text (RST) as a markup language, and RST does not support nested inline markup, documentation writers should avoid
using code backtick formatting inside links.

4.6.3 Development Environment

1. Clone the repo you just forked on GitHub to your local machine. Configure your repo to point to both “upstream”
(the main conda repo) and your fork (“origin”). For detailed directions, see below:

Bash (macOS, Linux, Windows)

choose the repository location
warning: not the location of an existing conda installation!
$ CONDA_PROJECT_ROOT="$HOME/conda"

clone the project
replace `your-username` with your actual GitHub username
$ git clone git@github.com:your-username/conda "$CONDA_PROJECT_ROOT"
$ cd "$CONDA_PROJECT_ROOT"

set the `upstream` as the the main repository
$ git remote add upstream git@github.com:conda/conda

cmd.exe (Windows)

choose the repository location
warning: not the location of an existing conda installation!
> set "CONDA_PROJECT_ROOT=%HOMEPATH%\conda"

clone the project
replace `your-username` with your actual GitHub username
> git clone git@github.com:your-username/conda "%CONDA_PROJECT_ROOT%"
> cd "%CONDA_PROJECT_ROOT%"

set the `upstream` as the main repository
> git remote add upstream git@github.com:conda/conda

2. One option is to create a local development environment and activate that environment

Bash (macOS, Linux, Windows)

$ source ./dev/start

cmd.exe (Windows)

> .\dev\start.bat

4.6. Developer guide 327

https://docutils.sourceforge.io/FAQ.html#is-nested-inline-markup-possible

conda, Release 24.3.1.dev75

This command will create a project-specific base environment (see devenv in your repo directory after running
this command). If the base environment already exists this command will simply activate the already-created
devenv environment.

To be sure that the conda code being interpreted is the code in the project directory, look at the value of conda
location: in the output of conda info --all.

3. Alternatively, for Linux development only, you can use the same Docker image the CI pipelines use. Note that
you can run this from all three operating systems! We are using docker compose, which provides three actions
for you:

• unit-tests: Run all unit tests.

• integration-tests: Run all integration tests.

• interactive: You are dropped in a pre-initialized Bash session, where you can run all your pytest
commands as required.

Use them with docker compose run <action>. For example:

Any shell (macOS, Linux, Windows)

$ docker compose run unit-tests

This builds the same Docker image as used in continuous integration from the Github Container Registry and
starts bash with the conda development mode already enabled.

By default, it will use Miniconda-based, Python 3.9 installation configured for the defaults channel. You can
customize this with two environment variables:

• CONDA_DOCKER_PYTHON: major.minor value; e.g. 3.11.

• CONDA_DOCKER_DEFAULT_CHANNEL: either defaults or conda-forge

For example, if you need a conda-forge based 3.12 image:

Bash (macOS, Linux, Windows)

$ CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose␣
→˓build --no-cache
--- in some systems you might also need to re-supply the same values as CLI flags:
CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose␣
→˓build --no-cache --build-arg python_version=3.12 --build-arg default_
→˓channel=conda-forge
$ CONDA_DOCKER_PYTHON=3.12 CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge docker compose␣
→˓run interactive

cmd.exe (Windows)

> set CONDA_DOCKER_PYTHON=3.12
> set CONDA_DOCKER_DEFAULT_CHANNEL=conda-forge
> docker compose build --no-cache
> docker compose run interactive
> set "CONDA_DOCKER_PYTHON="
> set "CONDA_DOCKER_DEFAULT_CHANNEL="

The conda repository will be mounted to /opt/conda-src, so all changes done in your editor will be
reflected live while the Docker container is running.

328 Chapter 4. Contributors welcome

https://github.com/conda/conda/pkgs/container/conda-ci

conda, Release 24.3.1.dev75

Static Code Analysis

This project is configured with pre-commit to automatically run linting and other static code analysis on every commit.
Running these tools prior to the PR/code review process helps in two ways:

1. it helps you by automating the nitpicky process of identifying and correcting code style/quality issues

2. it helps us where during code review we can focus on the substance of your contribution

Feel free to read up on everything pre-commit related in their docs but we’ve included the gist of what you need to get
started below:

Bash (macOS, Linux, Windows)

reuse the development environment created above
$ source ./dev/start
or start the Docker image in interactive mode
$ docker compose run interactive

install pre-commit hooks for conda
$ cd "$CONDA_PROJECT_ROOT"
$ pre-commit install

manually running pre-commit on current changes
note: by default pre-commit only runs on staged files
$ pre-commit run

automatically running pre-commit during commit
$ git commit

cmd.exe (Windows)

:: reuse the development environment created above
> .\dev\start.bat
:: or start the Docker image in interactive mode
:: > docker compose run interactive

:: install pre-commit hooks for conda
> cd "%CONDA_PROJECT_ROOT%"
> pre-commit install

:: manually running pre-commit on current changes
:: note: by default pre-commit only runs on staged files
> pre-commit run

:: automatically running pre-commit during commit
> git commit

Beware that some of the tools run by pre-commit can potentially modify the code (see black, blacken-docs, and darker).
If pre-commit detects that any files were modified it will terminate the commit giving you the opportunity to review
the code before committing again.

Strictly speaking using pre-commit on your local machine for commits is optional (if you don’t install pre-commit
you will still be able to commit normally). But once you open a PR to contribue your changes, pre-commit will be
automatically run at which point any errors that occur will need to be addressed prior to proceeding.

4.6. Developer guide 329

https://pre-commit.com/
https://pre-commit.com/#quick-start
https://github.com/psf/black
https://github.com/asottile/blacken-docs
https://github.com/akaihola/darker

conda, Release 24.3.1.dev75

Testing

We use pytest to run our test suite. Please consult pytest’s docs for detailed instructions but generally speaking all you
need is the following:

Bash (macOS, Linux, Windows)

reuse the development environment created above
$ source ./dev/start
or start the Docker image in interactive mode
$ docker compose run interactive

run conda's unit tests using GNU make
$ make unit

or alternately with pytest
$ pytest --cov -m "not integration" conda tests

or you can use pytest to focus on one specific test
$ pytest --cov tests/test_create.py -k create_install_update_remove_smoketest

cmd.exe (Windows)

:: reuse the development environment created above
> .\dev\start.bat
:: or start the Docker image in interactive mode
:: > docker compose run interactive

:: run conda's unit tests with pytest
> pytest --cov -m "not integration" conda tests

:: or you can use pytest to focus on one specific test
> pytest --cov tests\test_create.py -k create_install_update_remove_smoketest

If you are not measuring code coverage, pytest can be run without the --cov option. The docker compose tests
pass --cov.

Note: Some integration tests require you build a package with conda-build beforehand. This is taking care of if you
run docker compose run integration-tests, but you need to do it manually in other modes:

Bash (macOS, Linux, Windows)

$ conda install conda-build
$ conda-build tests/test-recipes/activate_deactivate_package tests/test-recipes/pre_link_
→˓messages_package

Check dev/linux/integration.sh and dev\windows\integration.bat for more details.

330 Chapter 4. Contributors welcome

https://docs.pytest.org/en/6.2.x/usage.html

conda, Release 24.3.1.dev75

4.6.4 Deep dives

This section contains a series of deep dives into particularly complex parts of conda.

conda install

In this document we will explore what happens in Conda from the moment a user types their installation command
until the process is finished successfully. For the sake of completeness, we will consider the following situation:

• The user is running commands on a Linux x64 machine with a working installation of Miniconda.

• This means we have a base environment with conda, python, and their dependencies.

• The base environment is already preactivated for Bash. For more details on activation, check conda init and
conda activate.

Ok, so. . . what happens when you run conda install numpy? Roughly, these steps:

1. Command line interface

• argparse parsers

• Environment variables

• Configuration files

• Context initialization

• Delegation of the task

2. Fetching the index

• Retrieving all the channels and platforms

• A note on channel priorities

3. Solving the install request

• Requested packages + prefix state = list of specs

• Index reduction (sometimes)

• Running the solver

• Post-processing the list of packages

4. Generating the transaction and the corresponding actions

5. Download and extraction

6. Integrity verification

7. Linking and unlinking files

8. Post-linking and post-activation tasks

4.6. Developer guide 331

conda, Release 24.3.1.dev75

Fig. 1: This figure shows the different processes and objects involved in handling a simple conda install command.

332 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Command line interface

First, a quick note on an implementation detail that might be not obvious.

When you type conda install numpy in your terminal, Bash takes those three words and looks for a conda com-
mand to pass a list of arguments ['conda', 'install', 'numpy']. Before finding the conda executable located
at CONDA_HOME/condabin, it probably finds the shell function defined here. This shell function runs the activa-
tion/deactivation logic on the shell if requested, or delegates over to the actual Python entry-points otherwise. This part
of the logic can be found in conda.shell.

Once we are running the Python entry-point, we are in the conda.cli realm. The function called by the entry point
is conda.cli.main:main(). Here, another check is done for shell.* subcommands, which generate the shell
initializers you see in ~/.bashrc and others. If you are curious where this happens, it’s conda.activate.

Since our command is conda install ..., we still need to arrive somewhere else. You will notice that the rest of
the logic is delegated to conda.cli.main:_main(), which will invoke the parser generators, initialize the context
and loggers, and, eventually, pass the argument list over to the corresponding command function. These four steps are
implemented in four functions/classes:

1. conda.cli.conda_argparse:generate_parser(): This uses argparse to generate the CLI. Each subcom-
mand is initialized in separate functions. Note that the command line options are not generated dynamically from
the Context object, but annotated manually. If this is needed (e.g. --repodata-fn is exposed in Context.
repodata_fn), the dest variable of each CLI option should match the target attribute in the context object.

2. conda.base.context.Context: This object stores the configuration options in conda and will be initialized
taking into account, among other things, the arguments parsed in the step above. This is covered in more detail
in a separate deep dive: conda config and context.

3. conda.gateways.logging:initialize_logging(): Not too exciting and easy to follow. This part of the
code base is more or less self-explanatory.

4. conda.cli.conda_argparse:do_call(): The argument parsing will populate a func value that contains
the import path to the function responsible for that subcommand. For example, conda install is taken care
of by conda.cli.main_install. By design, all the modules reported by func must contain an execute()
function that implements the command logic. execute() takes the parsed arguments and the parser itself as
arguments. For example, in the case of conda install, execute() only redirects to a certain mode in conda.
cli.install:install().

Let’s go take a look at that module now. conda.cli.install:install() implements the logic behind conda
create, conda install, conda update and conda remove. In essence, they all deal with the same task: changing
which packages are present in an environment. If you go and read that function, you will see there are several lines
of code handling diverse situations (new environments, clones, etc.) before we arrive to the next section. We will not
discuss them here, but feel free to explore that section. It’s mostly ensuring that the destination prefix exists, whether
we are creating a new environment and massaging some command line flags that would allow us to skip the solver (e.g.
--clone).

More information on environments
Check the concepts for Environments.

4.6. Developer guide 333

https://github.com/conda/conda/blob/4.11.0/conda/shell/etc/profile.d/conda.sh#L62-L76
https://github.com/conda/conda/tree/4.11.0/conda/shell
https://github.com/conda/conda/tree/4.11.0/conda/cli
https://github.com/conda/conda/blob/4.11.0/conda/cli/main.py#L121
https://github.com/conda/conda/blob/4.11.0/conda/activate.py
https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L28
https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L1484
https://github.com/conda/conda/blob/4.11.0/conda/cli/main.py#L75
https://github.com/conda/conda/blob/4.11.0/conda/gateways/logging.py#L162
https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L77
https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L775
https://github.com/conda/conda/blob/4.11.0/conda/cli/conda_argparse.py#L775
https://github.com/conda/conda/blob/4.11.0/conda/cli/main_install.py
https://github.com/conda/conda/blob/4.11.0/conda/cli/main_install.py#L12
https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107
https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107
https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107
https://github.com/conda/conda/blob/4.11.0/conda/cli/install.py#L107

conda, Release 24.3.1.dev75

Fetching the index

At this point, we are ready to start doing some work! All of the previous code was telling us what to do, and now we
know. We want conda to install numpy on our base environment. The first thing we need to know is where we can
find packages with the name numpy. The answer is. . . the channels!

Users download packages from conda channels. These are normally hosted at anaconda.org. A channel is essentially
a directory structure with these elements:

<channel>
channeldata.json
index.html
<platform> (e.g. linux-64)

current_repodata.json
current_repodata.json.bz2
index.html
repodata.json
repodata.json.bz2
repodata_from_packages.json
repodata_from_packages.json.bz2

noarch
current_repodata.json
current_repodata.json.bz2
index.html
repodata.json
repodata.json.bz2
repodata_from_packages.json
repodata_from_packages.json.bz2

More info on Channels
You can find some more user-oriented notes on Channels at What is a "channel"? and Repository structure and index.
If you are interested in more technical details, check the corresponding documentation pages at conda-build.

The important bits are:

• A channel contains one or more platform-specific directories (linux-64, osx-64, etc.), plus a platform-agnostic
directory called noarch. In conda jargon, these are also referred to as channel subdirs. Officially, the noarch
subdirectory is enough to make it a conda channel; e.g. no platform subdirectory is necessary.

• Each subdir contains at least a repodata.json file: a gigantic dictionary with all the metadata for each package
available on that platform.

• In most cases, the same subdirs also contain the *.tar.bz2 files for each of the published packages. This is
what conda downloads and extracts once solving is complete. The anatomy of these files is well defined, both in
content and naming structure. See What is a package?, Package metadata and/or Package naming conventions
for more details.

Additionally, the channel’s main directory might contain a channeldata.json file, with channel-wide metadata (this
is not specific per platform). Not all channels include this, and in general it is not currently something that is commonly
utilized.

Since conda’s philosophy is to keep all packages ever published around for reproducibility, repodata.json is always
growing, which presents a problem both for the download itself and the solver engine. To reduce download times and
bandwidth usage, repodata.json is also served as a BZIP2 compressed file, repodata.json.bz2. This is what
most conda clients end up downloading.

334 Chapter 4. Contributors welcome

https://docs.conda.io/projects/conda-build/en/latest/concepts/generating-index.html
https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html

conda, Release 24.3.1.dev75

Note on ‘current_repodata.json’
More repodatas variations can be found in some channels, but they are always reduced versions of the main one for the
sake of performance. For example, current_repodata.json only contains the most recent version of each package,
plus their dependencies. The rationale behind this optimization trick can be found here.

So, in essence, fetching the channel information means it can be expressed in pseudo-code like this:

platform = {}
noarch = {}
for channel in reversed(context.channels):

platform_repodata = fetch_extract_and_read(
channel.full_url / context.subdir / "repodata.json.bz2"

)
platform.update(platform_repodata)
noarch_repodata = fetch_extract_and_read(

channel.full_url / "noarch" / "repodata.json.bz2"
)
noarch.update(noarch_repodata)

Note that these dictionaries are keyed by filename, so higher priority channels will overwrite entries with the exact same
filename (e.g. numpy-1.19-py36h87ha43_0.tar.bz2). If they don’t have the same filename (e.g., same version and
build number but different hash), this ambiguity will be resolved later in the solver, taking into account the channel
priority mode.

In this example, context.channels has been populated through different, cascading mechanisms:

• The default settings as found in ~/.condarc or equivalent.

• The CONDA_CHANNELS environment variable (rare usage).

• The command-line flags, such as -c <channel>, --use-local or --override-channels.

• The channels present in a command-line spec. Remember that users can say channel::numpy instead of simply
numpy to require that numpy comes from that specific channel. That means that the repodata for such channel
needs to be fetched, too!

The items in context.channels are supposed to be conda.models.channels.Channel objects, but the Solver
API also allows strings that refer to their name, alias or full URL. In that case, you can use Channel objects to parse
and retrieve the full URL for each subdir using the Channel.urls() method. Several helper functions can be found
in conda.core.index, if needed.

Sadly, fetch_extract_and_read() does not exist as such, but as a combination of objects. The main driving func-
tion is actually get_index(), which passes the channel URLs to fetch_index, a wrapper that delegates directly
to conda.core.subdir_data.SubdirData objects. This object implements caching, authentication, proxies and
other things that complicate the simple idea of “just download the file, please”. Most of the logic is in SubdirData.
_load(), which ends up calling conda.core.subdir_data.fetch_repodata_remote_request() to process the
request. Finally, SubdirData._process_raw_repodata_str() does the parsing and loading.

Internally, the SubdirData stores all the package metadata as a list of PackageRecord objects. Its main usage is
via .query() (one result at a time) or .query_all() (all possible matches). These .query* methods accept spec
strings (e.g. numpy =1.14), MatchSpec and PackageRecord instances. Alternatively, if you want all records with
no queries, use SubdirData.iter_records().

Tricks to reduce the size of the index

4.6. Developer guide 335

https://docs.conda.io/projects/conda-build/en/latest/concepts/generating-index.html#trimming-to-current-repodata
https://github.com/conda/conda/blob/4.11.0/conda/core/index.py#L45

conda, Release 24.3.1.dev75

conda supports the notion of trying with different versions of the index in an effort to minimize the solution space.
A smaller index means a faster search, after all! The default logic starts with current_repodata.json files in the
channel, which contain only the latest versions of each package plus their dependencies. If that fails, then the full
repodata.json is used. This happens before the Solver is even invoked.

The second trick is done within the classic solver logic (pycosat): an informed index reduction. In essence, the index
(whether it’s current_repodata.json or full repodata.json) is pruned by the solver, trying to keep only the parts
that it anticipates will be needed. More details can be found on the get_reduced_index function. Interestingly, this
optimization step also takes longer the bigger the index gets.

Channel priorities

context.channels returns an IndexedSet of Channel objects; essentially a list of unique items. The different
channels in this list can have overlapping or even conflicting information for the same package name. For example,
defaults and conda-forge will for sure contain packages that fullfil the conda install numpy request. Which
one is chosen by conda in this case? It depends on the context.channel_priority setting: From the help message:

Accepts values of ‘strict’, ‘flexible’, and ‘disabled’. The default value is ‘flexible’. With strict channel
priority, packages in lower priority channels are not considered if a package with the same name appears in
a higher priority channel. With flexible channel priority, the solver may reach into lower priority channels
to fulfill dependencies, rather than raising an unsatisfiable error. With channel priority disabled, package
version takes precedence, and the configured priority of channels is used only to break ties.

In practice, channel_priority=strict is often the recommended setting for most users. It’s faster to solve and
causes fewer problems down the line. Check more details here.

Solving the install request

At this point, we can start asking the solver things. After all, we have loaded the channels into our index, building the
catalog of available packages and versions we can install. We also have the command line instructions and configura-
tions needed to customize the solver request. So, let’s just do it: “Solver, please install numpy on this prefix using these
channels as package sources”.

The details are complicated, but in essence, the Solver will:

1. Express the requested packages, command line options and prefix state as MatchSpec objects

2. Query the index for the best possible match that satisfy those constraints

3. Return a list of PackageRecord objects

The full details are covered in Solvers if you are curious. Just keep in mind that point (1) is conda-specific, while (2)
can be tackled, in principle, by any SAT solver.

Generating the transaction and the corresponding actions

The Solver API defines three public methods:

• .solve_final_state(): this is the core function, described in the section above. Given some input state, it
returns an IndexedSet of PackageRecord objects that reflect what the final state of the environment should
look like. This is the largest method, and its details are fully covered here.

• .solve_for_diff(): this method takes the final state and diffs it with the current state of the environment,
discovering which old records need to be removed, and which ones need to be added.

336 Chapter 4. Contributors welcome

https://github.com/conda/conda/blob/4.11.0/conda/core/index.py#L246

conda, Release 24.3.1.dev75

• .solve_for_transaction(): this method takes the diff and creates a Transaction object for this operation.
This is what the main CLI logic expects back from the solver.

So what is a Transaction object and why is it needed? Transactional actions were introduced in conda 4.3. They
seem to be the last iteration of a set of changes designed to check whether conda would be able to download and link
the needed packages (e.g. check that there is enough space on disk, whether the user has enough permissions for the
target paths, etc.). For more info, refer to PRs #3571, #3301, and #3034.

The transaction is essentially a set of action objects. Each action is allowed to run some checks to determine whether
it can be executed successfully. If that’s not the case, the failed checks will signal the parent transaction that the whole
operation needs to be aborted and rolled back to leave things in the state they were before running that conda command.
It is also responsible for some of the messages you will see in the CLI output, like the reports of what will be installed,
updated or removed.

Transactions and parallelism
Since the transaction object knows about all the actions that need to happen, it also enables parallelism for verifying,
downloading and (un)linking tasks. The level of parallelism can be changed through the following context settings:

• default_threads

• verify_threads

• execute_threads

• repodata_threads

• fetch_threads

There’s only one class of transaction in conda: LinkUnlinkTransaction. It only accepts one input parameter: a
list of PrefixSetup objects, which are just namedtuple objects with the followiing fields. These are populated by
Solver.solve_for_transaction after running Solver.solve_for_diff:

• target_prefix: the environment path the command is running on.

• unlink_precs: PackageRecord objects that need to be unlinked (removed).

• link_precs: PackageRecord objects that need to be linked (added).

• remove_specs: MatchSpec objects that need to be marked as removed in the history (the user asked for these
packages to be uninstalled).

• update_specs: MatchSpec objects that need to be marked as added in the history (the user asked for these
packages to be installed or updated).

• neutered_specs: MatchSpec objects that were already in history but had to be relaxed in order to avoid solving
conflicts.

Whatever happens after instantiation depends on the content of these PrefixSetup objects. Sometimes, the transaction
results in no actions (see the nothing_to_do property) because the request asked by the user is already fulfilled by
the current state of the environment.

However, most of the time the transaction will involve a number of actions. This is done via two public methods:

• download_and_extract(): essentially a forwarder to instantiate and call ProgressiveFetchExtract, re-
sponsible for deciding which PackageRecords need to be downloaded and extracted to the packages cache.

• execute(): the core logic is layed out here. It involves preparing, verifying and performing the rest of the
actions. Among others:

– Unlinking packages (removing a package from the environment)

– Linking (adding a package to the environment)

4.6. Developer guide 337

https://github.com/conda/conda/pull/3833
https://github.com/conda/conda/pull/3571
https://github.com/conda/conda/pull/3301
https://github.com/conda/conda/pull/3034
https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L156
https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L184

conda, Release 24.3.1.dev75

– Compiling bytecode (generating the pyc counterpart for each py module)

– Adding entry points (generate command line executables for the configured functions)

– Adding the JSON records (for each package, a JSON file is added to conda-meta/)

– Make menu items (create shortcuts for packages featuring a JSON file under Menu/)

– Remove menu items (remove the shortcuts created by that package)

It’s important to notice that download and extraction happen separately from all the other actions. This separation is
important and core to the idea of what a conda environment is. Essentially, when you create a new conda environment,
you are not necessarily copying files over to the target prefix location. Instead, condamaintains a cache of every package
ever downloaded to disk (both the tarball and the extracted contents). To save space and speed up environment creation
and deletion, files are not copied over, but instead they are linked (usually via a hardlink). That’s why these two tasks
are separated in the transaction logic: you don’t need to download and extract packages that are already in the cache;
you only need to link them!

Transactions also drive reports
The type and number of actions can also be calculated by _make_legacy_action_groups(), which returns a list of
action groups (one per PrefixSetup). Each action group is a just a dictionary following this specification:

{
"FETCH": Iterable[PackageRecord], # estimated by `ProgressiveFetchExtract`
"PREFIX": str,
"UNLINK": Iterable[PackageRecord],
"LINK: Iterable[PackageRecord],

}

These simpler action groups are only used for reporting, either via a processed text report (via
print_transaction_summary) or just the raw JSON (via stdout_json_success). As you can see, they do
not know anything about other types of tasks.

Download and extraction

conda maintains a cache of downloaded tarballs and their extracted contents to save disk space and improve the perfor-
mance of environment modifications. This requires some code to check whether a given PackageRecord is already
present in the cache, and, if it’s not, how to download the tarball and extract its contents in a performant way. This is
all handled by the ProgressiveFetchExtract class, which can instantiate up to two Action objects for each passed
PackageRecord:

• CacheUrlAction: downloads (if remote) or copies (if local) a tarball to the cache location.

• ExtractPackageAction: extracts the contents of the tarball.

These two actions only take place if the package is not in cache yet and if it has already been extracted, respectively.
They can also revert the changes if the transaction is aborted (either due to an error or because the user pressed Ctrl+C).

338 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Populating the prefix

When all the necessary packages have been downloaded and extracted to the cache, it is time to start populating the
prefix with the needed files. This means we need to:

1. For each package that needs to be unlinked, run the pre-unlink logic (deactivate and pre-unlink scripts, as
well as shortcut removal, if needed) and then unlink the package files.

2. For each package that needs to be linked, create the links and run the post-link logic (post-link and activate
scripts, as well as creating the shortcuts, if needed).

Note that when you are updating a package version, you are actually removing the installed version entirely
and then adding the new one. In other words, an update is just unlink+link.

How is this implemented? For each PrefixSetup object passed to UnlinkLinkTransaction, a number of
ActionGroup namedtuples (one per task category) will be instantiated and grouped together in a PrefixActionGroup
namedtuple. These are then passed to .verify(). This method will take each action, run its checks and, if all of them
passed, will allow us to perform the actual execution in .execute(). If one of them fails, the transaction can be
aborted and rolled back.

For all this to work, each action object follows the PathAction API contract:

class PathAction:
_verified = False

def verify(self):
"Run checks to assess if the action can proceed"

def execute(self):
"Perform the action"

def reverse(self):
"Undo execute"

def cleanup(self):
"Remove artifacts from verification, execution or reversal"

@property
def verified(self):

"True if verification was run and successful"

Additional PathAction subclasses will add more methods and properties, but this is what the transaction execution
logic expects. To support all the different actions involved in populating the prefix, the PathAction class tree holds
quite the graph:

PathAction
PrefixPathAction
CreateInPrefixPathAction
LinkPathAction
PrefixReplaceLinkAction

MakeMenuAction
CreateNonadminAction
CreatePythonEntryPointAction
CreatePrefixRecordAction
UpdateHistoryAction

RemoveFromPrefixPathAction
(continues on next page)

4.6. Developer guide 339

https://github.com/conda/conda/blob/4.11.0/conda/core/path_actions.py#L61

conda, Release 24.3.1.dev75

(continued from previous page)

UnlinkPathAction
RemoveLinkedPackageRecordAction

RemoveMenuAction
RegisterEnvironmentLocationAction
UnregisterEnvironmentLocationAction
CacheUrlAction
ExtractPackageAction

MultiPathAction
CompileMultiPycAction
AggregateCompileMultiPycAction

You are welcome to read on the docstring for each of those classes to understand which each one is doing; all of them
are listed under conda.core.path_actions. In the following sections, we will only comment on the most important
ones.

Linking the files in the environment

When conda links a file from the cache location to the prefix location, it can actually mean three different actions:

1. Creating a soft link

2. Creating a hard link

3. Copying the file

The difference between soft links and hard links is subtle, but important. You can find more info on the differences
elsewhere (e.g. here), but for our purposes it means that:

• Hard links are cheaper to resolve, behave like a real file, but can only link files in the same mount point.

• Soft links can link files across mount points, but they don’t behave exactly like files (more like forwarders), so
it’s possible that they break assumptions made in certain pieces of code.

Most of the time, conda will try to hard link files and, if that fails, it will copy them over. Copying a file is an expensive
disk operation, both in terms of time and space, so it should be the last option. However, sometimes it’s the only way.
Especially, when the file needs to be modified to be used in the target prefix.

Ummm. . . what? Why would conda modify a file to install it? This has to do with relocatability. When a conda
package is created, conda-build creates up to three temporary environments:

• Build environment: where compilers and other build tools are installed, separate from the host environment to
support cross-compilation.

• Host environment: where build-time dependencies are installed, together with the package you are building.

• Test environment: where run-time dependencies are installed, together with the package you just built. It simu-
lates what will happen when a user installs the package so you can run arbitrary checks on your package.

When you are building a package, references to the build-time paths can leak into the content of some files, both text
and binary. This is not a problem for users who build their own packages from source, since they can choose this path
and leave the files there. However, this is almost never true for conda packages. They are created in one machine and
installed in another. To avoid “path not found” issues and other problems, conda-build marks those packages that
hold references to the build-time paths by replacing them with placeholders. At install-time, conda will replace those
placeholders with the target prefix and everything works!

340 Chapter 4. Contributors welcome

https://askubuntu.com/questions/108771/what-is-the-difference-between-a-hard-link-and-a-symbolic-link

conda, Release 24.3.1.dev75

But there’s a problem: we can’t modify the files on the cache location because they might be used across environments
(with obviously different paths). In these cases, files are not linked, but copied; the path replacement only happens on
the target copy, of course!

How does conda know how to link a given package or, more precisely, its extracted files? All of this is deter-
mined in the preparation routines contained in UnlinkLinkTransaction._prepare() (more specifically, through
determine_link_type()), as well as LinkPathAction.create_file_link_actions().

Note that the (un)linking actions also include the execution of pre-(un)link and post-(un)link scripts, if listed.

Action groups and actions, in detail

Once the old packages have been removed and the new ones have been linked through the appropriate means, we are
done, right? Not yet! There’s one step left: the post-linking logic.

It turns out that there’s a number of smaller tasks that need to happen to make conda as convenient as it is. You can
find all of them listed a few paragraphs above, but we’ll cover them here, too. The execution order is determined in
UnlinLinkTransaction._execute. All the possible groups are listed under PrefixActionGroup. Their order is
roughly how they happen in practice:

1. remove_menu_action_groups, composed of RemoveMenuAction actions.

2. unlink_action_groups, includes UnlinkPathAction, RemoveLinkedPackageRecordAction, as well as
the logic to run the pre- and post-unlink scripts.

3. unregister_action_groups, basically a single UnregisterEnvironmentLocationAction action.

4. link_action_groups, includes LinkPathAction, PrefixReplaceLinkAction, as well as the logic to run
pre- and post-link scripts.

5. entry_point_action_groups, a collection of CreatePythonEntryPointAction actions.

6. register_action_groups, a single RegisterEnvironmentLocationAction action.

7. compile_action_groups, several CompileMultiPycAction that end up aggregated as a
AggregateCompileMultiPycAction for performance.

8. make_menu_action_groups, composed of MakeMenuAction actions.

9. prefix_record_groups, records installed packages in the environment via CreatePrefixRecordAction
actions.

Let’s discuss these actions groups for the command we are describing in this guide: conda install numpy. The
solution given by the solver says we need to:

• unlink Python 3.9.6

• link Python 3.9.9

• link numpy 1.19

This is what would happen:

1. No menu items are removed because Python 3.9.6 didn’t create any.

2. Pre-unlink scripts for Python 3.9.6 would run, but in this case there are none.

3. Python 3.9.6 files are removed from the environment. This can be parallelized.

4. Post-unlink scripts are run, if any.

5. Pre-link scripts are run for Python 3.9.9 and numpy 1.19, if any.

6. Files in the Python 3.9.9 and numpy 1.19 packages are linked and/or copied to the prefix. This can be parallelized.

4.6. Developer guide 341

https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L266
https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L50
https://github.com/conda/conda/blob/4.11.0/conda/core/path_actions.py#L190
https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L602
https://github.com/conda/conda/blob/4.11.0/conda/core/link.py#L123

conda, Release 24.3.1.dev75

7. Entry points are created for the new packages, if any.

8. Post-link scripts are run.

9. pyc files are generated for the new packages.

10. The new packages are registered under conda-meta/.

11. The menu shortcuts are created for the new packages, if any.

Any of these steps can fail with a given exception. If that’s the case, the first of those exceptions is printed to STDOUT.
Additionally, if rollback_enabled is properly configured in the context, the transaction will be rolled back by
calling the .reverse() method in each action, from last to first.

If no exceptions are reported, then the actions can run their cleanup routines.

And that’s it! If this command had resulted in a new environment being created, you would get a message telling you
how to activate the newly created environment.

Conclusion

This is what happens when you type conda install. It might be a bit more involved than you initially thought, but
it all boils down to only some steps. TL;DR:

1. Parse arguments and initialize the context

2. Download and build the index

3. Tell the solver what we want

4. Convert the solution into a transaction

5. Verify and run each action contained in the transaction

conda init and conda activate

conda ships virtual environments by design. When you install Anaconda or Miniconda, you obtain a base environment
that is essentially a regular environment with some extra checks. These checks have to do with what the conda command
really is and how it is installed in your system.

Base prefix vs target prefix
Originally, the base installation for condawas called the root environment. Every other environment lived under envs/
in that root environment. The root environment was later renamed to base, but the code still distinguishes between base
and target using the old terminology:

• context.root_prefix: the path where the base conda installation is located.

• context.target_prefix: the environment conda is running a command on. Usually defaults to the activated
environment, unless -n (name) or -p (prefix) is specified in the command line. Note that if you are operating on
the base environment, the target prefix will have the same value as the root prefix.

When you type conda in your terminal, your shell will try to find either:

• a shell function named conda

• an executable file named conda in your PATH directories

342 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

If your conda installation has been properly initialized, it will find the shell function. If not, it might find the conda
executable if it happens to be in PATH, but this is most often not the case. That’s why initialization is there to begin
with!

Conda initialization

Why is initialization needed at all to begin with? There are several reasons:

• Activation requires interacting with the shell context very closely

• It does not pollute PATH unnecessarily

• Improves performance in certain operations

The main idea behind initialization is to provide a conda shell function that allows the Python code to interact with
the shell context more intimately. It also allows a cleaner PATH manipulation and snappier responses in some conda
commands.

The conda shell function is mainly a forwarder function. It will delegate most of the commands to the real conda
executable driven by the Python library. However, it will intercept two very specific subcommands:

• conda activate

• conda deactivate

This interception is needed because activation/deactivation requires exporting (or unsetting) environment variables
back to the shell session (and not just temporarily in the Python process). This will be discussed in the next section.

So how is initialization performed? This is the job of the conda init subcommand, driven by the conda.cli.
main_init module, which depends direcly on the conda.core.initialize module. Let’s see how this is imple-
mented.

conda init will initialize a shell permanently by writing some shell code in the relevant startup scripts of your shell
(e.g. ~/.bashrc). This is done through different functions defined in conda.core.initialize, namely:

• init_sh_user: initializes a Posix shell (like Bash) for the current user.

• init_sh_system: initializes a Posix shell (like Bash) globally, for all users.

• init_fish_user: initializes the Fish shell for the current user.

• init_xonsh_user: initializes the Xonsh shell for the current user.

• init_cmd_exe_registry: initializes Cmd.exe through the Windows Registry.

• init_powershell_user: initializes Powershell for the current user.

• init_long_path: configures Windows to support longer paths.

What each function does depends on the nature of each shell. In the case of Bash shells, the underlying Activator
subclass (more below) can generate the hook code dynamically. In other Posix shells and Powershell, a script is sourced
from its location in the base environment. With Cmd, the changes are introduced through the Windows Registry. The
end result is the same: they will end up defining a conda shell function with the behavior described above.

4.6. Developer guide 343

https://github.com/conda/conda/blob/4.11.0/conda/shell/etc/profile.d/conda.sh#L62-L76

conda, Release 24.3.1.dev75

Conda activate

All Activator classes can be found under conda.activate. Their job is essentially to write shell-native code pro-
grammatically. As of conda 4.11, these are the supported shells and their corresponding activators

• posix, ash, bash, dash, zsh: all driven by PosixActivator.

• csh, tcsh: CshActivator.

• xonsh: XonshActivator.

• cmd.exe: CmdExeActivator.

• fish: FishActivator.

• powershell: PowerShellActivator.

You can add all these classes through the conda shell.<key> command, where key is any of the names in the list
above. These CLI interface offers several subcommands, connected directly to methods of the same name:

• activate: writes the shell code to activate a given environment.

• deactivate: writes the shell code to deactivate a given environment.

• hook: writes the shell code to register the initialization code for the conda shell code.

• commands: writes the shell code needed for autocompletion engines.

• reactivate: writes the shell code for deactivation followed by activation.

To be clear, we are saying these functions only write shell code. They do not execute it! This needs to be done by the
shell itself! That’s why we need a conda shell function, so these shell strings can be eval’d or source’d in-session.

Let’s see what happens when you run conda shell.bash activate:

$ conda shell.bash activate
export PATH='/Users/username/.local/anaconda/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/
→˓usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/
→˓opt/homebrew/bin:/opt/homebrew/sbin'
unset CONDA_PREFIX_1
PS1='(base) '
export CONDA_PREFIX='/Users/username/.local/anaconda'
export CONDA_SHLVL='1'
export CONDA_DEFAULT_ENV='base'
export CONDA_PROMPT_MODIFIER='(base) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'

See? It only wrote some shell code to stdout, but it wasn’t executed. We would need to do this to actually run it:

$ eval "$(conda shell.bash activate)"

And this is essentially what conda activate does: it calls the registered shell activator to obtain the required shell
code and then it evals it. In some shells with no eval equivalent, a temporary script is written and sourced or called.
The final effect is the same.

Ok, but what is that shell code doing? Mainly setting your PATH correctly so the executables of your base environment
can be found (like python). It also sets some extra variables to keep a reference to the path of the currently active
environment, the shell prompt modifiers and other information for conda internals.

344 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

This command can also generate the code for any other environment you want, not just base. Just pass the name or
path:

$ conda shell.bash activate mamba-poc
PS1='(mamba-poc) '
export PATH='/Users/username/.local/anaconda/envs/mamba-poc/bin:/opt/homebrew/bin:/opt/
→˓homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/
→˓anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
export CONDA_PREFIX='/Users/username/.local/anaconda/envs/mamba-poc'
export CONDA_SHLVL='2'
export CONDA_DEFAULT_ENV='mamba-poc'
export CONDA_PROMPT_MODIFIER='(mamba-poc) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'
export CONDA_PREFIX_1='/Users/username/.local/anaconda'

Now the paths are different, as well as some numbers (e.g. CONDA_SHLVL). This is used by conda to keep track of what
was activated before, so when you deactivate the last one, you can get back to the previous one seamlessly.

Activation/deactivation scripts

The activation/deactivation code can also include calls to activation/deactivation scripts. If present in the appropriate
directories for your shell (e.g. CONDA_PREFIX/etc/conda/activate.d/), they will be called before deactivation or
after activation, respectively. For example, compilers usually set up some environment variables to help configure the
default flags. This is what happens when you activate an environment that contains Clang and Gfortran:

$ conda shell.bash activate compilers
PS1='(compilers) '
export PATH='/Users/username/.local/anaconda/envs/compilers/bin:/opt/homebrew/bin:/opt/
→˓homebrew/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/
→˓anaconda/condabin:/opt/homebrew/bin:/opt/homebrew/sbin'
export CONDA_PREFIX='/Users/username/.local/anaconda/envs/compilers'
export CONDA_SHLVL='2'
export CONDA_DEFAULT_ENV='compilers'
export CONDA_PROMPT_MODIFIER='(compilers) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'
export CONDA_PREFIX_1='/Users/username/.local/anaconda'
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate-gfortran_
→˓osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate_clang_
→˓osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/activate.d/activate_clangxx_
→˓osx-arm64.sh"

Those three lines are sourcing the relevant scripts. Similarly, for deactivation, notice how the deactivation scripts are
executed first this time:

4.6. Developer guide 345

conda, Release 24.3.1.dev75

$ conda shell.bash deactivate
export PATH='/Users/username/.local/anaconda/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/
→˓usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Users/username/.local/anaconda/condabin:/
→˓opt/homebrew/bin:/opt/homebrew/sbin'
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate_
→˓clangxx_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate_
→˓clang_osx-arm64.sh"
. "/Users/username/.local/anaconda/envs/compilers/etc/conda/deactivate.d/deactivate-
→˓gfortran_osx-arm64.sh"
unset CONDA_PREFIX_1
PS1='(base) '
export CONDA_PREFIX='/Users/username/.local/anaconda'
export CONDA_SHLVL='1'
export CONDA_DEFAULT_ENV='base'
export CONDA_PROMPT_MODIFIER='(base) '
export CONDA_EXE='/Users/username/.local/anaconda/bin/conda'
export _CE_M=''
export _CE_CONDA=''
export CONDA_PYTHON_EXE='/Users/username/.local/anaconda/bin/python'

conda config and context

The context object is central to many parts of the conda codebase. It serves as a centralized repository of settings.
You normally import the singleton and access its (many) attributes directly:

from conda.base.context import context

context.quiet
False

This singleton is initialized from a cascade of different possible sources. From lower to higher precedence:

1. Default values hardcoded in the Context class. These are defined via class attributes.

2. Values defined in the configuration files (.condarc), which have their own precedence.

3. Values set by the corresponding command line arguments, if any.

4. Values defined by their corresponding CONDA_* environment variables, if present.

The mechanism implementing this behavior is an elaborate object with several types of objects involved.

Anatomy of the Context class

conda.base.context.Context is an conda-specific subclass of the application-agnostic conda.common.
configuration.Configuration class. This class implements the precedence order for the instantiation of each
defined attribute, as well as the overall validation logic and help message reporting. But that’s it, it’s merely a storage
of ParameterLoader objects which, in turn, instantiate the relevant Parameter subclasses in each attribute. Roughly:

class MyConfiguration(Configuration):
string_field = ParameterLoader(PrimitiveParameter("default", str))
list_of_int_field = ParameterLoader(SequenceParameter([1, 2, 3], int))
map_of_foat_values_field = ParameterLoader(MapParameter({"key": 1.0}, float))

346 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

When MyConfiguration is instantiated, those class attributes are populated by the .raw_data dicionary that has
been filled in with the values coming from the precedence chain stated above. The raw_data dictionary contains
RawParameter objects, subclassed to deal with the specifics of their origin (YAML file, environment variable, com-
mand line flag). Each ParameterLoader object will pass the RawParameter object to the .load() method of its
relevant Parameter subclass, which are designed to return their corresponding LoadedParameter object counterpart.

It’s a bit confusing, but the delegation happens like this:

1. The Configuration subclass parses the raw values of the possible origins and stores them as the relevant
RawParameter objects, which can be:

• EnvRawParameter: for those coming from an environment variable

• ArgParseRawParameter: for those coming from a command line flag

• YamlRawParameter: for those coming from a configuration file

• DefaultValueRawParameter: for those coming from the default value given to ParameterLoader

2. Each Configuration attribute is a ParameterLoader, which implements the property protocol via
__get__. This means that, upon attribute access (e.g. MyConfiguration.string_field), the
ParameterLoader can execute the loading logic. This means finding potential type matches in the raw data,
loading them as LoadedParameter objects and merging them with the adequate precedence order.

The merging policy depends on the (Loaded)Parameter subtype. Below is a list of available subtypes:

• PrimitiveParameter: holds a single scalar value of type str, int, float, complex, bool or NoneType.

• SequenceParameter: holds an iterable (list) of other Parameter objects.

• MapParameter: holds a mapping (dict) of other Parameter objects.

• ObjectParameter: holds an object with attributes set to Parameter objects.

The main goal of the Parameter objects is to implement how to typify and turn the raw values into their Loaded
counterparts. These implement the validation routines and define how parameters for the same key should be merged:

• PrimitiveLoadedParameter: value with highest precedence replaces the existing one.

• SequenceLoadedParameter: extends with no duplication, keeping precedence.

• MapLoadedParameter: cascading updates, highest precedence kept.

• ObjectLoadedParameter: same as Map.

After all of this, the LoadedParameter objects are typified: this is when type validation is performed. If everything
goes well, you obtain your values just fine. If not, the validation errors are raised.

Take into account that the result is cached for faster subsequent access. This means that even if you change the value
of the environment variables responsible for a given setting, this won’t be reflected in the context object until you
refresh it with conda.base.context.reset_context().

Do not modify the Context object!
ParameterLoader does not implement the __set__ method of the property protocol, so you can freely override an
attribute defined in a Configuration subclass. You might think that this will redefine the value after passing through
the validation machinery, but that’s not true. You will simply overwrite it entirely with the raw value and that’s probably
not what you want.

Instead, consider the context object immutable. If you need to change a setting at runtime, it is probably A Bad Idea.
The only situation where this is acceptable is during testing.

4.6. Developer guide 347

conda, Release 24.3.1.dev75

Setting values in the different origins

There’s some magic behind the possible origins for the settings values. How these are tied to the final Configuration
object might not be obvious at first. This is different for each RawParameter subclass:

• DefaultValueRawParameter: Users will never see this one. It only wraps the default value passed to the
ParameterLoader class. Safe to ignore.

• YamlRawParameter: This one takes a YAML file and parses it as a dictionary. The keys in this file must match
the attribute names in the Configuration class exactly (or one of their aliases). Matching happens automatically
once this is properly set up. How the values are parsed depends on the YAML Loader, set internally by conda.

• EnvRawParameter: Values coming from certain environment variables can make it to the Configuration
instance, provided they are formatted as <APP_NAME>_<PARAMETER_NAME>, all uppercase. The app name is
defined by the Configuration subclass. The parameter name is defined by the attribute name in the class,
transformed to upper case. For example, context.ignore_pinned can be set with CONDA_IGNORE_PINNED.
The value of the variable is parsed in different ways depending on the type:

– PrimitiveParameter is the easy one. The environment variable string is parsed as the expected type.
Booleans are a bit different since several strings are recognized as such, and in a case-insensitive way:

∗ True can be set with true, yes, on and y.

∗ False can be set with false, off, n, no, non, none and "" (empty string).

– SequenceParameter can specify their own delimiter (e.g. ,), so the environment variable string is pro-
cessed into a list.

– MapParameter and ObjectParameter do not support being set with environment variables.

• ArgParseRawParameter: These are a bit different because there is no automated mechanism that ties a given
command line flag to the context object. This means that if you add a new setting to the Context class and you
want that available in the CLI as a command line flag, you have to add it yourself. If that’s the case, refer to
conda.cli.conda_argparse and make sure that the dest value of your argparse.Argument matches the
attribute name in Context. This way, Configuration.__init__ can take the argparse.Namespace object,
turn it into a dictionary, and make it pass through the loading machinery.

Solvers

The guide conda install didn’t go into details of the solver black box. It did mention the high-level Solver API and
how conda expects a transaction out of it, but we never got to learn what happens inside the solver itself. We only
covered these three steps:

The details are complicated, but in essence, the solver will:

1. Express the requested packages, command line options and prefix state as MatchSpec objects

2. Query the index for the best possible match that satisfy those constraints

3. Return a list of PackageRecord objects.

How do we transform the prefix state and configurations into a list of MatchSpec objects? How are those turned into a
list of PackageRecord objects? Where are those PackageRecord objects coming from? We are going to cover these
aspects in detail here.

348 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

MatchSpec vs PackageRecord

First, let’s define what each object does:

• PackageRecord objects represent a concrete package tarball and its contents. They follow specific naming
conventions and expose several fields. Inspect them directly in the class code.

• MatchSpec objects are essentially a query language to find PackageRecord objects. Internally, conda will
translate your command line requests, like numpy>=1.19, python=3.* or pytorch=1.8.*=*cuda*, into in-
stances of this class. This query language has its own syntax and rules, detailed here. The most important fields
of a MatchSpec object are:

– name: the name of the package (e.g. pytorch); always expected.

– version: the version constraints (e.g. 1.8.*); can be empty but if build is set, set it to * to avoid issues
with the .conda_build_form() method.

– build: the build string constraints (e.g. *cuda*); can be empty.

Create a MatchSpec object from a PackageRecord instance
You can create a MatchSpec object from a PackageRecord instance using the .to_match_spec() method. This
will create a MatchSpec object with its fields set to exactly match the originating PackageRecord.

Note that there are two PackageRecord subclasses with extra fields, so we need to distinguish between three types, all
of them useful:

• PackageRecord: A record as present in the index (channel).

• PackageCacheRecord: A record already extracted in the cache. Contains extra fields for the tarball path in disk
and its extracted directory.

• PrefixRecord: A record installed in a prefix. Same as above, plus fields for the files that make the package and
how they were linked in the prefix. It can also host information about which MatchSpec string resulted in this
record being installed.

Remote state: the index

So the solver takes MatchSpec objects, queries the index for the best match and returns PackageRecord objects.
Perfect. What’s the index? It’s the result of aggregating the requested conda channels in a single entity. For more
information, check Fetching the index.

Local state: the prefix and context

When you do conda install numpy, do you think the solver will just see something like
specs=[MatchSpec("numpy")]? Well, not that quick. The explicit instructions given by the user are only
one part of the request we will send to the solver. Other pieces of implicit state are taken into account to build the final
request. Namely, the state of your prefix. In total, these are the ingredients of the solver request:

1. Packages already present in your environment, if you are not creating a new one. This is exposed through the
conda.core.prefix_data.PrefixData class, which provides an iterator method via .iter_records(). As
we saw before, this yields conda.models.records.PrefixRecord objects, a PackageRecord subclass for
installed records.

4.6. Developer guide 349

https://github.com/conda/conda/blob/4.11.0/conda/models/records.py#L242
https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html
https://docs.conda.io/projects/conda-build/en/latest/concepts/package-naming-conv.html
https://github.com/conda/conda/blob/4.11.0/conda/models/records.py#L242
https://github.com/conda/conda/blob/4.11.0/conda/models/match_spec.py#L73
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/pkg-specs.html#package-match-specifications

conda, Release 24.3.1.dev75

2. Past actions you have performed in that environment; the History. This is a journal of all the conda
install|update|remove commands you have run in the past. In other words, the specs matched by those
previous actions will receive extra protections in the solver.

3. Packages included in the aggressive updates list. These packages are always included in any requests to make
sure they stay up-to-date under all circumstances.

4. Packages pinned to a specific version, either via pinned_packages in your .condarc or defined in a $PREFIX/
conda-meta/pinned file.

5. In new environments, packages included in the create_default_packages list. These specs are injected in
each conda create command, so the solver will see them as explicitly requested by the user.

6. And, finally, the specs the user is asking for. Sometimes this is explicit (e.g. conda install numpy) and
sometimes a bit implicit (e.g. conda update --all is telling the solver to add all installed packages to the
update list).

All of those sources of information produce a number a of MatchSpec objects, which are then combined and modified
in very specific ways depending on the command line flags and their origin (e.g. specs coming from the pinned packages
won’t be modified, unless the user asks for it explicitly). This logic is intricate and will be covered in the next sections.
A more technical description is also available in Technical specification: solver state.

Fig. 2: Local variables affect the solving process explicitly and implicitly. As seen in in the conda install deep dive,
the main actor is the conda.core.solve.Solver class. Before invoking the SAT solver, we can describe nine steps:

1. Instantiate the Solver class with the user-requested packages and the active environment (target prefix)
2. Call the solve_for_transaction() method on the instance, which calls solve_for_diff().
3. Call solve_final_state(), which takes some more arguments from the CLI.
4. Under some circumstances, we can return early (e.g. the packages are already installed).
5. If we didn’t return early, we collect all the local variables into a list of MatchSpec objects.

For steps six to nine, see this figure.

350 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Fig. 3: The remote variables in a solve refer to, essentially, the package index (channels). This figure describes nine
steps, focusing on 6-9. For steps 1-5, see the previous figure.

6. All the channels need to be fetched by now, but they have to be aggregated and reduced so the solver only handles the relevant
bits. This step transforms “channels” into a list of available PackageRecord objects.

7. This is where the SAT solver will act. It will use the list of MatchSpec objects to pick a number of PackageRecord entries
from the index, thus building the “final state of the solved environment”. This is detailed later in this deep dive guide, if you
need more info.

8. solve_for_diff takes the final state and compares it to the initial state, generating the differences between them (e.g.
package A was updated to version 1.2, package B was removed).

9. solve_for_transaction takes the diff and some more metadata in the instance to generate the Transaction object.

4.6. Developer guide 351

conda, Release 24.3.1.dev75

The high-level logic in conda.cli.install

The full solver logic does not start at the conda.core.solve.Solver API, but before that, all the way up in the
conda.cli.install module. Here, some important decisions are already made:

• Whether the solver is not needed at all because:

– The operation is an explicit package install

– The user requested to roll back to a history checkpoint

– We are just creating a copy of an existing environment (cloning)

• Which repodata source to use (see here). It not only depends on the current configuration (via .condarc or
command line flags), but also on the value of use_only_tar_bz2.

• Whether the solver should start by freezing all installed packages (default for conda install and conda
remove in existing environments).

• If the solver does not find a solution, whether we need to retry again without freezing the installed packages for
the current repodata variant or if we should try with the next one.

So, roughly, the global logic there follows this pseudocode:

if operation in (explicit, rollback, clone):
transaction = handle_without_solver()

else:
repodatas = from_config or ("current_repodata.json", "repodata.json")
freeze = (is_install or is_remove) and env_exists and update_modifier not in argv
for repodata in repodatas:

try:
transaction = solve_for_transaction(...)

except:
if repodata is last:

raise
elif freeze:

transaction = solve_for_transaction(freeze_installed=False)
else:

continue # try next repodata

handle_txn(transaction)

Check this other figure for a schematic representation of this pseudocode.

We have, then, two reasons to re-run the full solver logic:

• Freezing the installed packages didn’t work, so we try without freezing again.

• Using current_repodata did not work, so we try with full repodata.

These two strategies are stacked so in the end, before eventually failing, we will have tried four things:

1. Solve with current_repodata.json and freeze_installed=True

2. Solve with current_repodata.json and freeze_installed=False

3. Solve with repodata.json and freeze_installed=True

4. Solve with repodata.json and freeze_installed=False

Interestingly, those strategies are designed to improve conda’s average performance, but they should be seen as a risky
bet. Those attempts can get expensive!

352 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

How to ask for a simpler approach
If you want to try the full thing without checking whether the optimized solves work, you can override the default
behaviour with these flags in your conda install commands:

• --repodata-fn=repodata.json: do not use current_repodata.json

• --update-specs: do not try to freeze installed

Then, the Solver class has its own internal logic, which also features some retry loops. This will be discussed later
and summarized.

Early exit tasks

Some tasks do not involve the solver at all. Let’s enumerate them:

• Explicit package installs: no index or prefix state needed.

• Cloning an environment: the index might be needed if the cache has been cleared.

• History rollback: currently broken.

• Forced removal: prefix state needed. This happens in the Solver class.

• Skip solve if already satisfied: prefix state needed. This happens in the Solver class.

Explicit package installs

These commands do not need a solver because the requested packages are expressed with a direct URL or path to a
specific tarball. Instead of a MatchSpec, we already have a PackageRecord-like entity! For this to work, all the
requested packages neeed to be URLs or paths. They can be typed in the command line or in a text file including a
@EXPLICIT line.

Since the solver is not involved, the dependencies of the explicit package(s) are not processed at all. This can leave the
environment in an inconsistent state, which can be fixed by running conda update --all, for example.

Explicit installs are taken care of by the explicit function.

Cloning an environment

conda create has a --clone flag that allows you to create a fully-working copy of an existing environment. This
is needed because you cannot relocate an environment using cp, mv, or your favorite file manager without unintended
consequences. Some files in a conda environment might contain hardcoded paths to existing files in the original loca-
tion, and those references will break if cp or mv is utilized (conda environments can be renamed via the conda rename
command, however; see the following section for more information).

The clone_env function implements this functionality. It essentially takes the source environment, generates the
URLs for each installed packages (filtering conda, conda-env and their dependencies) and passes the list of URLs to
explicit(). If the source tarballs are not in the cache anymore, it will query the index for the best possible match for
the current channels. As such, there’s a slim chance that the copy is not exactly a clone of the original environment.

4.6. Developer guide 353

https://github.com/conda/conda/blob/4.11.0/conda/misc.py#L52
https://github.com/conda/conda/blob/4.11.0/conda/misc.py#L187

conda, Release 24.3.1.dev75

Renaming an environment

When the conda rename command is used to rename an already-existing environment, please keep in mind that the
solver is not invoked at all, since the command essentially does a conda create --clone and conda remove --all
of the environment.

History rollback

conda install has a --revision flag, which allows you to revert the state of the environment to a previous one.
This is done through the History file, but its current implementation can be considered broken. Once fixed, we will
cover it in detail.

Forced removals

Similar to explicit installs, you can remove a package without performing a full solve. If conda remove is invoked
with --force, the specified package(s) will be removed directly, without analyzing their dependency tree and pruning
the orphans. This can only happen after querying the active prefix for the installed packages, so it is handled in the
Solver class. This part of the logic returns the list of PackageRecord objects already found in the PrefixData list
after filtering out the ones that should be removed.

Skip solve if already satisfied

conda install and update have a rather obscure flag: -S, --satisfied-skip-solve:

Exit early and do not run the solver if the requested specs are satisfied. Also skips aggressive updates as
configured by ‘aggressive_update_packages’. Similar to the default behavior of ‘pip install’.

This is also implemented at the Solver level, because we also need a PrefixData instance. It essentially checks if
all of the passed MatchSpec objects can match a PackageRecord already in prefix. If that’s the case, we return the
installed state as-is. If not, we proceed for the full solve.

Details of Solver.solve_final_state()

Note
From here on, the document only covers the classic solver logic (which uses pycosat). The libmamba solver has a
different approach and is not documented here. Please refer to its documentation for more information.

This is where most of the intricacies of the conda logic are defined. In this step, the configuration, command line flags,
user-requested specs and prefix state are aggregated to query the current index for the best match.

The aggregation of all those state bits will result in a list of MatchSpec objects. While it’s easy to establish which
package names will make it to the list, deciding which version and build string constraints the specs carry is a bit more
involved.

This is currently implemented in the conda.core.solve.Solver class. Its main goal is to populate the specs_map
dictionary, which maps package names (str) to MatchSpec objects. This happens at the beginning of the .
solve_final_state()method. The full details of the specs_map population are covered in the solver state technical
specification, but here’s a little map of what submethods are involved:

354 Chapter 4. Contributors welcome

https://github.com/conda/conda/blob/4.11.0/conda/plan.py#L279
https://github.com/conda/conda/blob/4.11.0/conda/core/solve.py#L239-L245
https://github.com/conda/conda/blob/4.11.0/conda/core/solve.py#L247-L256
https://conda.github.io/conda-libmamba-solver/

conda, Release 24.3.1.dev75

1. Initialization of the SolverStateContainer: Often abbreviated as ssc, it’s a helper class to store some state
across attempts (remember there are several retry loops). Most importantly, it stores two key attributes (among
others):

• specs_map: same as above. This is where it lives across solver attempts.

• solution_precs: a list of PackageRecord objects. It stores the solution returned by the SAT solver. It’s
always initialized to reflect the installed packages in the target prefix.

2. Solver._collect_all_metadata(): Initializes the specs_map with the specs found in the history or with
the specs corresponding to the installed records. This method delegates to Solver._prepare(). This initializes
the index by fetching the channels and reducing it. Then, a conda.resolve.Resolve instance is created with
that index. The index is stored in the Solver instance as ._index and the Resolve object as ._r. They are
also kept around in the SolverStateContainer, but as public attributes: .index and .r, respectively.

3. Solver._remove_specs(): If conda remove was called, it removes the relevant specs from specs_map.

4. Solver._add_specs(): For all the other conda commands (create, install, update), it adds (or modifies)
the relevant specs to specs_map. This is one of the most complicated pieces of logic in the class!

Check the other parts of the Solver API
You can check the rest of the Solver API here.

At this point, the specs_map is adequately populated and we can call the SAT solver wrapped by the conda.resolve.
Resolve class. This is done in Solver._run_sat(), but this method does some other things before actually solving
the SAT problem:

• Before calling ._run_sat(), inconsistency analysis is performed via Solver.
_find_inconsistent_packages. This will preemptively remove certain PackageRecord objects from
ssc.solution_precs if Resolve.bad_installed() determined they were causing inconsistencies. This
actually runs a series of small solves to check that the installed records form a satisfiable set of clauses. Those
that prevent that solution from being found are annotated as such and ignored during the real solve later.

• Make sure the requested package names are available in the index.

• Anticipate and minimize potentially conflicting specs. This happens in a while loop fed by Resolve.
get_conflicting_specs(). If a spec is found to be conflicting, it is neutered: a new MatchSpec object
is created, but without version and build string constrains (e.g. numpy >=1.19 becomes just numpy). Then,
Resolve.get_conflicting_specs() is called again, and the loop continues until convergence: the list of
conflicts cannot be reduced further, either because there are no conflicts left or because the existing conflicts
cannot be resolved by constraint relaxation.

• Now, the SAT solver is called. This happens via Resolve.solve(). More on this below.

• If the solver failed, then UnsatisfiableError is raised. Depending on which attempt we are on, conda will
try again with non-frozen installed packages or a different repodata, or it will give up and analyze the conflict
cause core. This will be detailed later.

• If the solver succeeded, some bookkeeping needs to be done:

– Neutered specs that happened to be in the history are annotated as such.

– Inconsistent packages are added back to the solution, including potential orphans.

– Constraint analysis is run via Solver.get_constrained_packages() and Solver.
determine_constricting_specs() to help the user understand why some packages were not
updated.

4.6. Developer guide 355

conda, Release 24.3.1.dev75

We are not done yet, though. After Solver._run_sat(), we still need to run the post-solver logic! After the solve,
the final list of PackageRecord objects might still change if certain modifiers are set. This is handled in the Solver.
_post_sat_handling():

• --no-deps (DepsModifier.NO_DEPS): Remove dependencies of the explicitly requested packages from the
final solution.

• --only-deps (DepsModifier.ONLY_DEPS): Remove explicitly requested packages from
the final solution but leave their dependencies. This is done via PrefixGraph.
remove_youngest_descendant_nodes_with_specs().

• --update-deps (UpdateModifier.UPDATE_DEPS): This is the most interesting one. It actually runs a second
solve (!) where the user-requested specs are the originally requested specs plus their (now determined) depen-
dencies.

• --prune: Removes orphan packages from the solution.

The Solver also checks for Conda updates
Interestingly, the Solver API is also responsible of checking if new conda versions are available in the configured
channels. This is done here to take advantage of the fact that the index has been already built for the rest of the class.

Details of conda.resolve.Resolve

This is the class that actually wraps the SAT solver. conda.core.solve.Solver is a higher level API that configures
the solver request and prepares the transaction. The actual solution is computed in this other module we are discussing
now.

The Resolve object will mostly receive two arguments:

• The fetched index, as processed by conda.index.get_index().

• The configured channels, so channel priority can be sorted out.

It will also hold certain states:

• The index will be grouped by name under a .groups dictionary (str, [PackageRecord]). Each group is later
sorted so newer packages are listed first, helping reduce the index better.

• Another dictionary of PackageRecord groups will be created, keyed by their track_features entries, under
the .trackers attribute.

• Some other dictionaries are initialized as caches.

The main methods in this class are:

• bad_installed(): This method uses a series of small solves to check if the installed packages are in a consis-
tent state. In other words, if all the PackageRecord entries were expressed as MatchSpec objects, would the
environment be solvable?

• get_reduced_index(): This method takes a full index and trims out the parts that are not necessary for the
current request, thus reducing the solution space and speeding up the solver.

• gen_clauses(): This instantiates and configures the Clauses object, which is the real SAT solver wrapper.
More on this later.

• solve(): The main method in the Resolve class. It will be discussed in the next section.

356 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• find_conflicts(): If the solver didn’t succeed, this method performs a conflict analysis to find the most
plausible explanation for the current conflicts. It essentially relies on build_conflict_map() to “find the
common dependencies that might be the cause of conflicts”. conda can spend a lot of time in this method.

Disabling conflict analysis
Conflict analysis can be disabled through the context.unsatisfiable_hints options, but unfortunately that gets
in the way of conda’s iterative logic. It will shortcut early in the chain of attempts and prevent the solver from trying
less constrained specs. This is a part of the logic that should be improved.

Resolve.solve()

As introduced above, this is the main method in the Resolve class. It will perform the following actions:

1. Reduce the index via get_reduced_index. If unsuccessful, try to detect if packages are missing or the wrong
version was requested. We can raise early to trigger a new attempt in conda.cli.install (remember, unfrozen
or next repodata) or, if it’s the last attempt, we go straight to find_conflicts() to understand what’s wrong.

2. Instantiate a new Resolve object with the reduced index to generate the Clauses object via gen_clauses().
This method relies on push_MatchSpec() to turn the MatchSpec object into an SAT clause inside the Clauses
object (referred to as C).

3. Run Clauses.sat() to solve the SAT problem. If a solution cannot be found, deal with the error in the usual
way: raise early to trigger another attempt or call find_conflicts() to try explaining why.

4. If no errors are found, then we have one or more solutions available, and we need to post-process them to find
the best one. This is done in several steps:

1. Minimize the amount of removed packages. The SAT clauses are generated via Resolve.
generate_removal_count() and then Clauses.minimize() will use it to optimize the current so-
lution.

2. Maximize how well each record in the solution matches the spec. The SAT clauses are now generated
in Resolve.generate_version_metrics(). This returns five sets of clauses: channel, version, build,
arch or noarch, and timestamp. At this point, only channels and versions are optimized.

3. Minimize the number of records with track_feature entries. SAT clauses are coming from Resolve.
generate_feature_count().

4. Minimize the number of records with features entries. SAT clauses are coming from Resolve.
generate_feature_metric().

5. Now, we continue the work started at (2). We will maximize the build number and choose arch-specific
packages over noarch variants.

6. We also want to include as many optional specs in the solution as possible. Optimize for that thanks to the
clauses generated by Resolve.generate_install_count().

7. At the same time, we will minimize the number of necessary updates if keeping the installed versions also
satisfies the request. Clauses generated with Resolve.generate_update_count().

8. Steps (2) and (5) are also applied to indirect dependencies.

9. Minimize the number of packages in the solution. This is done by removing unnecessary packages.

10. Finally, maximize timestamps until convergence so the most recent packages are preferred.

5. At this point, the SAT solution indices can be translated back to SAT names. This is done in the clean() local
function you can find in Resolve.sat().

4.6. Developer guide 357

conda, Release 24.3.1.dev75

6. There’s a chance we can find alternate solutions for the problem, and this is explored now, but eventually only
the first one will be returned while translating the SAT names to PackageRecord objects.

The Clauses object wraps the SAT solver using several layers

The Resolve class exposes the solving logic, but when it comes to interacting with the SAT solver engine, that’s done
through the Clauses object tree. And we say “tree” because the actual engines are wrapped in several layers:

• Resolve generates conda.common.logic.Clauses objects as needed.

• Clauses is a tight wrapper around its private conda.common._logic.Clauses counterpart. Let’s call the
former _Clauses. It simply wraps the _Clauses API with ._eval() calls and other shortcuts for convenience.

• _Clauses provides an API to process the raw SAT formulas or clauses. It will wrap one of the conda.common.
_logic._SatSolver subclasses. These are the ones that wrap the SAT solver engines! So far, there are three
subclasses, selectable via the context.sat_solver setting:

– _PycoSatSolver, keyed as pycosat. This is the default one, a Python wrapper around the picosat
project.

– _PySatSolver, keyed as pysat. Uses the Glucose4 solver found in the pysat project.

– _PyCryptoSatSolver, keyed as pycryptosat. Uses the Python bindings for the CryptoMiniSat project.

In principle, more SAT solvers can be added to conda if a wrapper that subscribes to the _SatSolver API is used.
However, if the reason is choosing a better performing engine, consider the following:

• The wrapped SAT solvers are already using compiled languages.

• Generating the clauses is indeed written in pure Python and has a non-trivial overhead.

• Optimization tricks like reducing the index and constraining the solution space have their costs if the “bets” were
not successful.

More about SAT solvers in general
This guide did not cover the details of what SAT solvers are or do. If you want to read about them, consider checking
the following resources:

• Aaron Meurer’s slides about Conda internals. These slides reveal a lot of details of conda back in 2015. Some
things have changed, but the core SAT solver behaviour is still well explained there.

• “Understanding and Improving Conda’s performance”

• All the talks regarding solvers from Packaging-Con 2021. Check which talks belong to the Solvers track and
enjoy!

4.6.5 Writing Tests

This section contains a series of guides and guidelines for writing tests in the conda repository.

358 Chapter 4. Contributors welcome

https://github.com/conda/pycosat
http://fmv.jku.at/picosat/
http://fmv.jku.at/picosat/
https://pysathq.github.io/
https://github.com/msoos/cryptominisat
https://speakerdeck.com/asmeurer/conda-internals
https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://www.youtube.com/channel/UCGjb8FEgGAfMaQ98bVjNVJg/videos
https://pretalx.com/packagingcon-2021/schedule/

conda, Release 24.3.1.dev75

Fig. 4: Here you can see how the high level Solver API interacts with the low-level Resolve and Clauses objects.
The Collecting metadata step in the CLI report only compiles the necessary information from the CLI arguments, the prefix state

and the chosen channels, presenting the SAT solver adapters with two critical pieces of information:
• The list of MatchSpec objects (“what the user wants in this environment”)
• The list of PackageRecord objects (“the packages available in the channels”)

So, in essence, the SAT solver takes the MatchSpec objects to select which PackageRecord objects satisfy the user request in the
best way. The necessary computations are part of the “Solving environment. . . ” step in the CLI report.

4.6. Developer guide 359

conda, Release 24.3.1.dev75

Guides

Integration Tests This guide gives an overview of how to write integration tests using full command invocation. It also
covers creating fixtures to use with these types of tests.

Integration Tests

Integration tests in conda test the application from a high level where each test can potentially cover large portions of
the code. These tests may also use the local file system and/or perform network calls. In the following sections, we
cover several examples of exactly how these tests look. When writing your own integration tests, these should serve as
a good starting point.

conda_cli Fixture: Running CLI level tests

CLI level tests are the highest level integration tests you can write. This means that the code in the test is executed as if
you were running it from the command line. For example, you may want to write a test to confirm that an environment
is created after successfully running conda create. A test like this would look like the following:

Listing 3: Integration test for conda create

1 import json
2 from pathlib import Path
3

4 from conda.testing import CondaCLIFixture
5

6

7 def test_conda_create(conda_cli: CondaCLIFixture, tmp_path: Path):
8 # setup, create environment
9 out, err, code = conda_cli("create", "--prefix", tmp_path, "--yes")

10

11 assert f"conda activate {tmp_path}" in out
12 assert not err # no errors
13 assert not code # success!
14

15 # verify everything worked using the `conda env list` command
16 out, err, code = conda_cli("env", "list", "--json")
17

18 assert any(
19 tmp_path.samefile(path)
20 for path in json.loads(out).get("envs", [])
21)
22 assert not err # no errors
23 assert not code # success!
24

25 # cleanup, remove environment
26 out, err, code = conda_cli("remove", "--all", "--prefix", tmp_path)
27

28 assert out
29 assert not err # no errors
30 assert not code # success!

Let’s break down exactly what is going on in the code snippet above:

360 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

First, we rely on a fixture (conda_cli) that allows us to run a command using the current running process. This is
much more efficient and quicker than running CLI tests via subprocesses.

In the test itself, we first create a new environment by effectively running conda create. This function returns the
standard out, standard error, and the exit code of the command. This allows us to perform our inspections in order to
determine whether the command ran successfully.

The second part of the test again uses the conda_cli fixture to call conda env list. This time, we pass the --json
flag, which allows capturing JSON that we can better parse and more easily inspect. We then assert whether the
environment we just created is actually in the list of environments available.

Finally, we destroy the environment we just created and ensure the standard error and the exit code are what we expect
them to be.

Warning: It is preferred to use temporary directories (e.g., tmp_path) whenever possible for automatic cleanup
after tests are run. Otherwise, remember to remove anything created during the test since it will be present when
other tests are run and may result in unexpected race conditions.

tmp_env Fixture: Creating a temporary environment

The tmp_env fixture is a convenient way to create a temporary environment for use in tests:

Listing 4: Integration test for creating an environment with numpy

1 from conda.testing import CondaCLIFixture, TmpEnvFixture
2

3

4 def test_environment_with_numpy(
5 tmp_env: TmpEnvFixture,
6 conda_cli: CondaCLIFixture,
7):
8 with tmp_env("numpy") as prefix:
9 out, err, code = conda_cli("list", "--prefix", prefix)

10

11 assert out
12 assert not err # no error
13 assert not code # success!

path_factory Fixture: Creating a unique (non-existing) path

The path_factory fixture extends pytest’s tmp_path fixture to provide unique, unused paths. This makes it easier to
generate new paths in tests:

Listing 5: Integration test for renaming an environment

1 from conda.testing import (
2 CondaCLIFixture,
3 PathFactoryFixture,
4 TmpEnvFixture,
5)
6

7

(continues on next page)

4.6. Developer guide 361

conda, Release 24.3.1.dev75

(continued from previous page)

8 def test_conda_rename(
9 path_factory: PathFactoryFixture,

10 tmp_env: TmpEnvFixture,
11 conda_cli: CondaCLIFixture,
12 tmp_path: Path,
13):
14 # each call to `path_factory` returns a unique path
15 assert path_factory() != path_factory()
16

17 # each call to `path_factory` returns a path that is a child of `tmp_path`
18 assert path_factory().parent == path_factory().parent == tmp_path
19

20 with tmp_env() as prefix:
21 out, err, code = conda_cli("rename", "--prefix", prefix, path_factory())
22

23 assert out
24 assert not err # no error
25 assert not code # success!

Tests with fixtures

Sometimes in integration tests, you may want to re-use the same type of environment more than once. Copying and
pasting this setup and teardown code into each individual test can make these tests more difficult to read and harder to
maintain.

To overcome this, conda tests make extensive use of pytest fixtures. Below is an example of the previously-shown
test, except that we now make the focus of the test the conda env list command and move the creation and removal
of the environment into a fixture:

Listing 6: Integration test for conda create

1 import json
2 from pathlib import Path
3

4 from conda.testing import CondaCLIFixture
5

6

7 @pytest.fixture
8 def env_one(tmp_env: TmpEnvFixture) -> Path:
9 with tmp_env() as prefix:

10 yield prefix
11

12

13 def test_conda_create(env_one: Path, conda_cli: CondaCLIFixture):
14 # verify everything worked using the `conda env list` command
15 out, err, code = conda_cli("env", "list", "--json")
16

17 assert any(
18 env_one.samefile(path)
19 for path in json.loads(out).get("envs", [])
20)

(continues on next page)

362 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

21 assert not err # no errors
22 assert not code # success!

In the fixture named env_one, we create a new environment using the tmp_env fixture. We yield to mark the end of
the setup. Since the tmp_env fixture extends tmp_path no additional teardown is needed.

This fixture will be run using the default scope in pytest, which is function. This means that the setup and teardown
will occur before and after each test that requests this fixture. If you need to share an environment or other pieces of
data between tests, just remember to set the fixture scope appropriately. Read here for more information on pytest
fixture scopes.

General Guidelines

• Preferred test style (pytest)

• Organizing tests

• The "conda.testing" module

• Adding new fixtures

• The context object

Note: It should be noted that existing tests may deviate from these guidelines, and that is okay. These guidelines are
here to inform how we would like all new tests to look and function.

Preferred test style (pytest)

Although our codebase includes class-based unittest tests, our preferred format for all new tests are pytest style
tests. These tests are written using functions and handle the setup and teardown of context for tests using fixtures. We
recommend familiarizing yourself with pytest first before attempting to write tests for conda. Head over to their
Getting Started Guide to learn more.

Organizing tests

Tests should be organized in a way that mirrors the main conda module. For example, if you were writing a test for a
function in conda/base/context.py, you would place this test in tests/base/test_context.py.

The "conda.testing" module

This is a module that contains anything that could possibly help with writing tests, including fixtures, functions, and
classes. Feel free to make additions to this module as you see fit, but be mindful of organization. For example, if your
testing utilities are primarily only for the base module considering storing these in conda.testing.base.

4.6. Developer guide 363

https://docs.pytest.org/en/stable/how-to/fixtures.html#scope-sharing-fixtures-across-classes-modules-packages-or-session
https://docs.pytest.org/en/stable/getting-started.html

conda, Release 24.3.1.dev75

Adding new fixtures

For fixtures that have a very limited scope or purpose, it is okay to define these alongside the tests themselves. However,
if these fixtures could be used across multiple tests, then they should be saved in a separate fixtures.py file. The
conda.testing module already contains several of these files.

If you want to add new fixtures within a new file, be sure to add a reference to this module in tests/conftest.
py::pytest_plugins. This is our preferred way of making fixtures available to our tests. Because of the way these
are included in the environment, you should be mindful of naming schemes and choose ones that likely will not collide
with each other. Consider using a prefix to achieve this.

The context object

The context object in conda is used as a singleton. This means that everytime the conda command runs, only a single
object is instantiated. This makes sense as it holds all the configuration for the program and re-instantiating it or making
multiple copies would be inefficient.

Where this causes problems is during tests where you may want to run conda commands potentially hundreds of times
within the same process. Therefore, it is important to always reset this object to a fresh state when writing tests.

This can be accomplished by using the reset_context function, which also lives in the conda.base.context
module. The following example shows how you would modify the context object and then reset it using the
reset_conda_context pytest fixture:

import os
import tempfile

from conda.base.context import reset_context, context
from conda.testing.fixtures import reset_conda_context

TEST_CONDARC = """
channels:
- test-channel

"""

def test_that_uses_context(reset_conda_context):
We first created a temporary file to hold our test configuration
with tempfile.TemporaryDirectory() as tempdir:

condarc_file = os.path.join(tempdir, "condarc")

with open(condarc_file, "w") as tmp_file:
tmp_file.write(TEST_CONDARC)

We use the reset_context function to load our new configuration
reset_context(search_path=(condarc_file,))

Run various test assertions, below is an example
assert "test-channel" in context.channels

Using this testing fixture ensures that your context object is returned to the way it was before the test. For this specific
test, it means that the channels setting will be returned to its default configuration. If you ever need to manually reset
the context during a test, you can do so by manually invoking the reset_context command like in the following
example:

364 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

from conda.base.context import reset_context

def test_updating_context_manually():
Load some custom variables into context here like above...

reset_context()

Continue testing with a fresh context...

4.6.6 Deprecations

Conda abides by the Deprecation Schedule defined in CEP-9. To help make deprecations as much of a no-brainer as
possible we provide several helper decorators and functions to facilitate the correct deprecation process.

Functions, Methods, Properties, and Classes

Warning: To deprecate Enums treat them like constants (see Constants and Enums).

The simplest use case is for deprecating any function, method, or property:

Listing 7: Example file, foo.py.

from conda.deprecations import deprecated

@deprecated("23.9", "24.3")
def bar():

...

Listing 8: Example invocation.

>>> import foo
>>> foo.bar()
<stdin>:1: PendingDeprecationWarning: foo.bar is pending deprecation and will be removed␣
→˓in 24.3.

As a minimum we must always specify two versions:

1. the future deprecation release in which the function, method, or property will be marked as deprecated; prior to
that the feature will show up as pending deprecation (which we treat as a commenting period), and

2. the subsequent deprecation release in which the function, method, or property will be removed from the code
base.

Additionally, you may provide an addendum to inform the user what they should do instead:

Listing 9: Example file, foo.py.

from conda.deprecations import deprecated

(continues on next page)

4.6. Developer guide 365

https://github.com/conda-incubator/ceps/blob/main/cep-9.md

conda, Release 24.3.1.dev75

(continued from previous page)

@deprecated("23.9", "24.3", addendum="Use `qux` instead.")
def bar():

...

Listing 10: Example invocation.

>>> import foo
>>> foo.bar()
<stdin>:1: PendingDeprecationWarning: foo.bar is pending deprecation and will be removed␣
→˓in 24.3. Use `qux` instead.

Keyword Arguments

Warning: Deprecating or renaming a positional argument is unnecessarily complicated and is not supported.
Instead, it is recommended to either (1) devise a custom way of detecting usage of a deprecated positional argu-
ment (e.g., type checking) and use the conda.deprecations.deprecated.topic function (see Topics) or (2)
deprecate the function/method itself and define a new function/method without the deprecated argument.

Similarly to deprecating a function or method it is common to deprecate a keyword argument:

Listing 11: Example file, foo.py.

from conda.deprecations import deprecated

prior implementation
def bar(is_true=True):
...

@deprecated.argument("23.9", "24.3", "is_true")
def bar():

...

Listing 12: Example invocation.

>>> import foo
>>> foo.bar(is_true=True)
<stdin>:1: PendingDeprecationWarning: foo.bar(is_true) is pending deprecation and will␣
→˓be removed in 24.3.

Or to rename the keyword argument:

Listing 13: Example file, foo.py.

from conda.deprecations import deprecated

(continues on next page)

366 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

prior implementation
def bar(is_true=True):
...

@deprecated.argument("23.9", "24.3", "is_true", rename="enabled")
def bar(enabled=True):

...

Listing 14: Example invocation.

>>> import foo
>>> foo.bar(is_true=True)
<stdin>:1: PendingDeprecationWarning: foo.bar(is_true) is pending deprecation and will␣
→˓be removed in 24.3. Use 'enabled' instead.

argparse.Action

Occasionally, there is a need to deprecate CLI arguments. For this, we provide a helper function to monkeypatch any
argparse.Action:

Listing 15: Example file, foo.py.

import argparse
from conda.deprecations import deprecated

parser = argparse.ArgumentParser()
parser.add_argument(

"--force",
dest="yes",
action=deprecated.action(

"23.9",
"24.3",
argparse._StoreTrueAction,
addendum="Use `--yes` instead.",

),
default=False,

)
parser.parse_args()

python foo.py --force
foo.py:16: PendingDeprecationWarning: `--force` is pending deprecation and will be␣
→˓removed in 24.3. Use `--yes` instead.

4.6. Developer guide 367

conda, Release 24.3.1.dev75

Constants and Enums

We also offer a way to deprecate global variables or constants:

Listing 16: Example file, foo.py.

from conda.deprecations import deprecated

deprecated.constant("23.9", "24.3", "ULTIMATE_CONSTANT", 42)

Listing 17: Example invocation.

>>> import foo
>>> foo.ULTIMATE_CONSTANT
<stdin>:1: PendingDeprecationWarning: foo.ULTIMATE_CONSTANT is pending deprecation and␣
→˓will be removed in 24.3.

Enums work similarly:

Listing 18: Example file, foo.py.

from enum import Enum
from conda.deprecations import deprecated

class Bar(Enum):
ULTIMATE_CONSTANT = 42

deprecated.constant("23.9", "24.3", "Bar", Bar)
del Bar

Listing 19: Example invocation.

>>> from foo import Bar
<stdin>:1: PendingDeprecationWarning: foo.Bar is pending deprecation and will be removed␣
→˓in 24.3.

Note: Constants deprecation relies on the module’s __getattr__ introduced in PEP-562.

Modules

Entire modules can be also be deprecated:

Listing 20: Example file, foo.py.

from conda.deprecations import deprecated

deprecated.module("23.9", "24.3")

368 Chapter 4. Contributors welcome

https://peps.python.org/pep-0562/

conda, Release 24.3.1.dev75

Listing 21: Example invocation.

>>> import foo
<stdin>:1: PendingDeprecationWarning: foo is pending deprecation and will be removed in␣
→˓24.3.

Topics

Finally, there are a multitude of other ways in which code may be run that also needs to be deprecated. To this end we
offer a general purpose deprecation function:

Listing 22: Example file, foo.py.

from conda.deprecations import deprecated

def bar(...):
some logic

if ...:
deprecated.topic("23.9", "24.3", topic="The <TOPIC>")

some more logic

Listing 23: Example invocation.

>>> import foo
>>> foo.bar(...)
<stdin>:1: PendingDeprecationWarning: The <TOPIC> is pending deprecation and will be␣
→˓removed in 24.3.

4.6.7 Releasing

Conda’s releases may be performed via the rever command. Rever is configured to perform the activities for a typical
conda release. To cut a release, simply run rever <X.Y.Z> where <X.Y.Z> is the release number that you want bump
to. For example, rever 1.2.3.

However, it is always good idea to make sure that the you have permissions everywhere to actually perform the release.
So it is customary to run rever check before the release, just to make sure.

The standard workflow is thus:

$ rever check
$ rever 1.2.3

If for some reason a release fails partway through, or you want to claw back a release that you have made, rever allows
you to undo activities. If you find yourself in this pickle, you can pass the --undo option a comma-separated list of
activities you’d like to undo. For example:

$ rever --undo tag,changelog,authors 1.2.3

Happy releasing!

4.6. Developer guide 369

https://regro.github.io/rever-docs/

conda, Release 24.3.1.dev75

4.6.8 Plugins

As of version 22.11.0, conda has support for user plugins, enabling extension and/or alterations to some of its func-
tionality.

Quick start

This is an example of a minimal working conda plugin that defines a new subcommand:

Listing 24: example_plugin.py

import conda.plugins
from conda.base.context import context

def command(arguments: list[str]):
print("Conda subcommand!")

@conda.plugins.hookimpl
def conda_subcommands():

yield conda.plugins.CondaSubcommand(
name="example",
action=command,
summary="Example of a conda subcommand",

)

Let's break down what's going on here step-by-step:

1. First, we create the function command that serves as our subcommand. This function is passed a list of arguments
which equal to sys.argv[2:].

2. Next, we register this subcommand by using the conda_subcommands plugin hook. We do this by creating a
function called conda_subcommands and then decorating it with conda.plugins.hookimpl.

3. The object we return from this function is conda.plugins.CondaSubcommand, which does several things:

1. name is what we use to call this subcommand via the command line (i.e. "conda example")

2. action is the function that will be called when we invoke "conda example"

3. summary is the description of the of the subcommand that appears when users call "conda --help"

In order to actually use conda plugins, they must be packaged as Python packages. Furthermore, we also need to take
advantage of a feature known as Python package entrypoints. We can define our Python package and the entry points
by either using a pyproject.toml file (preferred) or a setup.py (legacy) for our project:

Listing 25: pyproject.toml

[build-system]
requires = ["setuptools", "setuptools-scm"]
build-backend = "setuptools.build_meta"

[project]
name = "conda-example-plugin"
version = "1.0.0"
description = "Example conda plugin"

(continues on next page)

370 Chapter 4. Contributors welcome

https://packaging.python.org/en/latest/specifications/entry-points/

conda, Release 24.3.1.dev75

(continued from previous page)

requires-python = ">=3.8"
dependencies = ["conda"]

[project.entry-points."conda"]
conda-example-plugin = "example_plugin"

Listing 26: setup.py

from setuptools import setup

setup(
name="conda-example-plugin",
install_requires="conda",
entry_points={"conda": ["conda-example-plugin = example_plugin"]},
py_modules=["example_plugin"],

)

In both examples shown above, we define an entry point for conda. It's important to make sure that the entry point is
for "conda" and that it points to the correct module in your plugin package. Our package only consists a single Python
module called example_plugin. If you have a large project, be sure to always point the entry point to the module
containing the plugin hook declarations (i.e. where conda.plugins.hookimpl is used). We recommend using the
plugin submodule in these cases, e.g. large_project.plugin (in large_project/plugin.py).

More examples

To see more examples of conda plugins, please visit the following resources:

• conda-plugins-template: This is a repository with full examples that could be used a starting point for your plugin

Using other plugin hooks

For examples of how to use other plugin hooks, please read their respective documentation pages:

Auth Handlers

The auth handlers plugin hook allows plugin authors to enable new modes of authentication within conda. Registered
auth handlers will be available to configure on a per channel basis via the channel_settings configuration option in
the .condarc file.

Auth handlers are subclasses of the ChannelAuthBase class, which is itself a subclass of requests.auth.AuthBase.
The ChannelAuthBase class adds an additional channel_name property to the requests.auth.AuthBase class. This is
necessary for appropriate handling of channel based authentication in conda.

For more information on how to implement your own auth handlers, please read the requests documentation on Custom
Authentication.

class CondaAuthHandler

Return type to use when the defining the conda auth handlers hook.

Parameters
• name -- Name (e.g., basic-auth). This name should be unique and only one may be regis-

tered at a time.

4.6. Developer guide 371

https://github.com/conda/conda-plugin-template
https://docs.python-requests.org/en/latest/api/#requests.auth.AuthBase
https://docs.python-requests.org/en/latest/api/#requests.auth.AuthBase
https://docs.python-requests.org/en/latest/user/advanced/#custom-authentication
https://docs.python-requests.org/en/latest/user/advanced/#custom-authentication

conda, Release 24.3.1.dev75

• handler -- Type that will be used as the authentication handler during network requests.

handler

name

conda_auth_handlers()

Register a conda auth handler derived from the requests API.

This plugin hook allows attaching requests auth handler subclasses, e.g. when authenticating requests against
individual channels hosted at HTTP/HTTPS services.

Example:

import os
from conda import plugins
from requests.auth import AuthBase

class EnvironmentHeaderAuth(AuthBase):
def __init__(self, *args, **kwargs):

self.username = os.environ["EXAMPLE_CONDA_AUTH_USERNAME"]
self.password = os.environ["EXAMPLE_CONDA_AUTH_PASSWORD"]

def __call__(self, request):
request.headers["X-Username"] = self.username
request.headers["X-Password"] = self.password
return request

@plugins.hookimpl
def conda_auth_handlers():

yield plugins.CondaAuthHandler(
name="environment-header-auth",
auth_handler=EnvironmentHeaderAuth,

)

Health Checks

Conda doctor can be extended with the health_checks plugin hook. Write new health checks using the
health_checks plugin hook, install the plugins you wrote and they will run every time conda doctor command
is run. The action function is where you specify the code you want to be executed with conda doctor.

class CondaHealthCheck

Return type to use when defining conda health checks plugin hook.

action

name

conda_health_checks()

Register health checks for conda doctor.

This plugin hook allows you to add more "health checks" to conda doctor that you can write to diagnose problems
in your conda environment. Check out the health checks already shipped with conda for inspiration.

Example:

372 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

from conda import plugins

def example_health_check(prefix: str, verbose: bool):
print("This is an example health check!")

@plugins.hookimpl
def conda_health_checks():

yield plugins.CondaHealthCheck(
name="example-health-check",
action=example_health_check,

)

Post-commands

Conda commands can be extended with the conda_post_commands plugin hook. By specifying the set of commands
you would like to use in the run_for configuration option, you can execute code via the action option after these
commands are run. The functions are provided a command argument representing the name of the command currently
running. If the command fails for any reason, this plugin hook will not be run.

If you would like to target conda env commands, prefix the command name with env_. For example, conda env
list would be passed to run_for as env_list.

class CondaPostCommand

Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see conda_post_commands().

Parameters
• name -- Post-command name (e.g., custom_plugin_post_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

action

name

run_for

conda_post_commands()

Register post-command functions in conda.

Example:

from conda import plugins

def example_post_command(command):
print("post-command action")

@plugins.hookimpl
(continues on next page)

4.6. Developer guide 373

conda, Release 24.3.1.dev75

(continued from previous page)

def conda_post_commands():
yield plugins.CondaPostCommand(

name="example-post-command",
action=example_post_command,
run_for={"install", "create"},

)

Pre-commands

Conda commands can be extended with the conda_pre_commands plugin hook. By specifying the set of commands
you would like to use in the run_for configuration option, you can execute code via the action option before these
commands are run. The functions are provided a command argument representing the name of the command currently
running.

If you would like to target conda env commands, prefix the command name with env_. For example, conda env
list would be passed to run_for as env_list.

class CondaPreCommand

Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see conda_pre_commands().

Parameters
• name -- Pre-command name (e.g., custom_plugin_pre_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

action

name

run_for

conda_pre_commands()

Register pre-command functions in conda.

Example:

from conda import plugins

def example_pre_command(command):
print("pre-command action")

@plugins.hookimpl
def conda_pre_commands():

yield plugins.CondaPreCommand(
name="example-pre-command",
action=example_pre_command,
run_for={"install", "create"},

)

374 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Settings

The settings plugin hook allows plugin authors to add new settings to conda. Users will be able to use these new
parameters either in .condarc files or define them as environment variables. For more information on configuration
in conda, see Configuration.

The plugin hooks relies on using the various conda.common.configuration.Parameter sub-classes (e.g. conda.
common.configuration.PrimitiveParameter or conda.common.configuration.SequenceParameter).
For more examples of how these parameter classes are used, please see the conda.base.context.Context class.

class CondaSetting

Return type to use when defining a conda setting plugin hook.

For details on how this is used, see conda_settings().

Parameters
• name -- name of the setting (e.g., config_param)

• description -- description of the setting that should be targeted towards users of the plugin

• parameter -- Parameter instance containing the setting definition

• aliases -- alternative names of the setting

aliases

description

name

parameter

conda_settings()

Register new setting

The example below defines a simple string type parameter

Example:

from conda import plugins
from conda.common.configuration import PrimitiveParameter, SequenceParameter

@plugins.hookimpl
def conda_settings():

yield plugins.CondaSetting(
name="example_option",
description="This is an example option",
parameter=PrimitiveParameter("default_value", element_type=str),
aliases=("example_option_alias",),

)

4.6. Developer guide 375

conda, Release 24.3.1.dev75

Solvers

The conda solvers can be extended with additional backends with the conda_solvers plugin hook. Registered solvers
will be available for configuration with the solver configuration and --solver command line option.

class CondaSolver

Return type to use when defining a conda solver plugin hook.

For details on how this is used, see conda_solvers().

Parameters
• name -- Solver name (e.g., custom-solver).

• backend -- Type that will be instantiated as the solver backend.

backend

name

conda_solvers()

Register solvers in conda.

Example:

import logging

from conda import plugins
from conda.core import solve

log = logging.getLogger(__name__)

class VerboseSolver(solve.Solver):
def solve_final_state(self, *args, **kwargs):

log.info("My verbose solver!")
return super().solve_final_state(*args, **kwargs)

@plugins.hookimpl
def conda_solvers():

yield plugins.CondaSolver(
name="verbose-classic",
backend=VerboseSolver,

)

Returns
An iterable of solver entries.

376 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Subcommands

The conda CLI can be extended with the conda_subcommands plugin hook. Registered subcommands will be available
under the conda <subcommand> command.

class CondaSubcommand

Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see conda_subcommands().

Parameters
• name -- Subcommand name (e.g., conda my-subcommand-name).

• summary -- Subcommand summary, will be shown in conda --help.

• action -- Callable that will be run when the subcommand is invoked.

• configure_parser -- Callable that will be run when the subcommand parser is initialized.

action

configure_parser

name

summary

conda_subcommands()

Register external subcommands in conda.

Example:

from conda import plugins

def example_command(args):
print("This is an example command!")

@plugins.hookimpl
def conda_subcommands():

yield plugins.CondaSubcommand(
name="example",
summary="example command",
action=example_command,

)

Returns
An iterable of subcommand entries.

4.6. Developer guide 377

conda, Release 24.3.1.dev75

Virtual Packages

Conda allows for the registering of virtual packages in the index data via the plugin system. This mechanism lets users
write plugins that provide version identification for properties only known at runtime (e.g., OS information).

class CondaVirtualPackage

Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see conda_virtual_packages().

Parameters
• name -- Virtual package name (e.g., my_custom_os).

• version -- Virtual package version (e.g., 1.2.3).

• build -- Virtual package build string (e.g., x86_64).

build

name

version

conda_virtual_packages()

Register virtual packages in Conda.

Example:

from conda import plugins

@plugins.hookimpl
def conda_virtual_packages():

yield plugins.CondaVirtualPackage(
name="my_custom_os",
version="1.2.3",
build="x86_64",

)

Returns
An iterable of virtual package entries.

More information about how plugins work

Plugins in conda are implemented with the use of Pluggy, a Python framework used by other projects, such as pytest,
tox, and devpi. pluggy provides the ability to extend and modify the behavior of conda via function hooking, which
results in plugin systems that are discoverable with the use of Python package entrypoints.

For more information about how it works, we suggest heading over to their documentation.

378 Chapter 4. Contributors welcome

https://pluggy.readthedocs.io/en/stable/
https://packaging.python.org/en/latest/specifications/entry-points/
https://pluggy.readthedocs.io/en/stable/

conda, Release 24.3.1.dev75

API

For even more detailed information about our plugin system, please the see the Plugin API section.

A note on licensing

For more information on which license to use for your custom plugin, please reference the "Choose an Open Source
License" site. If you need help figuring out exactly which one to use, we advise communicating with a qualified legal
professional.

4.6.9 Specifications

This section contains an incomplete list of conda specifications that may or may not be related to Conda Enhancement
Proposals.

Work in progress
This page of the documentation is not yet finished and only contains a draft of the content.

Technical specification: solver state

Note
This document is a technical specification, which might not be the best way to learn about how the solver works. For
that, refer to conda install and Solvers.

The Solver API will pass a collection of MatchSpec objects (from now on, we will refer to them as specs) to the
underlying SAT solver. How this list is built from the prefix state and context options is not a straightforward process,
but an elaborate logic. This is better understood if we examine the ingredients that participate in the construction of
specs. We will label them like this:

These groups below will not change during the solver attempts:

1. requested: MatchSpec objects the user is explicitly asking for.

2. installed: Installed packages, expressed as PrefixRecord objects. Empty if the environment did not exist.

3. history: Specs asked in the past: the History. Empty if the environment did not exist.

4. aggressive_updates: Packages included in the aggressive updates list. These packages are always included
in any requests to make sure they stay up-to-date under all circumstances.

5. pinned: Packages pinned to a specific version, either via pinned_packages in your .condarc or defined in a
$PREFIX/conda-meta/pinned file.

6. virtual: System properties exposed as virtual packages (e.g. __glibc=2.17). They can’t really be installed
or uninstalled, but they do participate in the solver by adding runtime constraints.

7. do_not_remove: A fixed list of packages that receive special treatment by the solver due to poor metadata in
the early days of conda packaging. A legacy leftover.

This one group does change during the solver lifetime:

8. conflicting: Specs that are suspected to be a conflict for the solver.

4.6. Developer guide 379

https://choosealicense.com/
https://choosealicense.com/
https://github.com/conda-incubator/ceps
https://github.com/conda-incubator/ceps

conda, Release 24.3.1.dev75

Also, two more sources that are not obvious at first. These are not labeled as a source, but they do participate in the
specs collection:

• In new environments, packages included in the contex.create_default_packages list. These MatchSpec
objects are injected in each conda create command, so the solver will see them as explicitly requested by the
user (requested).

• Specs added by command line modifiers. The specs here present aren’t new (they are already in other categories),
but they might end up in the specs list only when a flag is added. For example, update --all will add all the
installed packages to the specs list, with no version constraint. Without this flag, the installed packages will still
end up in the specs list, but with full constraints (--freeze-installed defaults for the first attempt) unless:

– Frozen attempt failed.

– --update-specs (or any other UpdateModifier) was passed, overriding --freeze-installed.

See? It gets involved. We will also use this vocabulary to help narrow down the type of change being done:

Types of spec objects:

• specs: map of package name to its currently corresponding MatchSpec instance.

• spec: specific instance of a MatchSpec object.

• Exact or frozen spec: a specwhere both the version and build fields are constrained with == operators (exact
match).

• Fully constrained or tight spec: a spec where both version and build are populated, but not necessarily with
equality operators. It can also be inequalities (>, <, etc.) and fuzzy matches (*something*).

• Version-only spec: a spec where only the version field is populated. The build is not.

• Name-only, bare, or unconstrained spec: a spec with no version or build fields. Just the name of the
package.

• Targeted spec: a spec with the target field populated. Extracted from the comments in the solver logic:

target is a reference to the package currently existing in the environment. Setting target instructs
the solver to not disturb that package if it’s not necessary. If the spec.name is being modified by
inclusion in specs_to_add, we don’t set target, since we want the solver to modify/update that
package.

TL;DR: when working with MatchSpec objects,

– to minimize the version change, set MatchSpec(name=name, target=prec.dist_str())

– to freeze the package, set all the components of MatchSpec individually

• if the spec object does not have an adjective, it should be assumed it’s being added to the specsmap unmodified,
as it came from its origin.

Pools (collections of PackageRecord objects):

• Installed pool: The installed packages, grouped by name. Each group should only contain one record!

• Explicit pool: The full index, but reduced for the specs in requested.

The following sections will get dry and to the point. They will state what output to expect from a given set of initial
conditions. At least we’ll try. Take into account that the specs list is kept around across attempts! In other words, the
specs list is only really empty in the first attempt; if this fails, the subsequent attempts will only overwrite (update) the
existing one. In practice, this should only affect how constrained packages are. The names should be the same.

It will also depend on whether we are adding (conda install|create|update) or removing (conda remove) pack-
ages. There’s a common initialization part for both, but after that the logic is separate.

380 Chapter 4. Contributors welcome

http://spec.name

conda, Release 24.3.1.dev75

Common initialization

Note: This happens in Solver._collect_all_metadata()

This happens regardless of the type of command we are using (install, update, create or remove).

1. Add specs from history, if any.

2. Add specs from do_not_remove, but only if:

• There’s no spec for that name in specs already, and

• A package with that name is not installed.

3. Add virtual packages as unconstrained specs.

4. Add all those installed packages, as unconstrained specs, that satisfy any of these conditions:

• The history is empty (in that case, all installed packages are added)

• The package name is part of aggresive_updates

• The package was not installed by conda, but by pip or other PyPI tools instead.

Preparing the index
At this point, the populated specs and the requested specs are merged together. This temporary collection is used
to determine how to reduce the index.

Processing specs for conda install

Preparation

1. Generate the explicit pool for the requested specs (via Resolve._get_package_pool()).

2. Detect potential conflicts (via (Resolve.get_conflicting_specs()).

Refine specs that match installed records

1. Check that each of specs match a single installed package or none! If there are two or more matches, it means
that the environment is in bad shape and is basically broken. If the spec matches one installed package (let’s
call it installed match), we will modify the original spec.

2. We will turn the spec into an exact (frozen) spec if:

1. The installed match is unmanageable (installed by pip, virtual, etc.)

2. There’s no history, we are not in --freeze-installed mode, and:

• The spec is not a potential conflict, and

• The package name cannot be found in the explicit pool index or, if it is, the installed match can be found
in that explicit pool (to guarantee it will be found instead of creating one more conflict just because).

3. We relax the spec to a name-only spec if it’s part of the aggressive updates list.

4. We turn it into a targeted spec if:

1. The spec is in history. In that case, we take its historic spec counterpart and set the target to the installed
match version and build.

4.6. Developer guide 381

conda, Release 24.3.1.dev75

2. None of the above conditions were met. In other words, we’ll try our best to match the installed package if
none of the above applies, but if we fail we’ll stick to whatever was already present in the specs.

Handle pinned specs

Processing specs for conda remove

4.6.10 API

As of conda 4.4, conda can be installed in any environment, not just environments with names starting with _ (under-
score). That change was made, in part, so that conda can be used as a Python library.

As of conda 4.5, we do not support pip install conda. However, we are considering that as a supported bootstrap
method in the future.

conda

OS-agnostic, system-level binary package manager.

__main__

Conda as a module entry point.

_vendor

Conda's pure-python dependencies will be vendored until conda 5.0 when conda will be isolated in its own private
environment.

Introduction of dependencies for the 4.x series is discussed in https://github.com/conda/conda/issues/2825.

appdirs

Utilities for determining application-specific dirs.

See <http://github.com/ActiveState/appdirs> for details and usage.

Classes

AppDirs Convenience wrapper for getting application dirs.

382 Chapter 4. Contributors welcome

http://stackoverflow.com/questions/26217488/what-is-vendoring
https://github.com/conda/conda/issues/2825
http://github.com/ActiveState/appdirs

conda, Release 24.3.1.dev75

Functions

user_data_dir(appname[, appauthor, version, roam-
ing])

Return full path to the user-specific data dir for this ap-
plication.

site_data_dir(appname[, appauthor, version]) Return full path to the user-shared data dir for this appli-
cation.

user_cache_dir(appname[, appauthor, version, opin-
ion])

Return full path to the user-specific cache dir for this ap-
plication.

user_log_dir(appname[, appauthor, version, opin-
ion])

Return full path to the user-specific log dir for this appli-
cation.

_get_win_folder_from_registry(csidl_name) This is a fallback technique at best. I'm not sure if using
the

_get_win_folder_with_pywin32(csidl_name)

_get_win_folder_with_ctypes(csidl_name)

Attributes

__version_info__

__version__

PY3

unicode

_get_win_folder

appname

__version_info__ = (1, 2, 0)

__version__

PY3

unicode

exception AppDirsError

Bases: Exception

Common base class for all non-exit exceptions.

user_data_dir(appname, appauthor=None, version=None, roaming=False)
Return full path to the user-specific data dir for this application.

"appname" is the name of application. "appauthor" (only required and used on Windows) is the name
of the

appauthor or distributing body for this application. Typically it is the owning company name.

4.6. Developer guide 383

https://docs.python.org/3/library/exceptions.html#Exception

conda, Release 24.3.1.dev75

"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions of your app to be able to run
independently. If used, this would typically be "<major>.<minor>".

"roaming" (boolean, default False) can be set True to use the Windows
roaming appdata directory. That means that for users on a Windows network setup for roaming
profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/
cc766489(WS.10).aspx> for a discussion of issues.

Typical user data directories are:
Mac OS X: ~/Library/Application Support/<AppName> Unix: ~/.config/<appname> # or
in $XDG_CONFIG_HOME if defined Win XP (not roaming): C:Documents and Set-
tings<username>Application Data<AppAuthor><AppName> Win XP (roaming): C:Documents
and Settings<username>Local SettingsApplication Data<AppAuthor><AppName> Win 7 (not
roaming): C:Users<username>AppDataLocal<AppAuthor><AppName> Win 7 (roaming):
C:Users<username>AppDataRoaming<AppAuthor><AppName>

For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. We don't use $XDG_DATA_HOME as
that data dir is mostly used at the time of installation, instead of the application adding data during runtime. Also,
in practice, Linux apps tend to store their data in "~/.config/<appname>" instead of "~/.local/share/<appname>".

site_data_dir(appname, appauthor=None, version=None)
Return full path to the user-shared data dir for this application.

"appname" is the name of application. "appauthor" (only required and used on Windows) is the name
of the

appauthor or distributing body for this application. Typically it is the owning company name.

"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions of your app to be able to run
independently. If used, this would typically be "<major>.<minor>".

Typical user data directories are:
Mac OS X: /Library/Application Support/<AppName> Unix: /etc/xdg/<appname> Win XP: C:Documents
and SettingsAll UsersApplication Data<AppAuthor><AppName> Vista: (Fail! "C:ProgramData" is a hid-
den system directory on Vista.) Win 7: C:ProgramData<AppAuthor><AppName> # Hidden, but writeable
on Win 7.

For Unix, this is using the $XDG_CONFIG_DIRS[0] default.

WARNING: Do not use this on Windows. See the Vista-Fail note above for why.

user_cache_dir(appname, appauthor=None, version=None, opinion=True)
Return full path to the user-specific cache dir for this application.

"appname" is the name of application. "appauthor" (only required and used on Windows) is the name
of the

appauthor or distributing body for this application. Typically it is the owning company name.

"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions of your app to be able to run
independently. If used, this would typically be "<major>.<minor>".

"opinion" (boolean) can be False to disable the appending of
"Cache" to the base app data dir for Windows. See discussion below.

384 Chapter 4. Contributors welcome

http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx

conda, Release 24.3.1.dev75

Typical user cache directories are:
Mac OS X: ~/Library/Caches/<AppName> Unix: ~/.cache/<appname> (XDG default) Win XP:
C:Documents and Settings<username>Local SettingsApplication Data<AppAuthor><AppName>Cache
Vista: C:Users<username>AppDataLocal<AppAuthor><AppName>Cache

On Windows the only suggestion in the MSDN docs is that local settings go in the CSIDL_LOCAL_APPDATA
directory. This is identical to the non-roaming app data dir (the default returned by user_data_dir above). Apps
typically put cache data somewhere under the given dir here. Some examples:

...MozillaFirefoxProfiles<ProfileName>Cache ...AcmeSuperAppCache1.0

OPINION: This function appends "Cache" to the CSIDL_LOCAL_APPDATA value. This can be disabled with
the opinion=False option.

user_log_dir(appname, appauthor=None, version=None, opinion=True)
Return full path to the user-specific log dir for this application.

"appname" is the name of application. "appauthor" (only required and used on Windows) is the name
of the

appauthor or distributing body for this application. Typically it is the owning company name.

"version" is an optional version path element to append to the
path. You might want to use this if you want multiple versions of your app to be able to run
independently. If used, this would typically be "<major>.<minor>".

"opinion" (boolean) can be False to disable the appending of
"Logs" to the base app data dir for Windows, and "log" to the base cache dir for Unix. See
discussion below.

Typical user cache directories are:
Mac OS X: ~/Library/Logs/<AppName> Unix: ~/.cache/<appname>/log # or
under $XDG_CACHE_HOME if defined Win XP: C:Documents and Set-
tings<username>Local SettingsApplication Data<AppAuthor><AppName>Logs Vista:
C:Users<username>AppDataLocal<AppAuthor><AppName>Logs

On Windows the only suggestion in the MSDN docs is that local settings go in the CSIDL_LOCAL_APPDATA
directory. (Note: I'm interested in examples of what some windows apps use for a logs dir.)

OPINION: This function appends "Logs" to the CSIDL_LOCAL_APPDATA value for Windows and appends
"log" to the user cache dir for Unix. This can be disabled with the opinion=False option.

class AppDirs(appname, appauthor, version=None, roaming=False)
Bases: object

Convenience wrapper for getting application dirs.

property user_data_dir

property site_data_dir

property user_cache_dir

property user_log_dir

_get_win_folder_from_registry(csidl_name)
This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for
all CSIDL_* names.

4.6. Developer guide 385

https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

_get_win_folder_with_pywin32(csidl_name)

_get_win_folder_with_ctypes(csidl_name)

_get_win_folder

appname = 'MyApp'

cpuinfo

cpuinfo

Classes

Trace

DataSource

ASM

CPUID

Functions

_program_paths(program_name)

_run_and_get_stdout(command[, pipe_command])

_read_windows_registry_key(key_name,
field_name)
_check_arch ()

_obj_to_b64(thing)

_b64_to_obj(thing)

_utf_to_str(input)

_copy_new_fields(info, new_info)

_get_field_actual(cant_be_number, raw_string,
field_names)
_get_field(cant_be_number, raw_string, convert_to,
...)
_to_decimal_string(ticks)

continues on next page

386 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Table 1 – continued from previous page
_hz_short_to_full(ticks, scale)

_hz_friendly_to_full(hz_string)

_hz_short_to_friendly(ticks, scale)

_to_friendly_bytes(input)

_friendly_bytes_to_int(friendly_bytes)

_parse_cpu_brand_string(cpu_string)

_parse_cpu_brand_string_dx(cpu_string)

_parse_dmesg_output(output)

_parse_arch (arch_string_raw)

_is_bit_set(reg, bit)

_is_selinux_enforcing(trace)

_filter_dict_keys_with_empty_values(info[,
...])
_get_cpu_info_from_cpuid_actual() Warning! This function has the potential to crash the

Python runtime.
_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

_get_cpu_info_from_cpuid() Returns the CPU info gathered by querying the X86
cpuid register in a new process.

_get_cpu_info_from_proc_cpuinfo() Returns the CPU info gathered from /proc/cpuinfo.
_get_cpu_info_from_cpufreq_info() Returns the CPU info gathered from cpufreq-info.
_get_cpu_info_from_lscpu() Returns the CPU info gathered from lscpu.
_get_cpu_info_from_dmesg() Returns the CPU info gathered from dmesg.
_get_cpu_info_from_ibm_pa_features() Returns the CPU info gathered from lsprop /proc/device-

tree/cpus/*/ibm,pa-features
_get_cpu_info_from_cat_var_run_dmesg_boot() Returns the CPU info gathered from

/var/run/dmesg.boot.
_get_cpu_info_from_sysctl() Returns the CPU info gathered from sysctl.
_get_cpu_info_from_sysinfo() Returns the CPU info gathered from sysinfo.
_get_cpu_info_from_sysinfo_v1() Returns the CPU info gathered from sysinfo.
_get_cpu_info_from_sysinfo_v2() Returns the CPU info gathered from sysinfo.
_get_cpu_info_from_wmic() Returns the CPU info gathered from WMI.
_get_cpu_info_from_registry() Returns the CPU info gathered from the Windows Reg-

istry.
_get_cpu_info_from_kstat() Returns the CPU info gathered from isainfo and kstat.
_get_cpu_info_from_platform_uname()

_get_cpu_info_internal() Returns the CPU info by using the best sources of infor-
mation for your OS.

get_cpu_info_json() Returns the CPU info by using the best sources of infor-
mation for your OS.

continues on next page

4.6. Developer guide 387

conda, Release 24.3.1.dev75

Table 1 – continued from previous page
get_cpu_info() Returns the CPU info by using the best sources of infor-

mation for your OS.
main()

Attributes

CPUINFO_VERSION

CPUINFO_VERSION_STRING

CAN_CALL_CPUID_IN_SUBPROCESS

g_trace

g_trace

CPUINFO_VERSION = (9, 0, 0)

CPUINFO_VERSION_STRING

CAN_CALL_CPUID_IN_SUBPROCESS = True

g_trace

class Trace(is_active, is_stored_in_string)
Bases: object

header(msg)

success()

fail(msg)

command_header(msg)

command_output(msg, output)

keys(keys, info, new_info)

write(msg)

to_dict(info, is_fail)

class DataSource

Bases: object

bits

cpu_count

is_windows

388 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

arch_string_raw

uname_string_raw

can_cpuid = True

static has_proc_cpuinfo()

static has_dmesg()

static has_var_run_dmesg_boot()

static has_cpufreq_info()

static has_sestatus()

static has_sysctl()

static has_isainfo()

static has_kstat()

static has_sysinfo()

static has_lscpu()

static has_ibm_pa_features()

static has_wmic()

static cat_proc_cpuinfo()

static cpufreq_info()

static sestatus_b()

static dmesg_a()

static cat_var_run_dmesg_boot()

static sysctl_machdep_cpu_hw_cpufrequency()

static isainfo_vb()

static kstat_m_cpu_info()

static sysinfo_cpu()

static lscpu()

static ibm_pa_features()

static wmic_cpu()

static winreg_processor_brand()

static winreg_vendor_id_raw()

static winreg_arch_string_raw()

static winreg_hz_actual()

4.6. Developer guide 389

conda, Release 24.3.1.dev75

static winreg_feature_bits()

_program_paths(program_name)

_run_and_get_stdout(command, pipe_command=None)

_read_windows_registry_key(key_name, field_name)

_check_arch()

_obj_to_b64(thing)

_b64_to_obj(thing)

_utf_to_str(input)

_copy_new_fields(info, new_info)

_get_field_actual(cant_be_number, raw_string, field_names)

_get_field(cant_be_number, raw_string, convert_to, default_value, *field_names)

_to_decimal_string(ticks)

_hz_short_to_full(ticks, scale)

_hz_friendly_to_full(hz_string)

_hz_short_to_friendly(ticks, scale)

_to_friendly_bytes(input)

_friendly_bytes_to_int(friendly_bytes)

_parse_cpu_brand_string(cpu_string)

_parse_cpu_brand_string_dx(cpu_string)

_parse_dmesg_output(output)

_parse_arch(arch_string_raw)

_is_bit_set(reg, bit)

_is_selinux_enforcing(trace)

_filter_dict_keys_with_empty_values(info, acceptable_values={})

class ASM(restype=None, argtypes=(), machine_code=[])
Bases: object

compile()

run()

free()

class CPUID(trace=None)
Bases: object

_asm_func(restype=None, argtypes=(), machine_code=[])

390 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

_run_asm(*machine_code)

get_vendor_id()

get_info()

get_max_extension_support()

get_flags(max_extension_support)

get_processor_brand(max_extension_support)

get_cache(max_extension_support)

get_ticks_func()

get_raw_hz()

_get_cpu_info_from_cpuid_actual()

Warning! This function has the potential to crash the Python runtime. Do not call it directly. Use the
_get_cpu_info_from_cpuid function instead. It will safely call this function in another process.

_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

_get_cpu_info_from_cpuid()

Returns the CPU info gathered by querying the X86 cpuid register in a new process. Returns {} on non X86
cpus. Returns {} if SELinux is in enforcing mode.

_get_cpu_info_from_proc_cpuinfo()

Returns the CPU info gathered from /proc/cpuinfo. Returns {} if /proc/cpuinfo is not found.

_get_cpu_info_from_cpufreq_info()

Returns the CPU info gathered from cpufreq-info. Returns {} if cpufreq-info is not found.

_get_cpu_info_from_lscpu()

Returns the CPU info gathered from lscpu. Returns {} if lscpu is not found.

_get_cpu_info_from_dmesg()

Returns the CPU info gathered from dmesg. Returns {} if dmesg is not found or does not have the desired info.

_get_cpu_info_from_ibm_pa_features()

Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features Returns {} if lsprop is not
found or ibm,pa-features does not have the desired info.

_get_cpu_info_from_cat_var_run_dmesg_boot()

Returns the CPU info gathered from /var/run/dmesg.boot. Returns {} if dmesg is not found or does not have the
desired info.

_get_cpu_info_from_sysctl()

Returns the CPU info gathered from sysctl. Returns {} if sysctl is not found.

_get_cpu_info_from_sysinfo()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

_get_cpu_info_from_sysinfo_v1()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

_get_cpu_info_from_sysinfo_v2()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

4.6. Developer guide 391

conda, Release 24.3.1.dev75

_get_cpu_info_from_wmic()

Returns the CPU info gathered from WMI. Returns {} if not on Windows, or wmic is not installed.

_get_cpu_info_from_registry()

Returns the CPU info gathered from the Windows Registry. Returns {} if not on Windows.

_get_cpu_info_from_kstat()

Returns the CPU info gathered from isainfo and kstat. Returns {} if isainfo or kstat are not found.

_get_cpu_info_from_platform_uname()

_get_cpu_info_internal()

Returns the CPU info by using the best sources of information for your OS. Returns {} if nothing is found.

get_cpu_info_json()

Returns the CPU info by using the best sources of information for your OS. Returns the result in a json string

get_cpu_info()

Returns the CPU info by using the best sources of information for your OS. Returns the result in a dict

main()

g_trace

Classes

Trace

DataSource

ASM

CPUID

Functions

_program_paths(program_name)

_run_and_get_stdout(command[, pipe_command])

_read_windows_registry_key(key_name,
field_name)
_check_arch ()

_obj_to_b64(thing)

_b64_to_obj(thing)

continues on next page

392 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Table 2 – continued from previous page
_utf_to_str(input)

_copy_new_fields(info, new_info)

_get_field_actual(cant_be_number, raw_string,
field_names)
_get_field(cant_be_number, raw_string, convert_to,
...)
_to_decimal_string(ticks)

_hz_short_to_full(ticks, scale)

_hz_friendly_to_full(hz_string)

_hz_short_to_friendly(ticks, scale)

_to_friendly_bytes(input)

_friendly_bytes_to_int(friendly_bytes)

_parse_cpu_brand_string(cpu_string)

_parse_cpu_brand_string_dx(cpu_string)

_parse_dmesg_output(output)

_parse_arch (arch_string_raw)

_is_bit_set(reg, bit)

_is_selinux_enforcing(trace)

_filter_dict_keys_with_empty_values(info[,
...])
_get_cpu_info_from_cpuid_actual() Warning! This function has the potential to crash the

Python runtime.
_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

_get_cpu_info_from_cpuid() Returns the CPU info gathered by querying the X86
cpuid register in a new process.

_get_cpu_info_from_proc_cpuinfo() Returns the CPU info gathered from /proc/cpuinfo.
_get_cpu_info_from_cpufreq_info() Returns the CPU info gathered from cpufreq-info.
_get_cpu_info_from_lscpu() Returns the CPU info gathered from lscpu.
_get_cpu_info_from_dmesg() Returns the CPU info gathered from dmesg.
_get_cpu_info_from_ibm_pa_features() Returns the CPU info gathered from lsprop /proc/device-

tree/cpus/*/ibm,pa-features
_get_cpu_info_from_cat_var_run_dmesg_boot() Returns the CPU info gathered from

/var/run/dmesg.boot.
_get_cpu_info_from_sysctl() Returns the CPU info gathered from sysctl.
_get_cpu_info_from_sysinfo() Returns the CPU info gathered from sysinfo.
_get_cpu_info_from_sysinfo_v1() Returns the CPU info gathered from sysinfo.
_get_cpu_info_from_sysinfo_v2() Returns the CPU info gathered from sysinfo.

continues on next page

4.6. Developer guide 393

conda, Release 24.3.1.dev75

Table 2 – continued from previous page
_get_cpu_info_from_wmic() Returns the CPU info gathered from WMI.
_get_cpu_info_from_registry() Returns the CPU info gathered from the Windows Reg-

istry.
_get_cpu_info_from_kstat() Returns the CPU info gathered from isainfo and kstat.
_get_cpu_info_from_platform_uname()

_get_cpu_info_internal() Returns the CPU info by using the best sources of infor-
mation for your OS.

get_cpu_info_json() Returns the CPU info by using the best sources of infor-
mation for your OS.

get_cpu_info() Returns the CPU info by using the best sources of infor-
mation for your OS.

main()

Attributes

CPUINFO_VERSION

CPUINFO_VERSION_STRING

CAN_CALL_CPUID_IN_SUBPROCESS

g_trace

deprecated

CPUINFO_VERSION = (9, 0, 0)

CPUINFO_VERSION_STRING

CAN_CALL_CPUID_IN_SUBPROCESS = True

g_trace

class Trace(is_active, is_stored_in_string)
Bases: object

header(msg)

success()

fail(msg)

command_header(msg)

command_output(msg, output)

keys(keys, info, new_info)

write(msg)

394 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

to_dict(info, is_fail)

class DataSource

Bases: object

bits

cpu_count

is_windows

arch_string_raw

uname_string_raw

can_cpuid = True

static has_proc_cpuinfo()

static has_dmesg()

static has_var_run_dmesg_boot()

static has_cpufreq_info()

static has_sestatus()

static has_sysctl()

static has_isainfo()

static has_kstat()

static has_sysinfo()

static has_lscpu()

static has_ibm_pa_features()

static has_wmic()

static cat_proc_cpuinfo()

static cpufreq_info()

static sestatus_b()

static dmesg_a()

static cat_var_run_dmesg_boot()

static sysctl_machdep_cpu_hw_cpufrequency()

static isainfo_vb()

static kstat_m_cpu_info()

static sysinfo_cpu()

static lscpu()

4.6. Developer guide 395

https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

static ibm_pa_features()

static wmic_cpu()

static winreg_processor_brand()

static winreg_vendor_id_raw()

static winreg_arch_string_raw()

static winreg_hz_actual()

static winreg_feature_bits()

_program_paths(program_name)

_run_and_get_stdout(command, pipe_command=None)

_read_windows_registry_key(key_name, field_name)

_check_arch()

_obj_to_b64(thing)

_b64_to_obj(thing)

_utf_to_str(input)

_copy_new_fields(info, new_info)

_get_field_actual(cant_be_number, raw_string, field_names)

_get_field(cant_be_number, raw_string, convert_to, default_value, *field_names)

_to_decimal_string(ticks)

_hz_short_to_full(ticks, scale)

_hz_friendly_to_full(hz_string)

_hz_short_to_friendly(ticks, scale)

_to_friendly_bytes(input)

_friendly_bytes_to_int(friendly_bytes)

_parse_cpu_brand_string(cpu_string)

_parse_cpu_brand_string_dx(cpu_string)

_parse_dmesg_output(output)

_parse_arch(arch_string_raw)

_is_bit_set(reg, bit)

_is_selinux_enforcing(trace)

_filter_dict_keys_with_empty_values(info, acceptable_values={})

396 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

class ASM(restype=None, argtypes=(), machine_code=[])
Bases: object

compile()

run()

free()

class CPUID(trace=None)
Bases: object

_asm_func(restype=None, argtypes=(), machine_code=[])

_run_asm(*machine_code)

get_vendor_id()

get_info()

get_max_extension_support()

get_flags(max_extension_support)

get_processor_brand(max_extension_support)

get_cache(max_extension_support)

get_ticks_func()

get_raw_hz()

_get_cpu_info_from_cpuid_actual()

Warning! This function has the potential to crash the Python runtime. Do not call it directly. Use the
_get_cpu_info_from_cpuid function instead. It will safely call this function in another process.

_get_cpu_info_from_cpuid_subprocess_wrapper(queue)

_get_cpu_info_from_cpuid()

Returns the CPU info gathered by querying the X86 cpuid register in a new process. Returns {} on non X86
cpus. Returns {} if SELinux is in enforcing mode.

_get_cpu_info_from_proc_cpuinfo()

Returns the CPU info gathered from /proc/cpuinfo. Returns {} if /proc/cpuinfo is not found.

_get_cpu_info_from_cpufreq_info()

Returns the CPU info gathered from cpufreq-info. Returns {} if cpufreq-info is not found.

_get_cpu_info_from_lscpu()

Returns the CPU info gathered from lscpu. Returns {} if lscpu is not found.

_get_cpu_info_from_dmesg()

Returns the CPU info gathered from dmesg. Returns {} if dmesg is not found or does not have the desired info.

_get_cpu_info_from_ibm_pa_features()

Returns the CPU info gathered from lsprop /proc/device-tree/cpus/*/ibm,pa-features Returns {} if lsprop is not
found or ibm,pa-features does not have the desired info.

4.6. Developer guide 397

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

_get_cpu_info_from_cat_var_run_dmesg_boot()

Returns the CPU info gathered from /var/run/dmesg.boot. Returns {} if dmesg is not found or does not have the
desired info.

_get_cpu_info_from_sysctl()

Returns the CPU info gathered from sysctl. Returns {} if sysctl is not found.

_get_cpu_info_from_sysinfo()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

_get_cpu_info_from_sysinfo_v1()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

_get_cpu_info_from_sysinfo_v2()

Returns the CPU info gathered from sysinfo. Returns {} if sysinfo is not found.

_get_cpu_info_from_wmic()

Returns the CPU info gathered from WMI. Returns {} if not on Windows, or wmic is not installed.

_get_cpu_info_from_registry()

Returns the CPU info gathered from the Windows Registry. Returns {} if not on Windows.

_get_cpu_info_from_kstat()

Returns the CPU info gathered from isainfo and kstat. Returns {} if isainfo or kstat are not found.

_get_cpu_info_from_platform_uname()

_get_cpu_info_internal()

Returns the CPU info by using the best sources of information for your OS. Returns {} if nothing is found.

get_cpu_info_json()

Returns the CPU info by using the best sources of information for your OS. Returns the result in a json string

get_cpu_info()

Returns the CPU info by using the best sources of information for your OS. Returns the result in a dict

main()

deprecated

distro

The distro package (distro stands for Linux Distribution) provides information about the Linux distribution it runs
on, such as a reliable machine-readable distro ID, or version information.

It is a renewed alternative implementation for Python's original platform.linux_distribution() function, but it
provides much more functionality. An alternative implementation became necessary because Python 3.5 deprecated
this function, and Python 3.7 is expected to remove it altogether. Its predecessor function platform.dist() was
already deprecated since Python 2.6 and is also expected to be removed in Python 3.7. Still, there are many cases in
which access to Linux distribution information is needed. See Python issue 1322 for more information.

398 Chapter 4. Contributors welcome

https://bugs.python.org/issue1322

conda, Release 24.3.1.dev75

Classes

LinuxDistribution Provides information about a Linux distribution.

Functions

linux_distribution([full_distribution_name]) Return information about the current Linux distribution
as a tuple

id() Return the distro ID of the current Linux distribution, as
a

name([pretty]) Return the name of the current Linux distribution, as a
human-readable

version([pretty, best]) Return the version of the current Linux distribution, as a
human-readable

version_parts([best]) Return the version of the current Linux distribution as a
tuple

major_version([best]) Return the major version of the current Linux distribu-
tion, as a string,

minor_version([best]) Return the minor version of the current Linux distribu-
tion, as a string,

build_number([best]) Return the build number of the current Linux distribu-
tion, as a string,

like() Return a space-separated list of distro IDs of distribu-
tions that are

codename() Return the codename for the release of the current Linux
distribution,

info([pretty, best]) Return certain machine-readable information items
about the current Linux

os_release_info() Return a dictionary containing key-value pairs for the in-
formation items

lsb_release_info() Return a dictionary containing key-value pairs for the in-
formation items

distro_release_info() Return a dictionary containing key-value pairs for the in-
formation items

os_release_attr(attribute) Return a single named information item from the os-
release file data source

lsb_release_attr(attribute) Return a single named information item from the
lsb_release command output

distro_release_attr(attribute) Return a single named information item from the distro
release file

main()

4.6. Developer guide 399

conda, Release 24.3.1.dev75

Attributes

_UNIXCONFDIR

_OS_RELEASE_BASENAME

NORMALIZED_OS_ID

NORMALIZED_LSB_ID

NORMALIZED_DISTRO_ID

_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN

_DISTRO_RELEASE_BASENAME_PATTERN

_DISTRO_RELEASE_IGNORE_BASENAMES

_distro

_UNIXCONFDIR

_OS_RELEASE_BASENAME = 'os-release'

NORMALIZED_OS_ID

NORMALIZED_LSB_ID

NORMALIZED_DISTRO_ID

_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN

_DISTRO_RELEASE_BASENAME_PATTERN

_DISTRO_RELEASE_IGNORE_BASENAMES = ('debian_version', 'lsb-release', 'oem-release')

linux_distribution(full_distribution_name=True)
Return information about the current Linux distribution as a tuple (id_name, version, codename) with
items as follows:

• id_name: If full_distribution_name is false, the result of distro.id(). Otherwise, the result of distro.
name().

• version: The result of distro.version().

• codename: The result of distro.codename().

The interface of this function is compatible with the original platform.linux_distribution() function,
supporting a subset of its parameters.

The data it returns may not exactly be the same, because it uses more data sources than the original function, and
that may lead to different data if the Linux distribution is not consistent across multiple data sources it provides
(there are indeed such distributions ...).

Another reason for differences is the fact that the distro.id() method normalizes the distro ID string to a
reliable machine-readable value for a number of popular Linux distributions.

400 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

id()

Return the distro ID of the current Linux distribution, as a machine-readable string.

For a number of Linux distributions, the returned distro ID value is reliable, in the sense that it is documented
and that it does not change across releases of the distribution.

This package maintains the following reliable distro ID values:

Distro ID Distribution
"ubuntu" Ubuntu
"debian" Debian
"rhel" RedHat Enterprise Linux
"centos" CentOS
"fedora" Fedora
"sles" SUSE Linux Enterprise Server
"opensuse" openSUSE
"amazon" Amazon Linux
"arch" Arch Linux
"cloudlinux" CloudLinux OS
"exherbo" Exherbo Linux
"gentoo" GenToo Linux
"ibm_powerkvm" IBM PowerKVM
"kvmibm" KVM for IBM z Systems
"linuxmint" Linux Mint
"mageia" Mageia
"mandriva" Mandriva Linux
"parallels" Parallels
"pidora" Pidora
"raspbian" Raspbian
"oracle" Oracle Linux (and Oracle Enterprise Linux)
"scientific" Scientific Linux
"slackware" Slackware
"xenserver" XenServer

If you have a need to get distros for reliable IDs added into this set, or if you find that the distro.id() function
returns a different distro ID for one of the listed distros, please create an issue in the `distro issue tracker`_.

Lookup hierarchy and transformations:
First, the ID is obtained from the following sources, in the specified order. The first available and non-empty
value is used:

• the value of the "ID" attribute of the os-release file,

• the value of the "Distributor ID" attribute returned by the lsb_release command,

• the first part of the file name of the distro release file,

The so determined ID value then passes the following transformations, before it is returned by this method:

• it is translated to lower case,

• blanks (which should not be there anyway) are translated to underscores,

• a normalization of the ID is performed, based upon `normalization tables`_. The purpose of this normal-
ization is to ensure that the ID is as reliable as possible, even across incompatible changes in the Linux
distributions. A common reason for an incompatible change is the addition of an os-release file, or the

4.6. Developer guide 401

conda, Release 24.3.1.dev75

addition of the lsb_release command, with ID values that differ from what was previously determined from
the distro release file name.

name(pretty=False)
Return the name of the current Linux distribution, as a human-readable string.

If pretty is false, the name is returned without version or codename. (e.g. "CentOS Linux")

If pretty is true, the version and codename are appended. (e.g. "CentOS Linux 7.1.1503 (Core)")

Lookup hierarchy:
The name is obtained from the following sources, in the specified order. The first available and non-empty value
is used:

• If pretty is false:

– the value of the "NAME" attribute of the os-release file,

– the value of the "Distributor ID" attribute returned by the lsb_release command,

– the value of the "<name>" field of the distro release file.

• If pretty is true:

– the value of the "PRETTY_NAME" attribute of the os-release file,

– the value of the "Description" attribute returned by the lsb_release command,

– the value of the "<name>" field of the distro release file, appended with the value of the pretty version
("<version_id>" and "<codename>" fields) of the distro release file, if available.

version(pretty=False, best=False)
Return the version of the current Linux distribution, as a human-readable string.

If pretty is false, the version is returned without codename (e.g. "7.0").

If pretty is true, the codename in parenthesis is appended, if the codename is non-empty (e.g. "7.0 (Maipo)").

Some distributions provide version numbers with different precisions in the different sources of distribution
information. Examining the different sources in a fixed priority order does not always yield the most precise
version (e.g. for Debian 8.2, or CentOS 7.1).

The best parameter can be used to control the approach for the returned version:

If best is false, the first non-empty version number in priority order of the examined sources is returned.

If best is true, the most precise version number out of all examined sources is returned.

Lookup hierarchy:
In all cases, the version number is obtained from the following sources. If best is false, this order represents the
priority order:

• the value of the "VERSION_ID" attribute of the os-release file,

• the value of the "Release" attribute returned by the lsb_release command,

• the version number parsed from the "<version_id>" field of the first line of the distro release file,

• the version number parsed from the "PRETTY_NAME" attribute of the os-release file, if it follows the
format of the distro release files.

• the version number parsed from the "Description" attribute returned by the lsb_release command, if it
follows the format of the distro release files.

402 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

version_parts(best=False)
Return the version of the current Linux distribution as a tuple (major, minor, build_number) with items
as follows:

• major: The result of distro.major_version().

• minor: The result of distro.minor_version().

• build_number: The result of distro.build_number().

For a description of the best parameter, see the distro.version() method.

major_version(best=False)
Return the major version of the current Linux distribution, as a string, if provided. Otherwise, the empty string
is returned. The major version is the first part of the dot-separated version string.

For a description of the best parameter, see the distro.version() method.

minor_version(best=False)
Return the minor version of the current Linux distribution, as a string, if provided. Otherwise, the empty string
is returned. The minor version is the second part of the dot-separated version string.

For a description of the best parameter, see the distro.version() method.

build_number(best=False)
Return the build number of the current Linux distribution, as a string, if provided. Otherwise, the empty string
is returned. The build number is the third part of the dot-separated version string.

For a description of the best parameter, see the distro.version() method.

like()

Return a space-separated list of distro IDs of distributions that are closely related to the current Linux distribu-
tion in regards to packaging and programming interfaces, for example distributions the current distribution is a
derivative from.

Lookup hierarchy:
This information item is only provided by the os-release file. For details, see the description of the "ID_LIKE"
attribute in the os-release man page.

codename()

Return the codename for the release of the current Linux distribution, as a string.

If the distribution does not have a codename, an empty string is returned.

Note that the returned codename is not always really a codename. For example, openSUSE returns "x86_64".
This function does not handle such cases in any special way and just returns the string it finds, if any.

Lookup hierarchy:
• the codename within the "VERSION" attribute of the os-release file, if provided,

• the value of the "Codename" attribute returned by the lsb_release command,

• the value of the "<codename>" field of the distro release file.

info(pretty=False, best=False)
Return certain machine-readable information items about the current Linux distribution in a dictionary, as shown
in the following example:

4.6. Developer guide 403

http://www.freedesktop.org/software/systemd/man/os-release.html

conda, Release 24.3.1.dev75

{
'id': 'rhel',
'version': '7.0',
'version_parts': {

'major': '7',
'minor': '0',
'build_number': ''

},
'like': 'fedora',
'codename': 'Maipo'

}

The dictionary structure and keys are always the same, regardless of which information items are available in the
underlying data sources. The values for the various keys are as follows:

• id: The result of distro.id().

• version: The result of distro.version().

• version_parts -> major: The result of distro.major_version().

• version_parts -> minor: The result of distro.minor_version().

• version_parts -> build_number: The result of distro.build_number().

• like: The result of distro.like().

• codename: The result of distro.codename().

For a description of the pretty and best parameters, see the distro.version() method.

os_release_info()

Return a dictionary containing key-value pairs for the information items from the os-release file data source of
the current Linux distribution.

See `os-release file`_ for details about these information items.

lsb_release_info()

Return a dictionary containing key-value pairs for the information items from the lsb_release command data
source of the current Linux distribution.

See `lsb_release command output`_ for details about these information items.

distro_release_info()

Return a dictionary containing key-value pairs for the information items from the distro release file data source
of the current Linux distribution.

See `distro release file`_ for details about these information items.

os_release_attr(attribute)
Return a single named information item from the os-release file data source of the current Linux distribution.

Parameters:

• attribute (string): Key of the information item.

Returns:

• (string): Value of the information item, if the item exists. The empty string, if the item does not exist.

See `os-release file`_ for details about these information items.

404 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

lsb_release_attr(attribute)
Return a single named information item from the lsb_release command output data source of the current Linux
distribution.

Parameters:

• attribute (string): Key of the information item.

Returns:

• (string): Value of the information item, if the item exists. The empty string, if the item does not exist.

See `lsb_release command output`_ for details about these information items.

distro_release_attr(attribute)
Return a single named information item from the distro release file data source of the current Linux distribution.

Parameters:

• attribute (string): Key of the information item.

Returns:

• (string): Value of the information item, if the item exists. The empty string, if the item does not exist.

See `distro release file`_ for details about these information items.

class LinuxDistribution(include_lsb=True, os_release_file='', distro_release_file='')
Bases: object

Provides information about a Linux distribution.

This package creates a private module-global instance of this class with default initialization arguments, that
is used by the `consolidated accessor functions`_ and `single source accessor functions`_. By using default
initialization arguments, that module-global instance returns data about the current Linux distribution (i.e. the
distro this package runs on).

Normally, it is not necessary to create additional instances of this class. However, in situations where control
is needed over the exact data sources that are used, instances of this class can be created with a specific distro
release file, or a specific os-release file, or without invoking the lsb_release command.

__repr__()

Return repr of all info

linux_distribution(full_distribution_name=True)
Return information about the Linux distribution that is compatible with Python's platform.
linux_distribution(), supporting a subset of its parameters.

For details, see distro.linux_distribution().

id()

Return the distro ID of the Linux distribution, as a string.

For details, see distro.id().

name(pretty=False)
Return the name of the Linux distribution, as a string.

For details, see distro.name().

version(pretty=False, best=False)
Return the version of the Linux distribution, as a string.

For details, see distro.version().

4.6. Developer guide 405

https://docs.python.org/3/library/functions.html#object

conda, Release 24.3.1.dev75

version_parts(best=False)
Return the version of the Linux distribution, as a tuple of version numbers.

For details, see distro.version_parts().

major_version(best=False)
Return the major version number of the current distribution.

For details, see distro.major_version().

minor_version(best=False)
Return the minor version number of the Linux distribution.

For details, see distro.minor_version().

build_number(best=False)
Return the build number of the Linux distribution.

For details, see distro.build_number().

like()

Return the IDs of distributions that are like the Linux distribution.

For details, see distro.like().

codename()

Return the codename of the Linux distribution.

For details, see distro.codename().

info(pretty=False, best=False)
Return certain machine-readable information about the Linux distribution.

For details, see distro.info().

os_release_info()

Return a dictionary containing key-value pairs for the information items from the os-release file data source
of the Linux distribution.

For details, see distro.os_release_info().

lsb_release_info()

Return a dictionary containing key-value pairs for the information items from the lsb_release command
data source of the Linux distribution.

For details, see distro.lsb_release_info().

distro_release_info()

Return a dictionary containing key-value pairs for the information items from the distro release file data
source of the Linux distribution.

For details, see distro.distro_release_info().

os_release_attr(attribute)
Return a single named information item from the os-release file data source of the Linux distribution.

For details, see distro.os_release_attr().

lsb_release_attr(attribute)
Return a single named information item from the lsb_release command output data source of the Linux
distribution.

For details, see distro.lsb_release_attr().

406 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

distro_release_attr(attribute)
Return a single named information item from the distro release file data source of the Linux distribution.

For details, see distro.distro_release_attr().

_get_os_release_info()

Get the information items from the specified os-release file.

Returns
A dictionary containing all information items.

static _parse_os_release_content(lines)
Parse the lines of an os-release file.

Parameters:

• lines: Iterable through the lines in the os-release file.
Each line must be a unicode string or a UTF-8 encoded byte string.

Returns
A dictionary containing all information items.

_get_lsb_release_info()

Get the information items from the lsb_release command output.

Returns
A dictionary containing all information items.

static _parse_lsb_release_content(lines)
Parse the output of the lsb_release command.

Parameters:

• lines: Iterable through the lines of the lsb_release output.
Each line must be a unicode string or a UTF-8 encoded byte string.

Returns
A dictionary containing all information items.

_get_distro_release_info()

Get the information items from the specified distro release file.

Returns
A dictionary containing all information items.

_parse_distro_release_file(filepath)
Parse a distro release file.

Parameters:

• filepath: Path name of the distro release file.

Returns
A dictionary containing all information items.

static _parse_distro_release_content(line)
Parse a line from a distro release file.

Parameters: * line: Line from the distro release file. Must be a unicode string

4.6. Developer guide 407

conda, Release 24.3.1.dev75

or a UTF-8 encoded byte string.

Returns
A dictionary containing all information items.

_distro

main()

frozendict

Classes

frozendict An immutable wrapper around dictionaries that imple-
ments the complete collections.Mapping

FrozenOrderedDict A frozendict subclass that maintains key order

Attributes

deprecated

OrderedDict

iteritems

deprecated

OrderedDict

iteritems

class frozendict(*args, **kwargs)
Bases: collections.abc.Mapping

An immutable wrapper around dictionaries that implements the complete collections.Mapping interface. It
can be used as a drop-in replacement for dictionaries where immutability is desired.

dict_cls

__getitem__(key)

__contains__(key)

copy(**add_or_replace)

__iter__()

__len__()

408 Chapter 4. Contributors welcome

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

conda, Release 24.3.1.dev75

__repr__()

Return repr(self).

__hash__()

Return hash(self).

__json__()

to_json()

class FrozenOrderedDict(*args, **kwargs)
Bases: frozendict

A frozendict subclass that maintains key order

dict_cls

_version

TYPE_CHECKING = False

VERSION_TUPLE

version: str

__version__: str

__version_tuple__: VERSION_TUPLE

version_tuple: VERSION_TUPLE

activate

Conda activate and deactivate logic.

Implementation for all shell interface logic exposed via conda shell.* [activate|deactivate|reactivate|hook|commands].
This includes a custom argument parser, an abstract shell class, and special path handling for Windows.

See conda.cli.main.main_sourced for the entry point into this module.

4.6. Developer guide 409

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Classes

_Activator

PosixActivator

CshActivator

XonshActivator

CmdExeActivator

FishActivator

PowerShellActivator

JSONFormatMixin Returns the necessary values for activation as JSON, so
that tools can use them.

Functions

expand(path)

ensure_binary(value)

ensure_fs_path_encoding(value)

native_path_to_unix(→ str | tuple[str, Ellipsis] |
None)
path_identity(→ str | tuple[str, Ellipsis] | None)

backslash_to_forwardslash (→ str | tuple[str, ...)

_build_activator_cls(shell) Dynamically construct the activator class.

Attributes

activator_map

formatter_map

class _Activator(arguments=None)

pathsep_join: str

sep: str

410 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

path_conversion: collections.abc.Callable[[str | collections.abc.Iterable[str] |
None], str | tuple[str, Ellipsis] | None]

script_extension: str

tempfile_extension: str | None

command_join: str

unset_var_tmpl: str

export_var_tmpl: str

set_var_tmpl: str

run_script_tmpl: str

hook_source_path: pathlib.Path | None

get_export_unset_vars(export_metavars=True, **kwargs)

Parameters
• export_metavars -- whether to export conda_exe_vars meta variables.

• kwargs -- environment variables to export. .. if you pass and set any other variable to
None, then it emits it to the dict with a value of None.

Returns
A dict of env vars to export ordered the same way as kwargs. And a list of env vars to unset.

add_export_unset_vars(export_vars, unset_vars, **kwargs)

get_scripts_export_unset_vars(**kwargs)→ tuple[str, str]

_finalize(commands, ext)

activate()

deactivate()

reactivate()

hook(auto_activate_base: bool | None = None)→ str

execute()

commands()

Returns a list of possible subcommands that are valid immediately following conda at the command line.
This method is generally only used by tab-completion.

abstract _hook_preamble()→ str | None

_hook_postamble()→ str | None

_parse_and_set_args(arguments)

_yield_commands(cmds_dict)

build_activate(env_name_or_prefix)

4.6. Developer guide 411

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

build_stack(env_name_or_prefix)

_build_activate_stack(env_name_or_prefix, stack)

build_deactivate()

build_reactivate()

_get_starting_path_list()

_get_path_dirs(prefix)

_add_prefix_to_path(prefix, starting_path_dirs=None)

_remove_prefix_from_path(prefix, starting_path_dirs=None)

_replace_prefix_in_path(old_prefix, new_prefix, starting_path_dirs=None)

_update_prompt(set_vars, conda_prompt_modifier)

_default_env(prefix)

_prompt_modifier(prefix, conda_default_env)

_get_activate_scripts(prefix)

_get_deactivate_scripts(prefix)

_get_environment_env_vars(prefix)

expand(path)

ensure_binary(value)

ensure_fs_path_encoding(value)

native_path_to_unix(paths: str | collections.abc.Iterable[str] | None)→ str | tuple[str, Ellipsis] | None

path_identity(paths: str | collections.abc.Iterable[str] | None)→ str | tuple[str, Ellipsis] | None

backslash_to_forwardslash(paths: str | collections.abc.Iterable[str] | None)→ str | tuple[str, Ellipsis] | None

class PosixActivator(arguments=None)
Bases: _Activator

pathsep_join

sep = '/'

path_conversion

script_extension = '.sh'

tempfile_extension

command_join = '\n'

unset_var_tmpl = 'unset %s'

export_var_tmpl = "export %s='%s'"

412 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

set_var_tmpl = "%s='%s'"

run_script_tmpl = '. "%s"'

hook_source_path

_update_prompt(set_vars, conda_prompt_modifier)

_hook_preamble()→ str

class CshActivator(arguments=None)
Bases: _Activator

pathsep_join

sep = '/'

path_conversion

script_extension = '.csh'

tempfile_extension

command_join = ';\n'

unset_var_tmpl = 'unsetenv %s'

export_var_tmpl = 'setenv %s "%s"'

set_var_tmpl = "set %s='%s'"

run_script_tmpl = 'source "%s"'

hook_source_path

_update_prompt(set_vars, conda_prompt_modifier)

_hook_preamble()→ str

class XonshActivator(arguments=None)
Bases: _Activator

pathsep_join

sep = '/'

path_conversion

script_extension

tempfile_extension

command_join = '\n'

unset_var_tmpl = 'del $%s'

export_var_tmpl = "$%s = '%s'"

set_var_tmpl = "$%s = '%s'"

run_script_tmpl

4.6. Developer guide 413

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

hook_source_path

_hook_preamble()→ str

class CmdExeActivator(arguments=None)
Bases: _Activator

pathsep_join

sep = '\\'

path_conversion

script_extension = '.bat'

tempfile_extension = '.bat'

command_join = '\n'

unset_var_tmpl = '@SET %s='

export_var_tmpl = '@SET "%s=%s"'

set_var_tmpl = '@SET "%s=%s"'

run_script_tmpl = '@CALL "%s"'

hook_source_path

_hook_preamble()→ None

class FishActivator(arguments=None)
Bases: _Activator

pathsep_join

sep = '/'

path_conversion

script_extension = '.fish'

tempfile_extension

command_join = ';\n'

unset_var_tmpl = 'set -e %s'

export_var_tmpl = 'set -gx %s "%s"'

set_var_tmpl = 'set -g %s "%s"'

run_script_tmpl = 'source "%s"'

hook_source_path

_hook_preamble()→ str

class PowerShellActivator(arguments=None)
Bases: _Activator

414 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

pathsep_join

sep

path_conversion

script_extension = '.ps1'

tempfile_extension

command_join = '\n'

unset_var_tmpl = '$Env:%s = ""'

export_var_tmpl = '$Env:%s = "%s"'

set_var_tmpl = '$Env:%s = "%s"'

run_script_tmpl = '. "%s"'

hook_source_path

_hook_preamble()→ str

_hook_postamble()→ str

class JSONFormatMixin(arguments=None)
Bases: _Activator

Returns the necessary values for activation as JSON, so that tools can use them.

pathsep_join

tempfile_extension

command_join

_hook_preamble()

get_scripts_export_unset_vars(**kwargs)

_finalize(commands, ext)

_yield_commands(cmds_dict)

activator_map: dict[str, type[_Activator]]

formatter_map

_build_activator_cls(shell)
Dynamically construct the activator class.

Detect the base activator and any number of formatters (appended using '+' to the base name). For example,
posix+json (as in conda shell.posix+json activate) would use the PosixActivator base class and add the JSON-
FormatMixin.

4.6. Developer guide 415

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

api

Collection of conda's high-level APIs.

Classes

Solver Beta While in beta, expect both major and minor
changes across minor releases.

SubdirData Beta While in beta, expect both major and minor
changes across minor releases.

PackageCacheData Beta While in beta, expect both major and minor
changes across minor releases.

PrefixData Beta While in beta, expect both major and minor
changes across minor releases.

Attributes

DepsModifier

UpdateModifier

DepsModifier

UpdateModifier

class Solver(prefix, channels, subdirs=(), specs_to_add=(), specs_to_remove=())
Beta While in beta, expect both major and minor changes across minor releases.

A high-level API to conda's solving logic. Three public methods are provided to access a solution in various
forms.

• solve_final_state()

• solve_for_diff()

• solve_for_transaction()

solve_final_state(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL,
force_remove=NULL)

Beta While in beta, expect both major and minor changes across minor releases.

Gives the final, solved state of the environment.

Parameters
• deps_modifier (DepsModifier) -- An optional flag indicating special solver handling

for dependencies. The default solver behavior is to be as conservative as possible with
dependency updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include * NO_DEPS * ONLY_DEPS
* UPDATE_DEPS * UPDATE_DEPS_ONLY_DEPS * FREEZE_INSTALLED

416 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• prune (bool) -- If True, the solution will not contain packages that were previously
brought into the environment as dependencies but are no longer required as dependencies
and are not user-requested.

• ignore_pinned (bool) -- If True, the solution will ignore pinned package configuration
for the prefix.

• force_remove (bool) -- Forces removal of a package without removing packages that
depend on it.

Returns
In sorted dependency order from roots to leaves, the package references for the solved state
of the environment.

Return type
tuple[PackageRef]

solve_for_diff(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL,
force_remove=NULL, force_reinstall=False)

Beta While in beta, expect both major and minor changes across minor releases.

Gives the package references to remove from an environment, followed by the package references to add to
an environment.

Parameters
• deps_modifier (DepsModifier) -- See solve_final_state().

• prune (bool) -- See solve_final_state().

• ignore_pinned (bool) -- See solve_final_state().

• force_remove (bool) -- See solve_final_state().

• force_reinstall (bool) -- For requested specs_to_add that are already satisfied in the
environment, instructs the solver to remove the package and spec from the environment,
and then add it back--possibly with the exact package instance modified, depending on the
spec exactness.

Returns
A two-tuple of PackageRef sequences. The first is the group of packages to remove from the
environment, in sorted dependency order from leaves to roots. The second is the group of
packages to add to the environment, in sorted dependency order from roots to leaves.

Return type
tuple[PackageRef], tuple[PackageRef]

solve_for_transaction(update_modifier=NULL, deps_modifier=NULL, prune=NULL,
ignore_pinned=NULL, force_remove=NULL, force_reinstall=False)

Beta While in beta, expect both major and minor changes across minor releases.

Gives an UnlinkLinkTransaction instance that can be used to execute the solution on an environment.

Parameters
• deps_modifier (DepsModifier) -- See solve_final_state().

• prune (bool) -- See solve_final_state().

• ignore_pinned (bool) -- See solve_final_state().

• force_remove (bool) -- See solve_final_state().

• force_reinstall (bool) -- See solve_for_diff().

4.6. Developer guide 417

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Return type
UnlinkLinkTransaction

class SubdirData(channel)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of repodata.json for subdirs.

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific instance of repodata.

Parameters
package_ref_or_match_spec (PackageRef or MatchSpec or str) -- Either an exact
PackageRef to match against, or a MatchSpec query object. A str will be turned into a
MatchSpec automatically.

Returns
tuple[PackageRecord]

static query_all(package_ref_or_match_spec, channels=None, subdirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all repodata instances in channel/subdir matrix.

Parameters
• package_ref_or_match_spec (PackageRef or MatchSpec or str) -- Either an

exact PackageRef to match against, or a MatchSpec query object. A str will be turned
into a MatchSpec automatically.

• channels (Iterable[Channel or str] or None) -- An iterable of urls for channels
or Channel objects. If None, will fall back to context.channels.

• subdirs (Iterable[str] or None) -- If None, will fall back to context.subdirs.

Returns
tuple[PackageRecord]

iter_records()

Beta While in beta, expect both major and minor changes across minor releases.

Returns
A generator over all records contained in the repodata.json

instance. Warning: this is a generator that is exhausted on first use.

Return type
Iterable[PackageRecord]

reload()

Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. repodata.json) is lazily down-
loaded/loaded on first use by the other methods of this class. You should only use this method if you
are sure you have outdated data.

Returns
SubdirData

418 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

class PackageCacheData(pkgs_dir)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of package caches.

property is_writable

Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the package cache location is writable or read-only.

Returns
bool

get(package_ref , default=NULL)
Beta While in beta, expect both major and minor changes across minor releases.

Parameters
• package_ref (PackageRef) -- A PackageRef instance representing the key for the
PackageCacheRecord being sought.

• default -- The default value to return if the record does not exist. If not specified and no
record exists, KeyError is raised.

Returns
PackageCacheRecord

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific package cache instance.

Parameters
package_ref_or_match_spec (PackageRef or MatchSpec or str) -- Either an exact
PackageRef to match against, or a MatchSpec query object. A str will be turned into a
MatchSpec automatically.

Returns
tuple[PackageCacheRecord]

static query_all(package_ref_or_match_spec, pkgs_dirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against all package caches.

Parameters
• package_ref_or_match_spec (PackageRef or MatchSpec or str) -- Either an

exact PackageRef to match against, or a MatchSpec query object. A str will be turned
into a MatchSpec automatically.

• pkgs_dirs (Iterable[str] or None) -- If None, will fall back to context.pkgs_dirs.

Returns
tuple[PackageCacheRecord]

iter_records()

Beta While in beta, expect both major and minor changes across minor releases.

Returns
A generator over all records contained in the package

cache instance. Warning: this is a generator that is exhausted on first use.

4.6. Developer guide 419

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Return type
Iterable[PackageCacheRecord]

static first_writable(pkgs_dirs=None)
Beta While in beta, expect both major and minor changes across minor releases.

Get an instance object for the first writable package cache.

Parameters
pkgs_dirs (Iterable[str]) -- If None, will fall back to context.pkgs_dirs.

Returns
An instance for the first writable package cache.

Return type
PackageCacheData

reload()

Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of the pkgs_dir) is lazily
loaded on first use by the other methods of this class. You should only use this method if you are sure you
have outdated data.

Returns
PackageCacheData

class PrefixData(prefix_path)
Beta While in beta, expect both major and minor changes across minor releases.

High-level management and usage of conda environment prefixes.

property is_writable

Beta While in beta, expect both major and minor changes across minor releases.

Indicates if the prefix is writable or read-only.

Returns
True if the prefix is writable. False if read-only. None if the prefix does not exist as a conda
environment.

Return type
bool or None

get(package_ref , default=NULL)
Beta While in beta, expect both major and minor changes across minor releases.

Parameters
• package_ref (PackageRef) -- A PackageRef instance representing the key for the
PrefixRecord being sought.

• default -- The default value to return if the record does not exist. If not specified and no
record exists, KeyError is raised.

Returns
PrefixRecord

query(package_ref_or_match_spec)
Beta While in beta, expect both major and minor changes across minor releases.

Run a query against this specific prefix instance.

420 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

conda, Release 24.3.1.dev75

Parameters
package_ref_or_match_spec (PackageRef or MatchSpec or str) -- Either an exact
PackageRef to match against, or a MatchSpec query object. A str will be turned into a
MatchSpec automatically.

Returns
tuple[PrefixRecord]

iter_records()

Beta While in beta, expect both major and minor changes across minor releases.

Returns
A generator over all records contained in the prefix.

Warning: this is a generator that is exhausted on first use.

Return type
Iterable[PrefixRecord]

reload()

Beta While in beta, expect both major and minor changes across minor releases.

Update the instance with new information. Backing information (i.e. contents of the conda-meta directory)
is lazily loaded on first use by the other methods of this class. You should only use this method if you are
sure you have outdated data.

Returns
PrefixData

auxlib

Auxlib is an auxiliary library to the python standard library.

The aim is to provide core generic features for app development in python. Auxlib fills in some python stdlib gaps
much like pytoolz has for functional programming, pyrsistent has for data structures, or boltons has generally.

Major areas addressed include:
• packaging: package versioning, with a clean and less invasive alternative to versioneer

• entity: robust base class for type-enforced data models and transfer objects

• type_coercion: intelligent type coercion utilities

• Configuration: a map implementation designed specifically to hold application configuration and context
information

• factory: factory pattern implementation

• path: file path utilities especially helpful when working with various python package formats

• logz: logging initialization routines to simplify python logging setup

• crypt: simple, but correct, pycrypto wrapper

[2021-11-09] Our version of auxlib has deviated from the upstream project by a significant amount (especially com-
pared with the other vendored packages). Further, the upstream project has low popularity and is no longer actively
maintained. Consequently it was decided to absorb, refactor, and replace auxlib. As a first step of this process we
moved conda._vendor.auxlib to conda.auxlib.

4.6. Developer guide 421

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/pytoolz/
https://github.com/tobgu/pyrsistent/
https://github.com/mahmoud/boltons/

conda, Release 24.3.1.dev75

collection

Common collection classes.

Classes

AttrDict Sub-classes dict, and further allows attribute-like access
to dictionary items.

Functions

make_immutable(value)

first(seq[, key, default, apply]) Give the first value that satisfies the key test.
firstitem(map[, key, default, apply])

last(seq[, key, default, apply])

call_each (seq) Calls each element of sequence to invoke the side effect.

make_immutable(value)

class AttrDict(*args, **kwargs)
Bases: dict

Sub-classes dict, and further allows attribute-like access to dictionary items.

Examples

>>> d = AttrDict({'a': 1})
>>> d.a, d['a'], d.get('a')
(1, 1, 1)
>>> d.b = 2
>>> d.b, d['b']
(2, 2)

first(seq, key=bool, default=None, apply=lambda x: ...)
Give the first value that satisfies the key test.

Parameters
• seq (iterable)

• key (callable) -- test for each element of iterable

• default -- returned when all elements fail test

• apply (callable) -- applied to element before return, but not to default value

Returns: first element in seq that passes key, mutated with optional apply

422 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

Examples

>>> first([0, False, None, [], (), 42])
42
>>> first([0, False, None, [], ()]) is None
True
>>> first([0, False, None, [], ()], default='ohai')
'ohai'
>>> import re
>>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
>>> m.group(1)
'bc'

The optional key argument specifies a one-argument predicate function like that used for filter(). The key argu-
ment, if supplied, must be in keyword form. For example: >>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
4

firstitem(map, key=lambda k, v: ..., default=None, apply=lambda k, v: ...)

last(seq, key=bool, default=None, apply=lambda x: ...)

call_each(seq)
Calls each element of sequence to invoke the side effect.

Parameters
seq

Returns: None

compat

Functions

isiterable(obj)

shlex_split_unicode(to_split[, posix])

utf8_writer(fp)

Utf8NamedTemporaryFile([mode, buffering, new-
line, ...])

isiterable(obj)

shlex_split_unicode(to_split, posix=True)

utf8_writer(fp)

Utf8NamedTemporaryFile(mode='w+b', buffering=-1, newline=None, suffix=None, prefix=None, dir=None,
delete=True)

4.6. Developer guide 423

conda, Release 24.3.1.dev75

decorators

Classes

classproperty

Functions

memoizemethod(method) Decorator to cause a method to cache it's results in self
for each

clear_memoized_methods(obj, *method_names) Clear the memoized method or @memoizedproperty re-
sults for the given

memoizedproperty(func) Decorator to cause a method to cache it's results in self
for each

memoizemethod(method)
Decorator to cause a method to cache it's results in self for each combination of inputs and return the cached
result on subsequent calls. Does not support named arguments or arg values that are not hashable.

>>> class Foo (object):
... @memoizemethod
... def foo(self, x, y=0):
... print('running method with', x, y)
... return x + y + 3
...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo(10)
running method with 10 0
13
>>> foo1.foo(10)
13
>>> foo2.foo(11, y=7)
running method with 11 7
21
>>> foo2.foo(11)
running method with 11 0
14
>>> foo2.foo(11, y=7)
21
>>> class Foo (object):
... def __init__(self, lower):
... self.lower = lower
... @memoizemethod
... def range_tuple(self, upper):
... print('running function')
... return tuple(i for i in range(self.lower, upper))
... @memoizemethod

(continues on next page)

424 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

... def range_iter(self, upper):

... print('running function')

... return (i for i in range(self.lower, upper))

...
>>> foo = Foo(3)
>>> foo.range_tuple(6)
running function
(3, 4, 5)
>>> foo.range_tuple(7)
running function
(3, 4, 5, 6)
>>> foo.range_tuple(6)
(3, 4, 5)
>>> foo.range_iter(6)
Traceback (most recent call last):
TypeError: Can't memoize a generator or non-hashable object!

clear_memoized_methods(obj, *method_names)
Clear the memoized method or @memoizedproperty results for the given method names from the given object.

>>> v = [0]
>>> def inc():
... v[0] += 1
... return v[0]
...
>>> class Foo(object):
... @memoizemethod
... def foo(self):
... return inc()
... @memoizedproperty
... def g(self):
... return inc()
...
>>> f = Foo()
>>> f.foo(), f.foo()
(1, 1)
>>> clear_memoized_methods(f, 'foo')
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> (f.foo(), f.foo(), f.g, f.g)
(2, 2, 3, 3)
>>> clear_memoized_methods(f, 'g', 'no_problem_if_undefined')
>>> f.g, f.foo(), f.g
(4, 2, 4)
>>> f.foo()
2

memoizedproperty(func)
Decorator to cause a method to cache it's results in self for each combination of inputs and return the cached
result on subsequent calls. Does not support named arguments or arg values that are not hashable.

>>> class Foo (object):
(continues on next page)

4.6. Developer guide 425

conda, Release 24.3.1.dev75

(continued from previous page)

... _x = 1

... @memoizedproperty

... def foo(self):

... self._x += 1

... print('updating and returning {0}'.format(self._x))

... return self._x

...
>>> foo1 = Foo()
>>> foo2 = Foo()
>>> foo1.foo
updating and returning 2
2
>>> foo1.foo
2
>>> foo2.foo
updating and returning 2
2
>>> foo1.foo
2

class classproperty(getter=None, setter=None)

__get__(obj, type_=None)

__set__(obj, value)

setter(setter)

entity

This module provides serializable, validatable, type-enforcing domain objects and data transfer objects. It has many of
the same motivations as the python Marshmallow package. It is most similar to Schematics.

Tutorial

Chapter 1: Entity and Field Basics

>>> class Color(Enum):
... blue = 0
... black = 1
... red = 2
>>> class Car(Entity):
... weight = NumberField(required=False)
... wheels = IntField(default=4, validation=lambda x: 3 <= x <= 4)
... color = EnumField(Color)

>>> # create a new car object
>>> car = Car(color=Color.blue, weight=4242.46)
>>> car
Car(weight=4242.46, color=0)

426 Chapter 4. Contributors welcome

http://marshmallow.readthedocs.org/en/latest/why.html
http://schematics.readthedocs.io/

conda, Release 24.3.1.dev75

>>> # it has 4 wheels, all by default
>>> car.wheels
4

>>> # but a car can't have 5 wheels!
>>> # the `validation=` field is a simple callable that returns a
>>> # boolean based on validity
>>> car.wheels = 5
Traceback (most recent call last):
ValidationError: Invalid value 5 for wheels

>>> # we can call .dump() on car, and just get back a standard
>>> # python dict actually, it's an ordereddict to match attribute
>>> # declaration order
>>> type(car.dump())
<class '...OrderedDict'>
>>> car.dump()
OrderedDict([('weight', 4242.46), ('wheels', 4), ('color', 0)])

>>> # and json too (note the order!)
>>> car.json()
'{"weight": 4242.46, "wheels": 4, "color": 0}'

>>> # green cars aren't allowed
>>> car.color = "green"
Traceback (most recent call last):
ValidationError: 'green' is not a valid Color

>>> # but black cars are!
>>> car.color = "black"
>>> car.color
<Color.black: 1>

>>> # car.color really is an enum, promise
>>> type(car.color)
<enum 'Color'>

>>> # enum assignment can be with any of (and preferentially)
>>> # (1) an enum literal,
>>> # (2) a valid enum value, or
>>> # (3) a valid enum name
>>> car.color = Color.blue; car.color.value
0
>>> car.color = 1; car.color.name
'black'

>>> # let's do a round-trip marshalling of this thing
>>> same_car = Car.from_json(car.json()) # or equally Car.from_json(json.dumps(car.
→˓dump()))
>>> same_car == car
True

4.6. Developer guide 427

conda, Release 24.3.1.dev75

>>> # actually, they're two different instances
>>> same_car is not car
True

>>> # this works too
>>> cloned_car = Car(**car.dump())
>>> cloned_car == car
True

>>> # while we're at it, these are all equivalent too
>>> car == Car.from_objects(car)
True
>>> car == Car.from_objects({"weight": 4242.46, "wheels": 4, "color": 1})
True
>>> car == Car.from_json('{"weight": 4242.46, "color": 1}')
True

>>> # .from_objects() even lets you stack and combine objects
>>> class DumbClass:
... color = 0
... wheels = 3
>>> Car.from_objects(DumbClass(), dict(weight=2222, color=1))
Car(weight=2222, wheels=3, color=0)
>>> # and also pass kwargs that override properties pulled
>>> # off any objects
>>> Car.from_objects(DumbClass(), {'weight': 2222, 'color': 1}, color=2, weight=33)
Car(weight=33, wheels=3, color=2)

Chapter 2: Entity and Field Composition

>>> # now let's get fancy
>>> # a ComposableField "nests" another valid Entity
>>> # a ListField's first argument is a "generic" type,
>>> # which can be a valid Entity, any python primitive
>>> # type, or a list of Entities/types
>>> class Fleet(Entity):
... boss_car = ComposableField(Car)
... cars = ListField(Car)

>>> # here's our fleet of company cars
>>> company_fleet = Fleet(boss_car=Car(color='red'), cars=[car, same_car, cloned_car])
>>> company_fleet.pretty_json()
{
"boss_car": {
"wheels": 4
"color": 2,

},
"cars": [
{
"weight": 4242.46,

(continues on next page)

428 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

"wheels": 4
"color": 1,

},
{
"weight": 4242.46,
"wheels": 4
"color": 1,

},
{
"weight": 4242.46,
"wheels": 4
"color": 1,

}
]

}

>>> # the boss' car is red of course (and it's still an Enum)
>>> company_fleet.boss_car.color.name
'red'

>>> # and there are three cars left for the employees
>>> len(company_fleet.cars)
3

Chapter 3: Immutability

>>> class ImmutableCar(ImmutableEntity):
... wheels = IntField(default=4, validation=lambda x: 3 <= x <= 4)
... color = EnumField(Color)
>>> icar = ImmutableCar.from_objects({'wheels': 3, 'color': 'blue'})
>>> icar
ImmutableCar(wheels=3, color=0)

>>> icar.wheels = 4
Traceback (most recent call last):
AttributeError: Assignment not allowed. ImmutableCar is immutable.

>>> class FixedWheelCar(Entity):
... wheels = IntField(default=4, immutable=True)
... color = EnumField(Color)
>>> fwcar = FixedWheelCar.from_objects(icar)
>>> fwcar.json()
'{"wheels": 3, "color": 0}'

>>> # repainting the car is easy
>>> fwcar.color = Color.red
>>> fwcar.color.name
'red'

4.6. Developer guide 429

conda, Release 24.3.1.dev75

>>> # can't really change the number of wheels though
>>> fwcar.wheels = 18
Traceback (most recent call last):
AttributeError: The wheels field is immutable.

Chapter X: The del and null Weeds

>>> old_date = lambda: isoparse('1982-02-17')
>>> class CarBattery(Entity):
... # NOTE: default value can be a callable!
... first_charge = DateField(required=False) # default=None, nullable=False
... latest_charge = DateField(default=old_date, nullable=True) # required=True
... expiration = DateField(default=old_date, required=False, nullable=False)

>>> # starting point
>>> battery = CarBattery()
>>> battery
CarBattery()
>>> battery.json()
'{"latest_charge": "1982-02-17T00:00:00", "expiration": "1982-02-17T00:00:00"}'

>>> # first_charge is not assigned a default value. Once one is assigned, it can be␣
→˓deleted,
>>> # but it can't be made null.
>>> battery.first_charge = isoparse('2016-03-23')
>>> battery
CarBattery(first_charge=datetime.datetime(2016, 3, 23, 0, 0))
>>> battery.first_charge = None
Traceback (most recent call last):
ValidationError: Value for first_charge not given or invalid.
>>> del battery.first_charge
>>> battery
CarBattery()

>>> # latest_charge can be null, but it can't be deleted. The default value is a callable.
>>> del battery.latest_charge
Traceback (most recent call last):
AttributeError: The latest_charge field is required and cannot be deleted.
>>> battery.latest_charge = None
>>> battery.json()
'{"latest_charge": null, "expiration": "1982-02-17T00:00:00"}'

>>> # expiration is assigned by default, can't be made null, but can be deleted.
>>> battery.expiration
datetime.datetime(1982, 2, 17, 0, 0)
>>> battery.expiration = None
Traceback (most recent call last):
ValidationError: Value for expiration not given or invalid.
>>> del battery.expiration

(continues on next page)

430 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

(continued from previous page)

>>> battery.json()
'{"latest_charge": null}'

Classes

Field Fields are doing something very similar to boxing and
unboxing

BooleanField Fields are doing something very similar to boxing and
unboxing

IntegerField Fields are doing something very similar to boxing and
unboxing

NumberField Fields are doing something very similar to boxing and
unboxing

StringField Fields are doing something very similar to boxing and
unboxing

DateField Fields are doing something very similar to boxing and
unboxing

EnumField Fields are doing something very similar to boxing and
unboxing

ListField Fields are doing something very similar to boxing and
unboxing

MapField Fields are doing something very similar to boxing and
unboxing

ComposableField Fields are doing something very similar to boxing and
unboxing

Entity

ImmutableEntity

Attributes

BoolField

IntField

class Field(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

4.6. Developer guide 431

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

property name

property required

property type

property default

property in_dump

property default_in_dump

property nullable

property is_nullable

property immutable

_order_helper = 0

set_name(name)

__get__(instance, instance_type)

__set__(instance, val)

__delete__(instance)

box(instance, instance_type, val)

unbox(instance, instance_type, val)

dump(instance, instance_type, val)

validate(instance, val)

Returns
if val is valid

Return type
True

Raises
ValidationError --

class BooleanField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

432 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

box(instance, instance_type, val)

BoolField

class IntegerField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

IntField

class NumberField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type = ()

4.6. Developer guide 433

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

class StringField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

box(instance, instance_type, val)

class DateField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

box(instance, instance_type, val)

dump(instance, instance_type, val)

class EnumField(enum_class, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

434 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

dump(instance, instance_type, val)

class ListField(element_type, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

box(instance, instance_type, val)

unbox(instance, instance_type, val)

dump(instance, instance_type, val)

validate(instance, val)

Returns
if val is valid

Return type
True

Raises
ValidationError --

class MapField(default=NULL, required=True, validation=None, in_dump=True, default_in_dump=True,
nullable=False, immutable=True, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

4.6. Developer guide 435

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

_type

box(instance, instance_type, val)

class ComposableField(field_class, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: Field

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

dump(instance, instance_type, val)

class Entity(**kwargs)

property _initd

__fields__

_lazy_validate = False

classmethod from_objects(*objects, **override_fields)

classmethod from_json(json_str)

classmethod load(data_dict)

validate()

__repr__()

Return repr(self).

classmethod __register__()

json(indent=None, separators=None, **kwargs)

pretty_json(indent=2, separators=(',', ': '), **kwargs)

436 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

dump()

classmethod __dump_fields()

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

class ImmutableEntity(**kwargs)
Bases: Entity

__setattr__(attribute, value)
Implement setattr(self, name, value).

__delattr__(item)

Implement delattr(self, name).

exceptions

Classes

AuxlibError Mixin to identify exceptions associated with the auxlib
package.

Functions

Raise(exception)

Raise(exception)

class AuxlibError

Mixin to identify exceptions associated with the auxlib package.

exception AuthenticationError

Bases: AuxlibError, ValueError

Mixin to identify exceptions associated with the auxlib package.

exception NotFoundError

Bases: AuxlibError, KeyError

Mixin to identify exceptions associated with the auxlib package.

exception InitializationError

Bases: AuxlibError, OSError

Mixin to identify exceptions associated with the auxlib package.

4.6. Developer guide 437

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#OSError

conda, Release 24.3.1.dev75

exception SenderError

Bases: AuxlibError, OSError

Mixin to identify exceptions associated with the auxlib package.

exception AssignmentError

Bases: AuxlibError, AttributeError

Mixin to identify exceptions associated with the auxlib package.

exception ValidationError(key, value=None, valid_types=None, msg=None)
Bases: AuxlibError, TypeError

Mixin to identify exceptions associated with the auxlib package.

exception ThisShouldNeverHappenError

Bases: AuxlibError, AttributeError

Mixin to identify exceptions associated with the auxlib package.

ish

Functions

dals(string) dedent and left-strip
_get_attr(obj, attr_name[, aliases])

find_or_none(key, search_maps[, aliases,
_map_index])

Return the value of the first key found in the list of
search_maps,

find_or_raise(key, search_maps[, aliases,
_map_index])

dals(string)
dedent and left-strip

_get_attr(obj, attr_name, aliases=())

find_or_none(key, search_maps, aliases=(), _map_index=0)
Return the value of the first key found in the list of search_maps, otherwise return None.

Examples

>>> from .collection import AttrDict
>>> d1 = AttrDict({'a': 1, 'b': 2, 'c': 3, 'e': None})
>>> d2 = AttrDict({'b': 5, 'e': 6, 'f': 7})
>>> find_or_none('c', (d1, d2))
3
>>> find_or_none('f', (d1, d2))
7
>>> find_or_none('b', (d1, d2))
2
>>> print(find_or_none('g', (d1, d2)))

(continues on next page)

438 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#AttributeError

conda, Release 24.3.1.dev75

(continued from previous page)

None
>>> find_or_none('e', (d1, d2))
6

find_or_raise(key, search_maps, aliases=(), _map_index=0)

logz

Classes

DumpEncoder Extensible JSON <https://json.org> encoder for Python
data structures.

Functions

set_root_level([level])

attach_stderr([level])

detach_stderr()

initialize_logging([level])

jsondumps(obj)

fullname(obj)

request_header_sort_key(item)

response_header_sort_key(item)

stringify(obj[, content_max_len])

4.6. Developer guide 439

https://json.org

conda, Release 24.3.1.dev75

Attributes

root_log

NullHandler

DEBUG_FORMATTER

INFO_FORMATTER

_DUMPS

request_header_sort_dict

response_header_sort_dict

root_log

NullHandler

DEBUG_FORMATTER

INFO_FORMATTER

set_root_level(level=INFO)

attach_stderr(level=INFO)

detach_stderr()

initialize_logging(level=INFO)

class DumpEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Bases: json.JSONEncoder

Extensible JSON <https://json.org> encoder for Python data structures.

Supports the following objects and types by default:

Python JSON
dict object
list, tuple array
str string
int, float number
True true
False false
None null

To extend this to recognize other objects, subclass and implement a .default() method with another method
that returns a serializable object for o if possible, otherwise it should call the superclass implementation (to raise
TypeError).

440 Chapter 4. Contributors welcome

https://docs.python.org/3/library/json.html#json.JSONEncoder
https://json.org

conda, Release 24.3.1.dev75

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

_DUMPS

jsondumps(obj)

fullname(obj)

request_header_sort_dict

request_header_sort_key(item)

response_header_sort_dict

response_header_sort_key(item)

stringify(obj, content_max_len=0)

type_coercion

Collection of functions to coerce conversion of types with an intelligent guess.

Functions

numberify(value)

Examples

boolify(value[, nullable, return_string]) Convert a number, string, or sequence type into a pure
boolean.

typify(value[, type_hint]) Take a primitive value, usually a string, and try to make
a more relevant type out of it.

maybecall(value)

listify(val[, return_type])

Examples

4.6. Developer guide 441

conda, Release 24.3.1.dev75

numberify(value)

Examples

>>> [numberify(x) for x in ('1234', 1234, '0755', 0o0755, False, 0, '0', True, 1, '1
→˓')]
[1234, 1234, 755, 493, 0, 0, 0, 1, 1, 1]

>>> [numberify(x) for x in ('12.34', 12.34, 1.2+3.5j, '1.2+3.5j')]
[12.34, 12.34, (1.2+3.5j), (1.2+3.5j)]

boolify(value, nullable=False, return_string=False)
Convert a number, string, or sequence type into a pure boolean.

Parameters
value (number, string, sequence) -- pretty much anything

Returns
boolean representation of the given value

Return type
bool

Examples

>>> [boolify(x) for x in ('yes', 'no')]
[True, False]
>>> [boolify(x) for x in (0.1, 0+0j, True, '0', '0.0', '0.1', '2')]
[True, False, True, False, False, True, True]
>>> [boolify(x) for x in ("true", "yes", "on", "y")]
[True, True, True, True]
>>> [boolify(x) for x in ("no", "non", "none", "off", "")]
[False, False, False, False, False]
>>> [boolify(x) for x in ([], set(), dict(), tuple())]
[False, False, False, False]
>>> [boolify(x) for x in ([1], set([False]), dict({'a': 1}), tuple([2]))]
[True, True, True, True]

typify(value, type_hint=None)
Take a primitive value, usually a string, and try to make a more relevant type out of it. An optional type_hint
will try to coerce the value to that type.

Parameters
• value (Any) -- Usually a string, not a sequence

• type_hint (type or tuple[type])

442 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

Examples

>>> typify('32')
32
>>> typify('32', float)
32.0
>>> typify('32.0')
32.0
>>> typify('32.0.0')
'32.0.0'
>>> [typify(x) for x in ('true', 'yes', 'on')]
[True, True, True]
>>> [typify(x) for x in ('no', 'FALSe', 'off')]
[False, False, False]
>>> [typify(x) for x in ('none', 'None', None)]
[None, None, None]

maybecall(value)

listify(val, return_type=tuple)

Examples

>>> listify('abc', return_type=list)
['abc']
>>> listify(None)
()
>>> listify(False)
(False,)
>>> listify(('a', 'b', 'c'), return_type=list)
['a', 'b', 'c']

__version__ = '0.0.43'

__author__ = 'Kale Franz'

__email__ = 'kale@franz.io'

__url__ = 'https://github.com/kalefranz/auxlib'

__license__ = 'ISC'

__copyright__ = '(c) 2015 Kale Franz. All rights reserved.'

__summary__ = 'auxiliary library to the python standard library'

4.6. Developer guide 443

conda, Release 24.3.1.dev75

base

Code in conda.base is the lowest level of the application stack. It is loaded and executed virtually every time the
application is executed. Any code within, and any of its imports, must be highly performant.

Conda modules importable from conda.base are

• conda._vendor

• conda.base

• conda.common

Modules prohibited from importing conda.base are:

• conda._vendor

• conda.common

All other conda modules may import from conda.base.

constants

This file should hold most string literals and magic numbers used throughout the code base. The exception is if a
literal is specifically meant to be private to and isolated within a module. Think of this as a "more static" source of
configuration information.

Another important source of "static" configuration is conda/models/enums.py.

Classes

SafetyChecks Generic enumeration.
PathConflict Generic enumeration.
DepsModifier Flags to enable alternate handling of dependencies.
UpdateModifier Generic enumeration.
ChannelPriorityMeta Metaclass for Enum
ValueEnum Subclass of enum that returns the value of the enum as

its str representation
ChannelPriority

SatSolverChoice Subclass of enum that returns the value of the enum as
its str representation

NoticeLevel Subclass of enum that returns the value of the enum as
its str representation

444 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

PREFIX_PLACEHOLDER

machine_bits

APP_NAME

SEARCH_PATH

DEFAULT_CHANNEL_ALIAS

CONDA_HOMEPAGE_URL

ERROR_UPLOAD_URL

DEFAULTS_CHANNEL_NAME

RECOGNIZED_URL_SCHEMES

DEFAULT_CHANNELS_UNIX

DEFAULT_CHANNELS_WIN

DEFAULT_CUSTOM_CHANNELS

DEFAULT_CHANNELS

ROOT_ENV_NAME

ROOT_NO_RM

DEFAULT_AGGRESSIVE_UPDATE_PACKAGES

COMPATIBLE_SHELLS

MAX_CHANNEL_PRIORITY

CONDA_PACKAGE_EXTENSION_V1

CONDA_PACKAGE_EXTENSION_V2

CONDA_PACKAGE_EXTENSIONS

CONDA_PACKAGE_PARTS

CONDA_TARBALL_EXTENSION

CONDA_TEMP_EXTENSION

CONDA_TEMP_EXTENSIONS

continues on next page

4.6. Developer guide 445

conda, Release 24.3.1.dev75

Table 3 – continued from previous page
CONDA_LOGS_DIR

UNKNOWN_CHANNEL

REPODATA_FN

NOTICES_FN

NOTICES_CACHE_FN

NOTICES_CACHE_SUBDIR

NOTICES_DECORATOR_DISPLAY_INTERVAL

DRY_RUN_PREFIX

PREFIX_NAME_DISALLOWED_CHARS

DEFAULT_SOLVER

CLASSIC_SOLVER

PACKAGE_CACHE_MAGIC_FILE

PREFIX_MAGIC_FILE

PREFIX_STATE_FILE

PACKAGE_ENV_VARS_DIR

CONDA_ENV_VARS_UNSET_VAR

NAMESPACES_MAP

NAMESPACE_PACKAGE_NAMES

NAMESPACES

NO_PLUGINS

PREFIX_PLACEHOLDER = '/opt/anaconda1anaconda2anaconda3'

machine_bits

APP_NAME = 'conda'

SEARCH_PATH = ('C:/ProgramData/conda/.condarc', 'C:/ProgramData/conda/condarc',
'C:/ProgramData/conda/condarc.d')

DEFAULT_CHANNEL_ALIAS = 'https://conda.anaconda.org'

CONDA_HOMEPAGE_URL = 'https://conda.io'

446 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

ERROR_UPLOAD_URL = 'https://conda.io/conda-post/unexpected-error'

DEFAULTS_CHANNEL_NAME = 'defaults'

RECOGNIZED_URL_SCHEMES = ('http', 'https', 'ftp', 's3', 'file')

DEFAULT_CHANNELS_UNIX = ('https://repo.anaconda.com/pkgs/main',
'https://repo.anaconda.com/pkgs/r')

DEFAULT_CHANNELS_WIN = ('https://repo.anaconda.com/pkgs/main',
'https://repo.anaconda.com/pkgs/r',...

DEFAULT_CUSTOM_CHANNELS

DEFAULT_CHANNELS

ROOT_ENV_NAME = 'base'

ROOT_NO_RM = ('python', 'pycosat', 'ruamel.yaml', 'conda', 'openssl', 'requests')

DEFAULT_AGGRESSIVE_UPDATE_PACKAGES = ('ca-certificates', 'certifi', 'openssl')

COMPATIBLE_SHELLS = ('bash', 'cmd.exe', 'fish', 'tcsh', 'xonsh', 'zsh', 'powershell')

MAX_CHANNEL_PRIORITY = 10000

CONDA_PACKAGE_EXTENSION_V1 = '.tar.bz2'

CONDA_PACKAGE_EXTENSION_V2 = '.conda'

CONDA_PACKAGE_EXTENSIONS = ()

CONDA_PACKAGE_PARTS

CONDA_TARBALL_EXTENSION

CONDA_TEMP_EXTENSION = '.c~'

CONDA_TEMP_EXTENSIONS = ()

CONDA_LOGS_DIR = '.logs'

UNKNOWN_CHANNEL = '<unknown>'

REPODATA_FN = 'repodata.json'

NOTICES_FN = 'notices.json'

NOTICES_CACHE_FN = 'notices.cache'

NOTICES_CACHE_SUBDIR = 'notices'

NOTICES_DECORATOR_DISPLAY_INTERVAL = 86400

DRY_RUN_PREFIX = 'Dry run action:'

PREFIX_NAME_DISALLOWED_CHARS

4.6. Developer guide 447

conda, Release 24.3.1.dev75

class SafetyChecks

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

disabled = 'disabled'

warn = 'warn'

enabled = 'enabled'

__str__()

Return str(self).

class PathConflict

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

clobber = 'clobber'

warn = 'warn'

prevent = 'prevent'

__str__()

Return str(self).

class DepsModifier

Bases: enum.Enum

Flags to enable alternate handling of dependencies.

NOT_SET = 'not_set'

NO_DEPS = 'no_deps'

ONLY_DEPS = 'only_deps'

__str__()

Return str(self).

class UpdateModifier

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

SPECS_SATISFIED_SKIP_SOLVE = 'specs_satisfied_skip_solve'

FREEZE_INSTALLED = 'freeze_installed'

UPDATE_DEPS = 'update_deps'

UPDATE_SPECS = 'update_specs'

UPDATE_ALL = 'update_all'

448 Chapter 4. Contributors welcome

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

__str__()

Return str(self).

class ChannelPriorityMeta

Bases: enum.EnumMeta

Metaclass for Enum

__call__(value, *args, **kwargs)
Either returns an existing member, or creates a new enum class.

This method is used both when an enum class is given a value to match to an enumeration member (i.e.
Color(3)) and for the functional API (i.e. Color = Enum('Color', names='RED GREEN BLUE')).

When used for the functional API:

value will be the name of the new class.

names should be either a string of white-space/comma delimited names (values will start at start), or an
iterator/mapping of name, value pairs.

module should be set to the module this class is being created in; if it is not set, an attempt to find that
module will be made, but if it fails the class will not be picklable.

qualname should be set to the actual location this class can be found at in its module; by default it is set to
the global scope. If this is not correct, unpickling will fail in some circumstances.

type, if set, will be mixed in as the first base class.

class ValueEnum

Bases: enum.Enum

Subclass of enum that returns the value of the enum as its str representation

__str__()

Return str(self).

class ChannelPriority

Bases: six_with_metaclass(ChannelPriorityMeta, ValueEnum)

__name__ = 'ChannelPriority'

STRICT = 'strict'

FLEXIBLE = 'flexible'

DISABLED = 'disabled'

class SatSolverChoice

Bases: ValueEnum

Subclass of enum that returns the value of the enum as its str representation

PYCOSAT = 'pycosat'

PYCRYPTOSAT = 'pycryptosat'

PYSAT = 'pysat'

DEFAULT_SOLVER = 'libmamba'

CLASSIC_SOLVER = 'classic'

4.6. Developer guide 449

https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

class NoticeLevel

Bases: ValueEnum

Subclass of enum that returns the value of the enum as its str representation

CRITICAL = 'critical'

WARNING = 'warning'

INFO = 'info'

PACKAGE_CACHE_MAGIC_FILE = 'urls.txt'

PREFIX_MAGIC_FILE

PREFIX_STATE_FILE

PACKAGE_ENV_VARS_DIR

CONDA_ENV_VARS_UNSET_VAR = '***unset***'

NAMESPACES_MAP

NAMESPACE_PACKAGE_NAMES

NAMESPACES

NO_PLUGINS = False

context

Conda's global configuration object.

The context aggregates all configuration files, environment variables, and command line arguments into one global
stateful object to be used across all of conda.

Classes

Context

ContextStackObject

ContextStack

PluginConfig Class used to hold settings for conda plugins.

450 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

user_data_dir([appname, appauthor, version, roam-
ing])
mockable_context_envs_dirs(root_writable,
root_prefix, ...)
channel_alias_validation(value)

default_python_default()

default_python_validation(value)

ssl_verify_validation(value)

reset_context([search_path, argparse_args])

fresh_context([env, search_path, argparse_args])

stack_context(pushing[, search_path, arg-
parse_args])
stack_context_default(pushing[, argparse_args])

replace_context([pushing, search_path, arg-
parse_args])
replace_context_default([pushing, arg-
parse_args])
_get_cpu_info()

env_name(prefix)

locate_prefix_by_name(name[, envs_dirs]) Find the location of a prefix given a conda env name. If
the location does not exist, an

validate_prefix_name(→ str) Run various validations to make sure prefix_name is
valid

determine_target_prefix(ctx[, args]) Get the prefix to operate in. The prefix may not yet exist.
_first_writable_envs_dir()

get_plugin_config_data(→ dict[pathlib.Path,
dict[str, ...)

This is used to move everything under the key "plugins"
from the provided dictionary

add_plugin_setting(name, parameter[, aliases]) Adds a setting to the PluginConfig class
remove_all_plugin_settings(→ None) Removes all attached settings from the PluginConfig

class

4.6. Developer guide 451

conda, Release 24.3.1.dev75

Attributes

_platform_map

non_x86_machines

_arch_names

user_rc_path

sys_rc_path

context_stack

conda_tests_ctxt_mgmt_def_pol

context

_platform_map

non_x86_machines

_arch_names

user_rc_path

sys_rc_path

user_data_dir(appname: str | None = None, appauthor: str | None | Literal[False] = None, version: str | None =
None, roaming: bool = False)

mockable_context_envs_dirs(root_writable, root_prefix, _envs_dirs)

channel_alias_validation(value)

default_python_default()

default_python_validation(value)

ssl_verify_validation(value)

class Context(search_path=None, argparse_args=None, **kwargs)
Bases: conda.common.configuration.Configuration

property plugin_manager: conda.plugins.manager.CondaPluginManager

This is the preferred way of accessing the PluginManager object for this application and is located here
to avoid problems with cyclical imports elsewhere in the code.

property conda_build_local_paths

property conda_build_local_urls

property croot

This is where source caches and work folders live

452 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

property local_build_root

property conda_build

property arch_name

property platform

property default_threads: int | None

property repodata_threads: int | None

property fetch_threads: int | None

If both are not overriden (0), return experimentally-determined value of 5

property verify_threads: int | None

property execute_threads

property subdir

property subdirs

property bits

property root_dir: os.PathLike

property root_writable

property envs_dirs

property pkgs_dirs

property default_prefix

property active_prefix

property shlvl

property aggressive_update_packages

property target_prefix

property conda_prefix

property conda_exe

property av_data_dir

Where critical artifact verification data (e.g., various public keys) can be found.

property signing_metadata_url_base

Base URL for artifact verification signing metadata (*.root.json, key_mgr.json).

property conda_exe_vars_dict

The vars can refer to each other if necessary since the dict is ordered. None means unset it.

property migrated_channel_aliases

property prefix_specified

4.6. Developer guide 453

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/os.html#os.PathLike

conda, Release 24.3.1.dev75

property channels

property config_files

property use_only_tar_bz2

property binstar_upload

property trace: bool

Alias for context.verbosity >=4.

property debug: bool

Alias for context.verbosity >=3.

property info: bool

Alias for context.verbosity >=2.

property verbose: bool

Alias for context.verbosity >=1.

property verbosity: int

Verbosity level.

For cleaner and readable code it is preferable to use the following alias properties:
context.trace context.debug context.info context.verbose context.log_level

property log_level: int

Map context.verbosity to logging level.

property cpu_flags

property category_map

add_pip_as_python_dependency

allow_conda_downgrades

allow_cycles

allow_softlinks

auto_update_conda

auto_activate_base

auto_stack

notify_outdated_conda

clobber

changeps1

env_prompt

create_default_packages

register_envs

default_python

454 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

download_only

enable_private_envs

force_32bit

non_admin_enabled

pip_interop_enabled

_default_threads

_repodata_threads

_fetch_threads

_verify_threads

_execute_threads

_aggressive_update_packages

safety_checks

extra_safety_checks

_signing_metadata_url_base

path_conflict

pinned_packages

disallowed_packages

rollback_enabled

track_features

use_index_cache

separate_format_cache

_root_prefix

_envs_dirs

_pkgs_dirs

_subdir

_subdirs

local_repodata_ttl

ssl_verify

client_ssl_cert

client_ssl_cert_key

proxy_servers

4.6. Developer guide 455

conda, Release 24.3.1.dev75

remote_connect_timeout_secs

remote_read_timeout_secs

remote_max_retries

remote_backoff_factor

add_anaconda_token

_reporters

allow_non_channel_urls

_channel_alias

channel_priority

_channels

channel_settings

_custom_channels

_custom_multichannels

_default_channels

_migrated_channel_aliases

migrated_custom_channels

override_channels_enabled

show_channel_urls

use_local

allowlist_channels

restore_free_channel

repodata_fns

_use_only_tar_bz2

always_softlink

always_copy

always_yes

_debug

_trace

dev

dry_run

error_upload_url

456 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

force

json

offline

quiet

ignore_pinned

report_errors

shortcuts

number_channel_notices

shortcuts

shortcuts_only

_verbosity

experimental

no_lock

repodata_use_zst

deps_modifier

update_modifier

sat_solver

solver_ignore_timestamps

solver

force_remove

force_reinstall

target_prefix_override

unsatisfiable_hints

unsatisfiable_hints_check_depth

bld_path

anaconda_upload

_croot

_conda_build

no_plugins

post_build_validation()

4.6. Developer guide 457

conda, Release 24.3.1.dev75

plugins()→ PluginConfig
Preferred way of accessing settings introduced by the settings plugin hook

_native_subdir()

known_subdirs()

trash_dir()

root_prefix()

channel_alias()

default_channels()

custom_multichannels()

custom_channels()

solver_user_agent()

user_agent()

_override(key, value)
TODO: This might be broken in some ways. Unsure what happens if the old value is a property and gets
set to a new value. Or if the new value overrides the validation logic on the underlying ParameterLoader
instance.

Investigate and implement in a safer way.

requests_version()

python_implementation_name_version()

platform_system_release()

os_distribution_name_version()

libc_family_version()

reporters()→ tuple[Mapping[str, str]]
Determine the value of reporters based on other settings and the self._reporters value itself.

get_descriptions()

description_map()

reset_context(search_path=SEARCH_PATH, argparse_args=None)

fresh_context(env=None, search_path=SEARCH_PATH, argparse_args=None, **kwargs)

class ContextStackObject(search_path=SEARCH_PATH, argparse_args=None)

set_value(search_path=SEARCH_PATH, argparse_args=None)

apply()

class ContextStack

push(search_path, argparse_args)

458 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

apply()

pop()

replace(search_path, argparse_args)

context_stack

stack_context(pushing, search_path=SEARCH_PATH, argparse_args=None)

stack_context_default(pushing, argparse_args=None)

replace_context(pushing=None, search_path=SEARCH_PATH, argparse_args=None)

replace_context_default(pushing=None, argparse_args=None)

conda_tests_ctxt_mgmt_def_pol

_get_cpu_info()

env_name(prefix)

locate_prefix_by_name(name, envs_dirs=None)
Find the location of a prefix given a conda env name. If the location does not exist, an error is raised.

validate_prefix_name(prefix_name: str, ctx: Context, allow_base=True)→ str
Run various validations to make sure prefix_name is valid

determine_target_prefix(ctx, args=None)
Get the prefix to operate in. The prefix may not yet exist.

Parameters
• ctx -- the context of conda

• args -- the argparse args from the command line

Returns: the prefix Raises: CondaEnvironmentNotFoundError if the prefix is invalid

_first_writable_envs_dir()

get_plugin_config_data(data: dict[pathlib.Path, dict[str, conda.common.configuration.RawParameter]])→
dict[pathlib.Path, dict[str, conda.common.configuration.RawParameter]]

This is used to move everything under the key "plugins" from the provided dictionary to the top level of the
returned dictionary. The returned dictionary is then passed to PluginConfig.

class PluginConfig(data)
Class used to hold settings for conda plugins.

The object created by this class should only be accessed via conda.base.context.Context.plugins.

When this class is updated via the add_plugin_setting() function it adds new setting properties which can
be accessed later via the context object.

We currently call that function in conda.plugins.manager.CondaPluginManager.load_settings(). be-
cause CondaPluginManager has access to all registered plugin settings via the settings plugin hook.

add_plugin_setting(name: str, parameter: conda.common.configuration.Parameter, aliases: tuple[str, Ellipsis]
= ())

Adds a setting to the PluginConfig class

4.6. Developer guide 459

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

remove_all_plugin_settings()→ None
Removes all attached settings from the PluginConfig class

context

exceptions

Base exceptions.

cli

actions

Collection of custom argparse actions.

Classes

NullCountAction Information about how to convert command line strings
to Python objects.

ExtendConstAction A derivative of _AppendConstAction and Python 3.8's
_ExtendAction

class NullCountAction(option_strings, dest, default=None, required=False, help=None)
Bases: argparse._CountAction

Information about how to convert command line strings to Python objects.

Action objects are used by an ArgumentParser to represent the information needed to parse a single argument
from one or more strings from the command line. The keyword arguments to the Action constructor are also all
attributes of Action instances.

Keyword Arguments
• which (- option_strings -- A list of command-line option strings) --

should be associated with this action.

• object (- dest -- The name of the attribute to hold the created)

• be (- nargs -- The number of command-line arguments that should) -- con-
sumed. By default, one argument will be consumed and a single value will be produced.
Other values include:

– N (an integer) consumes N arguments (and produces a list)

– '?' consumes zero or one arguments

– '*' consumes zero or more arguments (and produces a list)

– '+' consumes one or more arguments (and produces a list)

Note that the difference between the default and nargs=1 is that with the default, a single value
will be produced, while with nargs=1, a list containing a single value will be produced.

• the (- metavar -- The name to be used for the option's argument with) --
option uses an action that takes no values.

460 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

• specified. (- default -- The value to be produced if the option is
not)

• and (- type -- A callable that accepts a single string argument,) -- re-
turns the converted value. The standard Python types str, int, float, and complex are useful
examples of such callables. If None, str is used.

• None, (- choices -- A container of values that should be allowed. If
not) -- after a command-line argument has been converted to the appropriate type, an
exception will be raised if it is not a member of this collection.

• the -- command line. This is only meaningful for optional command-line arguments.

• argument. (- help -- The help string describing the)

• the -- help string. If None, the 'dest' value will be used as the name.

static _ensure_value(namespace, name, value)

__call__(parser, namespace, values, option_string=None)

class ExtendConstAction(option_strings, dest, const, default=None, type=None, choices=None,
required=False, help=None, metavar=None)

Bases: argparse.Action

A derivative of _AppendConstAction and Python 3.8's _ExtendAction

__call__(parser, namespace, values, option_string=None)

common

Common utilities for conda command line tools.

4.6. Developer guide 461

https://docs.python.org/3/library/argparse.html#argparse.Action

conda, Release 24.3.1.dev75

Functions

confirm([message, choices, default, dry_run])

confirm_yn([message, default, dry_run])

is_active_prefix(→ bool) Determines whether the args we pass in are pointing to
the active prefix.

arg2spec(arg[, json, update])

specs_from_args(args[, json])

strip_comment(line)

spec_from_line(line)

specs_from_url(url[, json])

names_in_specs(names, specs)

disp_features(features)

stdout_json(d)

stdout_json_success([success])

print_envs_list(known_conda_prefixes[, output])

check_non_admin()

validate_prefix(prefix) Verifies the prefix is a valid conda environment.

Attributes

spec_pat

confirm(message='Proceed', choices=('yes', 'no'), default='yes', dry_run=NULL)

confirm_yn(message='Proceed', default='yes', dry_run=NULL)

is_active_prefix(prefix: str)→ bool
Determines whether the args we pass in are pointing to the active prefix. Can be used a validation step to make
sure operations are not being performed on the active prefix.

arg2spec(arg, json=False, update=False)

specs_from_args(args, json=False)

spec_pat

462 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

strip_comment(line)

spec_from_line(line)

specs_from_url(url, json=False)

names_in_specs(names, specs)

disp_features(features)

stdout_json(d)

stdout_json_success(success=True, **kwargs)

print_envs_list(known_conda_prefixes, output=True)

check_non_admin()

validate_prefix(prefix)
Verifies the prefix is a valid conda environment.

Raises
• EnvironmentLocationNotFound -- Non-existent path or not a directory.

• DirectoryNotACondaEnvironmentError -- Directory is not a conda environment.

Returns
Valid prefix.

Return type
str

conda_argparse

Conda command line interface parsers.

Classes

ArgumentParser Object for parsing command line strings into Python ob-
jects.

_GreedySubParsersAction A custom subparser action to conditionally act as a
greedy consumer.

4.6. Developer guide 463

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Functions

generate_pre_parser(→ ArgumentParser)

generate_parser(→ ArgumentParser)

do_call(args, parser) Serves as the primary entry point for commands referred
to in this file and for

find_builtin_commands(parser)

_exec(executable_args, env_vars)

_exec_win(executable_args, env_vars)

_exec_unix(executable_args, env_vars)

configure_parser_plugins(→ None) For each of the provided plugin-based subcommands,
we'll create

Attributes

escaped_user_rc_path

escaped_sys_rc_path

BUILTIN_COMMANDS

escaped_user_rc_path

escaped_sys_rc_path

BUILTIN_COMMANDS

generate_pre_parser(**kwargs)→ ArgumentParser

generate_parser(**kwargs)→ ArgumentParser

do_call(args: argparse.Namespace, parser: ArgumentParser)
Serves as the primary entry point for commands referred to in this file and for all registered plugin subcommands.

find_builtin_commands(parser)

class ArgumentParser(*args, add_help=True, **kwargs)
Bases: argparse.ArgumentParser

Object for parsing command line strings into Python objects.

Keyword Arguments
• (default (- usage -- A usage message) -- os.path.basename(sys.argv[0]))

• (default -- auto-generated from arguments)

464 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

conda, Release 24.3.1.dev75

• does (- description -- A description of what the program)

• descriptions (- epilog -- Text following the argument)

• one (- parents -- Parsers whose arguments should be copied into this)

• messages (- formatter_class -- HelpFormatter class for printing help)

• arguments (- argument_default -- The default value for all)

• containing (- fromfile_prefix_chars -- Characters that prefix files) --
additional arguments

• arguments

• conflicts (- conflict_handler -- String indicating how to handle)

• option (- add_help -- Add a -h/-help)

• unambiguously (- allow_abbrev -- Allow long options to be abbreviated)

• with (- exit_on_error -- Determines whether or not ArgumentParser
exits) -- error info when an error occurs

_check_value(action, value)

parse_args(*args, override_args=None, **kwargs)

class _GreedySubParsersAction(option_strings, prog, parser_class, dest=SUPPRESS, required=False,
help=None, metavar=None)

Bases: argparse._SubParsersAction

A custom subparser action to conditionally act as a greedy consumer.

This is a workaround since argparse.REMAINDER does not work as expected, see https://github.com/python/
cpython/issues/61252.

__call__(parser, namespace, values, option_string=None)

_get_subactions()

Sort actions for subcommands to appear alphabetically in help blurb.

_exec(executable_args, env_vars)

_exec_win(executable_args, env_vars)

_exec_unix(executable_args, env_vars)

configure_parser_plugins(sub_parsers)→ None
For each of the provided plugin-based subcommands, we'll create a new subparser for an improved help printout
and calling the configure_parser() with the newly created subcommand specific argument parser.

find_commands

Utilities for finding executables and conda-* commands.

4.6. Developer guide 465

https://github.com/python/cpython/issues/61252
https://github.com/python/cpython/issues/61252
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Functions

find_executable(executable[, include_others])

find_commands([include_others])

find_executable(executable, include_others=True)

find_commands(include_others=True)

helpers

Collection of helper functions to standardize reused CLI arguments.

Classes

BooleanOptionalAction Information about how to convert command line strings
to Python objects.

466 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

add_parser_create_install_update(p[, pre-
fix_required])
add_parser_pscheck(→ None)

add_parser_show_channel_urls(→ None)

add_parser_help(→ None) So we can use consistent capitalization and periods in
the help. You must

add_parser_prefix(→ arg-
parse._MutuallyExclusiveGroup)
add_parser_json(→ argparse._ArgumentGroup)

add_output_and_prompt_options(→ arg-
parse._ArgumentGroup)
add_parser_channels(→ arg-
parse._ArgumentGroup)
add_parser_solver_mode(→ arg-
parse._ArgumentGroup)
add_parser_update_modifiers(solver_mode_options)

add_parser_prune(→ None)

add_parser_solver(→ None) Add a command-line flag for alternative solver backends.
add_parser_networking(→ arg-
parse._ArgumentGroup)
add_parser_package_install_options(...)

add_parser_known(→ None)

add_parser_default_packages(→ None)

add_parser_platform(parser)

add_parser_verbose(→ None)

class BooleanOptionalAction(option_strings, dest, default=None, type=None, choices=None, required=False,
help=None, metavar=None)

Bases: argparse.Action

Information about how to convert command line strings to Python objects.

Action objects are used by an ArgumentParser to represent the information needed to parse a single argument
from one or more strings from the command line. The keyword arguments to the Action constructor are also all
attributes of Action instances.

Keyword Arguments
• which (- option_strings -- A list of command-line option strings) --

should be associated with this action.

• object (- dest -- The name of the attribute to hold the created)

4.6. Developer guide 467

https://docs.python.org/3/library/argparse.html#argparse.Action

conda, Release 24.3.1.dev75

• be (- nargs -- The number of command-line arguments that should) -- con-
sumed. By default, one argument will be consumed and a single value will be produced.
Other values include:

– N (an integer) consumes N arguments (and produces a list)

– '?' consumes zero or one arguments

– '*' consumes zero or more arguments (and produces a list)

– '+' consumes one or more arguments (and produces a list)

Note that the difference between the default and nargs=1 is that with the default, a single value
will be produced, while with nargs=1, a list containing a single value will be produced.

• the (- metavar -- The name to be used for the option's argument with) --
option uses an action that takes no values.

• specified. (- default -- The value to be produced if the option is
not)

• and (- type -- A callable that accepts a single string argument,) -- re-
turns the converted value. The standard Python types str, int, float, and complex are useful
examples of such callables. If None, str is used.

• None, (- choices -- A container of values that should be allowed. If
not) -- after a command-line argument has been converted to the appropriate type, an
exception will be raised if it is not a member of this collection.

• the -- command line. This is only meaningful for optional command-line arguments.

• argument. (- help -- The help string describing the)

• the -- help string. If None, the 'dest' value will be used as the name.

__call__(parser, namespace, values, option_string=None)

format_usage()

add_parser_create_install_update(p, prefix_required=False)

add_parser_pscheck(p: argparse.ArgumentParser)→ None

add_parser_show_channel_urls(p: argparse.ArgumentParser | argparse._ArgumentGroup)→ None

add_parser_help(p: argparse.ArgumentParser)→ None
So we can use consistent capitalization and periods in the help. You must use the add_help=False argument to
ArgumentParser or add_parser to use this. Add this first to be consistent with the default argparse output.

add_parser_prefix(p: argparse.ArgumentParser, prefix_required: bool = False)→
argparse._MutuallyExclusiveGroup

add_parser_json(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_output_and_prompt_options(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_parser_channels(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_parser_solver_mode(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_parser_update_modifiers(solver_mode_options: argparse.ArgumentParser)

add_parser_prune(p: argparse.ArgumentParser)→ None

468 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

add_parser_solver(p: argparse.ArgumentParser)→ None
Add a command-line flag for alternative solver backends.

See context.solver for more info.

add_parser_networking(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_parser_package_install_options(p: argparse.ArgumentParser)→ argparse._ArgumentGroup

add_parser_known(p: argparse.ArgumentParser)→ None

add_parser_default_packages(p: argparse.ArgumentParser)→ None

add_parser_platform(parser)

add_parser_verbose(parser: argparse.ArgumentParser | argparse._ArgumentGroup)→ None

install

Conda package installation logic.

Core logic for conda [create|install|update|remove] commands.

See conda.cli.main_create, conda.cli.main_install, conda.cli.main_update, and conda.cli.main_remove for the entry
points into this module.

Functions

check_prefix(prefix[, json])

clone(src_arg, dst_prefix[, json, quiet, index_args])

print_activate(env_name_or_prefix)

get_revision(arg[, json])

install(args, parser[, command]) Logic for conda install, conda update, and conda create.
handle_txn(unlink_link_transaction, prefix, args,
newenv)

Attributes

stderrlog

stderrlog

check_prefix(prefix, json=False)

clone(src_arg, dst_prefix, json=False, quiet=False, index_args=None)

4.6. Developer guide 469

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

print_activate(env_name_or_prefix)

get_revision(arg, json=False)

install(args, parser, command='install')
Logic for conda install, conda update, and conda create.

handle_txn(unlink_link_transaction, prefix, args, newenv, remove_op=False)

main

Entry point for all conda subcommands.

Functions

init_loggers()

generate_parser(*args, **kwargs) Some code paths import this function directly from this
module instead

main_subshell(*args[, post_parse_hook]) Entrypoint for the "subshell" invocation of CLI interface.
E.g. conda create.

main_sourced(shell, *args, **kwargs) Entrypoint for the "sourced" invocation of CLI interface.
E.g. conda activate.

main(*args, **kwargs)

init_loggers()

generate_parser(*args, **kwargs)
Some code paths import this function directly from this module instead of from conda_argparse. We add the
forwarder for backwards compatibility.

main_subshell(*args, post_parse_hook=None, **kwargs)
Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

main_sourced(shell, *args, **kwargs)
Entrypoint for the "sourced" invocation of CLI interface. E.g. conda activate.

main(*args, **kwargs)

main_clean

CLI implementation for conda clean.

Removes cached package tarballs, index files, package metadata, temporary files, and log files.

470 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

configure_parser(→ argparse.ArgumentParser)

_get_size(→ int)

_get_pkgs_dirs(→ dict[str, tuple[str, Ellipsis]])

_get_total_size(→ int)

_rm_rf (→ None)

find_tarballs(→ dict[str, Any])

find_pkgs(→ dict[str, Any])

rm_pkgs(→ None)

find_index_cache(→ list[str])

find_pkgs_dirs(→ list[str])

find_tempfiles(→ list[str])

find_logfiles(→ list[str])

rm_items(→ None)

_execute(args, parser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

_get_size(*parts: str, warnings: list[str] | None)→ int

_get_pkgs_dirs(pkg_sizes: dict[str, dict[str, int]])→ dict[str, tuple[str, Ellipsis]]

_get_total_size(pkg_sizes: dict[str, dict[str, int]])→ int

_rm_rf(*parts: str, quiet: bool, verbose: bool)→ None

find_tarballs()→ dict[str, Any]

find_pkgs()→ dict[str, Any]

rm_pkgs(pkgs_dirs: dict[str, tuple[str]], warnings: list[str], total_size: int, pkg_sizes: dict[str, dict[str, int]], *,
quiet: bool, verbose: bool, dry_run: bool, name: str)→ None

find_index_cache()→ list[str]

find_pkgs_dirs()→ list[str]

4.6. Developer guide 471

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

find_tempfiles(paths: Iterable[str])→ list[str]

find_logfiles()→ list[str]

rm_items(items: list[str], *, quiet: bool, verbose: bool, dry_run: bool, name: str)→ None

_execute(args, parser)

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_compare

CLI implementation for conda compare.

Compare the packages in an environment with the packages listed in an environment file.

Functions

configure_parser(→ argparse.ArgumentParser)

get_packages(prefix)

compare_packages(→ tuple[int, list[str]])

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

get_packages(prefix)

compare_packages(active_pkgs, specification_pkgs)→ tuple[int, list[str]]

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_config

CLI implementation for conda config.

Allows for programmatically interacting with conda's configuration files (e.g., ~/.condarc).

472 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

format_dict(d)

parameter_description_builder(name)

describe_all_parameters()

print_config_item(key, value)

execute_config(args, parser)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

format_dict(d)

parameter_description_builder(name)

describe_all_parameters()

print_config_item(key, value)

execute_config(args, parser)

main_create

CLI implementation for conda create.

Creates new conda environments with the specified packages.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

4.6. Developer guide 473

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

main_env

Entry point for all conda-env subcommands.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction | None, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_env_config

CLI implementation for conda-env config.

Allows for programmatically interacting with conda-env's configuration files (e.g., ~/.condarc).

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_env_create

CLI implementation for conda-env create.

Creates new conda environments with the specified packages.

474 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_env_export

DEPRECATED: Use conda.cli.main_export instead.

CLI implementation for conda-env export.

Dumps specified environment package specifications to the screen.

main_env_list

CLI implementation for conda-env list.

Lists available conda environments.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(args, parser)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)

main_env_remove

CLI implementation for conda-env remove.

Removes the specified conda environment.

4.6. Developer guide 475

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

conda, Release 24.3.1.dev75

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_env_update

CLI implementation for conda-env update.

Updates the conda environments with the specified packages.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_env_vars

CLI implementation for conda-env config vars.

Allows for configuring conda-env's vars.

Functions

configure_parser(→ argparse.ArgumentParser)

execute_list(→ int)

execute_set(→ int)

execute_unset(→ int)

476 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute_list(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

execute_set(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

execute_unset(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_export

CLI implementation for conda export.

Dumps specified environment package specifications to the screen.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_info

CLI implementation for conda info.

Display information about current conda installation.

Functions

configure_parser(→ argparse.ArgumentParser)

get_user_site(→ list[str]) Method used to populate site_dirs in conda info.
dump_record(→ dict[str, Any]) Returns a dictionary of key/value pairs from prec. Keys

included in IGNORE_FIELDS are not returned.
pretty_package(→ None) Pretty prints contents of a PackageRecord
get_info_dict(→ dict[str, Any]) Returns a dictionary of contextual information.
get_env_vars_str(→ str) Returns a printable string representing environment vari-

ables from the dictionary returned by get_info_dict.
get_main_info_str(→ str) Returns a printable string of the contents of info_dict.
execute(→ int) Implements conda info commands.

4.6. Developer guide 477

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

Attributes

IGNORE_FIELDS

SKIP_FIELDS

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

get_user_site()→ list[str]
Method used to populate site_dirs in conda info.

Returns
List of directories.

IGNORE_FIELDS: set[str]

SKIP_FIELDS: set[str]

dump_record(prec: conda.models.records.PackageRecord)→ dict[str, Any]
Returns a dictionary of key/value pairs from prec. Keys included in IGNORE_FIELDS are not returned.

Parameters
prec -- A PackageRecord object.

Returns
A dictionary of elements dumped from prec

pretty_package(prec: conda.models.records.PackageRecord)→ None
Pretty prints contents of a PackageRecord

Parameters
prec -- A PackageRecord

get_info_dict()→ dict[str, Any]
Returns a dictionary of contextual information.

Returns
Dictionary of conda information to be sent to stdout.

get_env_vars_str(info_dict: dict[str, Any])→ str
Returns a printable string representing environment variables from the dictionary returned by get_info_dict.

Parameters
info_dict -- The returned dictionary from get_info_dict().

Returns
String to print.

get_main_info_str(info_dict: dict[str, Any])→ str
Returns a printable string of the contents of info_dict.

Parameters
info_dict -- The output of get_info_dict().

Returns
String to print.

478 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int
Implements conda info commands.

• conda info

• conda info --base

• conda info <package_spec> ... (deprecated) (no --json)

• conda info --unsafe-channels

• conda info --envs (deprecated) (no --json)

• conda info --system (deprecated) (no --json)

main_init

CLI implementation for conda init.

Prepares the user's profile for running conda, and sets up the conda shell interface.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_install

CLI implementation for conda install.

Installs the specified packages into an existing environment.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

4.6. Developer guide 479

https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

main_list

CLI implementation for conda list.

Lists all packages installed into an environment.

Functions

configure_parser(→ argparse.ArgumentParser)

print_export_header(subdir)

get_packages(installed, regex)

list_packages(prefix[, regex, format, reverse, ...])

print_packages(prefix[, regex, format, reverse, ...])

print_explicit(prefix[, add_md5])

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

print_export_header(subdir)

get_packages(installed, regex)

list_packages(prefix, regex=None, format='human', reverse=False, show_channel_urls=None)

print_packages(prefix, regex=None, format='human', reverse=False, piplist=False, json=False,
show_channel_urls=None)

print_explicit(prefix, add_md5=False)

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

main_mock_activate

Mock CLI implementation for conda activate.

A mock implementation of the activate shell command for better UX.

480 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

Functions

configure_parser(sub_parsers)

execute(args, parser)

configure_parser(sub_parsers)

execute(args, parser)

main_mock_deactivate

Mock CLI implementation for conda deactivate.

A mock implementation of the deactivate shell command for better UX.

Functions

configure_parser(sub_parsers)

execute(args, parser)

configure_parser(sub_parsers)

execute(args, parser)

main_notices

CLI implementation for conda notices.

Manually retrieves channel notifications, caches them and displays them.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int) Command that retrieves channel notifications, caches
them and displays them.

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int
Command that retrieves channel notifications, caches them and displays them.

4.6. Developer guide 481

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

main_package

CLI implementation for conda package.

Provides some low-level tools for creating conda packages.

Functions

configure_parser(→ argparse.ArgumentParser)

remove(prefix, files) Remove files for a given prefix.
execute(→ int)

get_installed_version(prefix, name)

create_info(name, version, build_number, re-
quires_py)
fix_shebang(tmp_dir, path)

_add_info_dir(t, tmp_dir, files, has_prefix, info)

create_conda_pkg(prefix, files, info, tar_path[, ...]) Create a conda package and return a list of warnings.
make_tarbz2(prefix[, name, version, build_number,
files])
which_package(path) Return the package containing the path.
which_prefix(path) Return the prefix for the provided path.

Attributes

shebang_pat

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

remove(prefix, files)
Remove files for a given prefix.

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

get_installed_version(prefix, name)

create_info(name, version, build_number, requires_py)

shebang_pat

fix_shebang(tmp_dir, path)

_add_info_dir(t, tmp_dir, files, has_prefix, info)

create_conda_pkg(prefix, files, info, tar_path, update_info=None)
Create a conda package and return a list of warnings.

482 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

make_tarbz2(prefix, name='unknown', version='0.0', build_number=0, files=None)

which_package(path)
Return the package containing the path.

Provided the path of a (presumably) conda installed file, iterate over the conda packages the file came from.
Usually the iteration yields only one package.

which_prefix(path)
Return the prefix for the provided path.

Provided the path of a (presumably) conda installed file, return the environment prefix in which the file in located.

main_pip

PEP 621 compatible entry point used when conda init has not updated the user shell profile.

Functions

pip_installed_post_parse_hook(args, p)

main(*args, **kwargs)

pip_installed_post_parse_hook(args, p)

main(*args, **kwargs)

main_remove

CLI implementation for conda remove.

Removes the specified packages from an existing environment.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

4.6. Developer guide 483

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

main_rename

CLI implementation for conda rename.

Renames an existing environment by cloning it and then removing the original environment.

Functions

configure_parser(→ argparse.ArgumentParser)

validate_src(→ str) Validate that we are receiving at least one valid value for
--name or

validate_destination(→ str) Ensure that our destination does not exist
execute(→ int) Executes the command for renaming an existing environ-

ment.

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

validate_src()→ str
Validate that we are receiving at least one valid value for --name or --prefix and ensure that the "base" environment
is not being renamed

validate_destination(dest: str, force: bool = False)→ str
Ensure that our destination does not exist

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int
Executes the command for renaming an existing environment.

main_run

CLI implementation for conda run.

Runs the provided command within the specified environment.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

484 Chapter 4. Contributors welcome

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

main_search

CLI implementation for conda search.

Query channels for packages matching the provided package spec.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int) Implements conda search commands.
pretty_record(→ None) Pretty prints a PackageRecord.

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int
Implements conda search commands.

conda search <spec> searches channels for packages. conda search <spec> --envs searches environments for
packages.

pretty_record(record: conda.models.records.PackageRecord)→ None
Pretty prints a PackageRecord.

Parameters
record -- The PackageRecord object to print.

main_update

CLI implementation for conda update.

Updates the specified packages in an existing environment.

Functions

configure_parser(→ argparse.ArgumentParser)

execute(→ int)

configure_parser(sub_parsers: argparse._SubParsersAction, **kwargs)→ argparse.ArgumentParser

execute(args: argparse.Namespace, parser: argparse.ArgumentParser)→ int

4.6. Developer guide 485

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

python_api

Wrapper for running conda CLI commands as a Python API.

Classes

Commands

Functions

run_command(command, *arguments, **kwargs) Runs a conda command in-process with a given set of
command-line interface arguments.

Attributes

STRING

STDOUT

class Commands

CLEAN = 'clean'

CONFIG = 'config'

CREATE = 'create'

INFO = 'info'

INSTALL = 'install'

LIST = 'list'

REMOVE = 'remove'

SEARCH = 'search'

UPDATE = 'update'

RUN = 'run'

NOTICES = 'notices'

STRING

STDOUT

486 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

run_command(command, *arguments, **kwargs)
Runs a conda command in-process with a given set of command-line interface arguments.

Differences from the command-line interface:
Always uses --yes flag, thus does not ask for confirmation.

Parameters
• command -- one of the Commands.

• *arguments -- instructions you would normally pass to the conda command on the com-
mand line see below for examples. Be very careful to delimit arguments exactly as you want
them to be delivered. No 'combine then split at spaces' or other information destroying pro-
cessing gets performed on the arguments.

• **kwargs -- special instructions for programmatic overrides

Keyword Arguments
• use_exception_handler -- defaults to False. False will let the code calling run_command

handle all exceptions. True won't raise when an exception has occurred, and instead give a
non-zero return code

• search_path -- an optional non-standard search path for configuration information that
overrides the default SEARCH_PATH

• stdout -- Define capture behavior for stream sys.stdout. Defaults to STRING. STRING
captures as a string. None leaves stream untouched. Otherwise redirect to file-like object
stdout.

• stderr -- Define capture behavior for stream sys.stderr. Defaults to STRING. STRING
captures as a string. None leaves stream untouched. STDOUT redirects to stdout target and
returns None as stderr value. Otherwise redirect to file-like object stderr.

Returns
a tuple of stdout, stderr, and return_code. stdout, stderr are either strings, None or the corre-
sponding file-like function argument.

Examples

>>> run_command(Commands.CREATE, "-n", "newenv", "python=3", "flask", ␣
→˓ use_exception_handler=True)
>>> run_command(Commands.CREATE, "-n", "newenv", "python=3", "flask")
>>> run_command(Commands.CREATE, ["-n", "newenv", "python=3", "flask"], search_
→˓path=())

Functions

main(*args, **kwargs)

main(*args, **kwargs)

4.6. Developer guide 487

conda, Release 24.3.1.dev75

common

Code in conda.common is not conda-specific. Technically, it sits aside the application stack and not within the stack.
It is able to stand independently on its own. The only allowed imports of conda code in conda.common modules are
imports of other conda.common modules and imports from conda._vendor.

If objects are needed from other parts of conda, they should be passed directly as arguments to functions and methods.

_logic

Classes

_ClauseList Storage for the CNF clauses, represented as a list of tu-
ples of ints.

_ClauseArray Storage for the CNF clauses, represented as a flat int ar-
ray.

_SatSolver Simple wrapper to call a SAT solver given a
_ClauseList/_ClauseArray instance.

_PycoSatSolver Simple wrapper to call a SAT solver given a
_ClauseList/_ClauseArray instance.

_PyCryptoSatSolver Simple wrapper to call a SAT solver given a
_ClauseList/_ClauseArray instance.

_PySatSolver Simple wrapper to call a SAT solver given a
_ClauseList/_ClauseArray instance.

Clauses

Attributes

TRUE

FALSE

_sat_solver_str_to_cls

_sat_solver_cls_to_str

TRUE

FALSE

class _ClauseList

Storage for the CNF clauses, represented as a list of tuples of ints.

get_clause_count()

Return number of stored clauses.

488 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

save_state()

Get state information to be able to revert temporary additions of supplementary clauses. _ClauseList: state
is simply the number of clauses.

restore_state(saved_state)
Restore state saved via save_state. Removes clauses that were added after the state has been saved.

as_list()

Return clauses as a list of tuples of ints.

as_array()

Return clauses as a flat int array, each clause being terminated by 0.

class _ClauseArray

Storage for the CNF clauses, represented as a flat int array. Each clause is terminated by int(0).

extend(clauses)

append(clause)

get_clause_count()

Return number of stored clauses. This is an O(n) operation since we don't store the number of clauses
explicitly due to performance reasons (Python interpreter overhead in self.append).

save_state()

Get state information to be able to revert temporary additions of supplementary clauses. _ClauseArray:
state is the length of the int array, NOT number of clauses.

restore_state(saved_state)
Restore state saved via save_state. Removes clauses that were added after the state has been saved.

as_list()

Return clauses as a list of tuples of ints.

as_array()

Return clauses as a flat int array, each clause being terminated by 0.

class _SatSolver(**run_kwargs)
Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

get_clause_count()

as_list()

save_state()

restore_state(saved_state)

run(m, **kwargs)

abstract setup(m, **kwargs)
Create a solver instance, add the clauses to it, and return it.

abstract invoke(solver)
Start the actual SAT solving and return the calculated solution.

abstract process_solution(sat_solution)
Process the solution returned by self.invoke. Returns a list of satisfied variables or None if no solution is
found.

4.6. Developer guide 489

conda, Release 24.3.1.dev75

class _PycoSatSolver(**run_kwargs)
Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

setup(m, limit=0, **kwargs)
Create a solver instance, add the clauses to it, and return it.

invoke(iter_sol)
Start the actual SAT solving and return the calculated solution.

process_solution(sat_solution)
Process the solution returned by self.invoke. Returns a list of satisfied variables or None if no solution is
found.

class _PyCryptoSatSolver(**run_kwargs)
Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

setup(m, threads=1, **kwargs)
Create a solver instance, add the clauses to it, and return it.

invoke(solver)
Start the actual SAT solving and return the calculated solution.

process_solution(solution)
Process the solution returned by self.invoke. Returns a list of satisfied variables or None if no solution is
found.

class _PySatSolver(**run_kwargs)
Bases: _SatSolver

Simple wrapper to call a SAT solver given a _ClauseList/_ClauseArray instance.

setup(m, **kwargs)
Create a solver instance, add the clauses to it, and return it.

invoke(solver)
Start the actual SAT solving and return the calculated solution.

process_solution(sat_solution)
Process the solution returned by self.invoke. Returns a list of satisfied variables or None if no solution is
found.

_sat_solver_str_to_cls

_sat_solver_cls_to_str

class Clauses(m=0, sat_solver_str=_sat_solver_cls_to_str[_PycoSatSolver])

get_clause_count()

as_list()

new_var()

assign(vals)

Combine(args, polarity)

490 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Eval(func, args, polarity)

Prevent(func, *args)

Require(func, *args)

Not(x, polarity=None, add_new_clauses=False)

And(f , g, polarity, add_new_clauses=False)

Or(f , g, polarity, add_new_clauses=False)

Xor(f , g, polarity, add_new_clauses=False)

ITE(c, t, f , polarity, add_new_clauses=False)

All(iter, polarity=None)

Any(iter, polarity)

AtMostOne_NSQ(vals, polarity)

AtMostOne_BDD(vals, polarity=None)

ExactlyOne_NSQ(vals, polarity)

ExactlyOne_BDD(vals, polarity)

LB_Preprocess(lits, coeffs)

BDD(lits, coeffs, nterms, lo, hi, polarity)

LinearBound(lits, coeffs, lo, hi, preprocess, polarity)

_run_sat(m, limit=0)

sat(additional=None, includeIf=False, limit=0)
Calculate a SAT solution for the current clause set.

Returned is the list of those solutions. When the clauses are unsatisfiable, an empty list is returned.

minimize(lits, coeffs, bestsol=None, trymax=False)
Minimize the objective function given by (coeff, integer) pairs in zip(coeffs, lits). The actual minimization
is multiobjective: first, we minimize the largest active coefficient value, then we minimize the sum.

_os

linux

Functions

linux_get_libc_version(→ tuple[str, str] | tu-
ple[None, ...)

If on linux, returns (libc_family, version), otherwise
(None, None).

linux_get_libc_version()→ tuple[str, str] | tuple[None, None]
If on linux, returns (libc_family, version), otherwise (None, None).

4.6. Developer guide 491

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

unix

Functions

get_free_space_on_unix(dir_name)

is_admin_on_unix()

get_free_space_on_unix(dir_name)

is_admin_on_unix()

windows

Classes

SW Enum where members are also (and must be) ints
ERROR Enum where members are also (and must be) ints

Functions

get_free_space_on_windows(dir_name)

is_admin_on_windows()

_wait_and_close_handle(process_handle) Waits until spawned process finishes and closes the han-
dle for it.

run_as_admin(args[, wait]) Run command line argument list (args) with elevated
privileges.

Attributes

PHANDLE

PHANDLE

class SW

Bases: enum.IntEnum

Enum where members are also (and must be) ints

HIDE = 0

492 Chapter 4. Contributors welcome

https://docs.python.org/3/library/enum.html#enum.IntEnum

conda, Release 24.3.1.dev75

MAXIMIZE = 3

MINIMIZE = 6

RESTORE = 9

SHOW = 5

SHOWDEFAULT = 10

SHOWMAXIMIZED = 3

SHOWMINIMIZED = 2

SHOWMINNOACTIVE = 7

SHOWNA = 8

SHOWNOACTIVATE = 4

SHOWNORMAL = 1

class ERROR

Bases: enum.IntEnum

Enum where members are also (and must be) ints

ZERO = 0

FILE_NOT_FOUND = 2

PATH_NOT_FOUND = 3

BAD_FORMAT = 11

ACCESS_DENIED = 5

ASSOC_INCOMPLETE = 27

DDE_BUSY = 30

DDE_FAIL = 29

DDE_TIMEOUT = 28

DLL_NOT_FOUND = 32

NO_ASSOC = 31

OOM = 8

SHARE = 26

get_free_space_on_windows(dir_name)

is_admin_on_windows()

_wait_and_close_handle(process_handle)
Waits until spawned process finishes and closes the handle for it.

run_as_admin(args, wait=True)
Run command line argument list (args) with elevated privileges.

If wait is True, the process will block until completion.

4.6. Developer guide 493

https://docs.python.org/3/library/enum.html#enum.IntEnum

conda, Release 24.3.1.dev75

Notes

• no stdin / stdout / stderr pipe support

• does not automatically quote arguments (i.e. for paths that may contain spaces)

See: - http://stackoverflow.com/a/19719292/1170370 on 20160407 MCS. - msdn.microsoft.com/en-
us/library/windows/desktop/bb762153(v=vs.85).aspx - https://github.com/ContinuumIO/menuinst/
blob/master/menuinst/windows/win_elevate.py - https://github.com/saltstack/salt-windows-install/
blob/master/deps/salt/python/App/Lib/site-packages/win32/Demos/pipes/runproc.py # NOQA - https:
//github.com/twonds/twisted/blob/master/twisted/internet/_dumbwin32proc.py - https://stackoverflow.com/
a/19982092/2127762 - https://www.codeproject.com/Articles/19165/Vista-UAC-The-Definitive-Guide -
https://github.com/JustAMan/pyWinClobber/blob/master/win32elevate.py

on_win

compat

Common compatiblity code.

Functions

encode_for_env_var(→ str) Environment names and values need to be string.
encode_environment(env)

encode_arguments(arguments)

isiterable(obj)

open(file[, mode, buffering, encoding, errors, ...])

six_with_metaclass(meta, *bases) Create a base class with a metaclass.
ensure_binary(value)

ensure_text_type(→ str)

ensure_unicode(value)

ensure_fs_path_encoding(value)

ensure_utf8_encoding(value)

494 Chapter 4. Contributors welcome

http://stackoverflow.com/a/19719292/1170370
https://github.com/ContinuumIO/menuinst/blob/master/menuinst/windows/win_elevate.py
https://github.com/ContinuumIO/menuinst/blob/master/menuinst/windows/win_elevate.py
https://github.com/saltstack/salt-windows-install/blob/master/deps/salt/python/App/Lib/site-packages/win32/Demos/pipes/runproc.py
https://github.com/saltstack/salt-windows-install/blob/master/deps/salt/python/App/Lib/site-packages/win32/Demos/pipes/runproc.py
https://github.com/twonds/twisted/blob/master/twisted/internet/_dumbwin32proc.py
https://github.com/twonds/twisted/blob/master/twisted/internet/_dumbwin32proc.py
https://stackoverflow.com/a/19982092/2127762
https://stackoverflow.com/a/19982092/2127762
https://www.codeproject.com/Articles/19165/Vista-UAC-The-Definitive-Guide
https://github.com/JustAMan/pyWinClobber/blob/master/win32elevate.py

conda, Release 24.3.1.dev75

Attributes

on_win

on_mac

on_linux

FILESYSTEM_ENCODING

ENCODE_ENVIRONMENT

NoneType

primitive_types

on_win

on_mac

on_linux

FILESYSTEM_ENCODING

ENCODE_ENVIRONMENT = True

encode_for_env_var(value)→ str
Environment names and values need to be string.

encode_environment(env)

encode_arguments(arguments)

isiterable(obj)

open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)

six_with_metaclass(meta, *bases)
Create a base class with a metaclass.

NoneType

primitive_types = ()

ensure_binary(value)

ensure_text_type(value)→ str

ensure_unicode(value)

ensure_fs_path_encoding(value)

ensure_utf8_encoding(value)

4.6. Developer guide 495

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

configuration

A generalized application configuration utility.

Features include:
• lazy eval

• merges configuration files

• parameter type validation, with custom validation

• parameter aliases

Easily extensible to other source formats, e.g. json and ini

496 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Classes

ParameterFlag Generic enumeration.
RawParameter

EnvRawParameter

ArgParseRawParameter

YamlRawParameter

DefaultValueRawParameter Wraps a default value as a RawParameter, for usage in
ParameterLoader.

LoadedParameter

PrimitiveLoadedParameter LoadedParameter type that holds a single python primi-
tive value.

MapLoadedParameter LoadedParameter type that holds a map (i.e. dict) of
LoadedParameters.

SequenceLoadedParameter LoadedParameter type that holds a sequence (i.e. list) of
LoadedParameters.

ObjectLoadedParameter LoadedParameter type that holds a mapping (i.e. object)
of LoadedParameters.

ConfigurationObject Dummy class to mark whether a Python object has con-
fig parameters within.

Parameter

PrimitiveParameter Parameter type for a Configuration class that holds a sin-
gle python primitive value.

MapParameter Parameter type for a Configuration class that holds a map
(i.e. dict) of Parameters.

SequenceParameter Parameter type for a Configuration class that holds a se-
quence (i.e. list) of Parameters.

ObjectParameter Parameter type for a Configuration class that holds an
object with Parameter fields.

ParameterLoader ParameterLoader class contains the top level logic
needed to load a parameter from start to

ConfigurationType metaclass for Configuration
Configuration

4.6. Developer guide 497

conda, Release 24.3.1.dev75

Functions

pretty_list(iterable[, padding])

pretty_map(dictionary[, padding])

expand_environment_variables(unexpanded)

raise_errors(errors)

load_file_configs(→ dict[pathlib.Path, dict])

custom_expandvars(→ str) Expand variables in a string.
unique_sequence_map(*, unique_key) Used to validate properties on Configuration sub-

classes defined as a

Attributes

EMPTY_MAP

CONDARC_FILENAMES

YAML_EXTENSIONS

_RE_CUSTOM_EXPANDVARS

EMPTY_MAP

pretty_list(iterable, padding=' ')

pretty_map(dictionary, padding=' ')

expand_environment_variables(unexpanded)

exception ConfigurationError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception ConfigurationLoadError(path, message_addition='', **kwargs)
Bases: ConfigurationError

Common base class for all non-exit exceptions.

exception ValidationError(parameter_name, parameter_value, source, msg=None, **kwargs)
Bases: ConfigurationError

Common base class for all non-exit exceptions.

exception MultipleKeysError(source, keys, preferred_key)
Bases: ValidationError

Common base class for all non-exit exceptions.

498 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

exception InvalidTypeError(parameter_name, parameter_value, source, wrong_type, valid_types, msg=None)
Bases: ValidationError

Common base class for all non-exit exceptions.

exception CustomValidationError(parameter_name, parameter_value, source, custom_message)
Bases: ValidationError

Common base class for all non-exit exceptions.

exception MultiValidationError(errors, *args, **kwargs)
Bases: conda.CondaMultiError, ConfigurationError

Common base class for all non-exit exceptions.

raise_errors(errors)

class ParameterFlag

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

final = 'final'

top = 'top'

bottom = 'bottom'

__str__()

Return str(self).

classmethod from_name(name)

classmethod from_value(value)

classmethod from_string(string)

class RawParameter(source, key, raw_value)

__repr__()

Return repr(self).

abstract value(parameter_obj)

abstract keyflag()

abstract valueflags(parameter_obj)

classmethod make_raw_parameters(source, from_map)

class EnvRawParameter(source, key, raw_value)
Bases: RawParameter

property __important_split_value

source = 'envvars'

value(parameter_obj)

4.6. Developer guide 499

https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

keyflag()

valueflags(parameter_obj)

classmethod make_raw_parameters(appname)

class ArgParseRawParameter(source, key, raw_value)
Bases: RawParameter

source = 'cmd_line'

value(parameter_obj)

keyflag()

valueflags(parameter_obj)

classmethod make_raw_parameters(args_from_argparse)

class YamlRawParameter(source, key, raw_value, key_comment)
Bases: RawParameter

value(parameter_obj)

keyflag()

valueflags(parameter_obj)

static _get_yaml_key_comment(commented_dict, key)

classmethod _get_yaml_list_comments(value)

static _get_yaml_list_comment_item(item)

static _get_yaml_map_comments(value)

classmethod make_raw_parameters(source, from_map)

classmethod make_raw_parameters_from_file(filepath)

class DefaultValueRawParameter(source, key, raw_value)
Bases: RawParameter

Wraps a default value as a RawParameter, for usage in ParameterLoader.

value(parameter_obj)

keyflag()

valueflags(parameter_obj)

load_file_configs(search_path: Iterable[pathlib.Path | str], **kwargs)→ dict[pathlib.Path, dict]

class LoadedParameter(name, value, key_flag, value_flags, validation=None)

_type

_element_type

__eq__(other)
Return self==value.

500 Chapter 4. Contributors welcome

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

__hash__()

Return hash(self).

collect_errors(instance, typed_value, source='<<merged>>')
Validate a LoadedParameter typed value.

Parameters
• instance (Configuration) -- the instance object used to create the LoadedParameter.

• typed_value (Any) -- typed value to validate.

• source (str) -- string description for the source of the typed_value.

expand()

Recursively expands any environment values in the Loaded Parameter.

Returns: LoadedParameter

abstract merge(matches)
Recursively merges matches into one LoadedParameter.

Parameters
matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

typify(source)
Recursively types a LoadedParameter.

Parameters
source (str) -- string describing the source of the LoadedParameter.

Returns: a primitive, sequence, or map representing the typed value.

static _typify_data_structure(value, source, type_hint=None)

static _match_key_is_important(loaded_parameter)

static _first_important_matches(matches)

class PrimitiveLoadedParameter(name, element_type, value, key_flag, value_flags, validation=None)
Bases: LoadedParameter

LoadedParameter type that holds a single python primitive value.

The python primitive types are str, int, float, complex, bool, and NoneType. In addition, python 2 has long and
unicode types.

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

merge(matches)
Recursively merges matches into one LoadedParameter.

Parameters
matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

4.6. Developer guide 501

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

class MapLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)
Bases: LoadedParameter

LoadedParameter type that holds a map (i.e. dict) of LoadedParameters.

_type

collect_errors(instance, typed_value, source='<<merged>>')
Validate a LoadedParameter typed value.

Parameters
• instance (Configuration) -- the instance object used to create the LoadedParameter.

• typed_value (Any) -- typed value to validate.

• source (str) -- string description for the source of the typed_value.

merge(parameters: Sequence[MapLoadedParameter])→ MapLoadedParameter
Recursively merges matches into one LoadedParameter.

Parameters
matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

class SequenceLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)
Bases: LoadedParameter

LoadedParameter type that holds a sequence (i.e. list) of LoadedParameters.

_type

collect_errors(instance, typed_value, source='<<merged>>')
Validate a LoadedParameter typed value.

Parameters
• instance (Configuration) -- the instance object used to create the LoadedParameter.

• typed_value (Any) -- typed value to validate.

• source (str) -- string description for the source of the typed_value.

merge(matches)
Recursively merges matches into one LoadedParameter.

Parameters
matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

class ObjectLoadedParameter(name, value, element_type, key_flag, value_flags, validation=None)
Bases: LoadedParameter

LoadedParameter type that holds a mapping (i.e. object) of LoadedParameters.

_type

collect_errors(instance, typed_value, source='<<merged>>')
Validate a LoadedParameter typed value.

Parameters
• instance (Configuration) -- the instance object used to create the LoadedParameter.

502 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

• typed_value (Any) -- typed value to validate.

• source (str) -- string description for the source of the typed_value.

merge(parameters: Sequence[ObjectLoadedParameter])→ ObjectLoadedParameter
Recursively merges matches into one LoadedParameter.

Parameters
matches (List<LoadedParameter>) -- list of matches of this parameter.

Returns: LoadedParameter

class ConfigurationObject

Dummy class to mark whether a Python object has config parameters within.

class Parameter(default, validation=None)

property default

Returns a DefaultValueRawParameter that wraps the actual default value.

_type

_element_type

get_all_matches(name, names, instance)
Finds all matches of a Parameter in a Configuration instance

Parameters
• name (str) -- canonical name of the parameter to search for

• names (tuple(str)) -- alternative aliases of the parameter

• instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

abstract load(name, match)
Loads a Parameter with the value in a RawParameter.

Parameters
• name (str) -- name of the parameter to pass through

• match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

typify(name, source, value)

class PrimitiveParameter(default, element_type=None, validation=None)
Bases: Parameter

Parameter type for a Configuration class that holds a single python primitive value.

The python primitive types are str, int, float, complex, bool, and NoneType. In addition, python 2 has long and
unicode types.

load(name, match)
Loads a Parameter with the value in a RawParameter.

Parameters
• name (str) -- name of the parameter to pass through

4.6. Developer guide 503

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

• match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

class MapParameter(element_type, default=frozendict(), validation=None)
Bases: Parameter

Parameter type for a Configuration class that holds a map (i.e. dict) of Parameters.

_type

get_all_matches(name, names, instance)
Finds all matches of a Parameter in a Configuration instance

Parameters
• name (str) -- canonical name of the parameter to search for

• names (tuple(str)) -- alternative aliases of the parameter

• instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

load(name, match)
Loads a Parameter with the value in a RawParameter.

Parameters
• name (str) -- name of the parameter to pass through

• match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

class SequenceParameter(element_type, default=(), validation=None, string_delimiter=',')
Bases: Parameter

Parameter type for a Configuration class that holds a sequence (i.e. list) of Parameters.

_type

get_all_matches(name, names, instance)
Finds all matches of a Parameter in a Configuration instance

Parameters
• name (str) -- canonical name of the parameter to search for

• names (tuple(str)) -- alternative aliases of the parameter

• instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

load(name, match)
Loads a Parameter with the value in a RawParameter.

Parameters
• name (str) -- name of the parameter to pass through

• match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

504 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

class ObjectParameter(element_type, default=ConfigurationObject(), validation=None)
Bases: Parameter

Parameter type for a Configuration class that holds an object with Parameter fields.

_type

get_all_matches(name, names, instance)
Finds all matches of a Parameter in a Configuration instance

Parameters
• name (str) -- canonical name of the parameter to search for

• names (tuple(str)) -- alternative aliases of the parameter

• instance (Configuration) -- instance of the configuration to search within

Returns (List(RawParameter)): matches of the parameter found in the configuration.

load(name, match)
Loads a Parameter with the value in a RawParameter.

Parameters
• name (str) -- name of the parameter to pass through

• match (RawParameter) -- the value of the RawParameter match

Returns a LoadedParameter

class ParameterLoader(parameter_type, aliases=(), expandvars=False)
ParameterLoader class contains the top level logic needed to load a parameter from start to finish.

property name

property names

_set_name(name)

__get__(instance, instance_type)

_raw_parameters_from_single_source(raw_parameters)

static raw_parameters_from_single_source(name, names, raw_parameters)

class ConfigurationType(name, bases, attr)
Bases: type

metaclass for Configuration

CONDARC_FILENAMES = ('.condarc', 'condarc')

YAML_EXTENSIONS = ('.yml', '.yaml')

_RE_CUSTOM_EXPANDVARS

custom_expandvars(template: str, mapping: collections.abc.Mapping[str, Any] = {}, / , **kwargs)→ str
Expand variables in a string.

Inspired by string.Template and modified to mirror os.path.expandvars functionality allowing custom variables
without mutating os.environ.

Expands POSIX and Windows CMD environment variables as follows:

4.6. Developer guide 505

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

• $VARIABLE → value of VARIABLE

• ${VARIABLE} → value of VARIABLE

• %VARIABLE% → value of VARIABLE

Invalid substitutions are left as-is:

• $MISSING → $MISSING

• ${MISSING} → ${MISSING}

• %MISSING% → %MISSING%

• $$ → $$

• %% → %%

• $ → $

• % → %

class Configuration(search_path=(), app_name=None, argparse_args=None, **kwargs)

static _expand_search_path(search_path: Iterable[pathlib.Path | str], **kwargs)→
Iterable[pathlib.Path]

classmethod _load_search_path(search_path: Iterable[pathlib.Path])→ Iterable[tuple[pathlib.Path,
dict]]

_set_search_path(search_path: Iterable[pathlib.Path | str], **kwargs)

_set_env_vars(app_name=None)

_set_argparse_args(argparse_args)

_set_raw_data(raw_data: collections.abc.Mapping[Hashable, dict])

_reset_cache()

register_reset_callaback(callback)

check_source(source)

validate_all()

static _collect_validation_error(func, *args, **kwargs)

validate_configuration()

post_build_validation()

collect_all()

describe_parameter(parameter_name)

list_parameters()

typify_parameter(parameter_name, value, source)

abstract get_descriptions()

506 Chapter 4. Contributors welcome

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

unique_sequence_map(*, unique_key: str)
Used to validate properties on Configuration subclasses defined as a
SequenceParameter(MapParameter()) where the map contains a single key that should be regarded
as unique. This decorator will handle removing duplicates and merging to a single sequence.

constants

Common constants.

NULL

TRACE = 5

decorators

Common decorators.

Functions

env_override(envvar_name[, con-
vert_empty_to_none])

Override the return value of the decorated function with
an environment variable.

env_override(envvar_name, convert_empty_to_none=False)
Override the return value of the decorated function with an environment variable.

If convert_empty_to_none is true, if the value of the environment variable is the empty string, a None value will
be returned.

disk

Common disk utilities.

Functions

temporary_content_in_file(content[, suffix])

temporary_content_in_file(content, suffix='')

4.6. Developer guide 507

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

io

Common I/O utilities.

Classes

DeltaSecondsFormatter Logging formatter with additional attributes for run time
logging.

ContextDecorator Base class for a context manager class (implementing
__enter__() and __exit__()) that also

SwallowBrokenPipe Base class for a context manager class (implementing
__enter__() and __exit__()) that also

CaptureTarget Constants used for contextmanager captured.
Spinner

param message
A message to prefix the spinner with.
The string ': ' is automatically ap-
pended.

ProgressBar

DummyExecutor This is an abstract base class for concrete asynchronous
executors.

ThreadLimitedThreadPoolExecutor This is an abstract base class for concrete asynchronous
executors.

time_recorder Base class for a context manager class (implementing
__enter__() and __exit__()) that also

508 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

dashlist(iterable[, indent])

env_vars([var_map, callback, stack_callback])

env_var(name, value[, callback, stack_callback])

env_unmodified([callback])

captured([stdout, stderr]) Capture outputs of sys.stdout and sys.stderr.
argv(args_list)

_logger_lock()

disable_logger(logger_name)

stderr_log_level(level[, logger_name])

attach_stderr_handler([level, logger_name, prop-
agate, ...])
timeout(timeout_secs, func, *args[, default_return]) Enforce a maximum time for a callable to complete.
get_instrumentation_record_file()

print_instrumentation_data()

Attributes

IS_INTERACTIVE

_FORMATTER

swallow_broken_pipe

as_completed

IS_INTERACTIVE

class DeltaSecondsFormatter(fmt=None, datefmt=None)
Bases: logging.Formatter

Logging formatter with additional attributes for run time logging.

`delta_secs`

Elapsed seconds since last log/format call (or creation of logger).

`relative_created_secs`

Like relativeCreated, time relative to the initialization of the logging module but conveniently scaled to
seconds as a float value.

4.6. Developer guide 509

https://docs.python.org/3/library/logging.html#logging.Formatter

conda, Release 24.3.1.dev75

format(record)
Format the specified record as text.

The record's attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time
(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

_FORMATTER

dashlist(iterable, indent=2)

class ContextDecorator

Base class for a context manager class (implementing __enter__() and __exit__()) that also makes it a decorator.

__call__(f)

class SwallowBrokenPipe

Bases: ContextDecorator

Base class for a context manager class (implementing __enter__() and __exit__()) that also makes it a decorator.

__enter__()

__exit__(exc_type, exc_val, exc_tb)

swallow_broken_pipe

class CaptureTarget

Bases: enum.Enum

Constants used for contextmanager captured.

Used similarly like the constants PIPE, STDOUT for stdlib's subprocess.Popen.

STRING

STDOUT

env_vars(var_map=None, callback=None, stack_callback=None)

env_var(name, value, callback=None, stack_callback=None)

env_unmodified(callback=None)

captured(stdout=CaptureTarget.STRING, stderr=CaptureTarget.STRING)

Capture outputs of sys.stdout and sys.stderr.

If stdout is STRING, capture sys.stdout as a string, if stdout is None, do not capture sys.stdout, leaving it un-
touched, otherwise redirect sys.stdout to the file-like object given by stdout.

Behave correspondingly for stderr with the exception that if stderr is STDOUT, redirect sys.stderr to stdout target
and set stderr attribute of yielded object to None.

510 Chapter 4. Contributors welcome

https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

>>> from conda.common.io import captured
>>> with captured() as c:
... print("hello world!")
...
>>> c.stdout
'hello world!\n'

Parameters
• stdout -- capture target for sys.stdout, one of STRING, None, or file-like object

• stderr -- capture target for sys.stderr, one of STRING, STDOUT, None, or file-like object

Yields
CapturedText --

has attributes stdout, stderr which are either strings, None or the
corresponding file-like function argument.

argv(args_list)

_logger_lock()

disable_logger(logger_name)

stderr_log_level(level, logger_name=None)

attach_stderr_handler(level=WARN , logger_name=None, propagate=False, formatter=None)

timeout(timeout_secs, func, *args, default_return=None, **kwargs)
Enforce a maximum time for a callable to complete. Not yet implemented on Windows.

class Spinner(message, enabled=True, json=False, fail_message='failed\n')

Parameters
• message (str) -- A message to prefix the spinner with. The string ': ' is automatically

appended.

• enabled (bool) -- If False, usage is a no-op.

• json (bool) -- If True, will not output non-json to stdout.

spinner_cycle

start()

stop()

_start_spinning()

__enter__()

__exit__(exc_type, exc_val, exc_tb)

class ProgressBar(description, enabled=True, json=False, position=None, leave=True)

classmethod get_lock()

update_to(fraction)

4.6. Developer guide 511

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

finish()

refresh()

Force refresh i.e. once 100% has been reached

close()

static _tqdm(*args, **kwargs)
Deferred import so it doesn't hit the conda activate paths.

class DummyExecutor

Bases: concurrent.futures.Executor

This is an abstract base class for concrete asynchronous executors.

submit(fn, *args, **kwargs)
Submits a callable to be executed with the given arguments.

Schedules the callable to be executed as fn(*args, **kwargs) and returns a Future instance representing the
execution of the callable.

Returns
A Future representing the given call.

map(func, *iterables)
Returns an iterator equivalent to map(fn, iter).

Parameters
• fn -- A callable that will take as many arguments as there are passed iterables.

• timeout -- The maximum number of seconds to wait. If None, then there is no limit on
the wait time.

• chunksize -- The size of the chunks the iterable will be broken into before being passed
to a child process. This argument is only used by ProcessPoolExecutor; it is ignored by
ThreadPoolExecutor.

Returns
map(func, *iterables) but the calls may be evaluated out-of-order.

Return type
An iterator equivalent to

Raises
• TimeoutError -- If the entire result iterator could not be generated before the given time-

out.

• Exception -- If fn(*args) raises for any values.

shutdown(wait=True)
Clean-up the resources associated with the Executor.

It is safe to call this method several times. Otherwise, no other methods can be called after this one.

Parameters
• wait -- If True then shutdown will not return until all running futures have finished exe-

cuting and the resources used by the executor have been reclaimed.

• cancel_futures -- If True then shutdown will cancel all pending futures. Futures that
are completed or running will not be cancelled.

512 Chapter 4. Contributors welcome

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#Exception

conda, Release 24.3.1.dev75

class ThreadLimitedThreadPoolExecutor(max_workers=10)
Bases: concurrent.futures.ThreadPoolExecutor

This is an abstract base class for concrete asynchronous executors.

submit(fn, *args, **kwargs)
This is an exact reimplementation of the submit() method on the parent class, except with an added
try/except around self._adjust_thread_count(). So long as there is at least one living thread, this thread
pool will not throw an exception if threads cannot be expanded to max_workers.

In the implementation, we use "protected" attributes from concurrent.futures (_base and _WorkItem). Con-
sider vendoring the whole concurrent.futures library as an alternative to these protected imports.

https://github.com/agronholm/pythonfutures/blob/3.2.0/concurrent/futures/thread.py#L121-L131 #
NOQA https://github.com/python/cpython/blob/v3.6.4/Lib/concurrent/futures/thread.py#L114-L124

as_completed

get_instrumentation_record_file()

class time_recorder(entry_name=None, module_name=None)
Bases: ContextDecorator

Base class for a context manager class (implementing __enter__() and __exit__()) that also makes it a decorator.

record_file

start_time

total_call_num

total_run_time

_set_entry_name(f)

__call__(f)

__enter__()

__exit__(exc_type, exc_val, exc_tb)

classmethod log_totals()

_ensure_dir()

print_instrumentation_data()

iterators

Replacements for parts of the toolz library.

4.6. Developer guide 513

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
https://github.com/agronholm/pythonfutures/blob/3.2.0/concurrent/futures/thread.py#L121-L131
https://github.com/python/cpython/blob/v3.6.4/Lib/concurrent/futures/thread.py#L114-L124

conda, Release 24.3.1.dev75

Functions

groupby_to_dict(keyfunc, sequence) A toolz-style groupby implementation.
unique(→ Generator[Any, None, None]) A toolz inspired unique implementation.

groupby_to_dict(keyfunc, sequence)
A toolz-style groupby implementation.

Returns a dictionary of { key: [group] } instead of iterators.

unique(sequence: Sequence[Any])→ Generator[Any, None, None]
A toolz inspired unique implementation.

Returns a generator of unique elements in the sequence

logic

The basic idea to nest logical expressions is instead of trying to denest things via distribution, we add new variables.
So if we have some logical expression expr, we replace it with x and add expr <-> x to the clauses, where x is a new
variable, and expr <-> x is recursively evaluated in the same way, so that the final clauses are ORs of atoms.

To use this, create a new Clauses object with the max var, for instance, if you already have [[1, 2, -3]], you would use
C = Clause(3). All functions return a new literal, which represents that function, or True or False if the expression can
be resolved fully. They may also add new clauses to C.clauses, which will then be delivered to the SAT solver.

All functions take atoms as arguments (an atom is an integer, representing a literal or a negated literal, or boolean
constants True or False; that is, it is the callers' responsibility to do the conversion of expressions recursively. This is
done because we do not have data structures representing the various logical classes, only atoms.

The polarity argument can be set to True or False if you know that the literal being used will only be used in the positive
or the negative, respectively (e.g., you will only use x, not -x). This will generate fewer clauses. It is probably best if
you do not take advantage of this directly, but rather through the Require and Prevent functions.

Classes

Clauses

Functions

minimal_unsatisfiable_subset(clauses, sat, ex-
plicit_specs)

Given a set of clauses, find a minimal unsatisfiable sub-
set (an

514 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Attributes

TRUE

FALSE

PycoSatSolver

PyCryptoSatSolver

PySatSolver

TRUE

FALSE

PycoSatSolver = 'pycosat'

PyCryptoSatSolver = 'pycryptosat'

PySatSolver = 'pysat'

class Clauses(m=0, sat_solver=PycoSatSolver)

property m

property unsat

get_clause_count()

as_list()

_check_variable(variable)

_check_literal(literal)

add_clause(clause)

add_clauses(clauses)

name_var(m, name)

new_var(name=None)

from_name(name)

from_index(m)

_assign(vals, name=None)

_convert(x)

_eval(func, args, no_literal_args, polarity, name)

Prevent(what, *args)

4.6. Developer guide 515

conda, Release 24.3.1.dev75

Require(what, *args)

Not(x, polarity=None, name=None)

And(f , g, polarity=None, name=None)

Or(f , g, polarity=None, name=None)

Xor(f , g, polarity=None, name=None)

ITE(c, t, f , polarity=None, name=None)
If c Then t Else f.

In this function, if any of c, t, or f are True and False the resulting expression is resolved.

All(iter, polarity=None, name=None)

Any(vals, polarity=None, name=None)

AtMostOne_NSQ(vals, polarity=None, name=None)

AtMostOne_BDD(vals, polarity=None, name=None)

AtMostOne(vals, polarity=None, name=None)

ExactlyOne_NSQ(vals, polarity=None, name=None)

ExactlyOne_BDD(vals, polarity=None, name=None)

ExactlyOne(vals, polarity=None, name=None)

LinearBound(equation, lo, hi, preprocess=True, polarity=None, name=None)

sat(additional=None, includeIf=False, names=False, limit=0)
Calculate a SAT solution for the current clause set.

Returned is the list of those solutions. When the clauses are unsatisfiable, an empty list is returned.

itersolve(constraints=None, m=None)

minimize(objective, bestsol=None, trymax=False)

minimal_unsatisfiable_subset(clauses, sat, explicit_specs)
Given a set of clauses, find a minimal unsatisfiable subset (an unsatisfiable core)

A set is a minimal unsatisfiable subset if no proper subset is unsatisfiable. A set of clauses may have many
minimal unsatisfiable subsets of different sizes.

sat should be a function that takes a tuple of clauses and returns True if the clauses are satisfiable and False if
they are not. The algorithm will work with any order-reversing function (reversing the order of subset and the
order False < True), that is, any function where (A <= B) iff (sat(B) <= sat(A)), where A <= B means A is a
subset of B and False < True).

516 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

path

Common path utilities.

4.6. Developer guide 517

conda, Release 24.3.1.dev75

Functions

is_path (value)

expand(path)

paths_equal(path1, path2)

Examples

url_to_path (url) Convert a file:// URL to a path.
tokenized_startswith (test_iterable,
startswith_iterable)
get_all_directories(→ list[tuple[str]])

get_leaf_directories(→ Sequence[str])

explode_directories(→ set[str])

pyc_path (py_path, python_major_minor_version) This must not return backslashes on Windows as that will
break

missing_pyc_files(python_major_minor_version,
files)
parse_entry_point_def (ep_definition)

get_python_short_path ([python_version])

get_python_site_packages_short_path (python_version)

get_major_minor_version(string[, with_dot])

get_bin_directory_short_path ()

win_path_ok(path)

win_path_double_escape(path)

win_path_backout(path)

ensure_pad(name[, pad])

Examples

is_private_env_name(env_name)

Examples

is_private_env_path (env_path)

Examples

right_pad_os_sep(path)

split_filename(path_or_url)

get_python_noarch_target_path (source_short_path,
...)
win_path_to_unix(path[, root_prefix])

which (executable) Backwards-compatibility wrapper. Use shutil.which di-
rectly if possible.

strip_pkg_extension(path)

Examples

is_package_file(path)

Examples

518 Chapter 4. Contributors welcome

file://

conda, Release 24.3.1.dev75

Attributes

PATH_MATCH_REGEX

KNOWN_EXTENSIONS

_VERSION_REGEX

PATH_MATCH_REGEX = '\\./|\\.\\.|~|/|[a-zA-Z]:[/\\\\]|\\\\\\\\|//'

KNOWN_EXTENSIONS = ('.conda', '.tar.bz2', '.json', '.jlap', '.json.zst')

is_path(value)

expand(path)

paths_equal(path1, path2)

Examples

>>> paths_equal('/a/b/c', '/a/b/c/d/..')
True

url_to_path(url)
Convert a file:// URL to a path.

Relative file URLs (i.e. file:relative/path) are not supported.

tokenized_startswith(test_iterable, startswith_iterable)

get_all_directories(files: Iterable[str])→ list[tuple[str]]

get_leaf_directories(files: Iterable[str])→ Sequence[str]

explode_directories(child_directories: Iterable[tuple[str, Ellipsis]])→ set[str]

pyc_path(py_path, python_major_minor_version)
This must not return backslashes on Windows as that will break tests and leads to an eventual need to make
url_to_path return backslashes too and that may end up changing files on disc or to the result of comparisons
with the contents of them.

missing_pyc_files(python_major_minor_version, files)

parse_entry_point_def(ep_definition)

get_python_short_path(python_version=None)

get_python_site_packages_short_path(python_version)

_VERSION_REGEX

get_major_minor_version(string, with_dot=True)

get_bin_directory_short_path()

4.6. Developer guide 519

file://
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

win_path_ok(path)

win_path_double_escape(path)

win_path_backout(path)

ensure_pad(name, pad='_')

Examples

>>> ensure_pad('conda')
'_conda_'
>>> ensure_pad('_conda')
'__conda_'
>>> ensure_pad('')
''

is_private_env_name(env_name)

Examples

>>> is_private_env_name("_conda")
False
>>> is_private_env_name("_conda_")
True

is_private_env_path(env_path)

Examples

>>> is_private_env_path('/some/path/to/envs/_conda_')
True
>>> is_private_env_path('/not/an/envs_dir/_conda_')
False

right_pad_os_sep(path)

split_filename(path_or_url)

get_python_noarch_target_path(source_short_path, target_site_packages_short_path)

win_path_to_unix(path, root_prefix='')

which(executable)
Backwards-compatibility wrapper. Use shutil.which directly if possible.

strip_pkg_extension(path: str)

520 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Examples

>>> strip_pkg_extension("/path/_license-1.1-py27_1.tar.bz2")
('/path/_license-1.1-py27_1', '.tar.bz2')
>>> strip_pkg_extension("/path/_license-1.1-py27_1.conda")
('/path/_license-1.1-py27_1', '.conda')
>>> strip_pkg_extension("/path/_license-1.1-py27_1")
('/path/_license-1.1-py27_1', None)

is_package_file(path)

Examples

>>> is_package_file("/path/_license-1.1-py27_1.tar.bz2")
True
>>> is_package_file("/path/_license-1.1-py27_1.conda")
True
>>> is_package_file("/path/_license-1.1-py27_1")
False

pkg_formats

python

Common Python package format utilities.

Classes

PythonDistribution Base object describing a python distribution based on
path to anchor file.

PythonInstalledDistribution Python distribution installed via distutils.
PythonEggInfoDistribution Python distribution installed via setuptools.
PythonEggLinkDistribution Python distribution installed via setuptools.
PythonDistributionMetadata Object representing the metada of a Python Distribution

given by anchor
Evaluator This class is used to evaluate marker expressions.

4.6. Developer guide 521

conda, Release 24.3.1.dev75

Functions

norm_package_name(name)

pypi_name_to_conda_name(pypi_name)

norm_package_version(version) Normalize a version by removing extra spaces and paren-
theses.

split_spec(spec, sep) Split a spec by separator and return stripped start and end
parts.

parse_specification(spec) Parse a requirement from a python distribution metadata
and return a

get_site_packages_anchor_files(site_packages_path,
...)

Get all the anchor files for the site packages directory.

get_dist_file_from_egg_link(egg_link_file, pre-
fix_path)

Return the egg info file path following an egg link.

parse_marker(marker_string) Parse marker string and return a dictionary containing a
marker expression.

_is_literal(o)

get_default_marker_context() Return the default context dictionary to use when parsing
markers.

interpret(marker[, execution_context]) Interpret a marker and return a result depending on en-
vironment.

522 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

PYPI_TO_CONDA

PYPI_CONDA_DEPS

PARTIAL_PYPI_SPEC_PATTERN

PY_FILE_RE

PySpec

IDENTIFIER

VERSION_IDENTIFIER

COMPARE_OP

MARKER_OP

OR

AND

NON_SPACE

STRING_CHUNK

DEFAULT_MARKER_CONTEXT

evaluator

PYPI_TO_CONDA

PYPI_CONDA_DEPS

PARTIAL_PYPI_SPEC_PATTERN

PY_FILE_RE

PySpec

exception MetadataWarning

Bases: Warning

Base class for warning categories.

class PythonDistribution(anchor_full_path, python_version)
Base object describing a python distribution based on path to anchor file.

property name

property norm_name

4.6. Developer guide 523

https://docs.python.org/3/library/exceptions.html#Warning

conda, Release 24.3.1.dev75

property conda_name

property version

MANIFEST_FILES = ()

REQUIRES_FILES = ()

MANDATORY_FILES = ()

ENTRY_POINTS_FILES = ('entry_points.txt',)

static init(prefix_path, anchor_file, python_version)

_check_files()

Check the existence of mandatory files for a given distribution.

_check_path_data(path, checksum, size)
Normalizes record data content and format.

static _parse_requires_file_data(data, global_section='__global__')

static _parse_entries_file_data(data)

_load_requires_provides_file()

manifest_full_path()

get_paths()

Read the list of installed paths from record or source file.

Example

[(u'skdata/__init__.py', u'sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU',
0),

(u'skdata/diabetes.py', None, None), ...

]

get_dist_requirements()

get_python_requirements()

get_external_requirements()

get_extra_provides()

get_conda_dependencies()

Process metadata fields providing dependency information.

This includes normalizing fields, and evaluating environment markers.

abstract get_optional_dependencies()

get_entry_points()

class PythonInstalledDistribution(prefix_path, anchor_file, python_version)
Bases: PythonDistribution

Python distribution installed via distutils.

524 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Notes

• https://www.python.org/dev/peps/pep-0376/

MANIFEST_FILES = ('RECORD',)

REQUIRES_FILES = ()

MANDATORY_FILES = ('METADATA',)

ENTRY_POINTS_FILES = ()

is_manageable = True

class PythonEggInfoDistribution(anchor_full_path, python_version, sp_reference)
Bases: PythonDistribution

Python distribution installed via setuptools.

Notes

• http://peak.telecommunity.com/DevCenter/EggFormats

property is_manageable

MANIFEST_FILES = ('installed-files.txt', 'SOURCES', 'SOURCES.txt')

REQUIRES_FILES = ('requires.txt', 'depends.txt')

MANDATORY_FILES = ()

ENTRY_POINTS_FILES = ('entry_points.txt',)

class PythonEggLinkDistribution(prefix_path, anchor_file, python_version)
Bases: PythonEggInfoDistribution

Python distribution installed via setuptools.

Notes

• http://peak.telecommunity.com/DevCenter/EggFormats

is_manageable = False

class PythonDistributionMetadata(path)
Object representing the metada of a Python Distribution given by anchor file (or directory) path.

This metadata is extracted from a single file. Python distributions might create additional files that complement
this metadata information, but that is handled at the python distribution level.

4.6. Developer guide 525

https://www.python.org/dev/peps/pep-0376/
http://peak.telecommunity.com/DevCenter/EggFormats
http://peak.telecommunity.com/DevCenter/EggFormats

conda, Release 24.3.1.dev75

Notes

• https://packaging.python.org/specifications/core-metadata/

• Metadata 2.1: https://www.python.org/dev/peps/pep-0566/

• Metadata 2.0: https://www.python.org/dev/peps/pep-0426/ (Withdrawn)

• Metadata 1.2: https://www.python.org/dev/peps/pep-0345/

• Metadata 1.1: https://www.python.org/dev/peps/pep-0314/

• Metadata 1.0: https://www.python.org/dev/peps/pep-0241/

property name

property version

FILE_NAMES = ('METADATA', 'PKG-INFO')

SINGLE_USE_KEYS

MULTIPLE_USE_KEYS

static _process_path(path, metadata_filenames)
Find metadata file inside dist-info folder, or check direct file.

classmethod _message_to_dict(message)
Convert the RFC-822 headers data into a dictionary.

message is an email.parser.Message instance.

The canonical method to transform metadata fields into such a data structure is as follows:

• The original key-value format should be read with email.parser.HeaderParser

• All transformed keys should be reduced to lower case. Hyphens should be replaced with underscores,
but otherwise should retain all other characters

• The transformed value for any field marked with "(Multiple-use") should be a single list containing all
the original values for the given key

• The Keywords field should be converted to a list by splitting the original value on whitespace characters

• The message body, if present, should be set to the value of the description key.

• The result should be stored as a string-keyed dictionary.

classmethod _read_metadata(fpath)
Read the original format which is stored as RFC-822 headers.

_get_multiple_data(keys)
Helper method to get multiple data values by keys.

Keys is an iterable including the preferred key in order, to include values of key that might have been
replaced (deprecated), for example keys can be ['requires_dist', 'requires'], where the key 'requires' is dep-
recated and replaced by 'requires_dist'.

get_dist_requirements()

Changed in version 2.1: The field format specification was relaxed to accept the syntax used by popular
publishing tools.

Each entry contains a string naming some other distutils project required by this distribution.

526 Chapter 4. Contributors welcome

https://packaging.python.org/specifications/core-metadata/
https://www.python.org/dev/peps/pep-0566/
https://www.python.org/dev/peps/pep-0426/
https://www.python.org/dev/peps/pep-0345/
https://www.python.org/dev/peps/pep-0314/
https://www.python.org/dev/peps/pep-0241/

conda, Release 24.3.1.dev75

The format of a requirement string contains from one to four parts:
• A project name, in the same format as the Name: field. The only mandatory part.

• A comma-separated list of ‘extra’ names. These are defined by the required project, referring to
specific features which may need extra dependencies.

• A version specifier. Tools parsing the format should accept optional parentheses around this, but
tools generating it should not use parentheses.

• An environment marker after a semicolon. This means that the requirement is only needed in the
specified conditions.

This field may be followed by an environment marker after a semicolon.

Example

frozenset(['pkginfo', 'PasteDeploy', 'zope.interface (>3.5.0)',
'pywin32 >1.0; sys_platform == "win32"'])

Return 'Requires' if 'Requires-Dist' is empty.

get_python_requirements()

New in version 1.2.

This field specifies the Python version(s) that the distribution is guaranteed to be compatible with. Instal-
lation tools may look at this when picking which version of a project to install.

The value must be in the format specified in Version specifiers.

This field may be followed by an environment marker after a semicolon.

Example

frozenset(['>=3', '>2.6,!=3.0.*,!=3.1.*', '~=2.6',
'>=3; sys_platform == "win32"'])

get_external_requirements()

Changed in version 2.1: The field format specification was relaxed to accept the syntax used by popular
publishing tools.

Each entry contains a string describing some dependency in the system that the distribution is to be used.
This field is intended to serve as a hint to downstream project maintainers, and has no semantics which are
meaningful to the distutils distribution.

The format of a requirement string is a name of an external dependency, optionally followed by a version
declaration within parentheses.

This field may be followed by an environment marker after a semicolon.

Because they refer to non-Python software releases, version numbers for this field are not required to con-
form to the format specified in PEP 440: they should correspond to the version scheme used by the external
dependency.

Notice that there’s is no particular rule on the strings to be used!

4.6. Developer guide 527

conda, Release 24.3.1.dev75

Example

frozenset(['C', 'libpng (>=1.5)', 'make; sys_platform != "win32"'])

get_extra_provides()

New in version 2.1.

A string containing the name of an optional feature. Must be a valid Python identifier. May be used to
make a dependency conditional on hether the optional feature has been requested.

Example

frozenset(['pdf', 'doc', 'test'])

get_dist_provides()

New in version 1.2.

Changed in version 2.1: The field format specification was relaxed to accept the syntax used by popular
publishing tools.

Each entry contains a string naming a Distutils project which is contained within this distribution. This
field must include the project identified in the Name field, followed by the version : Name (Version).

A distribution may provide additional names, e.g. to indicate that multiple projects have been bundled
together. For instance, source distributions of the ZODB project have historically included the transaction
project, which is now available as a separate distribution. Installing such a source distribution satisfies
requirements for both ZODB and transaction.

A distribution may also provide a “virtual” project name, which does not correspond to any separately-
distributed project: such a name might be used to indicate an abstract capability which could be supplied
by one of multiple projects. E.g., multiple projects might supply RDBMS bindings for use by a given ORM:
each project might declare that it provides ORM-bindings, allowing other projects to depend only on having
at most one of them installed.

A version declaration may be supplied and must follow the rules described in Version specifiers. The
distribution’s version number will be implied if none is specified.

This field may be followed by an environment marker after a semicolon.

Return Provides in case Provides-Dist is empty.

get_dist_obsolete()

New in version 1.2.

Changed in version 2.1: The field format specification was relaxed to accept the syntax used by popular
publishing tools.

Each entry contains a string describing a distutils project’s distribution which this distribution renders ob-
solete, meaning that the two projects should not be installed at the same time.

Version declarations can be supplied. Version numbers must be in the format specified in Version specifiers
[1].

The most common use of this field will be in case a project name changes, e.g. Gorgon 2.3 gets subsumed
into Torqued Python 1.0. When you install Torqued Python, the Gorgon distribution should be removed.

This field may be followed by an environment marker after a semicolon.

Return Obsoletes in case Obsoletes-Dist is empty.

528 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Example

frozenset(['Gorgon', "OtherProject (<3.0) ; python_version == '2.7'"])

Notes

• [1] https://packaging.python.org/specifications/version-specifiers/

get_classifiers()

Classifiers are described in PEP 301, and the Python Package Index publishes a dynamic list of currently
defined classifiers.

This field may be followed by an environment marker after a semicolon.

Example

frozenset(['Development Status :: 4 - Beta',
"Environment :: Console (Text Based) ; os_name == "posix"])

norm_package_name(name)

pypi_name_to_conda_name(pypi_name)

norm_package_version(version)
Normalize a version by removing extra spaces and parentheses.

split_spec(spec, sep)
Split a spec by separator and return stripped start and end parts.

parse_specification(spec)
Parse a requirement from a python distribution metadata and return a namedtuple with name, extras, constraints,
marker and url components.

This method does not enforce strict specifications but extracts the information which is assumed to be correct.
As such no errors are raised.

Example

PySpec(name='requests', extras=['security'], constraints='>=3.3.0',
marker='foo >= 2.7 or bar == 1', url=''])

get_site_packages_anchor_files(site_packages_path, site_packages_dir)
Get all the anchor files for the site packages directory.

get_dist_file_from_egg_link(egg_link_file, prefix_path)
Return the egg info file path following an egg link.

parse_marker(marker_string)
Parse marker string and return a dictionary containing a marker expression.

The dictionary will contain keys "op", "lhs" and "rhs" for non-terminals in the expression grammar, or strings. A
string contained in quotes is to be interpreted as a literal string, and a string not contained in quotes is a variable
(such as os_name).

4.6. Developer guide 529

https://packaging.python.org/specifications/version-specifiers/

conda, Release 24.3.1.dev75

IDENTIFIER

VERSION_IDENTIFIER

COMPARE_OP

MARKER_OP

OR

AND

NON_SPACE

STRING_CHUNK

_is_literal(o)

class Evaluator

This class is used to evaluate marker expressions.

operations

evaluate(expr, context)
Evaluate a marker expression returned by the parse_requirement() function in the specified context.

get_default_marker_context()

Return the default context dictionary to use when parsing markers.

DEFAULT_MARKER_CONTEXT

evaluator

interpret(marker, execution_context=None)
Interpret a marker and return a result depending on environment.

Parameters
• marker (str) -- The marker to interpret.

• execution_context (mapping) -- The context used for name lookup.

serialize

YAML and JSON serialization and deserialization functions.

530 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Functions

_yaml_round_trip()

_yaml_safe()

yaml_round_trip_load(string)

yaml_safe_load(string)

Examples

yaml_round_trip_dump(object[, stream]) Dump object to string or stream.
yaml_safe_dump(object[, stream]) Dump object to string or stream.
json_load(string)

json_dump(object)

_yaml_round_trip()

_yaml_safe()

yaml_round_trip_load(string)

yaml_safe_load(string)

Examples

>>> yaml_safe_load("key: value")
{'key': 'value'}

yaml_round_trip_dump(object, stream=None)
Dump object to string or stream.

yaml_safe_dump(object, stream=None)
Dump object to string or stream.

json_load(string)

json_dump(object)

signals

Intercept signals and handle them gracefully.

4.6. Developer guide 531

conda, Release 24.3.1.dev75

Functions

get_signal_name(signum)

Examples

signal_handler(handler)

Attributes

INTERRUPT_SIGNALS

INTERRUPT_SIGNALS = ('SIGABRT', 'SIGINT', 'SIGTERM', 'SIGQUIT', 'SIGBREAK')

get_signal_name(signum)

Examples

>>> from signal import SIGINT
>>> get_signal_name(SIGINT)
'SIGINT'

signal_handler(handler)

toposort

Topological sorting implementation.

Functions

_toposort(data) Dependencies are expressed as a dictionary whose keys
are items

pop_key(data) Pop an item from the graph that has the fewest depen-
dencies in the case of a tie

_safe_toposort(data) Dependencies are expressed as a dictionary whose keys
are items

toposort(data[, safe])

_toposort(data)
Dependencies are expressed as a dictionary whose keys are items and whose values are a set of dependent items.
Output is a list of sets in topological order. The first set consists of items with no dependences, each subsequent
set consists of items that depend upon items in the preceding sets.

532 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

pop_key(data)
Pop an item from the graph that has the fewest dependencies in the case of a tie The winners will be sorted
alphabetically

_safe_toposort(data)
Dependencies are expressed as a dictionary whose keys are items and whose values are a set of dependent items.
Output is a list of sets in topological order. The first set consists of items with no dependencies, each subsequent
set consists of items that depend upon items in the preceding sets.

toposort(data, safe=True)

url

Common URL utilities.

Classes

Url Object used to represent a Url. The string representation
of this object is a url string.

4.6. Developer guide 533

conda, Release 24.3.1.dev75

Functions

hex_octal_to_int(ho)

percent_decode(path)

path_to_url(path)

urlparse(→ Url)

url_to_s3_info(url) Convert an s3 url to a tuple of bucket and key.
is_url(url)

Examples

is_ipv4_address(string_ip)

Examples

is_ipv6_address(string_ip)

Examples

is_ip_address(string_ip)

Examples

join(*args)

has_scheme(value)

strip_scheme(url)

Examples

mask_anaconda_token(url)

split_anaconda_token(url)

Examples

split_platform(known_subdirs, url)

Examples

_split_platform_re(known_subdirs)

has_platform(url, known_subdirs)

split_scheme_auth_token(url)

Examples

split_conda_url_easy_parts(known_subdirs, url)

get_proxy_username_and_pass(scheme)

add_username_and_password(→ str) Inserts username and password into provided url
maybe_add_auth (→ str) Add auth if the url doesn't currently have it.
maybe_unquote(url)

remove_auth (→ str) Remove embedded authentication from URL.

534 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

file_scheme def url_to_path(url):
url_attrs

join_url

hex_octal_to_int(ho)

percent_decode(path)

file_scheme = 'file://'

def url_to_path(url): assert url.startswith(file_scheme), "{} is not a file-scheme URL".format(url) decoded =
percent_decode(url[len(file_scheme):]) if decoded.startswith('/') and decoded[2] == ':':

A Windows path. decoded.replace('/', '')

return decoded

path_to_url(path)

url_attrs = ('scheme', 'path', 'query', 'fragment', 'username', 'password', 'hostname',
'port')

class Url

Bases: namedtuple('Url', url_attrs)

Object used to represent a Url. The string representation of this object is a url string.

This object was inspired by the urllib3 implementation as it gives you a way to construct URLs from various parts.
The motivation behind this object was making something that is interoperable with built the urllib.parse.urlparse
function and has more features than the built-in ParseResult object.

property auth

property netloc

__str__()

Return str(self).

as_dict()→ dict
Provide a public interface for namedtuple's _asdict

replace(**kwargs)→ Url
Provide a public interface for namedtuple's _replace

classmethod from_parse_result(parse_result: urllib.parse.ParseResult)→ Url

urlparse(url: str)→ Url

url_to_s3_info(url)
Convert an s3 url to a tuple of bucket and key.

4.6. Developer guide 535

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.ParseResult
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Examples

>>> url_to_s3_info("s3://bucket-name.bucket/here/is/the/key")
('bucket-name.bucket', '/here/is/the/key')

is_url(url)

Examples

>>> is_url(None)
False
>>> is_url("s3://some/bucket")
True

is_ipv4_address(string_ip)

Examples

>>> [is_ipv4_address(ip) for ip in ('8.8.8.8', '192.168.10.10', '255.255.255.255')]
[True, True, True]
>>> [is_ipv4_address(ip) for ip in ('8.8.8', '192.168.10.10.20', '256.255.255.255',
→˓'::1')]
[False, False, False, False]

is_ipv6_address(string_ip)

Examples

>> [is_ipv6_address(ip) for ip in ('::1', '2001:db8:85a3::370:7334', '1234:'*7+'1234')] [True, True, True] >>
[is_ipv6_address(ip) for ip in ('192.168.10.10', '1234:'*8+'1234')] [False, False]

is_ip_address(string_ip)

Examples

>> is_ip_address('192.168.10.10') True >> is_ip_address('::1') True >> is_ip_address('www.google.com') False

join(*args)

join_url

has_scheme(value)

strip_scheme(url)

536 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Examples

>>> strip_scheme("https://www.conda.io")
'www.conda.io'
>>> strip_scheme("s3://some.bucket/plus/a/path.ext")
'some.bucket/plus/a/path.ext'

mask_anaconda_token(url)

split_anaconda_token(url)

Examples

>>> split_anaconda_token("https://1.2.3.4/t/tk-123-456/path")
(u'https://1.2.3.4/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/t//path")
(u'https://1.2.3.4/path', u'')
>>> split_anaconda_token("https://some.domain/api/t/tk-123-456/path")
(u'https://some.domain/api/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/conda/t/tk-123-456/path")
(u'https://1.2.3.4/conda/path', u'tk-123-456')
>>> split_anaconda_token("https://1.2.3.4/path")
(u'https://1.2.3.4/path', None)
>>> split_anaconda_token("https://10.2.3.4:8080/conda/t/tk-123-45")
(u'https://10.2.3.4:8080/conda', u'tk-123-45')

split_platform(known_subdirs, url)

Examples

>>> from conda.base.constants import KNOWN_SUBDIRS
>>> split_platform(KNOWN_SUBDIRS, "https://1.2.3.4/t/tk-123/linux-ppc64le/path")
(u'https://1.2.3.4/t/tk-123/path', u'linux-ppc64le')

_split_platform_re(known_subdirs)

has_platform(url, known_subdirs)

split_scheme_auth_token(url)

Examples

>>> split_scheme_auth_token("https://u:p@conda.io/t/x1029384756/more/path")
('conda.io/more/path', 'https', 'u:p', 'x1029384756')
>>> split_scheme_auth_token(None)
(None, None, None, None)

split_conda_url_easy_parts(known_subdirs, url)

get_proxy_username_and_pass(scheme)

4.6. Developer guide 537

conda, Release 24.3.1.dev75

add_username_and_password(url: str, username: str, password: str)→ str
Inserts username and password into provided url

>>> add_username_and_password('https://anaconda.org', 'TestUser', 'Password')
'https://TestUser:Password@anaconda.org'

maybe_add_auth(url: str, auth: str, force=False)→ str
Add auth if the url doesn't currently have it.

By default, does not replace auth if it already exists. Setting force to True overrides this behavior.

Examples

>>> maybe_add_auth("https://www.conda.io", "user:passwd")
'https://user:passwd@www.conda.io'
>>> maybe_add_auth("https://www.conda.io", "")
'https://www.conda.io'

maybe_unquote(url)

remove_auth(url: str)→ str
Remove embedded authentication from URL.

>>> remove_auth("https://user:password@anaconda.com")
'https://anaconda.com'

core

Code in conda.core is the core logic. It is strictly forbidden from having side effects. No printing to stdout or stderr,
no disk manipulation, no http requests. All side effects should be implemented through conda.gateways. Objects
defined in conda.models should be heavily preferred for conda.core function/method arguments and return values.

Conda modules importable from conda.core are

• conda._vendor

• conda.common

• conda.core

• conda.models

• conda.gateways

Conda modules strictly off limits for import within conda.core are

• conda.api

• conda.cli

• conda.client

538 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

envs_manager

Tools for managing conda environments.

Functions

get_user_environments_txt_file([userhome])

register_env(location)

unregister_env(location)

list_all_known_prefixes()

query_all_prefixes(spec)

_clean_environments_txt(environments_txt_file[,
...])
_rewrite_environments_txt(environments_txt_file,
prefixes)

get_user_environments_txt_file(userhome='~')

register_env(location)

unregister_env(location)

list_all_known_prefixes()

query_all_prefixes(spec)

_clean_environments_txt(environments_txt_file, remove_location=None)

_rewrite_environments_txt(environments_txt_file, prefixes)

index

Tools for fetching the current index.

4.6. Developer guide 539

conda, Release 24.3.1.dev75

Functions

check_allowlist(→ None) Check if the given channel URLs are allowed by the con-
text's allowlist.

get_index(, prepend, platform, use_local, use_cache,
...)

Return the index of packages available on the channels

fetch_index(→ dict) Fetch the package index from the specified channels.
dist_str_in_index(→ bool) Check if a distribution string matches any package in the

index.
_supplement_index_with_prefix(→ None) Supplement the given index with information from the

specified environment prefix.
_supplement_index_with_cache(→ None) Supplement the given index with packages from the

cache.
_make_virtual_package(→
conda.models.records.PackageRecord)

Create a virtual package record.

_supplement_index_with_features(→ None) Supplement the given index with virtual feature records.
_supplement_index_with_system(→ None) Loads and populates virtual package records from conda

plugins
get_archspec_name(→ str | None) Determine the architecture specification name for the

current environment.
calculate_channel_urls(, prepend, platform,
use_local)

Calculate the full list of channel URLs to use based on
the given parameters.

get_reduced_index(→ dict) Generate a reduced package index based on the given
specifications.

Attributes

LAST_CHANNEL_URLS

check_allowlist(channel_urls: list[str])→ None
Check if the given channel URLs are allowed by the context's allowlist.

Parameters
channel_urls -- A list of channel URLs to check against the allowlist.

Raises
ChannelNotAllowed -- If any URL is not in the allowlist.

LAST_CHANNEL_URLS = []

get_index(channel_urls: tuple[str] = (), prepend: bool = True, platform: str | None = None, use_local: bool =
False, use_cache: bool = False, unknown: bool | None = None, prefix: str | None = None, repodata_fn:
str = context.repodata_fns[-1])→ dict

Return the index of packages available on the channels

If prepend=False, only the channels passed in as arguments are used. If platform=None, then the current platform
is used. If prefix is supplied, then the packages installed in that prefix are added.

Parameters
• channel_urls -- Channels to include in the index.

540 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

• prepend -- If False, only the channels passed in are used.

• platform -- Target platform for the index.

• use_local -- Whether to use local channels.

• use_cache -- Whether to use cached index information.

• unknown -- Include unknown packages.

• prefix -- Path to environment prefix to include in the index.

• repodata_fn -- Filename of the repodata file.

Returns
A dictionary representing the package index.

fetch_index(channel_urls: list[str], use_cache: bool = False, index: dict | None = None, repodata_fn: str =
context.repodata_fns[-1])→ dict

Fetch the package index from the specified channels.

Parameters
• channel_urls -- A list of channel URLs to fetch the index from.

• use_cache -- Whether to use the cached index data.

• index -- An optional pre-existing index to update.

• repodata_fn -- The name of the repodata file.

Returns
A dictionary representing the fetched or updated package index.

dist_str_in_index(index: dict[Any, Any], dist_str: str)→ bool
Check if a distribution string matches any package in the index.

Parameters
• index -- The package index.

• dist_str -- The distribution string to match against the index.

Returns
True if there is a match; False otherwise.

_supplement_index_with_prefix(index: dict[Any, Any], prefix: str)→ None
Supplement the given index with information from the specified environment prefix.

Parameters
• index -- The package index to supplement.

• prefix -- The path to the environment prefix.

_supplement_index_with_cache(index: dict[Any, Any])→ None
Supplement the given index with packages from the cache.

Parameters
index -- The package index to supplement.

_make_virtual_package(name: str, version: str | None = None, build_string: str | None = None)→
conda.models.records.PackageRecord

Create a virtual package record.

Parameters

4.6. Developer guide 541

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

• name -- The name of the virtual package.

• version -- The version of the virtual package, defaults to "0".

• build_string -- The build string of the virtual package, defaults to "0".

Returns
A PackageRecord representing the virtual package.

_supplement_index_with_features(index: dict[conda.models.records.PackageRecord,
conda.models.records.PackageRecord], features: list[str] = [])→ None

Supplement the given index with virtual feature records.

Parameters
• index -- The package index to supplement.

• features -- A list of feature names to add to the index.

_supplement_index_with_system(index: dict[conda.models.records.PackageRecord,
conda.models.records.PackageRecord])→ None

Loads and populates virtual package records from conda plugins and adds them to the provided index, unless
there is a naming conflict.

Parameters
index -- The package index to supplement.

get_archspec_name()→ str | None
Determine the architecture specification name for the current environment.

Returns
The architecture name if available, otherwise None.

calculate_channel_urls(channel_urls: tuple[str] = (), prepend: bool = True, platform: str | None = None,
use_local: bool = False)→ list[str]

Calculate the full list of channel URLs to use based on the given parameters.

Parameters
• channel_urls -- Initial list of channel URLs.

• prepend -- Whether to prepend default channels to the list.

• platform -- The target platform for the channels.

• use_local -- Whether to include the local channel.

Returns
The calculated list of channel URLs.

get_reduced_index(prefix: str | None, channels: list[str], subdirs: list[str], specs:
list[conda.models.match_spec.MatchSpec], repodata_fn: str)→ dict

Generate a reduced package index based on the given specifications.

This function is useful for optimizing the solver by reducing the amount of data it needs to consider.

Parameters
• prefix -- Path to an environment prefix to include installed packages.

• channels -- A list of channel names to include in the index.

• subdirs -- A list of subdirectories to consider for each channel.

• specs -- A list of MatchSpec objects to filter the packages.

542 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

• repodata_fn -- Filename of the repodata file to use.

Returns
A dictionary representing the reduced package index.

initialize

Backend logic for conda init.

Sections in this module are

1. top-level functions

2. plan creators

3. plan runners

4. individual operations

5. helper functions

The top-level functions compose and execute full plans.

A plan is created by composing various individual operations. The plan data structure is a list of dicts, where each dict
represents an individual operation. The dict contains two keys--function and kwargs--where function is the name of
the individual operation function within this module.

Each individual operation must

a) return a Result (i.e. NEEDS_SUDO, MODIFIED, or NO_CHANGE)

b) have no side effects if context.dry_run is True

c) be verbose and descriptive about the changes being made or proposed is context.verbose

The plan runner functions take the plan (list of dicts) as an argument, and then coordinate the execution of each indi-
vidual operation. The docstring for run_plan_elevated() has details on how that strategy is implemented.

Classes

Result

Functions

install(conda_prefix)

initialize(conda_prefix, shells, for_user, for_system,
...)
initialize_dev(shell[, dev_env_prefix,
conda_source_root])
_initialize_dev_bash (prefix, env_vars, un-
set_env_vars)
_initialize_dev_cmdexe(prefix, env_vars, un-
set_env_vars)

continues on next page

4.6. Developer guide 543

conda, Release 24.3.1.dev75

Table 4 – continued from previous page
make_install_plan(conda_prefix)

make_initialize_plan(conda_prefix, shells,
for_user, ...)

Creates a plan for initializing conda in shells.

run_plan(plan)

run_plan_elevated(plan) The strategy of this function differs between unix and
Windows. Both strategies use a

run_plan_from_stdin()

run_plan_from_temp_file(temp_path)

print_plan_results(plan[, stream])

make_entry_point(target_path, conda_prefix, mod-
ule, func)
make_entry_point_exe(target_path, conda_prefix)

install_anaconda_prompt(target_path,
conda_prefix, reverse)
_install_file(target_path, file_content)

install_conda_sh (target_path, conda_prefix)

install_Scripts_activate_bat(target_path,
conda_prefix)
install_activate_bat(target_path, conda_prefix)

install_deactivate_bat(target_path,
conda_prefix)
install_activate(target_path, conda_prefix)

install_deactivate(target_path, conda_prefix)

install_condabin_conda_bat(target_path,
conda_prefix)
install_library_bin_conda_bat(target_path,
conda_prefix)
install_condabin_conda_activate_bat(target_path,
...)
install_condabin_rename_tmp_bat(target_path,
conda_prefix)
install_condabin_conda_auto_activate_bat(target_path,
...)
install_condabin_hook_bat(target_path,
conda_prefix)
install_conda_fish (target_path, conda_prefix)

install_conda_psm1(target_path, conda_prefix)

install_conda_hook_ps1(target_path,
conda_prefix)

continues on next page

544 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Table 4 – continued from previous page
install_conda_xsh (target_path, conda_prefix)

install_conda_csh (target_path, conda_prefix)

_config_fish_content(conda_prefix)

init_fish_user(target_path, conda_prefix, reverse)

_config_xonsh_content(conda_prefix)

init_xonsh_user(target_path, conda_prefix, reverse)

_bashrc_content(conda_prefix, shell)

init_sh_user(target_path, conda_prefix, shell[, re-
verse])
init_sh_system(target_path, conda_prefix[, reverse])

_read_windows_registry(target_path)

_write_windows_registry(target_path,
value_value, ...)
init_cmd_exe_registry(target_path, conda_prefix[,
reverse])
init_long_path (target_path)

_powershell_profile_content(conda_prefix)

init_powershell_user(target_path, conda_prefix,
reverse)
remove_conda_in_sp_dir(target_path)

make_conda_egg_link(target_path,
conda_source_root)
modify_easy_install_pth (target_path,
conda_source_root)
make_dev_egg_info_file(target_path)

make_diff (old, new)

_get_python_info(prefix)

4.6. Developer guide 545

conda, Release 24.3.1.dev75

Attributes

CONDA_INITIALIZE_RE_BLOCK

CONDA_INITIALIZE_PS_RE_BLOCK

temp_path

CONDA_INITIALIZE_RE_BLOCK = '^# >>> conda initialize >>>(?:\\n|\\r\\n)([\\s\\S]*?)# <<<
conda initialize <<<(?:\\n|\\r\\n)?'

CONDA_INITIALIZE_PS_RE_BLOCK = '^#region conda
initialize(?:\\n|\\r\\n)([\\s\\S]*?)#endregion(?:\\n|\\r\\n)?'

class Result

NEEDS_SUDO = 'needs sudo'

MODIFIED = 'modified'

NO_CHANGE = 'no change'

install(conda_prefix)

initialize(conda_prefix, shells, for_user, for_system, anaconda_prompt, reverse=False)

initialize_dev(shell, dev_env_prefix=None, conda_source_root=None)

_initialize_dev_bash(prefix, env_vars, unset_env_vars)

_initialize_dev_cmdexe(prefix, env_vars, unset_env_vars)

make_install_plan(conda_prefix)

make_initialize_plan(conda_prefix, shells, for_user, for_system, anaconda_prompt, reverse=False)
Creates a plan for initializing conda in shells.

Bash: On Linux, when opening the terminal, .bashrc is sourced (because it is an interactive shell). On macOS on
the other hand, the .bash_profile gets sourced by default when executing it in Terminal.app. Some other programs
do the same on macOS so that's why we're initializing conda in .bash_profile. On Windows, there are multiple
ways to open bash depending on how it was installed. Git Bash, Cygwin, and MSYS2 all use .bash_profile by
default.

PowerShell: There's several places PowerShell can store its path, depending on if it's Windows PowerShell,
PowerShell Core on Windows, or PowerShell Core on macOS/Linux. The easiest way to resolve it is to just ask
different possible installations of PowerShell where their profiles are.

run_plan(plan)

run_plan_elevated(plan)
The strategy of this function differs between unix and Windows. Both strategies use a subprocess call, where
the subprocess is run with elevated privileges. The executable invoked with the subprocess is python -m
conda.core.initialize, so see the if __name__ == "__main__" at the bottom of this module.

546 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

For unix platforms, we convert the plan list to json, and then call this module with sudo python -m
conda.core.initialize while piping the plan json to stdin. We collect json from stdout for the results of the plan
execution with elevated privileges.

For Windows, we create a temporary file that holds the json content of the plan. The subprocess reads the content
of the file, modifies the content of the file with updated execution status, and then closes the file. This process
then reads the content of that file for the individual operation execution results, and then deletes the file.

run_plan_from_stdin()

run_plan_from_temp_file(temp_path)

print_plan_results(plan, stream=None)

make_entry_point(target_path, conda_prefix, module, func)

make_entry_point_exe(target_path, conda_prefix)

install_anaconda_prompt(target_path, conda_prefix, reverse)

_install_file(target_path, file_content)

install_conda_sh(target_path, conda_prefix)

install_Scripts_activate_bat(target_path, conda_prefix)

install_activate_bat(target_path, conda_prefix)

install_deactivate_bat(target_path, conda_prefix)

install_activate(target_path, conda_prefix)

install_deactivate(target_path, conda_prefix)

install_condabin_conda_bat(target_path, conda_prefix)

install_library_bin_conda_bat(target_path, conda_prefix)

install_condabin_conda_activate_bat(target_path, conda_prefix)

install_condabin_rename_tmp_bat(target_path, conda_prefix)

install_condabin_conda_auto_activate_bat(target_path, conda_prefix)

install_condabin_hook_bat(target_path, conda_prefix)

install_conda_fish(target_path, conda_prefix)

install_conda_psm1(target_path, conda_prefix)

install_conda_hook_ps1(target_path, conda_prefix)

install_conda_xsh(target_path, conda_prefix)

install_conda_csh(target_path, conda_prefix)

_config_fish_content(conda_prefix)

init_fish_user(target_path, conda_prefix, reverse)

_config_xonsh_content(conda_prefix)

4.6. Developer guide 547

conda, Release 24.3.1.dev75

init_xonsh_user(target_path, conda_prefix, reverse)

_bashrc_content(conda_prefix, shell)

init_sh_user(target_path, conda_prefix, shell, reverse=False)

init_sh_system(target_path, conda_prefix, reverse=False)

_read_windows_registry(target_path)

_write_windows_registry(target_path, value_value, value_type)

init_cmd_exe_registry(target_path, conda_prefix, reverse=False)

init_long_path(target_path)

_powershell_profile_content(conda_prefix)

init_powershell_user(target_path, conda_prefix, reverse)

remove_conda_in_sp_dir(target_path)

make_conda_egg_link(target_path, conda_source_root)

modify_easy_install_pth(target_path, conda_source_root)

make_dev_egg_info_file(target_path)

make_diff(old, new)

_get_python_info(prefix)

temp_path

link

Package installation implemented as a series of link/unlink transactions.

Classes

PrefixSetup

ActionGroup

PrefixActionGroup

ChangeReport

UnlinkLinkTransaction

548 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

determine_link_type(extracted_package_dir, tar-
get_prefix)
make_unlink_actions(transaction_context, ...)

match_specs_to_dists(packages_info_to_link,
specs)
run_script(→ bool) Call the post-link (or pre-unlink) script, returning True

on success,
messages(prefix)

determine_link_type(extracted_package_dir, target_prefix)

make_unlink_actions(transaction_context, target_prefix, prefix_record)

match_specs_to_dists(packages_info_to_link, specs)

class PrefixSetup

Bases: NamedTuple

target_prefix: str

unlink_precs: tuple[conda.models.records.PackageRecord, Ellipsis]

link_precs: tuple[conda.models.records.PackageRecord, Ellipsis]

remove_specs: tuple[conda.resolve.MatchSpec, Ellipsis]

update_specs: tuple[conda.resolve.MatchSpec, Ellipsis]

neutered_specs: tuple[conda.resolve.MatchSpec, Ellipsis]

class ActionGroup

Bases: NamedTuple

type: str

pkg_data: conda.models.package_info.PackageInfo | None

actions: Iterable[conda.core.path_actions._Action]

target_prefix: str

class PrefixActionGroup

Bases: NamedTuple

remove_menu_action_groups: Iterable[ActionGroup]

unlink_action_groups: Iterable[ActionGroup]

unregister_action_groups: Iterable[ActionGroup]

link_action_groups: Iterable[ActionGroup]

4.6. Developer guide 549

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

register_action_groups: Iterable[ActionGroup]

compile_action_groups: Iterable[ActionGroup]

make_menu_action_groups: Iterable[ActionGroup]

entry_point_action_groups: Iterable[ActionGroup]

prefix_record_groups: Iterable[ActionGroup]

class ChangeReport

Bases: NamedTuple

prefix: str

specs_to_remove: Iterable[conda.resolve.MatchSpec]

specs_to_add: Iterable[conda.resolve.MatchSpec]

removed_precs: Iterable[conda.models.records.PackageRecord]

new_precs: Iterable[conda.models.records.PackageRecord]

updated_precs: Iterable[conda.models.records.PackageRecord]

downgraded_precs: Iterable[conda.models.records.PackageRecord]

superseded_precs: Iterable[conda.models.records.PackageRecord]

fetch_precs: Iterable[conda.models.records.PackageRecord]

class UnlinkLinkTransaction(*setups)

property nothing_to_do

download_and_extract()

prepare()

verify()

_verify_pre_link_message(all_link_groups)

execute()

_get_pfe()

classmethod _prepare(transaction_context, target_prefix, unlink_precs, link_precs, remove_specs,
update_specs, neutered_specs)

static _verify_individual_level(prefix_action_group)

static _verify_prefix_level(target_prefix_AND_prefix_action_group_tuple)

static _verify_transaction_level(prefix_setups)

_verify(prefix_setups, prefix_action_groups)

_execute(all_action_groups)

550 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

static _execute_actions(axngroup)

static _execute_post_link_actions(axngroup)

static _reverse_actions(axngroup, reverse_from_idx=-1)

static _get_python_version(target_prefix, pcrecs_to_unlink, packages_info_to_link)

static _make_link_actions(transaction_context, package_info, target_prefix, requested_link_type,
requested_spec)

static _make_entry_point_actions(transaction_context, package_info, target_prefix,
requested_link_type, requested_spec, link_action_groups)

static _make_compile_actions(transaction_context, package_info, target_prefix, requested_link_type,
requested_spec, link_action_groups)

_make_legacy_action_groups()

print_transaction_summary()

_change_report_str(change_report)

static _calculate_change_report(prefix, unlink_precs, link_precs, download_urls, specs_to_remove,
specs_to_add)

run_script(prefix: str, prec, action: str = 'post-link', env_prefix: str = None, activate: bool = False)→ bool
Call the post-link (or pre-unlink) script, returning True on success, False on failure.

messages(prefix)

package_cache

Backport of conda.core.package_cache_data for conda-build.

ProgressiveFetchExtract

package_cache_data

Tools for managing the package cache (previously downloaded packages).

Classes

PackageCacheType This metaclass does basic caching of PackageCache in-
stance objects.

PackageCacheData

UrlsData

ProgressiveFetchExtract

4.6. Developer guide 551

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Functions

do_cache_action(prec, cache_action, progress_bar[,
...])

This function gets called from ProgressiveFetchEx-
tract.execute.

do_extract_action(prec, extract_action,
progress_bar)

This function gets called after do_cache_action com-
pletes.

do_cleanup(actions)

do_reverse(actions)

done_callback(future, actions, progress_bar, excep-
tions)
rm_fetched(dist) Checks to see if the requested package is in the cache;

and if so, it removes both
download(url, dst_path[, session, md5sum, urlstxt, ...])

Attributes

FileNotFoundError

THREADSAFE_EXTRACT

EXTRACT_THREADS

FileNotFoundError

THREADSAFE_EXTRACT = False

EXTRACT_THREADS

class PackageCacheType

Bases: type

This metaclass does basic caching of PackageCache instance objects.

__call__(pkgs_dir: str | os.PathLike | pathlib.Path)
Call self as a function.

class PackageCacheData(pkgs_dir)

property _package_cache_records

property is_writable

cache: dict[str, PackageCacheData]

insert(package_cache_record)

load()

552 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

reload()

get(package_ref , default=NULL)

remove(package_ref , default=NULL)

query(package_ref_or_match_spec)

iter_records()

classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

classmethod first_writable(pkgs_dirs=None)

classmethod writable_caches(pkgs_dirs=None)

classmethod read_only_caches(pkgs_dirs=None)

classmethod all_caches_writable_first(pkgs_dirs=None)

classmethod get_all_extracted_entries()

classmethod get_entry_to_link(package_ref)

classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

classmethod clear()

tarball_file_in_this_cache(tarball_path, md5sum=None)

_check_writable()

static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

_scan_for_dist_no_channel(dist_str)

itervalues()

values()

__repr__()

Return repr(self).

_make_single_record(package_filename)

static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

class UrlsData(pkgs_dir)

__contains__(url)

__iter__()

add_url(url)

get_url(package_path)

class ProgressiveFetchExtract(link_prefs)

property cache_actions

4.6. Developer guide 553

conda, Release 24.3.1.dev75

property extract_actions

static make_actions_for_record(pref_or_spec)

prepare()

execute()

Run each action in self.paired_actions. Each action in cache_actions runs before its corresponding ex-
tract_actions.

static _progress_bar(prec_or_spec, position=None, leave=False)→ conda.common.io.ProgressBar

__hash__()

Return hash(self).

__eq__(other)
Return self==value.

do_cache_action(prec, cache_action, progress_bar, download_total=1.0, *, cancelled)
This function gets called from ProgressiveFetchExtract.execute.

do_extract_action(prec, extract_action, progress_bar)
This function gets called after do_cache_action completes.

do_cleanup(actions)

do_reverse(actions)

done_callback(future: concurrent.futures.Future, actions: tuple[conda.core.path_actions.CacheUrlAction |
conda.core.path_actions.ExtractPackageAction, Ellipsis], progress_bar:
conda.common.io.ProgressBar, exceptions: list[Exception], finish: bool = False)

rm_fetched(dist)
Checks to see if the requested package is in the cache; and if so, it removes both the package itself and its extracted
contents.

download(url, dst_path, session=None, md5sum=None, urlstxt=False, retries=3)

path_actions

Atomic actions that make up a package installation or removal transaction.

554 Chapter 4. Contributors welcome

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Classes

_Action

PathAction

MultiPathAction

PrefixPathAction

CreateInPrefixPathAction

LinkPathAction

PrefixReplaceLinkAction

MakeMenuAction

CreateNonadminAction

CompileMultiPycAction

AggregateCompileMultiPycAction Bunch up all of our compile actions, so that they all get
carried out at once.

CreatePythonEntryPointAction

CreatePrefixRecordAction

UpdateHistoryAction

RegisterEnvironmentLocationAction

RemoveFromPrefixPathAction

UnlinkPathAction

RemoveMenuAction

RemoveLinkedPackageRecordAction

UnregisterEnvironmentLocationAction

CacheUrlAction

ExtractPackageAction

4.6. Developer guide 555

conda, Release 24.3.1.dev75

Attributes

FileNotFoundError

_MENU_RE

REPR_IGNORE_KWARGS

FileNotFoundError

_MENU_RE

REPR_IGNORE_KWARGS = ('transaction_context', 'package_info', 'hold_path')

class _Action

property verified

_verified = False

abstract verify()

abstract execute()

abstract reverse()

abstract cleanup()

__repr__()

Return repr(self).

class PathAction

Bases: _Action

abstract property target_full_path

class MultiPathAction

Bases: _Action

abstract property target_full_paths

class PrefixPathAction(transaction_context, target_prefix, target_short_path)
Bases: PathAction

property target_short_paths

property target_full_path

class CreateInPrefixPathAction(transaction_context, package_info, source_prefix, source_short_path,
target_prefix, target_short_path)

Bases: PrefixPathAction

property source_full_path

verify()

556 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

cleanup()

class LinkPathAction(transaction_context, package_info, extracted_package_dir, source_short_path,
target_prefix, target_short_path, link_type, source_path_data)

Bases: CreateInPrefixPathAction

classmethod create_file_link_actions(transaction_context, package_info, target_prefix,
requested_link_type)

classmethod create_directory_actions(transaction_context, package_info, target_prefix,
requested_link_type, file_link_actions)

classmethod create_python_entry_point_windows_exe_action(transaction_context, package_info,
target_prefix, requested_link_type,
entry_point_def)

verify()

execute()

reverse()

class PrefixReplaceLinkAction(transaction_context, package_info, extracted_package_dir,
source_short_path, target_prefix, target_short_path, link_type,
prefix_placeholder, file_mode, source_path_data)

Bases: LinkPathAction

verify()

execute()

class MakeMenuAction(transaction_context, package_info, target_prefix, target_short_path)
Bases: CreateInPrefixPathAction

classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

execute()

reverse()

class CreateNonadminAction(transaction_context, package_info, target_prefix)
Bases: CreateInPrefixPathAction

classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

execute()

reverse()

class CompileMultiPycAction(transaction_context, package_info, target_prefix, source_short_paths,
target_short_paths)

Bases: MultiPathAction

property target_full_paths

property source_full_paths

4.6. Developer guide 557

conda, Release 24.3.1.dev75

classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type,
file_link_actions)

verify()

cleanup()

execute()

reverse()

class AggregateCompileMultiPycAction(*individuals, **kw)
Bases: CompileMultiPycAction

Bunch up all of our compile actions, so that they all get carried out at once. This avoids clobbering and is faster
when we have several individual packages requiring compilation.

class CreatePythonEntryPointAction(transaction_context, package_info, target_prefix, target_short_path,
module, func)

Bases: CreateInPrefixPathAction

classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type)

execute()

reverse()

class CreatePrefixRecordAction(transaction_context, package_info, target_prefix, target_short_path,
requested_link_type, requested_spec, all_link_path_actions)

Bases: CreateInPrefixPathAction

classmethod create_actions(transaction_context, package_info, target_prefix, requested_link_type,
requested_spec, all_link_path_actions)

execute()

reverse()

class UpdateHistoryAction(transaction_context, target_prefix, target_short_path, remove_specs, update_specs,
neutered_specs)

Bases: CreateInPrefixPathAction

classmethod create_actions(transaction_context, target_prefix, remove_specs, update_specs,
neutered_specs)

execute()

reverse()

cleanup()

class RegisterEnvironmentLocationAction(transaction_context, target_prefix)
Bases: PathAction

abstract property target_full_path

verify()

execute()

558 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

reverse()

cleanup()

class RemoveFromPrefixPathAction(transaction_context, linked_package_data, target_prefix,
target_short_path)

Bases: PrefixPathAction

verify()

class UnlinkPathAction(transaction_context, linked_package_data, target_prefix, target_short_path,
link_type=LinkType.hardlink)

Bases: RemoveFromPrefixPathAction

execute()

reverse()

cleanup()

class RemoveMenuAction(transaction_context, linked_package_data, target_prefix, target_short_path)
Bases: RemoveFromPrefixPathAction

classmethod create_actions(transaction_context, linked_package_data, target_prefix)

execute()

reverse()

cleanup()

class RemoveLinkedPackageRecordAction(transaction_context, linked_package_data, target_prefix,
target_short_path)

Bases: UnlinkPathAction

execute()

reverse()

class UnregisterEnvironmentLocationAction(transaction_context, target_prefix)
Bases: PathAction

abstract property target_full_path

verify()

execute()

reverse()

cleanup()

class CacheUrlAction(url, target_pkgs_dir, target_package_basename, sha256=None, size=None, md5=None)
Bases: PathAction

property target_full_path

verify()

4.6. Developer guide 559

conda, Release 24.3.1.dev75

execute(progress_update_callback=None)

_execute_local(source_path, target_package_cache, progress_update_callback=None)

_execute_channel(target_package_cache, progress_update_callback=None)

reverse()

cleanup()

__str__()

Return str(self).

class ExtractPackageAction(source_full_path, target_pkgs_dir, target_extracted_dirname, record_or_spec,
sha256, size, md5)

Bases: PathAction

property target_full_path

verify()

execute(progress_update_callback=None)

reverse()

cleanup()

__str__()

Return str(self).

portability

Tools for cross-OS portability.

Functions

_subdir_is_win(→ bool)

update_prefix(path, new_prefix[, placeholder, mode,
...])
replace_prefix(→ bytes) Replaces placeholder text with the new_prefix provided.

The mode provided can
binary_replace(→ bytes) Perform a binary replacement of data, where the place-

holder search is
has_pyzzer_entry_point(data)

replace_pyzzer_entry_point_shebang(all_data,
...)

Code adapted from pyzzer. This is meant to deal with
entry point exe's created by distlib,

replace_long_shebang(mode, data)

generate_shebang_for_entry_point(executable[,
...])

This function can be used to generate a shebang line for
Python entry points.

560 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

SHEBANG_REGEX

MAX_SHEBANG_LENGTH

POPULAR_ENCODINGS

SHEBANG_REGEX = b'^(#!(?:[]*)(/(?:\\\\ |[^ \\n\\r\\t])*)(.*))$'

MAX_SHEBANG_LENGTH

POPULAR_ENCODINGS = ('utf-8', 'utf-16-le', 'utf-16-be', 'utf-32-le', 'utf-32-be')

exception _PaddingError

Bases: Exception

Common base class for all non-exit exceptions.

_subdir_is_win(subdir: str)→ bool

update_prefix(path, new_prefix, placeholder=PREFIX_PLACEHOLDER, mode=FileMode.text,
subdir=context.subdir)

replace_prefix(mode: conda.models.enums.FileMode, data: bytes, placeholder: str, new_prefix: str, subdir: str
= 'noarch')→ bytes

Replaces placeholder text with the new_prefix provided. The mode provided can either be text or binary.

We use the POPULAR_ENCODINGS module level constant defined above to make several passes at replacing the
placeholder. We do this to account for as many encodings as possible. If this causes any performance problems
in the future, it could potentially be removed (i.e. just using the most popular "utf-8" encoding").

More information/discussion available here: https://github.com/conda/conda/pull/9946

binary_replace(data: bytes, search: bytes, replacement: bytes, encoding: str = 'utf-8', subdir: str = 'noarch')→
bytes

Perform a binary replacement of data, where the placeholder search is replaced with replacement and the re-
maining string is padded with null characters. All input arguments are expected to be bytes objects.

Parameters
• data -- The bytes object that will be searched and replaced

• search -- The bytes object to find

• replacement -- The bytes object that will replace search

• encoding (str) -- The encoding of the expected string in the binary.

has_pyzzer_entry_point(data)

replace_pyzzer_entry_point_shebang(all_data, placeholder, new_prefix)
Code adapted from pyzzer. This is meant to deal with entry point exe's created by distlib, which consist
of a launcher, then a shebang, then a zip archive of the entry point code to run. We need to change the
shebang. https://bitbucket.org/vinay.sajip/pyzzer/src/5d5740cb04308f067d5844a56fbe91e7a27efccc/pyzzer/
__init__.py?at=default&fileviewer=file-view-default#__init__.py-112 # NOQA

4.6. Developer guide 561

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://github.com/conda/conda/pull/9946
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://bitbucket.org/vinay.sajip/pyzzer/src/5d5740cb04308f067d5844a56fbe91e7a27efccc/pyzzer/__init__.py?at=default&fileviewer=file-view-default#__init__.py-112
https://bitbucket.org/vinay.sajip/pyzzer/src/5d5740cb04308f067d5844a56fbe91e7a27efccc/pyzzer/__init__.py?at=default&fileviewer=file-view-default#__init__.py-112

conda, Release 24.3.1.dev75

replace_long_shebang(mode, data)

generate_shebang_for_entry_point(executable, with_usr_bin_env=False)
This function can be used to generate a shebang line for Python entry points.

Use cases: - At install/link time, to generate the noarch: python entry points. - conda init uses it to create its own
entry point during conda-build

prefix_data

Tools for managing the packages installed within an environment.

Classes

PrefixDataType Basic caching of PrefixData instance objects.
PrefixData

Functions

get_conda_anchor_files_and_records(...) Return the anchor files for the conda records of python
packages.

get_python_version_for_prefix(prefix)

delete_prefix_from_linked_data(→ bool) Here, path may be a complete prefix or a dist inside a
prefix

class PrefixDataType

Bases: type

Basic caching of PrefixData instance objects.

__call__(prefix_path: str | os.PathLike | pathlib.Path, pip_interop_enabled: bool | None = None)
Call self as a function.

class PrefixData(prefix_path: pathlib.Path, pip_interop_enabled: bool | None = None)

property _prefix_records

property is_writable

property _python_pkg_record

Return the prefix record for the package python.

cache: dict[pathlib.Path, PrefixData]

load()

reload()

562 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path

conda, Release 24.3.1.dev75

_get_json_fn(prefix_record)

insert(prefix_record)

remove(package_name)

get(package_name, default=NULL)

iter_records()

iter_records_sorted()

all_subdir_urls()

query(package_ref_or_match_spec)

_load_single_record(prefix_record_json_path)

_has_python()

_load_site_packages()

Load non-conda-installed python packages in the site-packages of the prefix.

Python packages not handled by conda are installed via other means, like using pip or using python setup.py
develop for local development.

Packages found that are not handled by conda are converted into a prefix record and handled in memory.

Packages clobbering conda packages (i.e. the conda-meta record) are removed from the in memory repre-
sentation.

_get_environment_state_file()

_write_environment_state_file(state)

get_environment_env_vars()

set_environment_env_vars(env_vars)

unset_environment_env_vars(env_vars)

get_conda_anchor_files_and_records(site_packages_short_path, python_records)
Return the anchor files for the conda records of python packages.

get_python_version_for_prefix(prefix)

delete_prefix_from_linked_data(path: str | os.PathLike | pathlib.Path)→ bool
Here, path may be a complete prefix or a dist inside a prefix

solve

The classic solver implementation.

4.6. Developer guide 563

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Classes

Solver A high-level API to conda's solving logic. Three public
methods are provided to access a

SolverStateContainer

Functions

get_pinned_specs(prefix) Find pinned specs from file and return a tuple of Match-
Spec.

diff_for_unlink_link_precs([force_reinstall])

class Solver(prefix: str, channels: Iterable[conda.models.channel.Channel], subdirs: Iterable[str] = (),
specs_to_add: Iterable[conda.models.match_spec.MatchSpec] = (), specs_to_remove:
Iterable[conda.models.match_spec.MatchSpec] = (), repodata_fn: str = REPODATA_FN ,
command=NULL)

A high-level API to conda's solving logic. Three public methods are provided to access a solution in various
forms.

• solve_final_state()

• solve_for_diff()

• solve_for_transaction()

solve_for_transaction(update_modifier=NULL, deps_modifier=NULL, prune=NULL,
ignore_pinned=NULL, force_remove=NULL, force_reinstall=NULL,
should_retry_solve=False)

Gives an UnlinkLinkTransaction instance that can be used to execute the solution on an environment.

Parameters
• deps_modifier (DepsModifier) -- See solve_final_state().

• prune (bool) -- See solve_final_state().

• ignore_pinned (bool) -- See solve_final_state().

• force_remove (bool) -- See solve_final_state().

• force_reinstall (bool) -- See solve_for_diff().

• should_retry_solve (bool) -- See solve_final_state().

Return type
UnlinkLinkTransaction

solve_for_diff(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL,
force_remove=NULL, force_reinstall=NULL, should_retry_solve=False)→
tuple[tuple[conda.models.records.PackageRecord, Ellipsis],
tuple[conda.models.records.PackageRecord, Ellipsis]]

Gives the package references to remove from an environment, followed by the package references to add to
an environment.

564 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

Parameters
• deps_modifier (DepsModifier) -- See solve_final_state().

• prune (bool) -- See solve_final_state().

• ignore_pinned (bool) -- See solve_final_state().

• force_remove (bool) -- See solve_final_state().

• force_reinstall (bool) --

For requested specs_to_add that are already satisfied in the environment,
instructs the solver to remove the package and spec from the environment, and then
add it back--possibly with the exact package instance modified, depending on the spec
exactness.

• should_retry_solve (bool) -- See solve_final_state().

Returns
A two-tuple of PackageRef sequences. The first is the group of packages to remove from the
environment, in sorted dependency order from leaves to roots. The second is the group of
packages to add to the environment, in sorted dependency order from roots to leaves.

Return type
tuple[PackageRef], tuple[PackageRef]

solve_final_state(update_modifier=NULL, deps_modifier=NULL, prune=NULL, ignore_pinned=NULL,
force_remove=NULL, should_retry_solve=False)

Gives the final, solved state of the environment.

Parameters
• update_modifier (UpdateModifier) -- An optional flag directing how updates are han-

dled regarding packages already existing in the environment.

• deps_modifier (DepsModifier) -- An optional flag indicating special solver handling
for dependencies. The default solver behavior is to be as conservative as possible with
dependency updates (in the case the dependency already exists in the environment), while
still ensuring all dependencies are satisfied. Options include * NO_DEPS * ONLY_DEPS
* UPDATE_DEPS * UPDATE_DEPS_ONLY_DEPS * FREEZE_INSTALLED

• prune (bool) -- If True, the solution will not contain packages that were previously
brought into the environment as dependencies but are no longer required as dependencies
and are not user-requested.

• ignore_pinned (bool) -- If True, the solution will ignore pinned package configuration
for the prefix.

• force_remove (bool) -- Forces removal of a package without removing packages that
depend on it.

• should_retry_solve (bool) -- Indicates whether this solve will be retried. This allows
us to control whether to call find_conflicts (slow) in ssc.r.solve

Returns
In sorted dependency order from roots to leaves, the package references for the solved state
of the environment.

Return type
tuple[PackageRef]

determine_constricting_specs(spec, solution_precs)

4.6. Developer guide 565

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

get_request_package_in_solution(solution_precs, specs_map)

get_constrained_packages(pre_packages, post_packages, index_keys)

_collect_all_metadata(ssc)

_remove_specs(ssc)

_find_inconsistent_packages(ssc)

_package_has_updates(ssc, spec, installed_pool)

_should_freeze(ssc, target_prec, conflict_specs, explicit_pool, installed_pool)

_add_specs(ssc)

_run_sat(ssc)

_post_sat_handling(ssc)

_notify_conda_outdated(link_precs)

_prepare(prepared_specs)

class SolverStateContainer(prefix, update_modifier, deps_modifier, prune, ignore_pinned, force_remove,
should_retry_solve)

prefix_data()

specs_from_history_map()

track_features_specs()

pinned_specs()

set_repository_metadata(index, r)

_init_solution_precs()

working_state_reset()

get_pinned_specs(prefix)
Find pinned specs from file and return a tuple of MatchSpec.

diff_for_unlink_link_precs(prefix, final_precs, specs_to_add=(), force_reinstall=NULL)→
tuple[tuple[conda.models.records.PackageRecord, Ellipsis],
tuple[conda.models.records.PackageRecord, Ellipsis]]

subdir_data

Tools for managing a subdir's repodata.json.

566 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

Classes

SubdirDataType

PackageRecordList Lazily convert dicts to PackageRecord.
SubdirData

Functions

get_cache_control_max_age(→ int)

make_feature_record(feature_name)

Attributes

REPODATA_PICKLE_VERSION

MAX_REPODATA_VERSION

REPODATA_HEADER_RE

REPODATA_PICKLE_VERSION = 30

MAX_REPODATA_VERSION = 2

REPODATA_HEADER_RE = b'"(_etag|_mod|_cache_control)":[]?"(.*?[^\\\\])"[,}\\s]'

get_cache_control_max_age(cache_control_value: str)→ int

class SubdirDataType

Bases: type

__call__(channel, repodata_fn=REPODATA_FN)

Call self as a function.

class PackageRecordList(initlist=None)
Bases: collections.UserList

Lazily convert dicts to PackageRecord.

__getitem__(i)

class SubdirData(channel, repodata_fn=REPODATA_FN , RepoInterface=CondaRepoInterface)

property _repo: conda.gateways.repodata.RepoInterface

Changes as we mutate self.repodata_fn.

4.6. Developer guide 567

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/collections.html#collections.UserList

conda, Release 24.3.1.dev75

property repo_cache: conda.gateways.repodata.RepodataCache

property repo_fetch: conda.gateways.repodata.RepodataFetch

Object to get repodata. Not cached since self.repodata_fn is mutable.

Replaces self._repo & self.repo_cache.

property cache_path_base

property url_w_repodata_fn

property cache_path_json

property cache_path_state

Out-of-band etag and other state needed by the RepoInterface.

property cache_path_pickle

cache

classmethod clear_cached_local_channel_data(exclude_file=True)

static query_all(package_ref_or_match_spec, channels=None, subdirs=None,
repodata_fn=REPODATA_FN)

query(package_ref_or_match_spec)

reload()

load()

iter_records()

_iter_records_by_name(name)

_load()

Try to load repodata. If e.g. we are downloading current_repodata.json, fall back to repodata.json when
the former is unavailable.

_pickle_me()

_read_local_repodata(state: conda.gateways.repodata.RepodataState)

_pickle_valid_checks(pickled_state, mod, etag)
Throw away the pickle if these don't all match.

_read_pickled(state: conda.gateways.repodata.RepodataState)

_process_raw_repodata_str(raw_repodata_str, state: conda.gateways.repodata.RepodataState | None =
None)

State contains information that was previously in-band in raw_repodata_str.

_process_raw_repodata(repodata: dict, state: conda.gateways.repodata.RepodataState | None = None)

_get_base_url(repodata: dict, with_credentials: bool = True)→ str
In repodata_version=1, .tar.bz2 and .conda artifacts are assumed to be colocated next to repodata.json, in
the same server and directory.

In repodata_version=2, repodata.json files can define a 'base_url' field to override that default assumption.
See CEP-15 for more details.

This method deals with both cases and returns the appropriate value.

568 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

make_feature_record(feature_name)

deprecations

Tools to aid in deprecating code.

Classes

DeprecationHandler

Attributes

T

deprecated

T

exception DeprecatedError

Bases: RuntimeError

Unspecified run-time error.

class DeprecationHandler(version: str)

_version: str | None

_version_tuple: tuple[int, Ellipsis] | None

_version_object: packaging.version.Version | None

static _get_version_tuple(version: str)→ tuple[int, Ellipsis] | None
Return version as non-empty tuple of ints if possible, else None.

Parameters
version -- Version string to parse.

_version_less_than(version: str)→ bool
Test whether own version is less than the given version.

Parameters
version -- Version string to compare against.

__call__(deprecate_in: str, remove_in: str, *, addendum: str | None = None, stack: int = 0)→
Callable[[Callable[P, T]], Callable[P, T]]

Deprecation decorator for functions, methods, & classes.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

4.6. Developer guide 569

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

• remove_in -- Version in which code is expected to be removed.

• addendum -- Optional additional messaging. Useful to indicate what to do instead.

• stack -- Optional stacklevel increment.

argument(deprecate_in: str, remove_in: str, argument: str, *, rename: str | None = None, addendum: str |
None = None, stack: int = 0)→ Callable[[Callable[P, T]], Callable[P, T]]

Deprecation decorator for keyword arguments.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

• remove_in -- Version in which code is expected to be removed.

• argument -- The argument to deprecate.

• rename -- Optional new argument name.

• addendum -- Optional additional messaging. Useful to indicate what to do instead.

• stack -- Optional stacklevel increment.

action(deprecate_in: str, remove_in: str, action: ActionType, *, addendum: str | None = None, stack: int =
0)→ ActionType

Wraps any argparse.Action to issue a deprecation warning.

module(deprecate_in: str, remove_in: str, *, addendum: str | None = None, stack: int = 0)→ None
Deprecation function for modules.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

• remove_in -- Version in which code is expected to be removed.

• addendum -- Optional additional messaging. Useful to indicate what to do instead.

• stack -- Optional stacklevel increment.

constant(deprecate_in: str, remove_in: str, constant: str, value: Any, *, addendum: str | None = None,
stack: int = 0)→ None

Deprecation function for module constant/global.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

• remove_in -- Version in which code is expected to be removed.

• constant

• value

• addendum -- Optional additional messaging. Useful to indicate what to do instead.

• stack -- Optional stacklevel increment.

topic(deprecate_in: str, remove_in: str, *, topic: str, addendum: str | None = None, stack: int = 0)→ None
Deprecation function for a topic.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

• remove_in -- Version in which code is expected to be removed.

570 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

• topic -- The topic being deprecated.

• addendum -- Optional additional messaging. Useful to indicate what to do instead.

• stack -- Optional stacklevel increment.

_get_module(stack: int)→ tuple[types.ModuleType, str]
Detect the module from which we are being called.

Parameters
stack -- The stacklevel increment.

Returns
The module and module name.

_generate_message(deprecate_in: str, remove_in: str, prefix: str, addendum: str | None, *,
deprecation_type: type[Warning] = DeprecationWarning)→ tuple[type[Warning] |
None, str]

Generate the standardized deprecation message and determine whether the deprecation is pending, active,
or past.

Parameters
• deprecate_in -- Version in which code will be marked as deprecated.

• remove_in -- Version in which code is expected to be removed.

• prefix -- The message prefix, usually the function name.

• addendum -- Additional messaging. Useful to indicate what to do instead.

• deprecation_type -- The warning type to use for active deprecations.

Returns
The warning category (if applicable) and the message.

deprecated

env

env

Environment object describing the conda environment.yaml file.

Classes

Dependencies A dict subclass that parses the raw dependencies into a
conda and pip list

Environment A class representing an environment.yaml file

4.6. Developer guide 571

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Functions

validate_keys(data, kwargs) Check for unknown keys, remove them and print a warn-
ing

from_environment(name, prefix[, no_builds, ...]) Get Environment object from prefix
from_yaml(yamlstr, **kwargs) Load and return a Environment from a given yaml

string
_expand_channels(data) Expands Environment variables for the channels found

in the yaml data
from_file(filename) Load and return an Environment from a given file
get_filename(filename) Expand filename if local path or return the url
print_result(args, prefix, result) Print the result of an install operation

Attributes

VALID_KEYS

VALID_KEYS = ('name', 'dependencies', 'prefix', 'channels', 'variables')

validate_keys(data, kwargs)
Check for unknown keys, remove them and print a warning

from_environment(name, prefix, no_builds=False, ignore_channels=False, from_history=False)

Get Environment object from prefix

Parameters
• name -- The name of environment

• prefix -- The path of prefix

• no_builds -- Whether has build requirement

• ignore_channels -- whether ignore_channels

• from_history -- Whether environment file should be based on explicit specs in history

Returns: Environment object

from_yaml(yamlstr, **kwargs)
Load and return a Environment from a given yaml string

_expand_channels(data)
Expands Environment variables for the channels found in the yaml data

from_file(filename)
Load and return an Environment from a given file

class Dependencies(raw, *args, **kwargs)
Bases: dict

A dict subclass that parses the raw dependencies into a conda and pip list

572 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

parse()

Parse the raw dependencies into a conda and pip list

add(package_name)
Add a package to the Environment

class Environment(name=None, filename=None, channels=None, dependencies=None, prefix=None,
variables=None)

A class representing an environment.yaml file

add_channels(channels)
Add channels to the Environment

remove_channels()

Remove all channels from the Environment

to_dict(stream=None)
Convert information related to the Environment into a dictionary

to_yaml(stream=None)
Convert information related to the Environment into a yaml string

save()

Save the Environment data to a yaml file

get_filename(filename)
Expand filename if local path or return the url

print_result(args, prefix, result)
Print the result of an install operation

installers

base

Dynamic installer loading.

Functions

get_installer(name) Gets the installer for the given environment.

get_installer(name)

Gets the installer for the given environment.

Raises: InvalidInstaller if unable to load installer

4.6. Developer guide 573

conda, Release 24.3.1.dev75

conda

Conda-flavored installer.

Functions

solve(prefix, specs, args, env, *, **kwargs) Solve the environment
dry_run(specs, args, env, *_, **kwargs) Do a dry run of the environment solve
install(prefix, specs, args, env, *_, **kwargs) Install packages into an environment

solve(prefix, specs, args, env, *, **kwargs)
Solve the environment

dry_run(specs, args, env, *_, **kwargs)
Do a dry run of the environment solve

install(prefix, specs, args, env, *_, **kwargs)
Install packages into an environment

pip

Pip-flavored installer.

Functions

_pip_install_via_requirements(prefix, specs,
args, *_, ...)

Installs the pip dependencies in specs using a temporary
pip requirements file.

install(*args, **kwargs)

_pip_install_via_requirements(prefix, specs, args, *_, **kwargs)
Installs the pip dependencies in specs using a temporary pip requirements file.

Parameters
• prefix (string) -- The path to the python and pip executables.

• specs (iterable of strings) -- Each element should be a valid pip dependency. See:
https://pip.pypa.io/en/stable/user_guide/#requirements-files

https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format

install(*args, **kwargs)

574 Chapter 4. Contributors welcome

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://pip.pypa.io/en/stable/reference/pip_install/#requirements-file-format

conda, Release 24.3.1.dev75

pip_util

Functions related to core conda functionality that relates to pip

NOTE: This modules used to in conda, as conda/pip.py

Functions

pip_subprocess(args, prefix, cwd) Run pip in a subprocess
get_pip_installed_packages(stdout) Return the list of pip packages installed based on the

command output

pip_subprocess(args, prefix, cwd)
Run pip in a subprocess

get_pip_installed_packages(stdout)
Return the list of pip packages installed based on the command output

specs

binstar

Define binstar spec.

Classes

BinstarSpec spec = BinstarSpec('darth/deathstar')

Attributes

ENVIRONMENT_TYPE

ENVIRONMENT_TYPE = 'env'

class BinstarSpec(name=None)
spec = BinstarSpec('darth/deathstar') spec.can_handle() # => True / False spec.environment # => YAML string
spec.msg # => Error messages :raises: EnvironmentFileNotDownloaded

msg

can_handle()→ bool
Validates loader can process environment definition. :return: True or False

valid_name()→ bool
Validates name :return: True or False

4.6. Developer guide 575

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

valid_package()→ bool
Returns True if package has an environment file :return: True or False

binstar()→ types.ModuleType

file_data()→ list[dict[str, str]]

environment()→ conda.env.env.Environment

package()

username()→ str

packagename()→ str

requirements

Define requirements.txt spec.

Classes

RequirementsSpec Reads dependencies from a requirements.txt file

class RequirementsSpec(filename=None, name=None, **kwargs)
Reads dependencies from a requirements.txt file and returns an Environment object from it.

property environment

msg

extensions

_valid_file()

_valid_name()

can_handle()

yaml_file

Define YAML spec.

Classes

YamlFileSpec

class YamlFileSpec(filename=None, **kwargs)

576 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

property environment

_environment

extensions

can_handle()

Classes

BinstarSpec spec = BinstarSpec('darth/deathstar')
RequirementsSpec Reads dependencies from a requirements.txt file
YamlFileSpec

Functions

get_spec_class_from_file(→ FileSpecTypes) Determine spec class to use from the provided
filename

detect(→ SpecTypes) Return the appropriate spec type to use.

Attributes

CONDA_SESSION_SCHEMES

FileSpecTypes

SpecTypes

exception EnvironmentFileExtensionNotValid(filename, *args, **kwargs)
Bases: CondaEnvException

Common base class for all non-exit exceptions.

exception EnvironmentFileNotFound(filename, *args, **kwargs)
Bases: CondaEnvException

Common base class for all non-exit exceptions.

exception SpecNotFound(msg, *args, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

CONDA_SESSION_SCHEMES

4.6. Developer guide 577

conda, Release 24.3.1.dev75

class BinstarSpec(name=None)
spec = BinstarSpec('darth/deathstar') spec.can_handle() # => True / False spec.environment # => YAML string
spec.msg # => Error messages :raises: EnvironmentFileNotDownloaded

msg

can_handle()→ bool
Validates loader can process environment definition. :return: True or False

valid_name()→ bool
Validates name :return: True or False

valid_package()→ bool
Returns True if package has an environment file :return: True or False

binstar()→ types.ModuleType

file_data()→ list[dict[str, str]]

environment()→ conda.env.env.Environment

package()

username()→ str

packagename()→ str

class RequirementsSpec(filename=None, name=None, **kwargs)
Reads dependencies from a requirements.txt file and returns an Environment object from it.

property environment

msg

extensions

_valid_file()

_valid_name()

can_handle()

class YamlFileSpec(filename=None, **kwargs)

property environment

_environment

extensions

can_handle()

FileSpecTypes

get_spec_class_from_file(filename: str)→ FileSpecTypes
Determine spec class to use from the provided filename

Raises
EnvironmentFileExtensionNotValid | EnvironmentFileNotFound --

578 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

SpecTypes

detect(name: str = None, filename: str = None, directory: str = None, remote_definition: str = None)→
SpecTypes

Return the appropriate spec type to use.

Raises
• SpecNotFound -- Raised if no suitable spec class could be found given the input

• EnvironmentFileExtensionNotValid | EnvironmentFileNotFound --

exception_handler

Error handling and error reporting.

Classes

ExceptionHandler

Functions

conda_exception_handler(func, *args, **kwargs)

class ExceptionHandler

property http_timeout

property user_agent

property error_upload_url

property _isatty

__call__(func, *args, **kwargs)

write_out(*content)

handle_exception(exc_val, exc_tb)

handle_application_exception(exc_val, exc_tb)

_print_conda_exception(exc_val, exc_tb)

handle_unexpected_exception(exc_val, exc_tb)

handle_reportable_application_exception(exc_val, exc_tb)

get_error_report(exc_val, exc_tb)

4.6. Developer guide 579

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

print_unexpected_error_report(error_report)

print_expected_error_report(error_report)

_upload(error_report)→ None
Determine whether or not to upload the error report.

_ask_upload()

_execute_upload(error_report)

_post_upload(do_upload)

conda_exception_handler(func, *args, **kwargs)

exceptions

Conda exceptions.

Functions

maybe_raise(error, context)

print_conda_exception(exc_val[, exc_tb])

_format_exc([exc_val, exc_tb])

exception ResolvePackageNotFound(bad_deps)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception LockError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception ArgumentError(message, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

return_code = 2

exception Help(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception ActivateHelp

Bases: Help

Common base class for all non-exit exceptions.

580 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

exception DeactivateHelp

Bases: Help

Common base class for all non-exit exceptions.

exception GenericHelp(command)
Bases: Help

Common base class for all non-exit exceptions.

exception CondaSignalInterrupt(signum)

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception TooManyArgumentsError(expected, received, offending_arguments, optional_message='', *args)
Bases: ArgumentError

Common base class for all non-exit exceptions.

exception ClobberError(message, path_conflict, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

__repr__()

Return repr(self).

exception BasicClobberError(source_path, target_path, context)
Bases: ClobberError

Common base class for all non-exit exceptions.

exception KnownPackageClobberError(target_path, colliding_dist_being_linked, colliding_linked_dist,
context)

Bases: ClobberError

Common base class for all non-exit exceptions.

exception UnknownPackageClobberError(target_path, colliding_dist_being_linked, context)
Bases: ClobberError

Common base class for all non-exit exceptions.

exception SharedLinkPathClobberError(target_path, incompatible_package_dists, context)
Bases: ClobberError

Common base class for all non-exit exceptions.

exception CommandNotFoundError(command)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception PathNotFoundError(path)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

exception DirectoryNotFoundError(path)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

4.6. Developer guide 581

https://docs.python.org/3/library/exceptions.html#OSError

conda, Release 24.3.1.dev75

exception EnvironmentLocationNotFound(location)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception EnvironmentNameNotFound(environment_name)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception NoBaseEnvironmentError

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception DirectoryNotACondaEnvironmentError(target_directory)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaEnvironmentError(message, *args)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

exception DryRunExit

Bases: conda.CondaExitZero

Common base class for all non-exit exceptions.

exception CondaSystemExit(*args)
Bases: conda.CondaExitZero, SystemExit

Common base class for all non-exit exceptions.

exception PaddingError(dist, placeholder, placeholder_length)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception LinkError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaOSError(message, **kwargs)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

exception ProxyError

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaIOError(message, *args)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

582 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError

conda, Release 24.3.1.dev75

exception CondaFileIOError(filepath, message, *args)
Bases: CondaIOError

Common base class for all non-exit exceptions.

exception CondaKeyError(key, message, *args)
Bases: conda.CondaError, KeyError

Common base class for all non-exit exceptions.

exception ChannelError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception ChannelNotAllowed(channel)
Bases: ChannelError

Common base class for all non-exit exceptions.

exception UnavailableInvalidChannel(channel, status_code, response: requests.models.Response | None =
None)

Bases: ChannelError

Common base class for all non-exit exceptions.

status_code: str | int

exception OperationNotAllowed(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaImportError(message)
Bases: conda.CondaError, ImportError

Common base class for all non-exit exceptions.

exception ParseError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CouldntParseError(reason)
Bases: ParseError

Common base class for all non-exit exceptions.

exception ChecksumMismatchError(url, target_full_path, checksum_type, expected_checksum,
actual_checksum)

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception PackageNotInstalledError(prefix, package_name)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

4.6. Developer guide 583

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ImportError

conda, Release 24.3.1.dev75

exception CondaHTTPError(message, url, status_code, reason, elapsed_time, response=None,
caused_by=None)

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaSSLError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception AuthenticationError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception PackagesNotFoundError(packages, channel_urls=())
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception UnsatisfiableError(bad_deps, chains=True, strict=False)
Bases: conda.CondaError

An exception to report unsatisfiable dependencies.

Parameters
• bad_deps -- a list of tuples of objects (likely MatchSpecs).

• chains -- (optional) if True, the tuples are interpreted as chains of dependencies, from top
level to bottom. If False, the tuples are interpreted as simple lists of conflicting specs.

Returns
Raises an exception with a formatted message detailing the unsatisfiable specifications.

_format_chain_str(bad_deps)

exception RemoveError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception DisallowedPackageError(package_ref , **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception SpecsConfigurationConflictError(requested_specs, pinned_specs, prefix)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaIndexError(message)
Bases: conda.CondaError, IndexError

Common base class for all non-exit exceptions.

exception CondaValueError(message, *args, **kwargs)
Bases: conda.CondaError, ValueError

Common base class for all non-exit exceptions.

584 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#ValueError

conda, Release 24.3.1.dev75

exception CyclicalDependencyError(packages_with_cycles, **kwargs)
Bases: conda.CondaError, ValueError

Common base class for all non-exit exceptions.

exception CorruptedEnvironmentError(environment_location, corrupted_file, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaHistoryError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaUpgradeError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaVerificationError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception SafetyError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaMemoryError(caused_by, **kwargs)
Bases: conda.CondaError, MemoryError

Common base class for all non-exit exceptions.

exception NotWritableError(path, errno, **kwargs)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

exception NoWritableEnvsDirError(envs_dirs, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception NoWritablePkgsDirError(pkgs_dirs, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception EnvironmentNotWritableError(environment_location, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaDependencyError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

4.6. Developer guide 585

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#MemoryError
https://docs.python.org/3/library/exceptions.html#OSError

conda, Release 24.3.1.dev75

exception BinaryPrefixReplacementError(path, placeholder, new_prefix, original_data_length,
new_data_length)

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception InvalidSpec(message: str, **kwargs)
Bases: conda.CondaError, ValueError

Common base class for all non-exit exceptions.

exception InvalidVersionSpec(invalid_spec: str, details: str)
Bases: InvalidSpec

Common base class for all non-exit exceptions.

exception InvalidMatchSpec(invalid_spec: str, details: str)
Bases: InvalidSpec

Common base class for all non-exit exceptions.

exception EncodingError(caused_by, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception NoSpaceLeftError(caused_by, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaEnvException(message, *args, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception EnvironmentFileNotFound(filename, *args, **kwargs)
Bases: CondaEnvException

Common base class for all non-exit exceptions.

exception EnvironmentFileExtensionNotValid(filename, *args, **kwargs)
Bases: CondaEnvException

Common base class for all non-exit exceptions.

exception EnvironmentFileEmpty(filename, *args, **kwargs)
Bases: CondaEnvException

Common base class for all non-exit exceptions.

exception EnvironmentFileNotDownloaded(username, packagename, *args, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception SpecNotFound(msg, *args, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

586 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

exception PluginError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

maybe_raise(error, context)

print_conda_exception(exc_val, exc_tb=None)

_format_exc(exc_val=None, exc_tb=None)

exception InvalidInstaller(name)
Bases: Exception

Common base class for all non-exit exceptions.

exports

Backported exports for conda-build.

Classes

Completer

InstalledPackages

4.6. Developer guide 587

https://docs.python.org/3/library/exceptions.html#Exception

conda, Release 24.3.1.dev75

Functions

iteritems(d, **kw)

rm_rf (path[, max_retries, trash])

hash_file(_)

verify(_)

display_actions(actions, index[,
show_channel_urls, ...])
get_index([channel_urls, prepend, platform, ...])

fetch_index(channel_urls[, use_cache, index])

package_cache()

symlink_conda(prefix, root_dir[, shell])

_symlink_conda_hlp(prefix, root_dir, where, sym-
link_fn)
win_conda_bat_redirect(src, dst, shell) Special function for Windows XP where the CreateSym-

bolicLink
linked_data(prefix[, ignore_channels]) Return a dictionary of the linked packages in prefix.
linked(prefix[, ignore_channels]) Return the Dists of linked packages in prefix.
is_linked(prefix, dist) Return the install metadata for a linked package in a pre-

fix, or None
download(url, dst_path[, session, md5sum, urlstxt, ...])

588 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

non_x86_linux_machines

get_default_urls

arch_name

binstar_upload

bits

default_prefix

default_python

envs_dirs

pkgs_dirs

platform

root_dir

root_writable

subdir

conda_build

get_rc_urls

get_local_urls

load_condarc

PaddingError

LinkError

CondaOSError

CondaFileNotFoundError

PY3

string_types

text_type

KEYS

KEYS_DIR

4.6. Developer guide 589

conda, Release 24.3.1.dev75

non_x86_linux_machines

get_default_urls

arch_name

binstar_upload

bits

default_prefix

default_python

envs_dirs

pkgs_dirs

platform

root_dir

root_writable

subdir

conda_build

get_rc_urls

get_local_urls

load_condarc

PaddingError

LinkError

CondaOSError

CondaFileNotFoundError

PY3 = True

string_types

text_type

iteritems(d, **kw)

class Completer

get_items()

__contains__(item)

__iter__()

class InstalledPackages

rm_rf(path, max_retries=5, trash=True)

590 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

KEYS

KEYS_DIR

hash_file(_)

verify(_)

display_actions(actions, index, show_channel_urls=None, specs_to_remove=(), specs_to_add=())

get_index(channel_urls=(), prepend=True, platform=None, use_local=False, use_cache=False, unknown=None,
prefix=None)

fetch_index(channel_urls, use_cache=False, index=None)

package_cache()

symlink_conda(prefix, root_dir, shell=None)

_symlink_conda_hlp(prefix, root_dir, where, symlink_fn)

win_conda_bat_redirect(src, dst, shell)
Special function for Windows XP where the CreateSymbolicLink function is not available.

Simply creates a .bat file at dst which calls src together with all command line arguments.

Works of course only with callable files, e.g. .bat or .exe files.

linked_data(prefix, ignore_channels=False)
Return a dictionary of the linked packages in prefix.

linked(prefix, ignore_channels=False)
Return the Dists of linked packages in prefix.

is_linked(prefix, dist)
Return the install metadata for a linked package in a prefix, or None if the package is not linked in the prefix.

download(url, dst_path, session=None, md5sum=None, urlstxt=False, retries=3, sha256=None, size=None)

gateways

Gateways isolate interaction of conda code with the outside world. Disk manipulation, database interaction, and remote
requests should all be through various gateways. Functions and methods in conda.gatewaysmust use conda.models
for arguments and return values.

Conda modules importable from conda.gateways are

• conda._vendor

• conda.common

• conda.models

• conda.gateways

Conda modules off limits for import within conda.gateways are

• conda.api

• conda.cli

• conda.client

4.6. Developer guide 591

conda, Release 24.3.1.dev75

• conda.core

Conda modules strictly prohibited from importing conda.gateways are

• conda.api

• conda.cli

• conda.client

anaconda_client

Anaconda-client (binstar) token management for CondaSession.

Classes

EnvAppDirs

Functions

replace_first_api_with_conda(url)

_get_binstar_token_directory()

read_binstar_tokens()

set_binstar_token(url, token)

remove_binstar_token(url)

replace_first_api_with_conda(url)

class EnvAppDirs(appname, appauthor, root_path)

property user_data_dir

property site_data_dir

property user_cache_dir

property user_log_dir

_get_binstar_token_directory()

read_binstar_tokens()

set_binstar_token(url, token)

remove_binstar_token(url)

592 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

connection

adapters

ftp

Defines FTP transport adapter for CondaSession (requests.Session).

Taken from requests-ftp (https://github.com/Lukasa/requests-ftp/blob/master/requests_ftp/ftp.py).

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

Classes

FTPAdapter A Requests Transport Adapter that handles FTP urls.

Functions

_new_makepasv(self)

data_callback_factory(variable) Returns a callback suitable for use by the FTP library.
This callback

build_text_response(request, data, code) Build a response for textual data.
build_binary_response(request, data, code) Build a response for data whose encoding is unknown.
build_response(request, data, code, encoding) Builds a response object from the data returned by ftplib,

using the
parse_multipart_files(request) Given a prepared request, return a file-like object con-

taining the
get_status_code_from_code_response(code) Handle complicated code response, even multi-lines.

Attributes

_old_makepasv

_old_makepasv

_new_makepasv(self)

4.6. Developer guide 593

https://github.com/Lukasa/requests-ftp/blob/master/requests_ftp/ftp.py
http://www.apache.org/licenses/LICENSE-2.0

conda, Release 24.3.1.dev75

class FTPAdapter

Bases: conda.gateways.connection.BaseAdapter

A Requests Transport Adapter that handles FTP urls.

send(request, **kwargs)
Sends a PreparedRequest object over FTP. Returns a response object.

close()

Dispose of any internal state.

list(path, request)
Executes the FTP LIST command on the given path.

retr(path, request)
Executes the FTP RETR command on the given path.

stor(path, request)
Executes the FTP STOR command on the given path.

nlst(path, request)
Executes the FTP NLST command on the given path.

get_username_password_from_header(request)
Given a PreparedRequest object, reverse the process of adding HTTP Basic auth to obtain the username and
password. Allows the FTP adapter to piggyback on the basic auth notation without changing the control
flow.

get_host_and_path_from_url(request)
Given a PreparedRequest object, split the URL in such a manner as to determine the host and the path. This
is a separate method to wrap some of urlparse's craziness.

data_callback_factory(variable)
Returns a callback suitable for use by the FTP library. This callback will repeatedly save data into the variable
provided to this function. This variable should be a file-like structure.

build_text_response(request, data, code)
Build a response for textual data.

build_binary_response(request, data, code)
Build a response for data whose encoding is unknown.

build_response(request, data, code, encoding)
Builds a response object from the data returned by ftplib, using the specified encoding.

parse_multipart_files(request)
Given a prepared request, return a file-like object containing the original data. This is pretty hacky.

get_status_code_from_code_response(code)
Handle complicated code response, even multi-lines.

We get the status code in two ways: - extracting the code from the last valid line in the response - getting it from
the 3 first digits in the code After a comparison between the two values, we can safely set the code or raise a
warning. .. rubric:: Examples

• get_status_code_from_code_response('200 Welcome') == 200

• multi_line_code = '226-File successfully transferredn226 0.000 seconds'
get_status_code_from_code_response(multi_line_code) == 226

594 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• multi_line_with_code_conflicts = '200-File successfully transferredn226 0.000 seconds'
get_status_code_from_code_response(multi_line_with_code_conflicts) == 226

For more detail see RFC 959, page 36, on multi-line responses:
https://www.ietf.org/rfc/rfc959.txt "Thus the format for multi-line replies is that the first line

will begin with the exact required reply code, followed immediately by a Hyphen, "-" (also known
as Minus), followed by text. The last line will begin with the same code, followed immediately
by Space <SP>, optionally some text, and the Telnet end-of-line code."

http

Defines HTTP transport adapter for CondaSession (requests.Session).

Closely derived from pip:

https://github.com/pypa/pip/blob/8c24fd2a80bad21aa29aec02fb48bd89a1e8f5e1/src/pip/_internal/network/session.
py#L254

Under the MIT license:

Copyright (c) 2008-2023 The pip developers (see AUTHORS.txt file on the pip repository)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Classes

_SSLContextAdapterMixin Mixin to add the ssl_context constructor argument to
HTTP adapters.

HTTPAdapter Mixin to add the ssl_context constructor argument to
HTTP adapters.

class _SSLContextAdapterMixin(*, ssl_context: ssl.SSLContext | None = None, **kwargs: Any)
Mixin to add the ssl_context constructor argument to HTTP adapters.

The additional argument is forwarded directly to the pool manager. This allows us to dynamically decide what
SSL store to use at runtime, which is used to implement the optional truststore backend.

init_poolmanager(connections: int, maxsize: int, block: bool = DEFAULT_POOLBLOCK ,
**pool_kwargs: Any)→ urllib3.PoolManager

4.6. Developer guide 595

https://www.ietf.org/rfc/rfc959.txt
https://github.com/pypa/pip/blob/8c24fd2a80bad21aa29aec02fb48bd89a1e8f5e1/src/pip/_internal/network/session.py#L254
https://github.com/pypa/pip/blob/8c24fd2a80bad21aa29aec02fb48bd89a1e8f5e1/src/pip/_internal/network/session.py#L254
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

class HTTPAdapter(*, ssl_context: ssl.SSLContext | None = None, **kwargs: Any)
Bases: _SSLContextAdapterMixin, conda.gateways.connection.HTTPAdapter

Mixin to add the ssl_context constructor argument to HTTP adapters.

The additional argument is forwarded directly to the pool manager. This allows us to dynamically decide what
SSL store to use at runtime, which is used to implement the optional truststore backend.

localfs

Defines local filesystem transport adapter for CondaSession (requests.Session).

Classes

LocalFSAdapter The Base Transport Adapter

class LocalFSAdapter

Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

send(request, stream=None, timeout=None, verify=None, cert=None, proxies=None)
Sends PreparedRequest object. Returns Response object.

Parameters
• request -- The PreparedRequest being sent.

• stream -- (optional) Whether to stream the request content.

• timeout (float or tuple) -- (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• verify -- (optional) Either a boolean, in which case it controls whether we verify the
server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use

• cert -- (optional) Any user-provided SSL certificate to be trusted.

• proxies -- (optional) The proxies dictionary to apply to the request.

close()

Cleans up adapter specific items.

s3

Defines S3 transport adapter for CondaSession (requests.Session).

596 Chapter 4. Contributors welcome

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

Classes

S3Adapter The Base Transport Adapter

Attributes

stderrlog

stderrlog

class S3Adapter

Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

send(request: conda.gateways.connection.PreparedRequest, stream: bool = False, timeout: None | float |
tuple[float, float] | tuple[float, None] = None, verify: bool | str = True, cert: None | bytes | str |
tuple[bytes | str, bytes | str] = None, proxies: dict[str, str] | None = None)→
conda.gateways.connection.Response

Sends PreparedRequest object. Returns Response object.

Parameters
• request -- The PreparedRequest being sent.

• stream -- (optional) Whether to stream the request content.

• timeout (float or tuple) -- (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• verify -- (optional) Either a boolean, in which case it controls whether we verify the
server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use

• cert -- (optional) Any user-provided SSL certificate to be trusted.

• proxies -- (optional) The proxies dictionary to apply to the request.

close()

Cleans up adapter specific items.

_send_boto3(resp: conda.gateways.connection.Response, request:
conda.gateways.connection.PreparedRequest)→ conda.gateways.connection.Response

_write_tempfile(writer_callable)

4.6. Developer guide 597

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

download

Download logic for conda indices and packages.

Classes

TmpDownload Context manager to handle downloads to a tempfile.

Functions

disable_ssl_verify_warning()

download(url, target_full_path[, md5, sha256, size, ...])

download_inner(url, target_full_path, md5, sha256,
...)
download_partial_file(target_full_path, *, url, ...) Create or open locked partial download file, moving onto

target_full_path
download_http_errors(url) Exception translator used inside download()
download_text(url)

Attributes

CHUNK_SIZE

CHUNK_SIZE

disable_ssl_verify_warning()

download(url, target_full_path, md5=None, sha256=None, size=None, progress_update_callback=None)

download_inner(url, target_full_path, md5, sha256, size, progress_update_callback)

download_partial_file(target_full_path: str | pathlib.Path, *, url: str, sha256: str, md5: str, size: int)
Create or open locked partial download file, moving onto target_full_path when finished. Preserve partial file on
exception.

download_http_errors(url: str)
Exception translator used inside download()

download_text(url)

class TmpDownload(url, verbose=True)
Context manager to handle downloads to a tempfile.

598 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

__enter__()

__exit__(exc_type, exc_value, traceback)

session

Requests session configured with all accepted scheme adapters.

Classes

EnforceUnusedAdapter The Base Transport Adapter
CondaSessionType Takes advice from https://github.com/requests/requests/

issues/1871#issuecomment-33327847
CondaSession A Requests session.
CondaHttpAuth Base class that all auth implementations derive from

Functions

get_channel_name_from_url(→ str | None) Given a URL, determine the channel it belongs to and
return its name.

get_session(url) Function that determines the correct Session object to be
returned

get_session_storage_key(→ str) Function that determines which storage key to use for our
CondaSession object caching

Attributes

RETRIES

CONDA_SESSION_SCHEMES

RETRIES = 3

CONDA_SESSION_SCHEMES

class EnforceUnusedAdapter

Bases: conda.gateways.connection.BaseAdapter

The Base Transport Adapter

send(request, *args, **kwargs)
Sends PreparedRequest object. Returns Response object.

Parameters
• request -- The PreparedRequest being sent.

4.6. Developer guide 599

https://github.com/requests/requests/issues/1871#issuecomment-33327847
https://github.com/requests/requests/issues/1871#issuecomment-33327847

conda, Release 24.3.1.dev75

• stream -- (optional) Whether to stream the request content.

• timeout (float or tuple) -- (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• verify -- (optional) Either a boolean, in which case it controls whether we verify the
server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use

• cert -- (optional) Any user-provided SSL certificate to be trusted.

• proxies -- (optional) The proxies dictionary to apply to the request.

abstract close()

Cleans up adapter specific items.

get_channel_name_from_url(url: str)→ str | None
Given a URL, determine the channel it belongs to and return its name.

get_session(url: str)
Function that determines the correct Session object to be returned based on the URL that is passed in.

get_session_storage_key(auth)→ str
Function that determines which storage key to use for our CondaSession object caching

class CondaSessionType

Bases: type

Takes advice from https://github.com/requests/requests/issues/1871#issuecomment-33327847 and creates one
Session instance per thread.

__call__(**kwargs)
Call self as a function.

class CondaSession(auth: conda.gateways.connection.AuthBase | tuple[str, str] | None = None)
Bases: conda.gateways.connection.Session

A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Basic Usage:

>>> import requests
>>> s = requests.Session()
>>> s.get('https://httpbin.org/get')
<Response [200]>

Or as a context manager:

>>> with requests.Session() as s:
... s.get('https://httpbin.org/get')
<Response [200]>

classmethod cache_clear()

class CondaHttpAuth

Bases: conda.gateways.connection.AuthBase

Base class that all auth implementations derive from

600 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://github.com/requests/requests/issues/1871#issuecomment-33327847
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

__call__(request)

static _apply_basic_auth(request)

static add_binstar_token(url)

static handle_407(response, **kwargs)
Prompts the user for the proxy username and password and modifies the proxy in the session object to
include it.

This method is modeled after
• requests.auth.HTTPDigestAuth.handle_401()

• requests.auth.HTTPProxyAuth

• the previous conda.fetch.handle_proxy_407()

It both adds 'username:password' to the proxy URL, as well as adding a 'Proxy-Authorization' header. If
any of this is incorrect, please file an issue.

disk

create

Disk utility functions for creating new files or directories.

Classes

TemporaryDirectory Create and return a temporary directory. This has the
same

ProgressFileWrapper

4.6. Developer guide 601

conda, Release 24.3.1.dev75

Functions

write_as_json_to_file(file_path, obj)

create_python_entry_point(target_full_path, ...)

create_application_entry_point(source_full_path,
...)
extract_tarball(tarball_full_path[, ...])

make_menu(prefix, file_path[, remove]) Create cross-platform menu items (e.g. Windows Start
Menu)

create_hard_link_or_copy(src, dst)

_is_unix_executable_using_ORIGIN(path)

_do_softlink(src, dst)

create_fake_executable_softlink(src, dst)

copy(src, dst)

_do_copy(src, dst)

create_link(src, dst[, link_type, force])

compile_multiple_pyc(python_exe_full_path, ...)

create_package_cache_directory(pkgs_dir)

create_envs_directory(envs_dir)

Attributes

stdoutlog

mkdir_p

python_entry_point_template

application_entry_point_template

class TemporaryDirectory(suffix='', prefix='tmp', dir=None)
Create and return a temporary directory. This has the same behavior as mkdtemp but can be used as a context
manager. For .. rubric:: Example

with TemporaryDirectory() as tmpdir:
...

602 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Upon exiting the context, the directory and everything contained in it are removed.

name

_closed = False

__repr__()

Return repr(self).

__enter__()

cleanup(_warn=False, _warnings=_warnings)

__exit__(exc, value, tb)

__del__()

stdoutlog

mkdir_p

python_entry_point_template

application_entry_point_template

write_as_json_to_file(file_path, obj)

create_python_entry_point(target_full_path, python_full_path, module, func)

create_application_entry_point(source_full_path, target_full_path, python_full_path)

class ProgressFileWrapper(fileobj, progress_update_callback)

__getattr__(name)

__setattr__(name, value)
Implement setattr(self, name, value).

read(size=-1)

progress_update()

extract_tarball(tarball_full_path, destination_directory=None, progress_update_callback=None)

make_menu(prefix, file_path, remove=False)
Create cross-platform menu items (e.g. Windows Start Menu)

Passes all menu config files %PREFIX%/Menu/*.json to menuinst.install. remove=True will remove the
menu items.

create_hard_link_or_copy(src, dst)

_is_unix_executable_using_ORIGIN(path)

_do_softlink(src, dst)

create_fake_executable_softlink(src, dst)

copy(src, dst)

_do_copy(src, dst)

4.6. Developer guide 603

conda, Release 24.3.1.dev75

create_link(src, dst, link_type=LinkType.hardlink, force=False)

compile_multiple_pyc(python_exe_full_path, py_full_paths, pyc_full_paths, prefix, py_ver)

create_package_cache_directory(pkgs_dir)

create_envs_directory(envs_dir)

delete

Disk utility functions for deleting files and folders.

Functions

rmtree(path, *args, **kwargs)

unlink_or_rename_to_trash (path) If files are in use, especially on windows, we can't re-
move them.

remove_empty_parent_paths(path)

rm_rf (path[, max_retries, trash,
clean_empty_parents])

Completely delete path

delete_trash (prefix)

backoff_rmdir(dirpath[, max_tries])

path_is_clean(path) Sometimes we can't completely remove a path because
files are considered in use

rmtree(path, *args, **kwargs)

unlink_or_rename_to_trash(path)
If files are in use, especially on windows, we can't remove them. The fallback path is to rename them (but keep
their folder the same), which maintains the file handle validity. See comments at: https://serverfault.com/a/
503769

remove_empty_parent_paths(path)

rm_rf(path, max_retries=5, trash=True, clean_empty_parents=False, *args, **kw)
Completely delete path max_retries is the number of times to retry on failure. The default is 5. This only applies
to deleting a directory. If removing path fails and trash is True, files will be moved to the trash directory.

delete_trash(prefix)

backoff_rmdir(dirpath, max_tries=MAX_TRIES)

path_is_clean(path)
Sometimes we can't completely remove a path because files are considered in use by python (hardlinking con-
fusion). For our tests, it is sufficient that either the folder doesn't exist, or nothing but temporary file copies are
left.

604 Chapter 4. Contributors welcome

https://serverfault.com/a/503769
https://serverfault.com/a/503769

conda, Release 24.3.1.dev75

link

Disk utility functions for symlinking files and folders.

Portions of the code within this module are taken from https://github.com/jaraco/jaraco.windows which is MIT licensed
by Jason R. Coombs.

https://github.com/jaraco/skeleton/issues/1#issuecomment-285448440

lchmod

link

islink

lock

Record locking to manage potential repodata / repodata metadata file contention between conda processes. Try to
acquire a lock on a single byte in the metadat file; modify both files; then release the lock.

Functions

_lock_noop(fd) When locking is not available.
_lock_impl(fd)

lock(fd)

Attributes

LOCK_BYTE

LOCK_ATTEMPTS

LOCK_SLEEP

LOCK_BYTE = 21

LOCK_ATTEMPTS = 10

LOCK_SLEEP = 1

_lock_noop(fd)
When locking is not available.

_lock_impl(fd)

lock(fd)

4.6. Developer guide 605

https://github.com/jaraco/jaraco.windows
https://github.com/jaraco/skeleton/issues/1#issuecomment-285448440

conda, Release 24.3.1.dev75

permissions

Disk utility functions for modifying file and directory permissions.

Functions

make_writable(path)

make_read_only(path)

recursive_make_writable(path[, max_tries])

make_executable(path)

is_executable(path)

make_writable(path)

make_read_only(path)

recursive_make_writable(path, max_tries=MAX_TRIES)

make_executable(path)

is_executable(path)

read

Disk utility functions for reading and processing file contents.

606 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

yield_lines(path) Generator function for lines in file. Empty generator if
path does not exist.

compute_sum(→ str)

read_package_info(record, package_cache_record)

read_index_json(extracted_package_directory)

read_index_json_from_tarball(package_tarball_full_path)

read_repodata_json(extracted_package_directory)

read_icondata(extracted_package_directory)

read_package_metadata(extracted_package_directory)

read_paths_json(extracted_package_directory)

read_has_prefix(path) Reads has_prefix file and return dict mapping filepaths
to tuples(placeholder, FileMode).

read_no_link(info_dir)

read_soft_links(extracted_package_directory, files)

read_python_record(prefix_path, anchor_file, ...) Convert a python package defined by an anchor file
(Metadata information)

Attributes

listdir

listdir

yield_lines(path)
Generator function for lines in file. Empty generator if path does not exist.

Parameters
path (str) -- path to file

Returns
each line in file, not starting with '#'

Return type
iterator

compute_sum(path: str | os.PathLike, algo: Literal[md5, sha256])→ str

read_package_info(record, package_cache_record)

4.6. Developer guide 607

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

read_index_json(extracted_package_directory)

read_index_json_from_tarball(package_tarball_full_path)

read_repodata_json(extracted_package_directory)

read_icondata(extracted_package_directory)

read_package_metadata(extracted_package_directory)

read_paths_json(extracted_package_directory)

read_has_prefix(path)
Reads has_prefix file and return dict mapping filepaths to tuples(placeholder, FileMode).

A line in has_prefix contains one of:
• filepath

• placeholder mode filepath

Mode values are one of:
• text

• binary

read_no_link(info_dir)

read_soft_links(extracted_package_directory, files)

read_python_record(prefix_path, anchor_file, python_version)
Convert a python package defined by an anchor file (Metadata information) into a conda prefix record object.

test

Disk utility functions testing path properties (e.g., writable, hardlinks, softlinks, etc.).

Functions

file_path_is_writable(path)

hardlink_supported(source_file, dest_dir)

softlink_supported(source_file, dest_dir)

is_conda_environment(prefix)

file_path_is_writable(path)

hardlink_supported(source_file, dest_dir)

softlink_supported(source_file, dest_dir)

is_conda_environment(prefix)

608 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

update

Disk utility functions for modifying existing files or directories.

Functions

update_file_in_place_as_binary(file_full_path,
callback)
rename(source_path, destination_path[, force])

rename_context(source[, destination, dry_run]) Used for removing a directory when there are dependent
actions (i.e. you need to ensure

backoff_rename(source_path, destination_path[,
force])
touch (path[, mkdir, sudo_safe])

Attributes

SHEBANG_REGEX

SHEBANG_REGEX

exception CancelOperation

Bases: Exception

Common base class for all non-exit exceptions.

update_file_in_place_as_binary(file_full_path, callback)

rename(source_path, destination_path, force=False)

rename_context(source: str, destination: str | None = None, dry_run: bool = False)
Used for removing a directory when there are dependent actions (i.e. you need to ensure other actions succeed
before removing it).

Example

with rename_context(directory):
Do dependent actions here

backoff_rename(source_path, destination_path, force=False)

touch(path, mkdir=False, sudo_safe=False)

4.6. Developer guide 609

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Functions

exp_backoff_fn(fn, *args, **kwargs) Mostly for retrying file operations that fail on Windows
due to virus scanners

mkdir_p(path)

mkdir_p_sudo_safe(path)

Attributes

on_win

TRACE

MAX_TRIES

on_win

TRACE = 5

MAX_TRIES = 7

exp_backoff_fn(fn, *args, **kwargs)
Mostly for retrying file operations that fail on Windows due to virus scanners

mkdir_p(path)

mkdir_p_sudo_safe(path)

logging

Configure logging for conda.

Classes

TokenURLFilter Filter instances are used to perform arbitrary filtering of
LogRecords.

StdStreamHandler Log StreamHandler that always writes to the current sys
stream.

610 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

initialize_logging()

initialize_std_loggers()

initialize_root_logger([level])

set_conda_log_level([level])

set_all_logger_level([level])

set_file_logging([logger_name, level, path])

set_verbosity(verbosity)

set_log_level(log_level)

trace(self, message, *args, **kwargs)

Attributes

_VERBOSITY_LEVELS

_VERBOSITY_LEVELS

class TokenURLFilter(name='')
Bases: logging.Filter

Filter instances are used to perform arbitrary filtering of LogRecords.

Loggers and Handlers can optionally use Filter instances to filter records as desired. The base filter class only
allows events which are below a certain point in the logger hierarchy. For example, a filter initialized with "A.B"
will allow events logged by loggers "A.B", "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
initialized with the empty string, all events are passed.

TOKEN_URL_PATTERN

TOKEN_REPLACE

filter(record)
Since Python 2's getMessage() is incapable of handling any strings that are not unicode when it interpolates
the message with the arguments, we fix that here by doing it ourselves.

At the same time we replace tokens in the arguments which was not happening until now.

class StdStreamHandler(sys_stream)

Bases: logging.StreamHandler

Log StreamHandler that always writes to the current sys stream.

4.6. Developer guide 611

https://docs.python.org/3/library/logging.html#logging.Filter
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler

conda, Release 24.3.1.dev75

terminator = '\n'

__getattr__(attr)

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an 'encoding' attribute, it is used to determine how to do the
output to the stream.

initialize_logging()

initialize_std_loggers()

initialize_root_logger(level=ERROR)

set_conda_log_level(level=WARN)

set_all_logger_level(level=DEBUG)

set_file_logging(logger_name=None, level=DEBUG, path=None)

set_verbosity(verbosity: int)

set_log_level(log_level: int)

trace(self , message, *args, **kwargs)

repodata

Repodata interface.

jlap

Incremental repodata feature based on .jlap patch files.

core

JLAP reader.

Classes

JLAP A more or less complete user-defined wrapper around
list objects.

612 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

Functions

keyed_hash (data, key) Keyed hash.
line_and_pos(→ Iterator[tuple[int, bytes]])

param lines
iterator over input split by 'n', with 'n'
removed.

Attributes

DIGEST_SIZE

DEFAULT_IV

DIGEST_SIZE = 32

DEFAULT_IV

keyed_hash(data: bytes, key: bytes)
Keyed hash.

line_and_pos(lines: Iterable[bytes], pos=0)→ Iterator[tuple[int, bytes]]

Parameters
• lines -- iterator over input split by 'n', with 'n' removed.

• pos -- initial position

class JLAP(initlist=None)
Bases: collections.UserList

A more or less complete user-defined wrapper around list objects.

property body

All lines except the first, and last two.

property penultimate

Next-to-last line. Should contain the footer.

property last

Last line. Should contain the trailing checksum.

classmethod from_lines(lines: Iterable[bytes], iv: bytes, pos=0, verify=True)

Parameters
• lines -- iterator over input split by b'n', with b'n' removed

• pos -- initial position

• iv -- initialization vector (first line of .jlap stream, hex decoded). Ignored if pos==0.

4.6. Developer guide 613

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.html#collections.UserList
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

conda, Release 24.3.1.dev75

• verify -- assert last line equals computed checksum of previous line. Useful for writing
new .jlap files if False.

Raises
ValueError -- if trailing and computed checksums do not match

Returns
list of (offset, line, checksum)

classmethod from_path(path: pathlib.Path | str, verify=True)

add(line: str)
Add line to buffer, following checksum rules.

Buffer must not be empty.

(Remember to pop trailing checksum and possibly trailing metadata line, if appending to a complete jlap
file)

Less efficient than creating a new buffer from many lines and our last iv, and extending.

Returns
self

terminate()

Add trailing checksum to buffer.

Returns
self

write(path: pathlib.Path)
Write buffer to path.

fetch

JLAP consumer.

Classes

HashWriter Base class for raw binary I/O.

614 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

conda, Release 24.3.1.dev75

Functions

hash () Ordinary hash.
process_jlap_response(response[, pos, iv])

fetch_jlap(url[, pos, etag, iv, ignore_etag, session])

request_jlap(url[, pos, etag, ignore_etag, session]) Return the part of the remote .jlap file we are interested
in.

format_hash (hash) Abbreviate hash for formatting.
find_patches(patches, have, want)

apply_patches(data, apply)

withext(url, ext)

timeme(message)

build_headers(json_path, state) Caching headers for a path and state.
download_and_hash (hasher, url, json_path, session,
state)

Download url if it doesn't exist, passing bytes through
hasher.update().

_is_http_error_most_400_codes(→ bool) Determine whether the HTTPError is an HTTP 400 er-
ror code (except for 416).

request_url_jlap_state(→ dict | None)

Attributes

DIGEST_SIZE

JLAP_KEY

HEADERS

NOMINAL_HASH

ON_DISK_HASH

LATEST

STORE_HEADERS

DIGEST_SIZE = 32

JLAP_KEY = 'jlap'

HEADERS = 'headers'

NOMINAL_HASH = 'blake2_256_nominal'

4.6. Developer guide 615

conda, Release 24.3.1.dev75

ON_DISK_HASH = 'blake2_256'

LATEST = 'latest'

STORE_HEADERS

hash()

Ordinary hash.

exception Jlap304NotModified

Bases: Exception

Common base class for all non-exit exceptions.

exception JlapSkipZst

Bases: Exception

Common base class for all non-exit exceptions.

exception JlapPatchNotFound

Bases: LookupError

Base class for lookup errors.

process_jlap_response(response: conda.gateways.connection.Response, pos=0, iv=b'')

fetch_jlap(url, pos=0, etag=None, iv=b'', ignore_etag=True, session=None)

request_jlap(url, pos=0, etag=None, ignore_etag=True, session: conda.gateways.connection.Session | None =
None)

Return the part of the remote .jlap file we are interested in.

format_hash(hash)
Abbreviate hash for formatting.

find_patches(patches, have, want)

apply_patches(data, apply)

withext(url, ext)

timeme(message)

build_headers(json_path: pathlib.Path, state: conda.gateways.repodata.RepodataState)
Caching headers for a path and state.

class HashWriter(backing, hasher)
Bases: io.RawIOBase

Base class for raw binary I/O.

write(b: bytes)

close()

Flush and close the IO object.

This method has no effect if the file is already closed.

616 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#LookupError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/io.html#io.RawIOBase
https://docs.python.org/3/library/stdtypes.html#bytes

conda, Release 24.3.1.dev75

download_and_hash(hasher, url, json_path: pathlib.Path, session: conda.gateways.connection.Session, state:
conda.gateways.repodata.RepodataState | None, is_zst=False, dest_path: pathlib.Path | None
= None)

Download url if it doesn't exist, passing bytes through hasher.update().

json_path: Path of old cached data (ignore etag if not exists). dest_path: Path to write new data.

_is_http_error_most_400_codes(e: requests.HTTPError)→ bool
Determine whether the HTTPError is an HTTP 400 error code (except for 416).

request_url_jlap_state(url, state: conda.gateways.repodata.RepodataState, full_download=False, *, session:
conda.gateways.connection.Session, cache: conda.gateways.repodata.RepodataCache,
temp_path: pathlib.Path)→ dict | None

interface

JLAP interface for repodata.

Classes

JlapRepoInterface Helper class that provides a standard way to create an
ABC using

RepodataStateSkipFormat Load/save info file that accompanies cached repo-
data.json.

ZstdRepoInterface Support repodata.json.zst (if available) without checking
.jlap

class JlapRepoInterface(url: str, repodata_fn: str | None, *, cache: conda.gateways.repodata.RepodataCache,
**kwargs)

Bases: conda.gateways.repodata.RepoInterface

Helper class that provides a standard way to create an ABC using inheritance.

repodata(state: dict | conda.gateways.repodata.RepodataState)→ str | None
Fetch newest repodata if necessary.

Always writes to cache_path_json.

repodata_parsed(state: dict | conda.gateways.repodata.RepodataState)→ dict | None
JLAP has to parse the JSON anyway.

Use this to avoid a redundant parse when repodata is updated.

When repodata is not updated, it doesn't matter whether this function or the caller reads from a file.

_repodata_state_copy(state: dict | conda.gateways.repodata.RepodataState)

class RepodataStateSkipFormat(*args, skip_formats=set(), **kwargs)
Bases: conda.gateways.repodata.RepodataState

Load/save info file that accompanies cached repodata.json.

skip_formats: set[str]

4.6. Developer guide 617

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

should_check_format(format)
Return True if named format should be attempted.

class ZstdRepoInterface(url: str, repodata_fn: str | None, *, cache: conda.gateways.repodata.RepodataCache,
**kwargs)

Bases: JlapRepoInterface

Support repodata.json.zst (if available) without checking .jlap

_repodata_state_copy(state: dict | conda.gateways.repodata.RepodataState)

lock

Backwards compatibility import.

Moved to prevent circular imports.

Classes

PackageCacheData

Channel Channel:
RepoInterface Helper class that provides a standard way to create an

ABC using
CondaRepoInterface Provides an interface for retrieving repodata data from

channels.
RepodataState Load/save info file that accompanies cached repo-

data.json.
RepodataCache Handle caching for a single repodata.json + repo-

data.info.json
RepodataFetch Combine RepodataCache and RepoInterface to provide

subdir_data.SubdirData()

618 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

conda, Release 24.3.1.dev75

Functions

stringify(obj[, content_max_len])

maybe_unquote(url)

get_session(url) Function that determines the correct Session object to be
returned

mkdir_p_sudo_safe(path)

lock(fd)

get_repo_interface(→ type[RepoInterface])

_add_http_value_to_dict(resp, http_key, d,
dict_key)
conda_http_errors(url, repodata_fn) Use in a with: statement to translate requests exceptions

to conda ones.
_md5_not_for_security(data)

cache_fn_url(url[, repodata_fn])

get_cache_control_max_age(cache_control_value)

create_cache_dir()

4.6. Developer guide 619

conda, Release 24.3.1.dev75

Attributes

CONDA_HOMEPAGE_URL

REPODATA_FN

context

join_url

stderrlog

CHECK_ALTERNATE_FORMAT_INTERVAL

LAST_MODIFIED_KEY

ETAG_KEY

CACHE_CONTROL_KEY

URL_KEY

CACHE_STATE_SUFFIX

ERROR_SNIPPET_LENGTH

exception CondaError(message, caused_by=None, **kwargs)
Bases: Exception

Common base class for all non-exit exceptions.

return_code = 1

reportable = False

__repr__()

Return repr(self).

__str__()

Return str(self).

dump_map()

stringify(obj, content_max_len=0)

CONDA_HOMEPAGE_URL = 'https://conda.io'

REPODATA_FN = 'repodata.json'

context

join_url

maybe_unquote(url)

620 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#Exception

conda, Release 24.3.1.dev75

class PackageCacheData(pkgs_dir)

property _package_cache_records

property is_writable

cache: dict[str, PackageCacheData]

insert(package_cache_record)

load()

reload()

get(package_ref , default=NULL)

remove(package_ref , default=NULL)

query(package_ref_or_match_spec)

iter_records()

classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

classmethod first_writable(pkgs_dirs=None)

classmethod writable_caches(pkgs_dirs=None)

classmethod read_only_caches(pkgs_dirs=None)

classmethod all_caches_writable_first(pkgs_dirs=None)

classmethod get_all_extracted_entries()

classmethod get_entry_to_link(package_ref)

classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

classmethod clear()

tarball_file_in_this_cache(tarball_path, md5sum=None)

_check_writable()

static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

_scan_for_dist_no_channel(dist_str)

itervalues()

values()

__repr__()

Return repr(self).

_make_single_record(package_filename)

static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

4.6. Developer guide 621

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

exception CondaDependencyError(message)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaHTTPError(message, url, status_code, reason, elapsed_time, response=None,
caused_by=None)

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception CondaSSLError(message, caused_by=None, **kwargs)
Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception NotWritableError(path, errno, **kwargs)
Bases: conda.CondaError, OSError

Common base class for all non-exit exceptions.

exception ProxyError

Bases: conda.CondaError

Common base class for all non-exit exceptions.

exception UnavailableInvalidChannel(channel, status_code, response: requests.models.Response | None =
None)

Bases: ChannelError

Common base class for all non-exit exceptions.

status_code: str | int

class Channel(scheme=None, auth=None, location=None, token=None, name=None, platform=None,
package_filename=None)

Channel: scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

Package Spec: channel <> subchannel <> namespace <> package_name

property channel_location

property channel_name

property subdir

property canonical_name

property base_url

property base_urls

property subdir_url

property url_channel_wtf

cache

static _reset_state()

static from_url(url)

622 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

static from_channel_name(channel_name)

static from_value(value)

static make_simple_channel(channel_alias, channel_url, name=None)

urls(with_credentials=False, subdirs=None)

url(with_credentials=False)

__str__()

Return str(self).

__repr__()

Return repr(self).

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

__nonzero__()

__bool__()

__json__()

dump()

get_session(url: str)
Function that determines the correct Session object to be returned based on the URL that is passed in.

mkdir_p_sudo_safe(path)

lock(fd)

stderrlog

CHECK_ALTERNATE_FORMAT_INTERVAL

LAST_MODIFIED_KEY = 'mod'

ETAG_KEY = 'etag'

CACHE_CONTROL_KEY = 'cache_control'

URL_KEY = 'url'

CACHE_STATE_SUFFIX = '.info.json'

ERROR_SNIPPET_LENGTH = 32

exception RepodataIsEmpty(channel, status_code, response: requests.models.Response | None = None)
Bases: conda.exceptions.UnavailableInvalidChannel

Subclass used to determine when empty repodata should be cached, e.g. for a channel that doesn't provide
current_repodata.json

4.6. Developer guide 623

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

exception RepodataOnDisk

Bases: Exception

Indicate that RepoInterface.repodata() successfully wrote repodata to disk, instead of returning a string.

class RepoInterface

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

repodata(state: dict)→ str
Given a mutable state dictionary with information about the cache, return repodata.json (or cur-
rent_repodata.json) as a str. This function also updates state, which is expected to be saved by the caller.

exception Response304ContentUnchanged

Bases: Exception

Common base class for all non-exit exceptions.

get_repo_interface()→ type[RepoInterface]

class CondaRepoInterface(url: str, repodata_fn: str | None, **kwargs)
Bases: RepoInterface

Provides an interface for retrieving repodata data from channels.

_url: str

_repodata_fn: str

repodata(state: RepodataState)→ str | None
Given a mutable state dictionary with information about the cache, return repodata.json (or cur-
rent_repodata.json) as a str. This function also updates state, which is expected to be saved by the caller.

_add_http_value_to_dict(resp, http_key, d, dict_key)

conda_http_errors(url, repodata_fn)
Use in a with: statement to translate requests exceptions to conda ones.

class RepodataState(cache_path_json: pathlib.Path | str = '', cache_path_state: pathlib.Path | str = '',
repodata_fn='', dict=None)

Bases: collections.UserDict

Load/save info file that accompanies cached repodata.json.

property mod: str

Last-Modified header or ""

property etag: str

Etag header or ""

property cache_control: str

Cache-Control header or ""

_aliased

_strings

has_format(format: str)→ tuple[bool, datetime.datetime | None]

624 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.UserDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

set_has_format(format: str, value: bool)

clear_has_format(format: str)
Remove 'has_{format}' instead of setting to False.

should_check_format(format: str)→ bool
Return True if named format should be attempted.

__contains__(key: str)→ bool

__setitem__(key: str, item: Any)→ None

__getitem__(key: str)→ Any

class RepodataCache(base, repodata_fn)
Handle caching for a single repodata.json + repodata.info.json (<hex-string>*.json inside dir)

Avoid race conditions while loading, saving repodata.json and cache state.

property cache_path_json

property cache_path_state

Out-of-band etag and other state needed by the RepoInterface.

load(*, state_only=False)→ str

load_state()

Update self.state without reading repodata.json.

Return self.state.

save(data: str)
Write data to <repodata>.json cache path, synchronize state.

replace(temp_path: pathlib.Path)
Rename path onto <repodata>.json path, synchronize state.

Relies on path's mtime not changing on move. temp_path should be adjacent to self.cache_path_json to be
on the same filesystem.

refresh(refresh_ns=0)
Update access time in cache info file to indicate a HTTP 304 Not Modified response.

lock(mode='a+')
Lock .info.json file. Hold lock while modifying related files.

mode: "a+" then seek(0) to write/create; "r+" to read.

stale()

Compare state refresh_ns against cache control header and context.local_repodata_ttl.

timeout()

Return number of seconds until cache times out (<= 0 if already timed out).

class RepodataFetch(cache_path_base: pathlib.Path, channel: conda.models.channel.Channel, repodata_fn:
str, *, repo_interface_cls)

Combine RepodataCache and RepoInterface to provide subdir_data.SubdirData() with what it needs.

Provide a variety of formats since some RepoInterface have to json.loads(...) anyway, and some clients
don't need the Python data structure at all.

4.6. Developer guide 625

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

property url_w_repodata_fn

property cache_path_json

property cache_path_state

Out-of-band etag and other state needed by the RepoInterface.

property repo_cache: RepodataCache

property _repo: RepoInterface

Changes as we mutate self.repodata_fn.

cache_path_base: pathlib.Path

channel: conda.models.channel.Channel

repodata_fn: str

url_w_subdir: str

url_w_credentials: str

repo_interface_cls: Any

fetch_latest_parsed()→ tuple[dict, RepodataState]
Retrieve parsed latest or latest-cached repodata as a dict; update cache.

Returns
(repodata contents, state including cache headers)

fetch_latest_path()→ tuple[pathlib.Path, RepodataState]
Retrieve latest or latest-cached repodata; update cache.

Returns
(pathlib.Path to uncompressed repodata contents, RepodataState)

fetch_latest()→ tuple[dict | str, RepodataState]
Return up-to-date repodata and cache information. Fetch repodata from remote if cache has expired; return
cached data if cache has not expired; return stale cached data or dummy data if in offline mode.

read_cache()→ tuple[str, RepodataState]
Read repodata from disk, without trying to fetch a fresh version.

_md5_not_for_security(data)

cache_fn_url(url, repodata_fn=REPODATA_FN)

get_cache_control_max_age(cache_control_value: str | None)

create_cache_dir()

626 Chapter 4. Contributors welcome

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

subprocess

Helpler functions for subprocess.

Functions

_format_output(command_str, cwd, rc, stdout,
stderr)
any_subprocess(args, prefix[, env, cwd])

subprocess_call(command[, env, path, stdin, ...]) This utility function should be preferred for all conda
subprocessing.

_subprocess_clean_env(env[, clean_python,
clean_conda])
subprocess_call_with_clean_env(command[,
path, stdin, ...])

Attributes

Response

Response

_format_output(command_str, cwd, rc, stdout, stderr)

any_subprocess(args, prefix, env=None, cwd=None)

subprocess_call(command: str | os.PathLike | pathlib.Path | Sequence[str | os.PathLike | pathlib.Path], env:
dict[str, str] | None = None, path: str | os.PathLike | pathlib.Path | None = None, stdin: str |
None = None, raise_on_error: bool = True, capture_output: bool = True)

This utility function should be preferred for all conda subprocessing. It handles multiple tricky details.

_subprocess_clean_env(env, clean_python=True, clean_conda=True)

subprocess_call_with_clean_env(command, path=None, stdin=None, raise_on_error=True,
clean_python=True, clean_conda=True)

history

Tools interfacing with conda's history file.

4.6. Developer guide 627

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Classes

History

Functions

write_head(fo)

is_diff (content)

pretty_diff (diff)

pretty_content(content)

Attributes

h

exception CondaHistoryWarning

Bases: Warning

Base class for warning categories.

write_head(fo)

is_diff(content)

pretty_diff(diff)

pretty_content(content)

class History(prefix)

com_pat

spec_pat

conda_v_pat

__enter__()

__exit__(exc_type, exc_value, traceback)

init_log_file()

file_is_empty()

628 Chapter 4. Contributors welcome

https://docs.python.org/3/library/exceptions.html#Warning

conda, Release 24.3.1.dev75

update()→ None
Update the history file (creating a new one if necessary).

parse()→ list[tuple[str, set[str], list[str]]]
Parse the history file.

Return a list of tuples(datetime strings, set of distributions/diffs, comments).

static _parse_old_format_specs_string(specs_string)
Parse specifications string that use conda<4.5 syntax.

Examples

• "param >=1.5.1,<2.0'"

• "python>=3.5.1,jupyter >=1.0.0,<2.0,matplotlib >=1.5.1,<2.0"

classmethod _parse_comment_line(line)
Parse comment lines in the history file.

These lines can be of command type or action type.

Examples

• "# cmd: /scratch/mc3/bin/conda install -c conda-forge param>=1.5.1,<2.0"

• "# install specs: python>=3.5.1,jupyter >=1.0.0,<2.0,matplotlib >=1.5.1,<2.0"

get_user_requests()

Return a list of user requested items.

Each item is a dict with the following keys: 'date': the date and time running the command 'cmd': a list of
argv of the actual command which was run 'action': install/remove/update 'specs': the specs being used

get_requested_specs_map()

construct_states()

Return a list of tuples(datetime strings, set of distributions).

get_state(rev=-1)
Return the state, i.e. the set of distributions, for a given revision.

Defaults to latest (which is the same as the current state when the log file is up-to-date).

Returns a list of dist_strs.

print_log()

object_log()

write_changes(last_state, current_state)

write_specs(remove_specs=(), update_specs=(), neutered_specs=())

h

4.6. Developer guide 629

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

instructions

Define the instruction set (constants) for conda operations.

Functions

PRINT_CMD(state, arg)

FETCH_CMD(state, package_cache_entry)

EXTRACT_CMD(state, arg)

PROGRESSIVEFETCHEXTRACT_CMD(state, ...)

UNLINKLINKTRANSACTION_CMD(state, arg)

check_files_in_package(source_dir, files)

630 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

CHECK_FETCH

FETCH

CHECK_EXTRACT

EXTRACT

RM_EXTRACTED

RM_FETCHED

PRINT

PROGRESS

SYMLINK_CONDA

UNLINK

LINK

UNLINKLINKTRANSACTION

PROGRESSIVEFETCHEXTRACT

PROGRESS_COMMANDS

ACTION_CODES

commands

OP_ORDER

CHECK_FETCH = 'CHECK_FETCH'

FETCH = 'FETCH'

CHECK_EXTRACT = 'CHECK_EXTRACT'

EXTRACT = 'EXTRACT'

RM_EXTRACTED = 'RM_EXTRACTED'

RM_FETCHED = 'RM_FETCHED'

PRINT = 'PRINT'

PROGRESS = 'PROGRESS'

4.6. Developer guide 631

conda, Release 24.3.1.dev75

SYMLINK_CONDA = 'SYMLINK_CONDA'

UNLINK = 'UNLINK'

LINK = 'LINK'

UNLINKLINKTRANSACTION = 'UNLINKLINKTRANSACTION'

PROGRESSIVEFETCHEXTRACT = 'PROGRESSIVEFETCHEXTRACT'

PROGRESS_COMMANDS

ACTION_CODES = ()

PRINT_CMD(state, arg)

FETCH_CMD(state, package_cache_entry)

EXTRACT_CMD(state, arg)

PROGRESSIVEFETCHEXTRACT_CMD(state, progressive_fetch_extract)

UNLINKLINKTRANSACTION_CMD(state, arg)

check_files_in_package(source_dir, files)

commands

OP_ORDER = ()

misc

Miscellaneous utility functions.

Functions

conda_installed_files(prefix[, ex-
clude_self_build])

Return the set of files which have been installed (using
conda) into

explicit(specs, prefix[, verbose, force_extract, ...])

rel_path (prefix, path[, windows_forward_slashes])

walk_prefix(prefix[, ignore_predefined_files, ...]) Return the set of all files in a given prefix directory.
untracked(prefix[, exclude_self_build]) Return (the set) of all untracked files for a given prefix.
touch_nonadmin(prefix) Creates $PREFIX/.nonadmin if sys.prefix/.nonadmin

exists (on Windows).
clone_env(prefix1, prefix2[, verbose, quiet, in-
dex_args])

Clone existing prefix1 into new prefix2.

632 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

url_pat

conda_installed_files(prefix, exclude_self_build=False)
Return the set of files which have been installed (using conda) into a given prefix.

url_pat

explicit(specs, prefix, verbose=False, force_extract=True, index_args=None, index=None)

rel_path(prefix, path, windows_forward_slashes=True)

walk_prefix(prefix, ignore_predefined_files=True, windows_forward_slashes=True)
Return the set of all files in a given prefix directory.

untracked(prefix, exclude_self_build=False)
Return (the set) of all untracked files for a given prefix.

touch_nonadmin(prefix)
Creates $PREFIX/.nonadmin if sys.prefix/.nonadmin exists (on Windows).

clone_env(prefix1, prefix2, verbose=True, quiet=False, index_args=None)
Clone existing prefix1 into new prefix2.

models

Models are data transfer objects or "light-weight" domain objects with no appreciable logic other than their own valida-
tion. Models are used to pass data between layers of the stack. In many ways they are similar to ORM objects. Unlike
ORM objects, they are NOT themselves allowed to load data from a remote resource. Thought of another way, they
cannot import from conda.gateways, but rather conda.gateways imports from conda.models as appropriate to
create model objects from remote resources.

Conda modules importable from conda.models are

• conda._vendor

• conda.common

• conda.models

channel

Defines Channel and MultiChannel objects and other channel-related functions.

Object inheritance:

4.6. Developer guide 633

conda, Release 24.3.1.dev75

Channel MultiChannel

Classes

ChannelType This metaclass does basic caching and enables static
constructor method usage with a

Channel Channel:
MultiChannel Channel:

Functions

tokenized_startswith (test_iterable,
startswith_iterable)
tokenized_conda_url_startswith (test_url,
startswith_url)
_get_channel_for_name(channel_name)

_read_channel_configuration(scheme, host, port,
path)
parse_conda_channel_url(url)

get_conda_build_local_url()

prioritize_channels(channels[, with_credentials,
subdirs])
all_channel_urls(channels[, subdirs,
with_credentials])
offline_keep(url)

get_channel_objs(ctx) Return current channels as Channel objects

class ChannelType

Bases: type

This metaclass does basic caching and enables static constructor method usage with a single arg.

__call__(*args, **kwargs)
Call self as a function.

class Channel(scheme=None, auth=None, location=None, token=None, name=None, platform=None,
package_filename=None)

Channel: scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

634 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

Package Spec: channel <> subchannel <> namespace <> package_name

property channel_location

property channel_name

property subdir

property canonical_name

property base_url

property base_urls

property subdir_url

property url_channel_wtf

cache

static _reset_state()

static from_url(url)

static from_channel_name(channel_name)

static from_value(value)

static make_simple_channel(channel_alias, channel_url, name=None)

urls(with_credentials=False, subdirs=None)

url(with_credentials=False)

__str__()

Return str(self).

__repr__()

Return repr(self).

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

__nonzero__()

__bool__()

__json__()

dump()

class MultiChannel(name, channels, platform=None)
Bases: Channel

Channel: scheme <> auth <> location <> token <> channel <> subchannel <> platform <> package_filename

Package Spec: channel <> subchannel <> namespace <> package_name

4.6. Developer guide 635

conda, Release 24.3.1.dev75

property channel_location

property canonical_name

property base_url

property base_urls

urls(with_credentials=False, subdirs=None)

url(with_credentials=False)

dump()

tokenized_startswith(test_iterable, startswith_iterable)

tokenized_conda_url_startswith(test_url, startswith_url)

_get_channel_for_name(channel_name)

_read_channel_configuration(scheme, host, port, path)

parse_conda_channel_url(url)

get_conda_build_local_url()

prioritize_channels(channels, with_credentials=True, subdirs=None)

all_channel_urls(channels, subdirs=None, with_credentials=True)

offline_keep(url)

get_channel_objs(ctx: conda.base.context.Context)
Return current channels as Channel objects

dist

(Legacy) Low-level implementation of a Channel.

Classes

DistDetails

DistType

Dist

636 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

strip_extension(original_dist)

split_extension(original_dist)

dist_str_to_quad(dist_str)

class DistDetails

Bases: NamedTuple

name: str

version: str

build_string: str

build_number: str

dist_name: str

fmt: str

class DistType(name, bases, attr)
Bases: conda.auxlib.entity.EntityType

__call__(*args, **kwargs)
Call self as a function.

strip_extension(original_dist)

split_extension(original_dist)

class Dist(channel, dist_name=None, name=None, version=None, build_string=None, build_number=None,
base_url=None, platform=None, fmt='.tar.bz2')

Bases: conda.auxlib.entity.Entity

property full_name

property build

property subdir

property pair

property quad

property is_feature_package

property is_channel

property fn

cache

_lazy_validate = True

4.6. Developer guide 637

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

channel

dist_name

name

fmt

version

build_string

build_number

base_url

platform

to_package_ref()

__str__()

Return str(self).

to_filename(extension=None)

to_matchspec()

to_match_spec()

classmethod from_string(string, channel_override=NULL)

static parse_dist_name(string)

classmethod from_url(url)

to_url()

__key__()

__lt__(other)
Return self<value.

__gt__(other)
Return self>value.

__le__(other)
Return self<=value.

__ge__(other)
Return self>=value.

__hash__()

Return hash(self).

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

638 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

split(sep=None, maxsplit=-1)

rsplit(sep=None, maxsplit=-1)

startswith(match)

__contains__(item)

dist_str_to_quad(dist_str)

enums

Collection of enums used throughout conda.

Classes

Arch Generic enumeration.
Platform Generic enumeration.
FileMode Generic enumeration.
LinkType Generic enumeration.
PathType Refers to if the file in question is hard linked or soft

linked. Originally designed to be used
LeasedPathType Generic enumeration.
PackageType Generic enumeration.
NoarchType Generic enumeration.

class Arch

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

x86 = 'x86'

x86_64 = 'x86_64'

arm64 = 'arm64'

armv6l = 'armv6l'

armv7l = 'armv7l'

aarch64 = 'aarch64'

ppc64 = 'ppc64'

ppc64le = 'ppc64le'

riscv64 = 'riscv64'

s390x = 's390x'

z = 'z'

4.6. Developer guide 639

https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

classmethod from_sys()

__json__()

class Platform

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

freebsd = 'freebsd'

linux = 'linux'

win = 'win32'

openbsd = 'openbsd5'

osx = 'darwin'

zos = 'zos'

classmethod from_sys()

__json__()

class FileMode

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

text = 'text'

binary = 'binary'

__str__()

Return str(self).

class LinkType

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

hardlink = 1

softlink = 2

copy = 3

directory = 4

__int__()

__str__()

Return str(self).

__json__()

640 Chapter 4. Contributors welcome

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

class PathType

Bases: enum.Enum

Refers to if the file in question is hard linked or soft linked. Originally designed to be used in paths.json

hardlink = 'hardlink'

softlink = 'softlink'

directory = 'directory'

linked_package_record = 'linked_package_record'

pyc_file = 'pyc_file'

unix_python_entry_point = 'unix_python_entry_point'

windows_python_entry_point_script = 'windows_python_entry_point_script'

windows_python_entry_point_exe = 'windows_python_entry_point_exe'

basic_types()

__str__()

Return str(self).

__json__()

class LeasedPathType

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

application_entry_point = 'application_entry_point'

application_entry_point_windows_exe = 'application_entry_point_windows_exe'

application_softlink = 'application_softlink'

__str__()

Return str(self).

__json__()

class PackageType

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

NOARCH_GENERIC = 'noarch_generic'

NOARCH_PYTHON = 'noarch_python'

VIRTUAL_PRIVATE_ENV = 'virtual_private_env'

VIRTUAL_PYTHON_WHEEL = 'virtual_python_wheel'

VIRTUAL_PYTHON_EGG_MANAGEABLE = 'virtual_python_egg_manageable'

4.6. Developer guide 641

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

VIRTUAL_PYTHON_EGG_UNMANAGEABLE = 'virtual_python_egg_unmanageable'

VIRTUAL_PYTHON_EGG_LINK = 'virtual_python_egg_link'

VIRTUAL_SYSTEM = 'virtual_system'

static conda_package_types()

static unmanageable_package_types()

class NoarchType

Bases: enum.Enum

Generic enumeration.

Derive from this class to define new enumerations.

generic = 'generic'

python = 'python'

static coerce(val)

leased_path_entry

Implements object describing a symbolic link from the base environment to a private environment.

Since private environments are an unrealized feature of conda and has been deprecated this data model no longer serves
a purpose and has also been deprecated.

Classes

LeasedPathEntry _path: short path for the leased path, using forward
slashes

class LeasedPathEntry(**kwargs)
Bases: conda.auxlib.entity.Entity

_path: short path for the leased path, using forward slashes target_path: the full path to the executable in the
private env target_prefix: the full path to the private environment leased_path: the full path for the lease in the
root prefix package_name: the package holding the lease leased_path_type: application_entry_point

_path

target_path

target_prefix

leased_path

package_name

leased_path_type

642 Chapter 4. Contributors welcome

https://docs.python.org/3/library/enum.html#enum.Enum

conda, Release 24.3.1.dev75

match_spec

Implements the query language for conda packages (a.k.a, MatchSpec).

The MatchSpec is the conda package specification (e.g. conda==23.3, python<3.7, cryptography * *_0) and is used
to communicate the desired packages to install.

Classes

MatchSpecType

MatchSpec The query language for conda packages.
MatchInterface

_StrMatchMixin

ExactStrMatch

ExactLowerStrMatch

GlobStrMatch

GlobLowerStrMatch

SplitStrMatch

FeatureMatch

ChannelMatch

CaseInsensitiveStrMatch

Functions

_parse_version_plus_build(v_plus_b) This should reliably pull the build string out of a version
+ build string combo.

_parse_legacy_dist(dist_str)

Examples

_parse_channel(channel_val)

_parse_spec_str(spec_str)

4.6. Developer guide 643

conda, Release 24.3.1.dev75

Attributes

_PARSE_CACHE

_implementors

class MatchSpecType

Bases: type

__call__(spec_arg=None, **kwargs)
Call self as a function.

class MatchSpec(optional=False, target=None, **kwargs)
The query language for conda packages.

Any of the fields that comprise a PackageRecord can be used to compose a MatchSpec.

MatchSpec can be composed with keyword arguments, where keys are any of the attributes of PackageRecord.
Values for keyword arguments are the exact values the attribute should match against. Many fields can also be
matched against non-exact values--by including wildcard * and >/< ranges--where supported. Any non-specified
field is the equivalent of a full wildcard match.

MatchSpec can also be composed using a single positional argument, with optional keyword arguments. Key-
word arguments also override any conflicting information provided in the positional argument. The positional
argument can be either an existing MatchSpec instance or a string. Conda has historically had several string rep-
resentations for equivalent MatchSpec`s. This :class:`MatchSpec should accept any existing valid spec
string, and correctly compose a MatchSpec instance.

A series of rules are now followed for creating the canonical string representation of a MatchSpec instance. The
canonical string representation can generically be represented by

(channel(/subdir):(namespace):)name(version(build))[key1=value1,key2=value2]

where () indicate optional fields. The rules for constructing a canonical string representation are:

1. name (i.e. "package name") is required, but its value can be '*'. Its position is always outside the key-value
brackets.

2. If version is an exact version, it goes outside the key-value brackets and is prepended by ==. If version is
a "fuzzy" value (e.g. 1.11.*), it goes outside the key-value brackets with the .* left off and is prepended by
=. Otherwise version is included inside key-value brackets.

3. If version is an exact version, and build is an exact value, build goes outside key-value brackets prepended
by a =. Otherwise, build goes inside key-value brackets. build_string is an alias for build.

4. The namespace position is being held for a future conda feature.

5. If channel is included and is an exact value, a :: separator is ued between channel and name. channel can
either be a canonical channel name or a channel url. In the canonical string representation, the canonical
channel name will always be used.

6. If channel is an exact value and subdir is an exact value, subdir is appended to channel with a / separator.
Otherwise, subdir is included in the key-value brackets.

7. Key-value brackets can be delimited by comma, space, or comma+space. Value can optionally be wrapped
in single or double quotes, but must be wrapped if value contains a comma, space, or equal sign. The
canonical format uses comma delimiters and single quotes.

644 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

8. When constructing a MatchSpec instance from a string, any key-value pair given inside the key-value
brackets overrides any matching parameter given outside the brackets.

When MatchSpec attribute values are simple strings, the are interpreted using the following conventions:

• If the string begins with ^ and ends with $, it is converted to a regex.

• If the string contains an asterisk (*), it is transformed from a glob to a regex.

• Otherwise, an exact match to the string is sought.

Examples

>>> str(MatchSpec(name='foo', build='py2*', channel='conda-forge'))
'conda-forge::foo[build=py2*]'
>>> str(MatchSpec('foo 1.0 py27_0'))
'foo==1.0=py27_0'
>>> str(MatchSpec('foo=1.0=py27_0'))
'foo==1.0=py27_0'
>>> str(MatchSpec('conda-forge::foo[version=1.0.*]'))
'conda-forge::foo=1.0'
>>> str(MatchSpec('conda-forge/linux-64::foo>=1.0'))
"conda-forge/linux-64::foo[version='>=1.0']"
>>> str(MatchSpec('*/linux-64::foo>=1.0'))
"foo[subdir=linux-64,version='>=1.0']"

To fully-specify a package with a full, exact spec, the fields
• channel

• subdir

• name

• version

• build

must be given as exact values. In the future, the namespace field will be added to this
list. Alternatively, an exact spec is given by '*[md5=12345678901234567890123456789012]' or
'*[sha256=f453db4ffe2271ec492a2913af4e61d4a6c118201f07de757df0eff769b65d2e]'.

property is_name_only_spec

property optional

property target

property original_spec_str

property name

property strictness

property spec

property version

property fn

4.6. Developer guide 645

conda, Release 24.3.1.dev75

FIELD_NAMES = ('channel', 'subdir', 'name', 'version', 'build', 'build_number',
'track_features', 'features',...

FIELD_NAMES_SET

_MATCHER_CACHE

classmethod from_dist_str(dist_str)

get_exact_value(field_name)

get_raw_value(field_name)

get(field_name, default=None)

dist_str()

match(rec)
Accepts a PackageRecord or a dict, and matches can pull from any field in that record. Returns True for a
match, and False for no match.

_match_individual(record, field_name, match_component)

_is_simple()

_is_single()

_to_filename_do_not_use()

__repr__()

Return repr(self).

__str__()

Return str(self).

__json__()

conda_build_form()

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

_hash_key()

__contains__(field)

_build_components(**kwargs)

static _make_component(field_name, value)

classmethod merge(match_specs, union=False)

classmethod union(match_specs)

_merge(other, union=False)

646 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

_parse_version_plus_build(v_plus_b)
This should reliably pull the build string out of a version + build string combo. .. rubric:: Examples

>>> _parse_version_plus_build("=1.2.3 0")
('=1.2.3', '0')
>>> _parse_version_plus_build("1.2.3=0")
('1.2.3', '0')
>>> _parse_version_plus_build(">=1.0 , < 2.0 py34_0")
('>=1.0,<2.0', 'py34_0')
>>> _parse_version_plus_build(">=1.0 , < 2.0 =py34_0")
('>=1.0,<2.0', 'py34_0')
>>> _parse_version_plus_build("=1.2.3 ")
('=1.2.3', None)
>>> _parse_version_plus_build(">1.8,<2|==1.7")
('>1.8,<2|==1.7', None)
>>> _parse_version_plus_build("* openblas_0")
('*', 'openblas_0')
>>> _parse_version_plus_build("* *")
('*', '*')

_parse_legacy_dist(dist_str)

Examples

>>> _parse_legacy_dist("_license-1.1-py27_1.tar.bz2")
('_license', '1.1', 'py27_1')
>>> _parse_legacy_dist("_license-1.1-py27_1")
('_license', '1.1', 'py27_1')

_parse_channel(channel_val)

_PARSE_CACHE

_parse_spec_str(spec_str)

class MatchInterface(value)

property raw_value

abstract property exact_value

If the match value is an exact specification, returns the value. Otherwise returns None.

abstract match(other)

matches(value)

merge(other)

union(other)

class _StrMatchMixin

property exact_value

4.6. Developer guide 647

conda, Release 24.3.1.dev75

__str__()

Return str(self).

__repr__()

Return repr(self).

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

class ExactStrMatch(value)
Bases: _StrMatchMixin, MatchInterface

__slots__ = ('_raw_value',)

match(other)

class ExactLowerStrMatch(value)
Bases: ExactStrMatch

match(other)

class GlobStrMatch(value)
Bases: _StrMatchMixin, MatchInterface

property exact_value

If the match value is an exact specification, returns the value. Otherwise returns None.

property matches_all

__slots__ = ('_raw_value', '_re_match')

match(other)

class GlobLowerStrMatch(value)
Bases: GlobStrMatch

class SplitStrMatch(value)
Bases: MatchInterface

property exact_value

If the match value is an exact specification, returns the value. Otherwise returns None.

__slots__ = ('_raw_value',)

_convert(value)

match(other)

__repr__()

Return repr(self).

__str__()

Return str(self).

__eq__(other)
Return self==value.

648 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

__hash__()

Return hash(self).

class FeatureMatch(value)
Bases: MatchInterface

property exact_value

If the match value is an exact specification, returns the value. Otherwise returns None.

__slots__ = ('_raw_value',)

_convert(value)

match(other)

__repr__()

Return repr(self).

__str__()

Return str(self).

__eq__(other)
Return self==value.

__hash__()

Return hash(self).

class ChannelMatch(value)
Bases: GlobStrMatch

match(other)

__str__()

Return str(self).

__repr__()

Return repr(self).

class CaseInsensitiveStrMatch(value)
Bases: GlobLowerStrMatch

match(other)

_implementors

package_info

(Legacy) Low-level implementation of a PackageRecord.

4.6. Developer guide 649

conda, Release 24.3.1.dev75

Classes

NoarchField Fields are doing something very similar to boxing and
unboxing

Noarch

PreferredEnv

PackageMetadata

PackageInfo

class NoarchField(enum_class, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

class Noarch(**kwargs)
Bases: conda.auxlib.entity.Entity

type

entry_points

class PreferredEnv(**kwargs)
Bases: conda.auxlib.entity.Entity

name

executable_paths

softlink_paths

class PackageMetadata(**kwargs)
Bases: conda.auxlib.entity.Entity

package_metadata_version

noarch

650 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

preferred_env

class PackageInfo(**kwargs)
Bases: conda.auxlib.entity.ImmutableEntity

property name

property version

property build

property build_number

extracted_package_dir

package_tarball_full_path

channel

repodata_record

url

icondata

package_metadata

paths_data

dist_str()

prefix_graph

Implements directed graphs to sort and manipulate packages within a prefix.

Object inheritance:

GeneralGraphPrefixGraph

Classes

PrefixGraph A directed graph structure used for sorting packages
(prefix_records) in prefixes and

GeneralGraph Compared with PrefixGraph, this class takes in more
than one record of a given name,

4.6. Developer guide 651

conda, Release 24.3.1.dev75

class PrefixGraph(records, specs=())
A directed graph structure used for sorting packages (prefix_records) in prefixes and manipulating packages
within prefixes (e.g. removing and pruning).

The terminology used for edge direction is "parents" and "children" rather than "successors" and "predecessors".
The parent nodes of a record are those records in the graph that match the record's "depends" field. E.g. NodeA
depends on NodeB, then NodeA is a child of NodeB, and NodeB is a parent of NodeA. Nodes can have zero
parents, or more than two parents.

Most public methods mutate the graph.

property records

remove_spec(spec)
Remove all matching nodes, and any associated child nodes.

Parameters
spec (MatchSpec)

Returns
The removed nodes.

Return type
tuple[PrefixRecord]

remove_youngest_descendant_nodes_with_specs()

A specialized method used to determine only dependencies of requested specs.

Returns
The removed nodes.

Return type
tuple[PrefixRecord]

prune()

Prune back all packages until all child nodes are anchored by a spec.

Returns
The pruned nodes.

Return type
tuple[PrefixRecord]

get_node_by_name(name)

all_descendants(node)

all_ancestors(node)

_remove_node(node)
Removes this node and all edges referencing it.

_toposort()

classmethod _toposort_raise_on_cycles(graph)

classmethod _topo_sort_handle_cycles(graph)

static _toposort_pop_key(graph)
Pop an item from the graph that has the fewest parents. In the case of a tie, use the node with the
alphabetically-first package name.

652 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

conda, Release 24.3.1.dev75

static _toposort_prepare_graph(graph)

class GeneralGraph(records, specs=())
Bases: PrefixGraph

Compared with PrefixGraph, this class takes in more than one record of a given name, and operates on that graph
from the higher view across any matching dependencies. It is not a Prefix thing, but more like a "graph of all
possible candidates" thing, and is used for unsatisfiability analysis

breadth_first_search_by_name(root_spec, target_spec)
Return shorted path from root_spec to spec_name

records

Implements the data model for conda packages.

A PackageRecord is the record of a package present in a channel. A PackageCache is the record of a downloaded and
cached package. A PrefixRecord is the record of a package installed into a conda environment.

Object inheritance:

PackageCacheRecord

PackageRecord

PrefixRecord

4.6. Developer guide 653

conda, Release 24.3.1.dev75

Classes

LinkTypeField Fields are doing something very similar to boxing and
unboxing

NoarchField Fields are doing something very similar to boxing and
unboxing

TimestampField Fields are doing something very similar to boxing and
unboxing

Link

_FeaturesField Fields are doing something very similar to boxing and
unboxing

ChannelField Fields are doing something very similar to boxing and
unboxing

SubdirField Fields are doing something very similar to boxing and
unboxing

FilenameField Fields are doing something very similar to boxing and
unboxing

PackageTypeField Fields are doing something very similar to boxing and
unboxing

PathData

PathDataV1

PathsData

PackageRecord

Md5Field Fields are doing something very similar to boxing and
unboxing

PackageCacheRecord

PrefixRecord

Attributes

EMPTY_LINK

class LinkTypeField(enum_class, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

654 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

class NoarchField(enum_class, default=NULL, required=True, validation=None, in_dump=True,
default_in_dump=True, nullable=False, immutable=False, aliases=())

Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

class TimestampField

Bases: conda.auxlib.entity.NumberField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

static _make_seconds(val)

static _make_milliseconds(val)

box(instance, instance_type, val)

dump(instance, instance_type, val)

__get__(instance, instance_type)

4.6. Developer guide 655

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

class Link(**kwargs)
Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

source

type

EMPTY_LINK

class _FeaturesField(**kwargs)
Bases: conda.auxlib.entity.ListField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

box(instance, instance_type, val)

dump(instance, instance_type, val)

class ChannelField(aliases=())
Bases: conda.auxlib.entity.ComposableField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

dump(instance, instance_type, val)

__get__(instance, instance_type)

class SubdirField

Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

656 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

__get__(instance, instance_type)

class FilenameField(aliases=())
Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

__get__(instance, instance_type)

class PackageTypeField

Bases: conda.auxlib.entity.EnumField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

__get__(instance, instance_type)

class PathData(**kwargs)
Bases: conda.auxlib.entity.Entity

property path

_path

4.6. Developer guide 657

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

prefix_placeholder

file_mode

no_link

path_type

class PathDataV1(**kwargs)
Bases: PathData

sha256

size_in_bytes

inode_paths

sha256_in_prefix

class PathsData(**kwargs)
Bases: conda.auxlib.entity.Entity

paths_version

paths

class PackageRecord(*args, **kwargs)
Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

property schannel

property _pkey

property is_unmanageable

property combined_depends

property namekey

name

version

build

build_number

channel

subdir

fn

md5

legacy_bz2_md5

legacy_bz2_size

url

658 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

sha256

arch

platform

depends

constrains

track_features

features

noarch

preferred_env

license

license_family

package_type

timestamp

date

size

metadata: set[str]

__hash__()

Return hash(self).

__eq__(other)
Return self==value.

dist_str()

dist_fields_dump()

__str__()

Return str(self).

to_match_spec()

to_simple_match_spec()

record_id()

class Md5Field

Bases: conda.auxlib.entity.StringField

Fields are doing something very similar to boxing and unboxing of c#/java primitives. __set__ should take a
"primitive" or "raw" value and create a "boxed" or "programmatically usable" value of it. While __get__ should
return the boxed value, dump in turn should unbox the value into a primitive or raw value.

Parameters
• types (primitive literal or type or sequence of types)

4.6. Developer guide 659

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

• default (any, callable, optional) -- If default is callable, it's guaranteed to return a
valid value at the time of Entity creation.

• required (boolean, optional)

• validation (callable, optional)

• dump (boolean, optional)

__get__(instance, instance_type)

class PackageCacheRecord(*args, **kwargs)
Bases: PackageRecord

property is_fetched

property is_extracted

property tarball_basename

package_tarball_full_path

extracted_package_dir

md5

_calculate_md5sum()

class PrefixRecord(*args, **kwargs)
Bases: PackageRecord

package_tarball_full_path

extracted_package_dir

files

paths_data

link

requested_spec

auth

version

Implements the version spec with parsing and comparison logic.

Object inheritance:

660 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

BaseSpec

BuildNumberMatch

VersionSpec

Classes

SingleStrArgCachingType

VersionOrder Implement an order relation between version strings.
BaseSpec

VersionSpec

BuildNumberMatch

Functions

normalized_version(→ VersionOrder) Parse a version string and return VersionOrder object.
ver_eval(vtest, spec)

treeify(spec_str)

Examples

untreeify(spec[, _inand, depth])

Examples

compatible_release_operator(x, y)

4.6. Developer guide 661

conda, Release 24.3.1.dev75

Attributes

version_check_re

version_split_re

version_cache

VSPEC_TOKENS

version_relation_re

regex_split_re

OPERATOR_MAP

OPERATOR_START

VersionMatch

normalized_version(version: str)→ VersionOrder
Parse a version string and return VersionOrder object.

ver_eval(vtest, spec)

version_check_re

version_split_re

version_cache

class SingleStrArgCachingType

Bases: type

__call__(arg)
Call self as a function.

class VersionOrder(vstr: str)
Implement an order relation between version strings.

Version strings can contain the usual alphanumeric characters (A-Za-z0-9), separated into components by dots
and underscores. Empty segments (i.e. two consecutive dots, a leading/trailing underscore) are not permitted.
An optional epoch number - an integer followed by '!' - can proceed the actual version string (this is useful to
indicate a change in the versioning scheme itself). Version comparison is case-insensitive.

Conda supports six types of version strings: * Release versions contain only integers, e.g. '1.0', '2.3.5'. * Pre-
release versions use additional letters such as 'a' or 'rc',

for example '1.0a1', '1.2.beta3', '2.3.5rc3'.

• Development versions are indicated by the string 'dev', for example '1.0dev42', '2.3.5.dev12'.

• Post-release versions are indicated by the string 'post', for example '1.0post1', '2.3.5.post2'.

662 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

• Tagged versions have a suffix that specifies a particular property of interest, e.g. '1.1.parallel'. Tags can
be added to any of the preceding four types. As far as sorting is concerned, tags are treated like strings in
pre-release versions.

• An optional local version string separated by '+' can be appended to the main (upstream) version string. It
is only considered in comparisons when the main versions are equal, but otherwise handled in exactly the
same manner.

To obtain a predictable version ordering, it is crucial to keep the version number scheme of a given package
consistent over time. Specifically, * version strings should always have the same number of components

(except for an optional tag suffix or local version string),

• letters/strings indicating non-release versions should always occur at the same position.

Before comparison, version strings are parsed as follows: * They are first split into epoch, version number, and
local version

number at '!' and '+' respectively. If there is no '!', the epoch is set to 0. If there is no '+', the local
version is empty.

• The version part is then split into components at '.' and '_'.

• Each component is split again into runs of numerals and non-numerals

• Subcomponents containing only numerals are converted to integers.

• Strings are converted to lower case, with special treatment for 'dev' and 'post'.

• When a component starts with a letter, the fillvalue 0 is inserted to keep numbers and strings in phase,
resulting in '1.1.a1' == 1.1.0a1'.

• The same is repeated for the local version part.

Examples

1.2g.beta15.rc => [[0], [1], [2, 'g'], [0, 'beta', 15], [0, 'rc']] 1!2.15.1_ALPHA => [[1], [2], [15], [1, '_alpha']]

The resulting lists are compared lexicographically, where the following rules are applied to each pair of corre-
sponding subcomponents: * integers are compared numerically * strings are compared lexicographically, case-
insensitive * strings are smaller than integers, except * 'dev' versions are smaller than all corresponding versions
of other types * 'post' versions are greater than all corresponding versions of other types * if a subcomponent has
no correspondent, the missing correspondent is

treated as integer 0 to ensure '1.1' == '1.1.0'.

The resulting order is:
0.4

< 0.4.0 < 0.4.1.rc

== 0.4.1.RC # case-insensitive comparison
< 0.4.1 < 0.5a1 < 0.5b3 < 0.5C1 # case-insensitive comparison < 0.5 < 0.9.6 < 0.960923 < 1.0 <
1.1dev1 # special case 'dev' < 1.1_ # appended underscore is special case for openssl-like versions <
1.1a1 < 1.1.0dev1 # special case 'dev'

== 1.1.dev1 # 0 is inserted before string
< 1.1.a1 < 1.1.0rc1 < 1.1.0

4.6. Developer guide 663

conda, Release 24.3.1.dev75

== 1.1
< 1.1.0post1 # special case 'post'

== 1.1.post1 # 0 is inserted before string
< 1.1post1 # special case 'post' < 1996.07.12 < 1!0.4.1 # epoch increased < 1!3.1.1.6 < 2!0.4.1 # epoch
increased again

Some packages (most notably openssl) have incompatible version conventions. In particular, openssl interprets
letters as version counters rather than pre-release identifiers. For openssl, the relation

1.0.1 < 1.0.1a => False # should be true for openssl

holds, whereas conda packages use the opposite ordering. You can work-around this problem by appending an
underscore to plain version numbers:

1.0.1_ < 1.0.1a => True # ensure correct ordering for openssl

cache

__str__()→ str
Return str(self).

__repr__()→ str
Return repr(self).

_eq(t1: list[str], t2: list[str])→ bool

__eq__(other: object)→ bool
Return self==value.

startswith(other: object)→ bool

__ne__(other: object)→ bool
Return self!=value.

__lt__(other: object)→ bool
Return self<value.

__gt__(other: object)→ bool
Return self>value.

__le__(other: object)→ bool
Return self<=value.

__ge__(other: object)→ bool
Return self>=value.

VSPEC_TOKENS = '\\s*\\^[^$]*[$]|\\s*[()|,]|[^()|,]+'

treeify(spec_str)

664 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

Examples

>>> treeify("1.2.3")
'1.2.3'
>>> treeify("1.2.3,>4.5.6")
(',', '1.2.3', '>4.5.6')
>>> treeify("1.2.3,4.5.6|<=7.8.9")
('|', (',', '1.2.3', '4.5.6'), '<=7.8.9')
>>> treeify("(1.2.3|4.5.6),<=7.8.9")
(',', ('|', '1.2.3', '4.5.6'), '<=7.8.9')
>>> treeify("((1.5|((1.6|1.7), 1.8), 1.9 |2.0))|2.1")
('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1')
>>> treeify("1.5|(1.6|1.7),1.8,1.9|2.0|2.1")
('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1')

untreeify(spec, _inand=False, depth=0)

Examples

>>> untreeify('1.2.3')
'1.2.3'
>>> untreeify((',', '1.2.3', '>4.5.6'))
'1.2.3,>4.5.6'
>>> untreeify(('|', (',', '1.2.3', '4.5.6'), '<=7.8.9'))
'(1.2.3,4.5.6)|<=7.8.9'
>>> untreeify((',', ('|', '1.2.3', '4.5.6'), '<=7.8.9'))
'(1.2.3|4.5.6),<=7.8.9'
>>> untreeify(('|', '1.5', (',', ('|', '1.6', '1.7'), '1.8', '1.9'), '2.0', '2.1'))
'1.5|((1.6|1.7),1.8,1.9)|2.0|2.1'

compatible_release_operator(x, y)

version_relation_re

regex_split_re

OPERATOR_MAP

OPERATOR_START

class BaseSpec(spec_str, matcher, is_exact)

property spec

property raw_value

property exact_value

is_exact()

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

4.6. Developer guide 665

conda, Release 24.3.1.dev75

__hash__()

Return hash(self).

__str__()

Return str(self).

__repr__()

Return repr(self).

abstract merge(other)

regex_match(spec_str)

operator_match(spec_str)

any_match(spec_str)

all_match(spec_str)

exact_match(spec_str)

always_true_match(spec_str)

class VersionSpec(vspec)
Bases: BaseSpec

cache

get_matcher(vspec)

merge(other)

union(other)

VersionMatch

class BuildNumberMatch(vspec)
Bases: BaseSpec

property exact_value: int | None

cache

get_matcher(vspec)

merge(other)

union(other)

__str__()

Return str(self).

__repr__()

Return repr(self).

666 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

notices

cache

Handles all caching logic including:
• Retrieving from cache

• Saving to cache

• Determining whether not certain items have expired and need to be refreshed

Functions

cached_response(func)

is_notice_response_cache_expired(→ bool) This checks the contents of the cache response to see if
it is expired.

get_notices_cache_dir(→ pathlib.Path) Returns the location of the notices cache directory as a
Path object

get_notices_cache_file(→ pathlib.Path) Returns the location of the notices cache file as a Path
object

get_notice_response_from_cache(...) Retrieves a notice response object from cache if it exists.
write_notice_response_to_cache(→ None) Writes our notice data to our local cache location.
mark_channel_notices_as_viewed(→ None) Insert channel notice into our database marking it as

read.
get_viewed_channel_notice_ids(→ set[str]) Return the ids of the channel notices which have already

been seen.

Attributes

logger

logger

cached_response(func)

is_notice_response_cache_expired(channel_notice_response: conda.notices.types.ChannelNoticeResponse)
→ bool

This checks the contents of the cache response to see if it is expired.

If for whatever reason we encounter an exception while parsing the individual messages, we assume an invalid
cache and return true.

get_notices_cache_dir()→ pathlib.Path
Returns the location of the notices cache directory as a Path object

get_notices_cache_file()→ pathlib.Path
Returns the location of the notices cache file as a Path object

4.6. Developer guide 667

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

conda, Release 24.3.1.dev75

get_notice_response_from_cache(url: str, name: str, cache_dir: pathlib.Path)→
conda.notices.types.ChannelNoticeResponse | None

Retrieves a notice response object from cache if it exists.

write_notice_response_to_cache(channel_notice_response: conda.notices.types.ChannelNoticeResponse,
cache_dir: pathlib.Path)→ None

Writes our notice data to our local cache location.

mark_channel_notices_as_viewed(cache_file: pathlib.Path, channel_notices:
Sequence[conda.notices.types.ChannelNotice])→ None

Insert channel notice into our database marking it as read.

get_viewed_channel_notice_ids(cache_file: pathlib.Path, channel_notices:
Sequence[conda.notices.types.ChannelNotice])→ set[str]

Return the ids of the channel notices which have already been seen.

core

Core conda notices logic.

Functions

retrieve_notices(...) Function used for retrieving notices. This is called by
the "notices" decorator as well

display_notices(→ None) Prints the channel notices to std out.
notices(func) Wrapper for "execute" entry points for subcommands.
get_channel_name_and_urls(→
list[tuple[ChannelUrl, ...)

Return a sequence of Channel URL and name tuples.

flatten_notice_responses(...)

filter_notices(...) Perform filtering actions for the provided sequence of
ChannelNotice objects.

is_channel_notices_enabled(→ bool) Determines whether channel notices are enabled and
therefore displayed when

is_channel_notices_cache_expired(→ bool) Checks to see if the notices cache file we use to keep
track of

Attributes

ChannelName

ChannelUrl

logger

ChannelName

668 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

ChannelUrl

logger

retrieve_notices(limit: int | None = None, always_show_viewed: bool = True, silent: bool = False)→
conda.notices.types.ChannelNoticeResultSet

Function used for retrieving notices. This is called by the "notices" decorator as well as the sub-command
"notices"

Parameters
• limit -- Limit the number of notices to show (defaults to None).

• always_show_viewed -- Whether all notices should be shown, not only the unread ones
(defaults to True).

• silent -- Whether to use a spinner when fetching and caching notices.

display_notices(channel_notice_set: conda.notices.types.ChannelNoticeResultSet)→ None
Prints the channel notices to std out.

notices(func)
Wrapper for "execute" entry points for subcommands.

If channel notices need to be fetched, we do that first and then run the command normally. We then display these
notices at the very end of the command output so that the user is more likely to see them.

This ordering was specifically done to address the following bug report:
• https://github.com/conda/conda/issues/11847

Parameters
func -- Function to be decorated

get_channel_name_and_urls(channels: Sequence[conda.models.channel.Channel |
conda.models.channel.MultiChannel])→ list[tuple[ChannelUrl, ChannelName]]

Return a sequence of Channel URL and name tuples.

This function handles both Channel and MultiChannel object types.

flatten_notice_responses(channel_notice_responses:
Sequence[conda.notices.types.ChannelNoticeResponse])→
Sequence[conda.notices.types.ChannelNotice]

filter_notices(channel_notices: Sequence[conda.notices.types.ChannelNotice], limit: int | None = None,
exclude: set[str] | None = None)→ Sequence[conda.notices.types.ChannelNotice]

Perform filtering actions for the provided sequence of ChannelNotice objects.

is_channel_notices_enabled(ctx: conda.base.context.Context)→ bool
Determines whether channel notices are enabled and therefore displayed when invoking the notices command
decorator.

This only happens when:
• offline is False

• number_channel_notices is greater than 0

Parameters
ctx -- The conda context object

4.6. Developer guide 669

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://github.com/conda/conda/issues/11847
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

conda, Release 24.3.1.dev75

is_channel_notices_cache_expired()→ bool
Checks to see if the notices cache file we use to keep track of displayed notices is expired. This in-
volves checking the mtime attribute of the file. Anything older than what is specified as the NO-
TICES_DECORATOR_DISPLAY_INTERVAL is considered expired.

fetch

Notices network fetch logic.

Functions

get_notice_responses(...) Provided a list of channel notification url/name tuples,
return a sequence of

get_channel_notice_response(...) Return a channel response object. We use this to wrap
the response with

Attributes

logger

logger

get_notice_responses(url_and_names: Sequence[tuple[str, str]], silent: bool = False, max_workers: int = 10)
→ Sequence[conda.notices.types.ChannelNoticeResponse]

Provided a list of channel notification url/name tuples, return a sequence of ChannelNoticeResponse objects.

Parameters
• url_and_names -- channel url and the channel name

• silent -- turn off "loading animation" (defaults to False)

• max_workers -- increase worker number in thread executor (defaults to 10)

Returns
Sequence[ChannelNoticeResponse]

get_channel_notice_response(url: str, name: str)→ conda.notices.types.ChannelNoticeResponse | None
Return a channel response object. We use this to wrap the response with additional channel information to use.
If the response was invalid we suppress/log and error message.

670 Chapter 4. Contributors welcome

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

types

Implements all conda.notices types.

Classes

ChannelNotice Represents an individual channel notice.
ChannelNoticeResultSet Represents a list of a channel notices, plus some accom-

panying
ChannelNoticeResponse

Attributes

UNDEFINED_MESSAGE_ID

UNDEFINED_MESSAGE_ID = 'undefined'

class ChannelNotice

Bases: NamedTuple

Represents an individual channel notice.

id: str

channel_name: str | None

message: str | None

level: conda.base.constants.NoticeLevel

created_at: datetime.datetime | None

expired_at: datetime.datetime | None

interval: int | None

to_dict()

class ChannelNoticeResultSet

Bases: NamedTuple

Represents a list of a channel notices, plus some accompanying metadata such as viewed_channel_notices.

channel_notices: Sequence[ChannelNotice]

total_number_channel_notices: int

viewed_channel_notices: int

class ChannelNoticeResponse

Bases: NamedTuple

4.6. Developer guide 671

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

property notices: Sequence[ChannelNotice]

url: str

name: str

json_data: dict | None

static _parse_notice_level(level: str | None)→ conda.base.constants.NoticeLevel
We use this to validate notice levels and provide reasonable defaults if any are invalid.

static _parse_iso_timestamp(iso_timestamp: str | None)→ datetime.datetime | None
Parse ISO timestamp and fail over to a default value of none.

classmethod get_cache_key(url: str, cache_dir: pathlib.Path)→ pathlib.Path
Returns where this channel response will be cached by hashing the URL.

views

Handles all display/view logic.

Functions

print_notices(channel_notices) Accepts a list of channel notice responses and prints a
display.

print_notice_message(→ None) Prints a single channel notice.
print_more_notices_message(→ None) Conditionally shows a message informing users how

many more message there are.

print_notices(channel_notices: Sequence[conda.notices.types.ChannelNotice])
Accepts a list of channel notice responses and prints a display.

Parameters
channel_notices -- A sequence of ChannelNotice objects.

print_notice_message(notice: conda.notices.types.ChannelNotice, indent: str = ' ')→ None
Prints a single channel notice.

print_more_notices_message(total_notices: int, displayed_notices: int, viewed_notices: int)→ None
Conditionally shows a message informing users how many more message there are.

Functions

notices(func) Wrapper for "execute" entry points for subcommands.

notices(func)
Wrapper for "execute" entry points for subcommands.

If channel notices need to be fetched, we do that first and then run the command normally. We then display these
notices at the very end of the command output so that the user is more likely to see them.

672 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

This ordering was specifically done to address the following bug report:
• https://github.com/conda/conda/issues/11847

Parameters
func -- Function to be decorated

plan

Handle the planning of installs and their execution.

Note: conda.install uses canonical package names in its interface functions, whereas conda.resolve uses package
filenames, as those are used as index keys. We try to keep fixes to this "impedance mismatch" local to this module.

Functions

print_dists(dists_extras)

display_actions(actions, index[,
show_channel_urls, ...])
add_unlink(actions, dist)

add_defaults_to_specs(r, linked, specs[, update,
prefix])
_get_best_prec_match (precs)

revert_actions(prefix[, revision, index])

execute_actions(actions, index[, verbose])

_plan_from_actions(actions, index)

_inject_UNLINKLINKTRANSACTION(plan, index, pre-
fix, ...)
_handle_menuinst(unlink_dists, link_dists)

install_actions(prefix, index, specs[, force, ...])

get_blank_actions(prefix)

execute_plan(old_plan[, index, verbose]) Deprecated: This should
conda.instructions.execute_instructions instead.

execute_instructions(plan[, index, verbose, _com-
mands])

Execute the instructions in the plan

_update_old_plan(old_plan) Update an old plan object to work with

print_dists(dists_extras)

display_actions(actions, index, show_channel_urls=None, specs_to_remove=(), specs_to_add=())

4.6. Developer guide 673

https://github.com/conda/conda/issues/11847

conda, Release 24.3.1.dev75

add_unlink(actions, dist)

add_defaults_to_specs(r, linked, specs, update=False, prefix=None)

_get_best_prec_match(precs)

revert_actions(prefix, revision=-1, index=None)

execute_actions(actions, index, verbose=False)

_plan_from_actions(actions, index)

_inject_UNLINKLINKTRANSACTION(plan, index, prefix, axn, specs)

_handle_menuinst(unlink_dists, link_dists)

install_actions(prefix, index, specs, force=False, only_names=None, always_copy=False, pinned=True,
update_deps=True, prune=False, channel_priority_map=None, is_update=False,
minimal_hint=False)

get_blank_actions(prefix)

execute_plan(old_plan, index=None, verbose=False)
Deprecated: This should conda.instructions.execute_instructions instead.

execute_instructions(plan, index=None, verbose=False, _commands=None)
Execute the instructions in the plan

Parameters
• plan -- A list of (instruction, arg) tuples

• index -- The meta-data index

• verbose -- verbose output

• _commands -- (For testing only) dict mapping an instruction to executable if None

then the default commands will be used

_update_old_plan(old_plan)
Update an old plan object to work with conda.instructions.execute_instructions

plugins

In this module, you will find everything relevant to conda's plugin system. It contains all of the code that plugin authors
will use to write plugins, as well as conda's internal implementations of plugins.

Modules relevant for plugin authors
• conda.plugins.hookspec: all available hook specifications are listed here, including examples of how to use

them

• conda.plugins.types: important types to use when defining plugin hooks

Modules relevant for internal development
• conda.plugins.manager: includes our custom subclass of pluggy's PluginManager class

Modules with internal plugin implementations
• conda.plugins.solvers: implementation of the "classic" solver

674 Chapter 4. Contributors welcome

https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager

conda, Release 24.3.1.dev75

• conda.plugins.subcommands.doctor: conda doctor subcommand

• conda.plugins.virtual_packages: registers virtual packages in conda

hookspec

Pluggy hook specifications ("hookspecs") to register conda plugins.

Each hookspec defined in CondaSpecs contains an example of how to use it.

Classes

CondaSpecs The conda plugin hookspecs, to be used by developers.

Attributes

spec_name Name used for organizing conda hook specifications
_hookspec The conda plugin hook specifications, to be used by de-

velopers
hookimpl Decorator used to mark plugin hook implementations

spec_name = 'conda'

Name used for organizing conda hook specifications

_hookspec

The conda plugin hook specifications, to be used by developers

hookimpl

Decorator used to mark plugin hook implementations

class CondaSpecs

The conda plugin hookspecs, to be used by developers.

conda_solvers()→ collections.abc.Iterable[conda.plugins.types.CondaSolver]
Register solvers in conda.

Example:

import logging

from conda import plugins
from conda.core import solve

log = logging.getLogger(__name__)

class VerboseSolver(solve.Solver):
def solve_final_state(self, *args, **kwargs):

log.info("My verbose solver!")
return super().solve_final_state(*args, **kwargs)

(continues on next page)

4.6. Developer guide 675

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

conda, Release 24.3.1.dev75

(continued from previous page)

@plugins.hookimpl
def conda_solvers():

yield plugins.CondaSolver(
name="verbose-classic",
backend=VerboseSolver,

)

Returns
An iterable of solver entries.

conda_subcommands()→ collections.abc.Iterable[conda.plugins.types.CondaSubcommand]
Register external subcommands in conda.

Example:

from conda import plugins

def example_command(args):
print("This is an example command!")

@plugins.hookimpl
def conda_subcommands():

yield plugins.CondaSubcommand(
name="example",
summary="example command",
action=example_command,

)

Returns
An iterable of subcommand entries.

conda_virtual_packages()→ collections.abc.Iterable[conda.plugins.types.CondaVirtualPackage]
Register virtual packages in Conda.

Example:

from conda import plugins

@plugins.hookimpl
def conda_virtual_packages():

yield plugins.CondaVirtualPackage(
name="my_custom_os",
version="1.2.3",
build="x86_64",

)

676 Chapter 4. Contributors welcome

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

conda, Release 24.3.1.dev75

Returns
An iterable of virtual package entries.

conda_pre_commands()→ collections.abc.Iterable[conda.plugins.types.CondaPreCommand]
Register pre-command functions in conda.

Example:

from conda import plugins

def example_pre_command(command):
print("pre-command action")

@plugins.hookimpl
def conda_pre_commands():

yield plugins.CondaPreCommand(
name="example-pre-command",
action=example_pre_command,
run_for={"install", "create"},

)

conda_post_commands()→ collections.abc.Iterable[conda.plugins.types.CondaPostCommand]
Register post-command functions in conda.

Example:

from conda import plugins

def example_post_command(command):
print("post-command action")

@plugins.hookimpl
def conda_post_commands():

yield plugins.CondaPostCommand(
name="example-post-command",
action=example_post_command,
run_for={"install", "create"},

)

conda_auth_handlers()→ collections.abc.Iterable[conda.plugins.types.CondaAuthHandler]
Register a conda auth handler derived from the requests API.

This plugin hook allows attaching requests auth handler subclasses, e.g. when authenticating requests
against individual channels hosted at HTTP/HTTPS services.

Example:

import os
from conda import plugins
from requests.auth import AuthBase

(continues on next page)

4.6. Developer guide 677

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

conda, Release 24.3.1.dev75

(continued from previous page)

class EnvironmentHeaderAuth(AuthBase):
def __init__(self, *args, **kwargs):

self.username = os.environ["EXAMPLE_CONDA_AUTH_USERNAME"]
self.password = os.environ["EXAMPLE_CONDA_AUTH_PASSWORD"]

def __call__(self, request):
request.headers["X-Username"] = self.username
request.headers["X-Password"] = self.password
return request

@plugins.hookimpl
def conda_auth_handlers():

yield plugins.CondaAuthHandler(
name="environment-header-auth",
auth_handler=EnvironmentHeaderAuth,

)

conda_health_checks()→ collections.abc.Iterable[conda.plugins.types.CondaHealthCheck]
Register health checks for conda doctor.

This plugin hook allows you to add more "health checks" to conda doctor that you can write to diagnose
problems in your conda environment. Check out the health checks already shipped with conda for inspira-
tion.

Example:

from conda import plugins

def example_health_check(prefix: str, verbose: bool):
print("This is an example health check!")

@plugins.hookimpl
def conda_health_checks():

yield plugins.CondaHealthCheck(
name="example-health-check",
action=example_health_check,

)

conda_pre_solves()→ collections.abc.Iterable[conda.plugins.types.CondaPreSolve]
Register pre-solve functions in conda that are used in the general solver API, before the solver processes
the package specs in search of a solution.

Example:

from conda import plugins
from conda.models.match_spec import MatchSpec

def example_pre_solve(
(continues on next page)

678 Chapter 4. Contributors welcome

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

conda, Release 24.3.1.dev75

(continued from previous page)

specs_to_add: frozenset[MatchSpec],
specs_to_remove: frozenset[MatchSpec],

):
print(f"Adding {len(specs_to_add)} packages")
print(f"Removing {len(specs_to_remove)} packages")

@plugins.hookimpl
def conda_pre_solves():

yield plugins.CondaPreSolve(
name="example-pre-solve",
action=example_pre_solve,

)

conda_post_solves()→ collections.abc.Iterable[conda.plugins.types.CondaPostSolve]
Register post-solve functions in conda that are used in the general solver API, after the solver has provided
the package records to add or remove from the conda environment.

Example:

from conda import plugins
from conda.models.records import PackageRecord

def example_post_solve(
repodata_fn: str,
unlink_precs: tuple[PackageRecord, ...],
link_precs: tuple[PackageRecord, ...],

):
print(f"Uninstalling {len(unlink_precs)} packages")
print(f"Installing {len(link_precs)} packages")

@plugins.hookimpl
def conda_post_solves():

yield plugins.CondaPostSolve(
name="example-post-solve",
action=example_post_solve,

)

conda_settings()→ collections.abc.Iterable[conda.plugins.types.CondaSetting]
Register new setting

The example below defines a simple string type parameter

Example:

from conda import plugins
from conda.common.configuration import PrimitiveParameter, SequenceParameter

@plugins.hookimpl
def conda_settings():

(continues on next page)

4.6. Developer guide 679

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

conda, Release 24.3.1.dev75

(continued from previous page)

yield plugins.CondaSetting(
name="example_option",
description="This is an example option",
parameter=PrimitiveParameter("default_value", element_type=str),
aliases=("example_option_alias",),

)

manager

This module contains a subclass implementation of pluggy's PluginManager.

Additionally, it contains a function we use to construct the PluginManager object and register all plugins during
conda's startup process.

Classes

CondaPluginManager The conda plugin manager to implement behavior addi-
tional to pluggy's default plugin manager.

Functions

get_plugin_manager(→ CondaPluginManager) Get a cached version of the CondaPluginManager in-
stance,

class CondaPluginManager(project_name: str | None = None, *args, **kwargs)
Bases: pluggy.PluginManager

The conda plugin manager to implement behavior additional to pluggy's default plugin manager.

get_cached_solver_backend

get_canonical_name(plugin: object)→ str
Return a canonical name for a plugin object.

Note that a plugin may be registered under a different name specified by the caller of register(plugin,
name). To obtain the name of a registered plugin use get_name(plugin) instead.

register(plugin, name: str | None = None)→ str | None
Call pluggy.PluginManager.register() and return the result or ignore errors raised, except
ValueError, which means the plugin had already been registered.

load_plugins(*plugins)→ int
Load the provided list of plugins and fail gracefully on error. The provided list of plugins can either be
classes or modules with hookimpl.

load_entrypoints(group: str, name: str | None = None)→ int
Load modules from querying the specified setuptools group.

Parameters

680 Chapter 4. Contributors welcome

https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager.register
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

conda, Release 24.3.1.dev75

• group (str) -- Entry point group to load plugins.

• name (str) -- If given, loads only plugins with the given name.

Return type
int

Returns
The number of plugins loaded by this call.

get_hook_results(name: Literal[conda.plugins.subcommands])→
list[conda.plugins.types.CondaSubcommand]

get_hook_results(name: Literal[conda.plugins.virtual_packages])→
list[conda.plugins.types.CondaVirtualPackage]

get_hook_results(name: Literal[conda.plugins.solvers])→ list[conda.plugins.types.CondaSolver]
get_hook_results(name: Literal[pre_commands])→ list[conda.plugins.types.CondaPreCommand]
get_hook_results(name: Literal[post_commands])→ list[conda.plugins.types.CondaPostCommand]
get_hook_results(name: Literal[auth_handlers])→ list[conda.plugins.types.CondaAuthHandler]
get_hook_results(name: Literal[conda.plugins.subcommands.doctor.health_checks])→

list[conda.plugins.types.CondaHealthCheck]
get_hook_results(name: Literal[pre_solves])→ list[conda.plugins.types.CondaPreSolve]
get_hook_results(name: Literal[conda.plugins.post_solves])→ list[conda.plugins.types.CondaPostSolve]
get_hook_results(name: Literal[settings])→ list[conda.plugins.types.CondaSetting]

Return results of the plugin hooks with the given name and raise an error if there is a conflict.

get_solvers()→ dict[str, conda.plugins.types.CondaSolver]
Return a mapping from solver name to solver class.

get_solver_backend(name: str | None = None)→ type[conda.core.solve.Solver]
Get the solver backend with the given name (or fall back to the name provided in the context).

See context.solver for more details.

Please use the cached version of this method called get_cached_solver_backend() for high-throughput
code paths which is set up as a instance-specific LRU cache.

get_auth_handler(name: str)→ type[requests.auth.AuthBase] | None
Get the auth handler with the given name or None

get_settings()→ dict[str, conda.common.configuration.ParameterLoader]
Return a mapping of plugin setting name to ParameterLoader class

This method intentionally overwrites any duplicates that may be present

invoke_pre_commands(command: str)→ None
Invokes CondaPreCommand.action functions registered with conda_pre_commands.

Parameters
command -- name of the command that is currently being invoked

invoke_post_commands(command: str)→ None
Invokes CondaPostCommand.action functions registered with conda_post_commands.

Parameters
command -- name of the command that is currently being invoked

4.6. Developer guide 681

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

disable_external_plugins()→ None
Disables all currently registered plugins except built-in conda plugins

get_subcommands()→ dict[str, conda.plugins.types.CondaSubcommand]

get_virtual_packages()→ tuple[conda.plugins.types.CondaVirtualPackage, Ellipsis]

invoke_health_checks(prefix: str, verbose: bool)→ None

invoke_pre_solves(specs_to_add: frozenset[conda.models.match_spec.MatchSpec], specs_to_remove:
frozenset[conda.models.match_spec.MatchSpec])→ None

Invokes CondaPreSolve.action functions registered with conda_pre_solves.

Parameters
• specs_to_add

• specs_to_remove

invoke_post_solves(repodata_fn: str, unlink_precs: tuple[conda.models.records.PackageRecord, Ellipsis],
link_precs: tuple[conda.models.records.PackageRecord, Ellipsis])→ None

Invokes CondaPostSolve.action functions registered with conda_post_solves.

Parameters
• repodata_fn

• unlink_precs

• link_precs

load_settings()→ None
Iterates through all registered settings and adds them to the conda.common.configuration.
PluginConfig class.

get_plugin_manager()→ CondaPluginManager
Get a cached version of the CondaPluginManager instance, with the built-in and entrypoints provided by the
plugins loaded.

post_solves

Register the built-in post_solves hook implementations.

signature_verification

Register signature verification as a post-solve plugin.

682 Chapter 4. Contributors welcome

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Functions

conda_post_solves()

conda_post_solves()

plugins

solvers

Register the classic conda solver.

Functions

conda_solvers() The classic solver as shipped by default in conda.

conda_solvers()

The classic solver as shipped by default in conda.

subcommands

doctor

Implementation for conda doctor subcommand. Adds various environment and package checks to detect issues or
possible environment corruption.

health_checks

Backend logic implementation for conda doctor.

4.6. Developer guide 683

conda, Release 24.3.1.dev75

Functions

display_report_heading(→ None) Displays our report heading.
check_envs_txt_file(→ bool) Checks whether the environment is listed in the environ-

ments.txt file
find_packages_with_missing_files(→ dict[str,
list[str]])

Finds packages listed in conda-meta which have missing
files.

find_altered_packages(→ dict[str, list[str]]) Finds altered packages
display_health_checks(→ None) Prints health report.
missing_files(→ None)

altered_files(→ None)

env_txt_check(→ None)

conda_health_checks()

Attributes

logger

OK_MARK

X_MARK

logger

OK_MARK = ''

X_MARK = ''

display_report_heading(prefix: str)→ None
Displays our report heading.

check_envs_txt_file(prefix: str | os.PathLike | pathlib.Path)→ bool
Checks whether the environment is listed in the environments.txt file

find_packages_with_missing_files(prefix: str | pathlib.Path)→ dict[str, list[str]]
Finds packages listed in conda-meta which have missing files.

find_altered_packages(prefix: str | pathlib.Path)→ dict[str, list[str]]
Finds altered packages

display_health_checks(prefix: str, verbose: bool = False)→ None
Prints health report.

missing_files(prefix: str, verbose: bool)→ None

altered_files(prefix: str, verbose: bool)→ None

684 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

env_txt_check(prefix: str, verbose: bool)→ None

conda_health_checks()

Classes

CondaSubcommand Return type to use when defining a conda subcommand
plugin hook.

Functions

add_parser_help(→ None) So we can use consistent capitalization and periods in
the help. You must

add_parser_prefix(→ arg-
parse._MutuallyExclusiveGroup)
add_parser_verbose(→ None)

get_prefix(→ str)

configure_parser(parser)

execute(→ None) Run registered health_check plugins.
conda_subcommands()

Attributes

context

deprecated

hookimpl Decorator used to mark plugin hook implementations

context

add_parser_help(p: argparse.ArgumentParser)→ None
So we can use consistent capitalization and periods in the help. You must use the add_help=False argument to
ArgumentParser or add_parser to use this. Add this first to be consistent with the default argparse output.

add_parser_prefix(p: argparse.ArgumentParser, prefix_required: bool = False)→
argparse._MutuallyExclusiveGroup

add_parser_verbose(parser: argparse.ArgumentParser | argparse._ArgumentGroup)→ None

deprecated

4.6. Developer guide 685

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

class CondaSubcommand

Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see conda_subcommands().

Parameters
• name -- Subcommand name (e.g., conda my-subcommand-name).

• summary -- Subcommand summary, will be shown in conda --help.

• action -- Callable that will be run when the subcommand is invoked.

• configure_parser -- Callable that will be run when the subcommand parser is initialized.

name: str

summary: str

action: Callable[[argparse.Namespace | tuple[str]], int | None]

configure_parser: Callable[[argparse.ArgumentParser], None] | None

hookimpl

Decorator used to mark plugin hook implementations

get_prefix(args: argparse.Namespace)→ str

configure_parser(parser: argparse.ArgumentParser)

execute(args: argparse.Namespace)→ None
Run registered health_check plugins.

conda_subcommands()

plugins

types

Definition of specific return types for use when defining a conda plugin hook.

Each type corresponds to the plugin hook for which it is used.

686 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Classes

CondaSubcommand Return type to use when defining a conda subcommand
plugin hook.

CondaVirtualPackage Return type to use when defining a conda virtual package
plugin hook.

CondaSolver Return type to use when defining a conda solver plugin
hook.

CondaPreCommand Return type to use when defining a conda pre-command
plugin hook.

CondaPostCommand Return type to use when defining a conda post-command
plugin hook.

ChannelNameMixin Class mixin to make all plugin implementations compat-
ible, e.g. when they

ChannelAuthBase Base class that we require all plugin implementations to
use to be compatible.

CondaAuthHandler Return type to use when the defining the conda auth han-
dlers hook.

CondaHealthCheck Return type to use when defining conda health checks
plugin hook.

CondaPreSolve Return type to use when defining a conda pre-solve plu-
gin hook.

CondaPostSolve Return type to use when defining a conda post-solve plu-
gin hook.

CondaSetting Return type to use when defining a conda setting plugin
hook.

class CondaSubcommand

Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see conda_subcommands().

Parameters
• name -- Subcommand name (e.g., conda my-subcommand-name).

• summary -- Subcommand summary, will be shown in conda --help.

• action -- Callable that will be run when the subcommand is invoked.

• configure_parser -- Callable that will be run when the subcommand parser is initialized.

name: str

summary: str

action: Callable[[argparse.Namespace | tuple[str]], int | None]

configure_parser: Callable[[argparse.ArgumentParser], None] | None

class CondaVirtualPackage

Bases: NamedTuple

Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see conda_virtual_packages().

Parameters

4.6. Developer guide 687

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

• name -- Virtual package name (e.g., my_custom_os).

• version -- Virtual package version (e.g., 1.2.3).

• build -- Virtual package build string (e.g., x86_64).

name: str

version: str | None

build: str | None

class CondaSolver

Bases: NamedTuple

Return type to use when defining a conda solver plugin hook.

For details on how this is used, see conda_solvers().

Parameters
• name -- Solver name (e.g., custom-solver).

• backend -- Type that will be instantiated as the solver backend.

name: str

backend: type[conda.core.solve.Solver]

class CondaPreCommand

Bases: NamedTuple

Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see conda_pre_commands().

Parameters
• name -- Pre-command name (e.g., custom_plugin_pre_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

name: str

action: Callable[[str], None]

run_for: set[str]

class CondaPostCommand

Bases: NamedTuple

Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see conda_post_commands().

Parameters
• name -- Post-command name (e.g., custom_plugin_post_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

name: str

688 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

action: Callable[[str], None]

run_for: set[str]

class ChannelNameMixin(channel_name: str, *args, **kwargs)
Class mixin to make all plugin implementations compatible, e.g. when they use an existing (e.g. 3rd party)
requests authentication handler.

Please use the concrete ChannelAuthBase in case you're creating an own implementation.

class ChannelAuthBase(channel_name: str, *args, **kwargs)
Bases: ChannelNameMixin, requests.auth.AuthBase

Base class that we require all plugin implementations to use to be compatible.

Authentication is tightly coupled with individual channels. Therefore, an additional channel_name property
must be set on the requests.auth.AuthBase based class.

class CondaAuthHandler

Bases: NamedTuple

Return type to use when the defining the conda auth handlers hook.

Parameters
• name -- Name (e.g., basic-auth). This name should be unique and only one may be regis-

tered at a time.

• handler -- Type that will be used as the authentication handler during network requests.

name: str

handler: type[ChannelAuthBase]

class CondaHealthCheck

Bases: NamedTuple

Return type to use when defining conda health checks plugin hook.

name: str

action: Callable[[str, bool], None]

class CondaPreSolve

Return type to use when defining a conda pre-solve plugin hook.

For details on how this is used, see conda_pre_solves().

Parameters
• name -- Pre-solve name (e.g., custom_plugin_pre_solve).

• action -- Callable which contains the code to be run.

name: str

action: Callable[[frozenset[conda.models.match_spec.MatchSpec],
frozenset[conda.models.match_spec.MatchSpec]], None]

class CondaPostSolve

Return type to use when defining a conda post-solve plugin hook.

For details on how this is used, see conda_post_solves().

4.6. Developer guide 689

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Parameters
• name -- Post-solve name (e.g., custom_plugin_post_solve).

• action -- Callable which contains the code to be run.

name: str

action: Callable[[str, tuple[conda.models.records.PackageRecord, Ellipsis],
tuple[conda.models.records.PackageRecord, Ellipsis]], None]

class CondaSetting

Return type to use when defining a conda setting plugin hook.

For details on how this is used, see conda_settings().

Parameters
• name -- name of the setting (e.g., config_param)

• description -- description of the setting that should be targeted towards users of the plugin

• parameter -- Parameter instance containing the setting definition

• aliases -- alternative names of the setting

name: str

description: str

parameter: conda.common.configuration.Parameter

aliases: tuple[str, Ellipsis]

virtual_packages

archspec

Detect archspec name.

Functions

conda_virtual_packages()

conda_virtual_packages()

690 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

conda

Expose conda version.

Functions

conda_virtual_packages()

conda_virtual_packages()

cuda

Detect CUDA version.

Functions

cuda_version() Attempt to detect the version of CUDA present in the
operating system.

cached_cuda_version() A cached version of the cuda detection system.
conda_virtual_packages()

_cuda_driver_version_detector_target(queue) Attempt to detect the version of CUDA present in the
operating system in a

cuda_version()

Attempt to detect the version of CUDA present in the operating system.

On Windows and Linux, the CUDA library is installed by the NVIDIA driver package, and is typically found in
the standard library path, rather than with the CUDA SDK (which is optional for running CUDA apps).

On macOS, the CUDA library is only installed with the CUDA SDK, and might not be in the library path.

Returns: version string (e.g., '9.2') or None if CUDA is not found.

cached_cuda_version()

A cached version of the cuda detection system.

conda_virtual_packages()

_cuda_driver_version_detector_target(queue)
Attempt to detect the version of CUDA present in the operating system in a subprocess.

On Windows and Linux, the CUDA library is installed by the NVIDIA driver package, and is typically found in
the standard library path, rather than with the CUDA SDK (which is optional for running CUDA apps).

On macOS, the CUDA library is only installed with the CUDA SDK, and might not be in the library path.

Returns: version string (e.g., '9.2') or None if CUDA is not found.
The result is put in the queue rather than a return value.

4.6. Developer guide 691

conda, Release 24.3.1.dev75

freebsd

Detect whether this is FeeBSD.

Functions

conda_virtual_packages()

conda_virtual_packages()

linux

Detect whether this is Linux.

Functions

conda_virtual_packages()

conda_virtual_packages()

osx

Detect whether this is macOS.

Functions

conda_virtual_packages()

conda_virtual_packages()

windows

Detect whether this is Windows.

692 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

conda_virtual_packages()

conda_virtual_packages()

plugins

Classes

CondaAuthHandler Return type to use when the defining the conda auth han-
dlers hook.

CondaHealthCheck Return type to use when defining conda health checks
plugin hook.

CondaPostCommand Return type to use when defining a conda post-command
plugin hook.

CondaPostSolve Return type to use when defining a conda post-solve plu-
gin hook.

CondaPreCommand Return type to use when defining a conda pre-command
plugin hook.

CondaPreSolve Return type to use when defining a conda pre-solve plu-
gin hook.

CondaSetting Return type to use when defining a conda setting plugin
hook.

CondaSolver Return type to use when defining a conda solver plugin
hook.

CondaSubcommand Return type to use when defining a conda subcommand
plugin hook.

CondaVirtualPackage Return type to use when defining a conda virtual package
plugin hook.

Attributes

hookimpl Decorator used to mark plugin hook implementations

hookimpl

Decorator used to mark plugin hook implementations

class CondaAuthHandler

Bases: NamedTuple

Return type to use when the defining the conda auth handlers hook.

Parameters
• name -- Name (e.g., basic-auth). This name should be unique and only one may be regis-

tered at a time.

4.6. Developer guide 693

conda, Release 24.3.1.dev75

• handler -- Type that will be used as the authentication handler during network requests.

name: str

handler: type[ChannelAuthBase]

class CondaHealthCheck

Bases: NamedTuple

Return type to use when defining conda health checks plugin hook.

name: str

action: Callable[[str, bool], None]

class CondaPostCommand

Bases: NamedTuple

Return type to use when defining a conda post-command plugin hook.

For details on how this is used, see conda_post_commands().

Parameters
• name -- Post-command name (e.g., custom_plugin_post_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

name: str

action: Callable[[str], None]

run_for: set[str]

class CondaPostSolve

Return type to use when defining a conda post-solve plugin hook.

For details on how this is used, see conda_post_solves().

Parameters
• name -- Post-solve name (e.g., custom_plugin_post_solve).

• action -- Callable which contains the code to be run.

name: str

action: Callable[[str, tuple[conda.models.records.PackageRecord, Ellipsis],
tuple[conda.models.records.PackageRecord, Ellipsis]], None]

class CondaPreCommand

Bases: NamedTuple

Return type to use when defining a conda pre-command plugin hook.

For details on how this is used, see conda_pre_commands().

Parameters
• name -- Pre-command name (e.g., custom_plugin_pre_commands).

• action -- Callable which contains the code to be run.

• run_for -- Represents the command(s) this will be run on (e.g. install or create).

694 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

name: str

action: Callable[[str], None]

run_for: set[str]

class CondaPreSolve

Return type to use when defining a conda pre-solve plugin hook.

For details on how this is used, see conda_pre_solves().

Parameters
• name -- Pre-solve name (e.g., custom_plugin_pre_solve).

• action -- Callable which contains the code to be run.

name: str

action: Callable[[frozenset[conda.models.match_spec.MatchSpec],
frozenset[conda.models.match_spec.MatchSpec]], None]

class CondaSetting

Return type to use when defining a conda setting plugin hook.

For details on how this is used, see conda_settings().

Parameters
• name -- name of the setting (e.g., config_param)

• description -- description of the setting that should be targeted towards users of the plugin

• parameter -- Parameter instance containing the setting definition

• aliases -- alternative names of the setting

name: str

description: str

parameter: conda.common.configuration.Parameter

aliases: tuple[str, Ellipsis]

class CondaSolver

Bases: NamedTuple

Return type to use when defining a conda solver plugin hook.

For details on how this is used, see conda_solvers().

Parameters
• name -- Solver name (e.g., custom-solver).

• backend -- Type that will be instantiated as the solver backend.

name: str

backend: type[conda.core.solve.Solver]

4.6. Developer guide 695

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

class CondaSubcommand

Return type to use when defining a conda subcommand plugin hook.

For details on how this is used, see conda_subcommands().

Parameters
• name -- Subcommand name (e.g., conda my-subcommand-name).

• summary -- Subcommand summary, will be shown in conda --help.

• action -- Callable that will be run when the subcommand is invoked.

• configure_parser -- Callable that will be run when the subcommand parser is initialized.

name: str

summary: str

action: Callable[[argparse.Namespace | tuple[str]], int | None]

configure_parser: Callable[[argparse.ArgumentParser], None] | None

class CondaVirtualPackage

Bases: NamedTuple

Return type to use when defining a conda virtual package plugin hook.

For details on how this is used, see conda_virtual_packages().

Parameters
• name -- Virtual package name (e.g., my_custom_os).

• version -- Virtual package version (e.g., 1.2.3).

• build -- Virtual package build string (e.g., x86_64).

name: str

version: str | None

build: str | None

resolve

Low-level SAT solver wrapper/interface for the classic solver.

See conda.core.solver.Solver for the high-level API.

Classes

Resolve

696 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Functions

_get_sat_solver_cls([sat_solver_choice])

exactness_and_number_of_deps(resolve_obj, ms) Sorting key to emphasize packages that have more strict

Attributes

stdoutlog

Unsatisfiable

ResolvePackageNotFound

_sat_solvers

stdoutlog

Unsatisfiable

ResolvePackageNotFound

_sat_solvers

_get_sat_solver_cls(sat_solver_choice=SatSolverChoice.PYCOSAT)

exactness_and_number_of_deps(resolve_obj, ms)
Sorting key to emphasize packages that have more strict requirements. More strict means the reduced index can
be reduced more, so we want to consider these more constrained deps earlier in reducing the index.

class Resolve(index, processed=False, channels=())

__hash__()

Return hash(self).

default_filter(features=None, filter=None)

valid(spec_or_prec, filter, optional=True)
Tests if a package, MatchSpec, or a list of both has satisfiable dependencies, assuming cyclic dependencies
are always valid.

Parameters
• spec_or_prec -- a package record, a MatchSpec, or an iterable of these.

• filter -- a dictionary of (fkey,valid) pairs, used to consider a subset of dependencies, and
to eliminate repeated searches.

• optional -- if True (default), do not enforce optional specifications when considering
validity. If False, enforce them.

Returns
True if the full set of dependencies can be satisfied; False otherwise. If filter is supplied and
update is True, it will be updated with the search results.

4.6. Developer guide 697

conda, Release 24.3.1.dev75

valid2(spec_or_prec, filter_out, optional=True)

invalid_chains(spec, filter, optional=True)
Constructs a set of 'dependency chains' for invalid specs.

A dependency chain is a tuple of MatchSpec objects, starting with the requested spec, proceeding down the
dependency tree, ending at a specification that cannot be satisfied.

Parameters
• spec -- a package key or MatchSpec

• filter -- a dictionary of (prec, valid) pairs to be used when testing for package validity.

Returns
A tuple of tuples, empty if the MatchSpec is valid.

verify_specs(specs)
Perform a quick verification that specs and dependencies are reasonable.

Parameters
specs -- An iterable of strings or MatchSpec objects to be tested.

Returns
Nothing, but if there is a conflict, an error is thrown.

Note that this does not attempt to resolve circular dependencies.

_classify_bad_deps(bad_deps, specs_to_add, history_specs, strict_channel_priority)

find_matches_with_strict(ms, strict_channel_priority)

find_conflicts(specs, specs_to_add=None, history_specs=None)

breadth_first_search_for_dep_graph(root_spec, target_name, dep_graph, num_targets=1)
Return shorted path from root_spec to target_name

build_graph_of_deps(spec)

build_conflict_map(specs, specs_to_add=None, history_specs=None)
Perform a deeper analysis on conflicting specifications, by attempting to find the common dependencies
that might be the cause of conflicts.

Parameters
• specs -- An iterable of strings or MatchSpec objects to be tested.

• conflict. (It is assumed that the specs)

Returns
A list of lists of bad deps

Return type
bad_deps

Strategy:
If we're here, we know that the specs conflict. This could be because: - One spec conflicts with another;
e.g.

['numpy 1.5*', 'numpy >=1.6']

• One spec conflicts with a dependency of another; e.g.
['numpy 1.5*', 'scipy 0.12.0b1']

698 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

• Each spec depends on the same package but in a different way; e.g.,
['A', 'B'] where A depends on numpy 1.5, and B on numpy 1.6.

Technically, all three of these cases can be boiled down to the last one if we treat the spec itself as
one of the "dependencies". There might be more complex reasons for a conflict, but this code only
considers the ones above.

The purpose of this code, then, is to identify packages (like numpy above) that all of the specs depend
on but in different ways. We then identify the dependency chains that lead to those packages.

_get_strict_channel(package_name)

_broader(ms, specs_by_name)
Prevent introduction of matchspecs that broaden our selection of choices.

_get_package_pool(specs)

get_reduced_index(explicit_specs, sort_by_exactness=True, exit_on_conflict=False)

match_any(mss, prec)

find_matches(spec: conda.models.match_spec.MatchSpec)→ tuple[conda.models.records.PackageRecord]

ms_depends(prec: conda.models.records.PackageRecord)→ list[conda.models.match_spec.MatchSpec]

version_key(prec, vtype=None)

static _make_channel_priorities(channels)

get_pkgs(ms, emptyok=False)

static to_sat_name(val)

static to_feature_metric_id(prec_dist_str, feat)

push_MatchSpec(C, spec)

gen_clauses()

generate_spec_constraints(C, specs)

generate_feature_count(C)

generate_update_count(C, specs)

generate_feature_metric(C)

generate_removal_count(C, specs)

generate_install_count(C, specs)

generate_package_count(C, missing)

generate_version_metrics(C, specs, include0=False)

dependency_sort(must_have: dict[str, conda.models.records.PackageRecord])→
list[conda.models.records.PackageRecord]

environment_is_consistent(installed)

4.6. Developer guide 699

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

conda, Release 24.3.1.dev75

get_conflicting_specs(specs, explicit_specs)

bad_installed(installed, new_specs)

restore_bad(pkgs, preserve)

install_specs(specs, installed, update_deps=True)

install(specs, installed=None, update_deps=True, returnall=False)

remove_specs(specs, installed)

remove(specs, installed)

solve(specs: list, returnall: bool = False, _remove=False, specs_to_add=None, history_specs=None,
should_retry_solve=False)→ list[conda.models.records.PackageRecord]

testing

cases

Extends unittest.TestCase to include select pytest fixtures.

Classes

BaseTestCase A class whose instances are single test cases.

class BaseTestCase(methodName='runTest')
Bases: unittest.TestCase

A class whose instances are single test cases.

By default, the test code itself should be placed in a method named 'runTest'.

If the fixture may be used for many test cases, create as many test methods as are needed. When instantiating
such a TestCase subclass, specify in the constructor arguments the name of the test method that the instance is
to execute.

Test authors should subclass TestCase for their own tests. Construction and deconstruction of the test's environ-
ment ('fixture') can be implemented by overriding the 'setUp' and 'tearDown' methods respectively.

If it is necessary to override the __init__ method, the base class __init__ method must always be called. It is
important that subclasses should not change the signature of their __init__ method, since instances of the classes
are instantiated automatically by parts of the framework in order to be run.

When subclassing TestCase, you can set these attributes: * failureException: determines which exception will
be raised when

the instance's assertion methods fail; test methods raising this exception will be deemed to have 'failed'
rather than 'errored'.

• longMessage: determines whether long messages (including repr of
objects used in assert methods) will be printed on failure in addition to any explicit message passed.

700 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/unittest.html#unittest.TestCase

conda, Release 24.3.1.dev75

• maxDiff: sets the maximum length of a diff in failure messages
by assert methods using difflib. It is looked up as an instance attribute so can be configured by indi-
vidual tests if required.

fixture_names = ('tmpdir',)

auto_injector_fixture(request)

fixtures

Collection of pytest fixtures used in conda tests.

Functions

suppress_resource_warning() Suppress Unclosed Socket Warning
tmpdir(tmpdir, request)

clear_subdir_cache()

disable_channel_notices() Fixture that will set "context.number_channel_notices"
to 0 and then set

reset_conda_context() Resets the context object after each test function is run.
temp_package_cache(tmp_path_factory) Used to isolate package or index cache from other tests.
parametrized_solver_fixture(...) A parameterized fixture that sets the solver backend to

(1) libmamba
solver_classic(→ Iterable[Literal[classic]])

solver_libmamba(→ Iterable[Literal[libmamba]])

_solver_helper(→ Iterable[Solver])

Attributes

Solver

suppress_resource_warning()

Suppress Unclosed Socket Warning

It seems urllib3 keeps a socket open to avoid costly recreation costs.

xref: https://github.com/kennethreitz/requests/issues/1882

tmpdir(tmpdir, request)

clear_subdir_cache()

4.6. Developer guide 701

https://github.com/kennethreitz/requests/issues/1882

conda, Release 24.3.1.dev75

disable_channel_notices()

Fixture that will set "context.number_channel_notices" to 0 and then set it back to its original value.

This is also a good example of how to override values in the context object.

reset_conda_context()

Resets the context object after each test function is run.

temp_package_cache(tmp_path_factory)
Used to isolate package or index cache from other tests.

parametrized_solver_fixture(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch)→
Iterable[Literal[libmamba, classic]]

A parameterized fixture that sets the solver backend to (1) libmamba and (2) classic for each test. It's using
autouse=True, so only import it in modules that actually need it.

Note that skips and xfails need to be done _inside_ the test body. Decorators can't be used because they are
evaluated before the fixture has done its work!

So, instead of:

@pytest.mark.skipif(context.solver == "libmamba", reason="...") def test_foo():

...

Do:

def test_foo():
if context.solver == "libmamba":

pytest.skip("...")

...

solver_classic(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch)→ Iterable[Literal[classic]]

solver_libmamba(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch)→
Iterable[Literal[libmamba]]

Solver

_solver_helper(request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch, solver: Solver)→
Iterable[Solver]

gateways

fixtures

Collection of pytest fixtures used in conda.gateways tests.

702 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Functions

minio_s3_server(xprocess, tmp_path) Mock a local S3 server using minio

Attributes

MINIO_EXE

MINIO_EXE

minio_s3_server(xprocess, tmp_path)
Mock a local S3 server using minio

This requires: - pytest-xprocess: runs the background process - minio: the executable must be in PATH

Note, the given S3 server will be EMPTY! The test function needs to populate it. You can use
conda.testing.helpers.populate_s3_server for that.

helpers

Collection of helper functions used in conda tests.

Functions

strip_expected(stderr)

raises(exception, func[, string])

captured([disallow_stderr])

set_active_prefix(→ None)

assert_equals(a, b[, output])

assert_not_in(a, b[, output])

assert_in(a, b[, output])

add_subdir(dist_string)

add_subdir_to_iter(iterable)

tempdir()

supplement_index_with_repodata(index, repo-
data, ...)

continues on next page

4.6. Developer guide 703

conda, Release 24.3.1.dev75

Table 5 – continued from previous page
add_feature_records_legacy(index)

_export_subdir_data_to_repodata(subdir_data) This function is only temporary and meant to patch
wrong / undesirable

_sync_channel_to_disk(subdir_data) This function is only temporary and meant to patch
wrong / undesirable

_alias_canonical_channel_name_cache_to_file_prefixed(name)This function is only temporary and meant to patch
wrong / undesirable

_patch_for_local_exports(name, subdir_data) This function is only temporary and meant to patch
wrong / undesirable

_get_index_r_base(json_filename_or_packages,
channel_name)
get_index_r_1([subdir, add_pip, merge_noarch])

get_index_r_2([subdir, add_pip, merge_noarch])

get_index_r_4([subdir, add_pip, merge_noarch])

get_index_r_5([subdir, add_pip, merge_noarch])

get_index_must_unfreeze([subdir, add_pip,
merge_noarch])
get_index_cuda([subdir, add_pip, merge_noarch])

record([name, version, depends, build, build_number,
...])
_get_solver_base(channel_id, tmpdir[,
specs_to_add, ...])
get_solver(tmpdir[, specs_to_add, specs_to_remove,
...])
get_solver_2(tmpdir[, specs_to_add,
specs_to_remove, ...])
get_solver_4(tmpdir[, specs_to_add,
specs_to_remove, ...])
get_solver_5(tmpdir[, specs_to_add,
specs_to_remove, ...])
get_solver_aggregate_1(tmpdir[, specs_to_add,
...])
get_solver_aggregate_2(tmpdir[, specs_to_add,
...])
get_solver_must_unfreeze(tmpdir[, specs_to_add,
...])
get_solver_cuda(tmpdir[, specs_to_add, ...])

convert_to_dist_str(solution)

solver_class()

704 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

TEST_DATA_DIR

CHANNEL_DIR_V2

EXPORTED_CHANNELS_DIR

expected_error_prefix

TEST_DATA_DIR

CHANNEL_DIR_V2

EXPORTED_CHANNELS_DIR

expected_error_prefix = 'Using Anaconda Cloud api site https://api.anaconda.org'

strip_expected(stderr)

raises(exception, func, string=None)

captured(disallow_stderr=True)

set_active_prefix(prefix: str)→ None

assert_equals(a, b, output='')

assert_not_in(a, b, output='')

assert_in(a, b, output='')

add_subdir(dist_string)

add_subdir_to_iter(iterable)

tempdir()

supplement_index_with_repodata(index, repodata, channel, priority)

add_feature_records_legacy(index)

_export_subdir_data_to_repodata(subdir_data: conda.core.subdir_data.SubdirData)
This function is only temporary and meant to patch wrong / undesirable testing behaviour. It should end up being
replaced with the new class-based, backend-agnostic solver tests.

_sync_channel_to_disk(subdir_data: conda.core.subdir_data.SubdirData)
This function is only temporary and meant to patch wrong / undesirable testing behaviour. It should end up being
replaced with the new class-based, backend-agnostic solver tests.

_alias_canonical_channel_name_cache_to_file_prefixed(name, subdir_data=None)
This function is only temporary and meant to patch wrong / undesirable testing behaviour. It should end up being
replaced with the new class-based, backend-agnostic solver tests.

4.6. Developer guide 705

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

_patch_for_local_exports(name, subdir_data)
This function is only temporary and meant to patch wrong / undesirable testing behaviour. It should end up being
replaced with the new class-based, backend-agnostic solver tests.

_get_index_r_base(json_filename_or_packages, channel_name, subdir=context.subdir, add_pip=False,
merge_noarch=False)

get_index_r_1(subdir=context.subdir, add_pip=True, merge_noarch=False)

get_index_r_2(subdir=context.subdir, add_pip=True, merge_noarch=False)

get_index_r_4(subdir=context.subdir, add_pip=True, merge_noarch=False)

get_index_r_5(subdir=context.subdir, add_pip=False, merge_noarch=False)

get_index_must_unfreeze(subdir=context.subdir, add_pip=True, merge_noarch=False)

get_index_cuda(subdir=context.subdir, add_pip=True, merge_noarch=False)

record(name='a', version='1.0', depends=None, build='0', build_number=0, timestamp=0, channel=None,
**kwargs)

_get_solver_base(channel_id, tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(),
history_specs=(), add_pip=False, merge_noarch=False)

get_solver(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(), add_pip=False,
merge_noarch=False)

get_solver_2(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_4(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_5(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_aggregate_1(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_aggregate_2(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_must_unfreeze(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

get_solver_cuda(tmpdir, specs_to_add=(), specs_to_remove=(), prefix_records=(), history_specs=(),
add_pip=False, merge_noarch=False)

convert_to_dist_str(solution)

solver_class()

706 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

integration

These helpers were originally defined in tests/test_create.py, but were refactored here so downstream projects can
benefit from them too.

Classes

Commands

Functions

escape_for_winpath (p)

running_a_python_capable_of_unicode_subprocessing()

set_tmpdir(tmpdir)

_get_temp_prefix([name, use_restricted_unicode])

make_temp_prefix([name, use_restricted_unicode,
...])

When the env. you are creating will be used to install
Python 2.7 on Windows

FORCE_temp_prefix([name, use_restricted_unicode])

run_command(→ tuple[str, str, int])

make_temp_env(→ Iterator[str])

make_temp_package_cache(→ Iterator[str])

make_temp_channel(→ Iterator[str])

create_temp_location(→ str)

tempdir(→ Iterator[str])

reload_config(→ None)

package_is_installed(...)

get_shortcut_dir([prefix_for_unix])

4.6. Developer guide 707

conda, Release 24.3.1.dev75

Attributes

TEST_LOG_LEVEL

PYTHON_BINARY

BIN_DIRECTORY

UNICODE_CHARACTERS

UNICODE_CHARACTERS_RESTRICTED

which_or_where

cp_or_copy

env_or_set

SPACER_CHARACTER

tmpdir_in_use

TEST_LOG_LEVEL

PYTHON_BINARY

BIN_DIRECTORY

UNICODE_CHARACTERS = 'ōáêñßôç'

UNICODE_CHARACTERS_RESTRICTED = 'abcdef'

which_or_where

cp_or_copy

env_or_set

SPACER_CHARACTER = ' '

escape_for_winpath(p)

running_a_python_capable_of_unicode_subprocessing()

tmpdir_in_use

set_tmpdir(tmpdir)

_get_temp_prefix(name=None, use_restricted_unicode=False)

make_temp_prefix(name=None, use_restricted_unicode=False, _temp_prefix=None)
When the env. you are creating will be used to install Python 2.7 on Windows only a restricted amount
of Unicode will work, and probably only those chars in your current codepage, so the characters in UNI-
CODE_CHARACTERS_RESTRICTED should probably be randomly generated from that instead. The problem
here is that the current codepage needs to be able to handle 'sys.prefix' otherwise ntpath will fall over.

708 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

FORCE_temp_prefix(name=None, use_restricted_unicode=False)

class Commands

COMPARE = 'compare'

CONFIG = 'config'

CLEAN = 'clean'

CREATE = 'create'

INFO = 'info'

INSTALL = 'install'

LIST = 'list'

REMOVE = 'remove'

SEARCH = 'search'

UPDATE = 'update'

RUN = 'run'

run_command(command, prefix, *arguments, **kwargs)→ tuple[str, str, int]

make_temp_env(*packages, **kwargs)→ Iterator[str]

make_temp_package_cache()→ Iterator[str]

make_temp_channel(packages)→ Iterator[str]

create_temp_location()→ str

tempdir()→ Iterator[str]

reload_config(prefix)→ None

package_is_installed(prefix: str | os.PathLike | pathlib.Path, spec: str | conda.models.match_spec.MatchSpec)
→ conda.models.records.PrefixRecord | None

get_shortcut_dir(prefix_for_unix=sys.prefix)

notices

fixtures

Collection of pytest fixtures used in conda.notices tests.

4.6. Developer guide 709

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

Functions

notices_cache_dir(tmpdir) Fixture that creates the notices cache dir while also
mocking

notices_mock_fetch_get_session()

conda_notices_args_n_parser()

notices_cache_dir(tmpdir)
Fixture that creates the notices cache dir while also mocking out a call to user_cache_dir.

notices_mock_fetch_get_session()

conda_notices_args_n_parser()

helpers

Collection of helper functions used in conda.notices tests.

Classes

DummyArgs Dummy object that sets all kwargs as object properties.
MockResponse

Functions

get_test_notices(→ dict)

add_resp_to_mock(→ None) Adds any number of MockResponse to MagicMock ob-
ject as side_effects

create_notice_cache_files(→ None) Creates the cache files that we use in tests
offset_cache_file_mtime(→ None) Allows for offsetting the mtime of the notices cache file.

This is often
notices_decorator_assert_message_in_stdout(captured,
...)

Tests a run of notices decorator where we expect to see
the messages

get_notice_cache_filenames(→ tuple[str]) Returns the filenames of the cache files that will be
searched for

710 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

Attributes

DEFAULT_NOTICE_MESG

DEFAULT_NOTICE_MESG = 'Here is an example message that will be displayed to users'

get_test_notices(messages: Sequence[str], level: str | None = 'info', created_at: datetime.datetime | None =
None, expired_at: datetime.datetime | None = None)→ dict

add_resp_to_mock(mock_session: unittest.mock.MagicMock, status_code: int, messages_json: dict, raise_exc:
bool = False)→ None

Adds any number of MockResponse to MagicMock object as side_effects

create_notice_cache_files(cache_dir: pathlib.Path, cache_files: Sequence[str], messages_json_seq:
Sequence[dict])→ None

Creates the cache files that we use in tests

offset_cache_file_mtime(mtime_offset)→ None
Allows for offsetting the mtime of the notices cache file. This is often used to mock an older creation time the
cache file.

class DummyArgs(**kwargs)
Dummy object that sets all kwargs as object properties.

notices_decorator_assert_message_in_stdout(captured, messages: Sequence[str], dummy_mesg: str |
None = None, not_in: bool = False)

Tests a run of notices decorator where we expect to see the messages print to stdout.

class MockResponse(status_code, json_data, raise_exc=False)

json()

get_notice_cache_filenames(ctx: conda.base.context.Context)→ tuple[str]
Returns the filenames of the cache files that will be searched for

solver_helpers

Helpers for testing the solver.

Classes

SimpleEnvironment Helper environment object.
SolverTests Tests for conda.core.solve.Solver implementa-

tions.

4.6. Developer guide 711

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

Functions

index_packages(num) Get the index data of the helpers.get_index_r_*
helpers.

package_string(record)

package_string_set(packages) Transforms package container in package string set.
package_dict(packages) Transforms package container into a dictionary.
empty_prefix()

temp_simple_env(→ SimpleEnvironment)

index_packages(num)

Get the index data of the helpers.get_index_r_* helpers.

package_string(record)

package_string_set(packages)
Transforms package container in package string set.

package_dict(packages)
Transforms package container into a dictionary.

class SimpleEnvironment(path, solver_class, subdirs=context.subdirs)
Helper environment object.

property _channel_packages

Helper that unfolds the repo_packages into a dictionary.

REPO_DATA_KEYS = ('build', 'build_number', 'depends', 'license', 'md5', 'name',
'sha256', 'size', 'subdir',...

solver(add, remove)
Writes repo_packages to the disk and creates a solver instance.

solver_transaction(add=(), remove=(), as_specs=False)

install(*specs, as_specs=False)

remove(*specs, as_specs=False)

_package_data(record)
Turn record into data, to be written in the JSON environment/repo files.

_write_installed_packages()

_write_repo_packages(channel_name, packages)
Write packages to the channel path.

empty_prefix()

temp_simple_env(solver_class=Solver)→ SimpleEnvironment

class SolverTests

Tests for conda.core.solve.Solver implementations.

712 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

abstract property solver_class: type[conda.core.solve.Solver]

Class under test.

property tests_to_skip

skip_tests(request)

env()

find_package_in_list(packages, **kwargs)

find_package(**kwargs)

assert_unsatisfiable(exc_info, entries)
Helper to assert that a conda.exceptions.UnsatisfiableError instance as a the specified set of un-
satisfiable specifications.

test_empty(env)

test_iopro_mkl(env)

test_iopro_nomkl(env)

test_mkl(env)

test_accelerate(env)

test_scipy_mkl(env)

test_anaconda_nomkl(env)

test_pseudo_boolean(env)

test_unsat_from_r1(env)

test_unsat_simple(env)

test_get_dists(env)

test_unsat_shortest_chain_1(env)

test_unsat_shortest_chain_2(env)

test_unsat_shortest_chain_3(env)

test_unsat_shortest_chain_4(env)

test_unsat_chain(env)

test_unsat_any_two_not_three(env)

test_unsat_expand_single(env)

test_unsat_missing_dep(env)

test_nonexistent(env)

test_timestamps_and_deps(env)

test_nonexistent_deps(env)

4.6. Developer guide 713

https://docs.python.org/3/library/functions.html#type

conda, Release 24.3.1.dev75

test_install_package_with_feature(env)

test_unintentional_feature_downgrade(env)

test_circular_dependencies(env)

test_irrational_version(env)

test_no_features(env)

test_channel_priority_1(monkeypatch, env)

test_unsat_channel_priority(monkeypatch, env)

test_remove(env)

test_surplus_features_1(env)

test_surplus_features_2(env)

test_get_reduced_index_broadening_with_unsatisfiable_early_dep(env)

test_get_reduced_index_broadening_preferred_solution(env)

test_arch_preferred_over_noarch_when_otherwise_equal(env)

test_noarch_preferred_over_arch_when_version_greater(env)

test_noarch_preferred_over_arch_when_version_greater_dep(env)

test_noarch_preferred_over_arch_when_build_greater(env)

test_noarch_preferred_over_arch_when_build_greater_dep(env)

Classes

EntityEncoder Extensible JSON <https://json.org> encoder for Python
data structures.

PackageCacheData

PackageRecord

CondaCLIFixture

PathFactoryFixture

TmpEnvFixture

TmpChannelFixture

714 Chapter 4. Contributors welcome

https://json.org

conda, Release 24.3.1.dev75

Functions

reset_context([search_path, argparse_args])

main_subshell(*args[, post_parse_hook]) Entrypoint for the "subshell" invocation of CLI interface.
E.g. conda create.

path_to_url(path)

conda_ensure_sys_python_is_base_env_python()

conda_move_to_front_of_PATH()

conda_cli(→ CondaCLIFixture) Fixture returning CondaCLIFixture instance.
path_factory(→ PathFactoryFixture) Fixture returning PathFactoryFixture instance.
tmp_env(→ TmpEnvFixture) Fixture returning TmpEnvFixture instance.
tmp_channel(→ TmpChannelFixture) Fixture returning TmpChannelFixture instance.
context_aware_monkeypatch (→
pytest.MonkeyPatch)

A monkeypatch fixture that resets context after each test

tmp_pkgs_dir(→ pathlib.Path)

Attributes

PACKAGE_CACHE_MAGIC_FILE

context

on_win

deprecated

class EntityEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None, default=None)

Bases: json.JSONEncoder

Extensible JSON <https://json.org> encoder for Python data structures.

Supports the following objects and types by default:

Python JSON
dict object
list, tuple array
str string
int, float number
True true
False false
None null

4.6. Developer guide 715

https://docs.python.org/3/library/json.html#json.JSONEncoder
https://json.org

conda, Release 24.3.1.dev75

To extend this to recognize other objects, subclass and implement a .default() method with another method
that returns a serializable object for o if possible, otherwise it should call the superclass implementation (to raise
TypeError).

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

PACKAGE_CACHE_MAGIC_FILE = 'urls.txt'

context

reset_context(search_path=SEARCH_PATH, argparse_args=None)

main_subshell(*args, post_parse_hook=None, **kwargs)
Entrypoint for the "subshell" invocation of CLI interface. E.g. conda create.

on_win

path_to_url(path)

class PackageCacheData(pkgs_dir)

property _package_cache_records

property is_writable

cache: dict[str, PackageCacheData]

insert(package_cache_record)

load()

reload()

get(package_ref , default=NULL)

remove(package_ref , default=NULL)

query(package_ref_or_match_spec)

iter_records()

classmethod query_all(package_ref_or_match_spec, pkgs_dirs=None)

classmethod first_writable(pkgs_dirs=None)

716 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

classmethod writable_caches(pkgs_dirs=None)

classmethod read_only_caches(pkgs_dirs=None)

classmethod all_caches_writable_first(pkgs_dirs=None)

classmethod get_all_extracted_entries()

classmethod get_entry_to_link(package_ref)

classmethod tarball_file_in_cache(tarball_path, md5sum=None, exclude_caches=())

classmethod clear()

tarball_file_in_this_cache(tarball_path, md5sum=None)

_check_writable()

static _clean_tarball_path_and_get_md5sum(tarball_path, md5sum=None)

_scan_for_dist_no_channel(dist_str)

itervalues()

values()

__repr__()

Return repr(self).

_make_single_record(package_filename)

static _dedupe_pkgs_dir_contents(pkgs_dir_contents)

deprecated

exception CondaExitZero(message, caused_by=None, **kwargs)
Bases: CondaError

Common base class for all non-exit exceptions.

return_code = 0

class PackageRecord(*args, **kwargs)
Bases: conda.auxlib.entity.DictSafeMixin, conda.auxlib.entity.Entity

property schannel

property _pkey

property is_unmanageable

property combined_depends

property namekey

name

version

build

4.6. Developer guide 717

conda, Release 24.3.1.dev75

build_number

channel

subdir

fn

md5

legacy_bz2_md5

legacy_bz2_size

url

sha256

arch

platform

depends

constrains

track_features

features

noarch

preferred_env

license

license_family

package_type

timestamp

date

size

metadata: set[str]

__hash__()

Return hash(self).

__eq__(other)
Return self==value.

dist_str()

dist_fields_dump()

__str__()

Return str(self).

718 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

to_match_spec()

to_simple_match_spec()

record_id()

conda_ensure_sys_python_is_base_env_python()

conda_move_to_front_of_PATH()

class CondaCLIFixture

capsys: pytest.CaptureFixture

__call__(*argv: str | os.PathLike | pathlib.Path, raises: type[Exception] | tuple[type[Exception], Ellipsis])
→ tuple[str, str, pytest.ExceptionInfo]

__call__(*argv: str | os.PathLike | pathlib.Path)→ tuple[str, str, int]
Test conda CLI. Mimic what is done in conda.cli.main.main.

conda ... == conda_cli(...)

Parameters
• argv -- Arguments to parse.

• raises -- Expected exception to intercept. If provided, the raised exception will be re-
turned instead of exit code (see pytest.raises and pytest.ExceptionInfo).

Returns
Command results (stdout, stderr, exit code or pytest.ExceptionInfo).

conda_cli(capsys: pytest.CaptureFixture)→ CondaCLIFixture
Fixture returning CondaCLIFixture instance.

class PathFactoryFixture

tmp_path: pathlib.Path

__call__(name: str | None = None, prefix: str | None = None, suffix: str | None = None)→ pathlib.Path
Unique, non-existent path factory.

Extends pytest's tmp_path fixture with a new unique, non-existent path for usage in cases where we need a
temporary path that doesn't exist yet.

Parameters
• name -- Path name to append to tmp_path

• prefix -- Prefix to prepend to unique name generated

• suffix -- Suffix to append to unique name generated

Returns
A new unique path

path_factory(tmp_path: pathlib.Path)→ PathFactoryFixture
Fixture returning PathFactoryFixture instance.

class TmpEnvFixture

path_factory: PathFactoryFixture

4.6. Developer guide 719

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

conda, Release 24.3.1.dev75

conda_cli: CondaCLIFixture

__call__(*packages: str, prefix: str | os.PathLike | None = None)→ Iterator[pathlib.Path]
Generate a conda environment with the provided packages.

Parameters
• packages -- The packages to install into environment

• prefix -- The prefix at which to install the conda environment

Returns
The conda environment's prefix

tmp_env(path_factory: PathFactoryFixture, conda_cli: CondaCLIFixture)→ TmpEnvFixture
Fixture returning TmpEnvFixture instance.

class TmpChannelFixture

path_factory: PathFactoryFixture

conda_cli: CondaCLIFixture

__call__(*packages: str)→ Iterator[tuple[pathlib.Path, str]]

tmp_channel(path_factory: PathFactoryFixture, conda_cli: CondaCLIFixture)→ TmpChannelFixture
Fixture returning TmpChannelFixture instance.

context_aware_monkeypatch(monkeypatch: pytest.MonkeyPatch)→ pytest.MonkeyPatch
A monkeypatch fixture that resets context after each test

tmp_pkgs_dir(path_factory: PathFactoryFixture, mocker: pytest_mock.MockerFixture)→ pathlib.Path

trust

constants

Context trust constants.

You could argue that the signatures being here is not necessary; indeed, we are not necessarily going to be able to
check them properly (based on some prior expectations) as the user, since this is the beginning of trust bootstrapping,
the first/backup version of the root of trust metadata. Still, the signatures here are useful for diagnostic purposes, and,
more important, to allow self-consistency checks: that helps us avoid breaking the chain of trust if someone accidentally
lists the wrong keys down the line. (: The discrepancy can be detected when loading the root data, and we can decline
to cache incorrect trust metadata that would make further root updates impossible.

INITIAL_TRUST_ROOT

KEY_MGR_FILE = 'key_mgr.json'

720 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

conda, Release 24.3.1.dev75

signature_verification

Interface between conda-content-trust and conda.

Classes

_SignatureVerification

Attributes

RE_ROOT_METADATA

signature_verification

exception SignatureError

Bases: Exception

Common base class for all non-exit exceptions.

RE_ROOT_METADATA

class _SignatureVerification

property enabled: bool

property trusted_root: dict

property key_mgr: dict | None

_fetch_channel_signing_data(signing_data_url: str, filename: str, etag=None, mod_stamp=None)→
dict

verify(repodata_fn: str, record: conda.models.records.PackageRecord)

__call__(repodata_fn: str, unlink_precs: tuple[conda.models.records.PackageRecord, Ellipsis], link_precs:
tuple[conda.models.records.PackageRecord, Ellipsis])→ None

classmethod cache_clear()→ None

signature_verification

4.6. Developer guide 721

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

conda, Release 24.3.1.dev75

utils

Utility functions.

Functions

path_identity(path) Used as a dummy path converter where no conversion
necessary

unix_path_to_win(path[, root_prefix]) Convert a path or :-separated string of paths into a Win-
dows representation

win_path_to_cygwin(path)

cygwin_path_to_win(path)

translate_stream(stream, translator)

human_bytes(n) Return the number of bytes n in more human readable
form.

sys_prefix_unfollowed() Since conda is installed into non-root environments as a
symlink only

quote_for_shell(*arguments) Properly quote arguments for command line passing.
massage_arguments(arguments[, errors])

wrap_subprocess_call(root_prefix, prefix,
dev_mode, ...)
get_comspec() Returns COMSPEC from envvars.
ensure_dir_exists(func) Ensures that the directory exists for functions returning

Attributes

unix_shell_base

msys2_shell_base

shells

_RE_UNSAFE

path_identity(path)
Used as a dummy path converter where no conversion necessary

unix_path_to_win(path, root_prefix='')
Convert a path or :-separated string of paths into a Windows representation

Does not add cygdrive. If you need that, set root_prefix to "/cygdrive"

win_path_to_cygwin(path)

722 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

cygwin_path_to_win(path)

translate_stream(stream, translator)

human_bytes(n)
Return the number of bytes n in more human readable form.

Examples

>>> human_bytes(42)
'42 B'
>>> human_bytes(1042)
'1 KB'
>>> human_bytes(10004242)
'9.5 MB'
>>> human_bytes(100000004242)
'93.13 GB'

unix_shell_base

msys2_shell_base

shells

sys_prefix_unfollowed()

Since conda is installed into non-root environments as a symlink only and because sys.prefix follows symlinks,
this function can be used to get the 'unfollowed' sys.prefix.

This value is usually the same as the prefix of the environment into which conda has been symlinked. An example
of when this is necessary is when conda looks for external sub-commands in find_commands.py

quote_for_shell(*arguments)
Properly quote arguments for command line passing.

For POSIX uses shlex.join, for Windows uses a custom implementation to properly escape metacharacters.

Parameters
arguments (list of str) -- Arguments to quote.

Returns
Quoted arguments.

Return type
str

_RE_UNSAFE

massage_arguments(arguments, errors='assert')

wrap_subprocess_call(root_prefix, prefix, dev_mode, debug_wrapper_scripts, arguments,
use_system_tmp_path=False)

get_comspec()

Returns COMSPEC from envvars.

Ensures COMSPEC envvar is set to cmd.exe, if not attempt to find it.

Raises
KeyError -- COMSPEC is undefined and cannot be found.

4.6. Developer guide 723

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

conda, Release 24.3.1.dev75

Returns
COMSPEC value.

Return type
str

ensure_dir_exists(func)
Ensures that the directory exists for functions returning a Path object containing a directory

Functions

conda_signal_handler(signum, frame)

Attributes

__version__

__name__

__author__

__email__

__license__

__copyright__

__summary__

__url__

CONDA_PACKAGE_ROOT

__version__

__name__ = 'conda'

__author__ = 'Anaconda, Inc.'

__email__ = 'conda@continuum.io'

__license__ = 'BSD-3-Clause'

__copyright__ = 'Copyright (c) 2012, Anaconda, Inc.'

__summary__

__url__ = 'https://github.com/conda/conda'

724 Chapter 4. Contributors welcome

https://docs.python.org/3/library/stdtypes.html#str

conda, Release 24.3.1.dev75

CONDA_PACKAGE_ROOT

exception CondaError(message, caused_by=None, **kwargs)
Bases: Exception

Common base class for all non-exit exceptions.

return_code = 1

reportable = False

__repr__()

Return repr(self).

__str__()

Return str(self).

dump_map()

exception CondaMultiError(errors)
Bases: CondaError

Common base class for all non-exit exceptions.

__repr__()

Return repr(self).

__str__()

Return str(self).

dump_map()

contains(exception_class)

exception CondaExitZero(message, caused_by=None, **kwargs)
Bases: CondaError

Common base class for all non-exit exceptions.

return_code = 0

conda_signal_handler(signum, frame)

conda_env

cli

common

DEPRECATED: Use conda.env.env instead.

Common utilities for conda-env command line tools.

4.6. Developer guide 725

https://docs.python.org/3/library/exceptions.html#Exception

conda, Release 24.3.1.dev75

main

DEPRECATED: Use conda.cli.main_env instead.

Entry point for all conda-env subcommands.

Functions

show_help_on_empty_command()

create_parser()

do_call(arguments, parser)

main()

show_help_on_empty_command()

create_parser()

do_call(arguments, parser)

main()

main_config

DEPRECATED: Use conda.cli.main_env_config instead.

CLI implementation for conda-env config.

Allows for programmatically interacting with conda-env's configuration files (e.g., ~/.condarc).

config_description = Multiline-String

"""
Configure a conda environment
"""

config_example = Multiline-String

"""
examples:

conda env config vars list
conda env config --append channels conda-forge

"""

726 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

main_create

DEPRECATED: Use conda.cli.main_env_create instead.

CLI implementation for conda-env create.

Creates new conda environments with the specified packages.

description = Multiline-String

"""
Create an environment based on an environment definition file.

If using an environment.yml file (the default), you can name the
environment in the first line of the file with 'name: envname' or
you can specify the environment name in the CLI command using the
-n/--name argument. The name specified in the CLI will override
the name specified in the environment.yml file.

Unless you are in the directory containing the environment definition
file, use -f to specify the file path of the environment definition
file you want to use.
"""

example = Multiline-String

"""
examples:

conda env create
conda env create -n envname
conda env create folder/envname
conda env create -f /path/to/environment.yml
conda env create -f /path/to/requirements.txt -n envname
conda env create -f /path/to/requirements.txt -p /home/user/envname

"""

main_export

DEPRECATED: Use conda.cli.main_export instead.

CLI implementation for conda-env export.

Dumps specified environment package specifications to the screen.

description = Multiline-String

"""
Export a given environment
"""

example = Multiline-String

"""
examples:

(continues on next page)

4.6. Developer guide 727

conda, Release 24.3.1.dev75

(continued from previous page)

conda env export
conda env export --file SOME_FILE

"""

main_list

DEPRECATED: Use conda.cli.main_env_list instead.

CLI implementation for conda-env list.

Lists available conda environments.

description = Multiline-String

"""
List the Conda environments
"""

example = Multiline-String

"""
examples:

conda env list
conda env list --json

"""

main_remove

DEPRECATED: Use conda.cli.main_env_remove instead.

CLI implementation for conda-env remove.

Removes the specified conda environment.

_help = 'Remove an environment'

_description

_example = Multiline-String

"""

Examples:

conda env remove --name FOO
conda env remove -n FOO

"""

728 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

main_update

DEPRECATED: Use conda.cli.main_env_update instead.

CLI implementation for conda-env update.

Updates the conda environments with the specified packages.

description = Multiline-String

"""
Update the current environment based on environment file
"""

example = Multiline-String

"""
examples:

conda env update
conda env update -n=foo
conda env update -f=/path/to/environment.yml
conda env update --name=foo --file=environment.yml
conda env update vader/deathstar

"""

main_vars

DEPRECATED: Use conda.cli.main_env_vars instead.

CLI implementation for conda-env config vars.

Allows for configuring conda-env's vars.

var_description = Multiline-String

"""
Interact with environment variables associated with Conda environments
"""

var_example = Multiline-String

"""
examples:

conda env config vars list -n my_env
conda env config vars set MY_VAR=something OTHER_THING=ohhhhya
conda env config vars unset MY_VAR

"""

list_description = Multiline-String

"""
List environment variables for a conda environment
"""

4.6. Developer guide 729

conda, Release 24.3.1.dev75

list_example = Multiline-String

"""
examples:

conda env config vars list -n my_env
"""

set_description = Multiline-String

"""
Set environment variables for a conda environment
"""

set_example = Multiline-String

"""
example:

conda env config vars set MY_VAR=weee
"""

unset_description = Multiline-String

"""
Unset environment variables for a conda environment
"""

unset_example = Multiline-String

"""
example:

conda env config vars unset MY_VAR
"""

env

DEPRECATED: Use conda.env.env instead.

Environment object describing the conda environment.yaml file.

installers

base

DEPRECATED: Use conda.env.installers.base instead.

Dynamic installer loading.

ENTRY_POINT = 'conda_env.installers'

730 Chapter 4. Contributors welcome

conda, Release 24.3.1.dev75

conda

DEPRECATED: Use conda.env.installers.conda instead.

Conda-flavored installer.

pip

DEPRECATED: Use conda.env.installers.pip instead.

Pip-flavored installer.

pip_util

DEPRECATED: Use conda.env.pip_util instead.

Environment object describing the conda environment.yaml file.

_canonicalize_regex

specs

DEPRECATED: Use conda.env.specs instead.

Dynamic installer loading.

binstar

DEPRECATED: Use conda.env.specs.binstar instead.

Define binstar spec.

requirements

DEPRECATED: Use conda.env.specs.requirements instead.

Define requirements.txt spec.

yaml_file

DEPRECATED: Use conda.env.specs.yaml_file instead.

Define YAML spec.

4.6. Developer guide 731

conda, Release 24.3.1.dev75

732 Chapter 4. Contributors welcome

PYTHON MODULE INDEX

c
conda, 382
conda.__main__, 382
conda._vendor, 382
conda._vendor.appdirs, 382
conda._vendor.cpuinfo, 386
conda._vendor.cpuinfo.cpuinfo, 386
conda._vendor.distro, 398
conda._vendor.frozendict, 408
conda._version, 409
conda.activate, 409
conda.api, 416
conda.auxlib, 421
conda.auxlib.collection, 422
conda.auxlib.compat, 423
conda.auxlib.decorators, 424
conda.auxlib.entity, 426
conda.auxlib.exceptions, 437
conda.auxlib.ish, 438
conda.auxlib.logz, 439
conda.auxlib.type_coercion, 441
conda.base, 444
conda.base.constants, 444
conda.base.context, 450
conda.base.exceptions, 460
conda.cli, 460
conda.cli.actions, 460
conda.cli.common, 461
conda.cli.conda_argparse, 463
conda.cli.find_commands, 465
conda.cli.helpers, 466
conda.cli.install, 469
conda.cli.main, 470
conda.cli.main_clean, 470
conda.cli.main_compare, 472
conda.cli.main_config, 472
conda.cli.main_create, 473
conda.cli.main_env, 474
conda.cli.main_env_config, 474
conda.cli.main_env_create, 474
conda.cli.main_env_export, 475
conda.cli.main_env_list, 475

conda.cli.main_env_remove, 475
conda.cli.main_env_update, 476
conda.cli.main_env_vars, 476
conda.cli.main_export, 477
conda.cli.main_info, 477
conda.cli.main_init, 479
conda.cli.main_install, 479
conda.cli.main_list, 480
conda.cli.main_mock_activate, 480
conda.cli.main_mock_deactivate, 481
conda.cli.main_notices, 481
conda.cli.main_package, 482
conda.cli.main_pip, 483
conda.cli.main_remove, 483
conda.cli.main_rename, 484
conda.cli.main_run, 484
conda.cli.main_search, 485
conda.cli.main_update, 485
conda.cli.python_api, 486
conda.common, 488
conda.common._logic, 488
conda.common._os, 491
conda.common._os.linux, 491
conda.common._os.unix, 492
conda.common._os.windows, 492
conda.common.compat, 494
conda.common.configuration, 496
conda.common.constants, 507
conda.common.decorators, 507
conda.common.disk, 507
conda.common.io, 508
conda.common.iterators, 513
conda.common.logic, 514
conda.common.path, 517
conda.common.pkg_formats, 521
conda.common.pkg_formats.python, 521
conda.common.serialize, 530
conda.common.signals, 531
conda.common.toposort, 532
conda.common.url, 533
conda.core, 538
conda.core.envs_manager, 539

733

conda, Release 24.3.1.dev75

conda.core.index, 539
conda.core.initialize, 543
conda.core.link, 548
conda.core.package_cache, 551
conda.core.package_cache_data, 551
conda.core.path_actions, 554
conda.core.portability, 560
conda.core.prefix_data, 562
conda.core.solve, 563
conda.core.subdir_data, 566
conda.deprecations, 569
conda.env, 571
conda.env.env, 571
conda.env.installers, 573
conda.env.installers.base, 573
conda.env.installers.conda, 574
conda.env.installers.pip, 574
conda.env.pip_util, 575
conda.env.specs, 575
conda.env.specs.binstar, 575
conda.env.specs.requirements, 576
conda.env.specs.yaml_file, 576
conda.exception_handler, 579
conda.exceptions, 580
conda.exports, 587
conda.gateways, 591
conda.gateways.anaconda_client, 592
conda.gateways.connection, 593
conda.gateways.connection.adapters, 593
conda.gateways.connection.adapters.ftp, 593
conda.gateways.connection.adapters.http, 595
conda.gateways.connection.adapters.localfs,

596
conda.gateways.connection.adapters.s3, 596
conda.gateways.connection.download, 598
conda.gateways.connection.session, 599
conda.gateways.disk, 601
conda.gateways.disk.create, 601
conda.gateways.disk.delete, 604
conda.gateways.disk.link, 605
conda.gateways.disk.lock, 605
conda.gateways.disk.permissions, 606
conda.gateways.disk.read, 606
conda.gateways.disk.test, 608
conda.gateways.disk.update, 609
conda.gateways.logging, 610
conda.gateways.repodata, 612
conda.gateways.repodata.jlap, 612
conda.gateways.repodata.jlap.core, 612
conda.gateways.repodata.jlap.fetch, 614
conda.gateways.repodata.jlap.interface, 617
conda.gateways.repodata.lock, 618
conda.gateways.subprocess, 627
conda.history, 627

conda.instructions, 630
conda.misc, 632
conda.models, 633
conda.models.channel, 633
conda.models.dist, 636
conda.models.enums, 639
conda.models.leased_path_entry, 642
conda.models.match_spec, 643
conda.models.package_info, 649
conda.models.prefix_graph, 651
conda.models.records, 653
conda.models.version, 660
conda.notices, 667
conda.notices.cache, 667
conda.notices.core, 668
conda.notices.fetch, 670
conda.notices.types, 671
conda.notices.views, 672
conda.plan, 673
conda.plugins, 674
conda.plugins.hookspec, 675
conda.plugins.manager, 680
conda.plugins.post_solves, 682
conda.plugins.post_solves.signature_verification,

682
conda.plugins.solvers, 683
conda.plugins.subcommands, 683
conda.plugins.subcommands.doctor, 683
conda.plugins.subcommands.doctor.health_checks,

683
conda.plugins.types, 686
conda.plugins.virtual_packages, 690
conda.plugins.virtual_packages.archspec, 690
conda.plugins.virtual_packages.conda, 691
conda.plugins.virtual_packages.cuda, 691
conda.plugins.virtual_packages.freebsd, 692
conda.plugins.virtual_packages.linux, 692
conda.plugins.virtual_packages.osx, 692
conda.plugins.virtual_packages.windows, 692
conda.resolve, 696
conda.testing, 700
conda.testing.cases, 700
conda.testing.fixtures, 701
conda.testing.gateways, 702
conda.testing.gateways.fixtures, 702
conda.testing.helpers, 703
conda.testing.integration, 707
conda.testing.notices, 709
conda.testing.notices.fixtures, 709
conda.testing.notices.helpers, 710
conda.testing.solver_helpers, 711
conda.trust, 720
conda.trust.constants, 720
conda.trust.signature_verification, 721

734 Python Module Index

conda, Release 24.3.1.dev75

conda.utils, 722
conda_env, 725
conda_env.cli, 725
conda_env.cli.common, 725
conda_env.cli.main, 726
conda_env.cli.main_config, 726
conda_env.cli.main_create, 727
conda_env.cli.main_export, 727
conda_env.cli.main_list, 728
conda_env.cli.main_remove, 728
conda_env.cli.main_update, 729
conda_env.cli.main_vars, 729
conda_env.env, 730
conda_env.installers, 730
conda_env.installers.base, 730
conda_env.installers.conda, 731
conda_env.installers.pip, 731
conda_env.pip_util, 731
conda_env.specs, 731
conda_env.specs.binstar, 731
conda_env.specs.requirements, 731
conda_env.specs.yaml_file, 731

Python Module Index 735

conda, Release 24.3.1.dev75

736 Python Module Index

INDEX

Symbols
_Action (class in conda.core.path_actions), 556
_Activator (class in conda.activate), 410
_ClauseArray (class in conda.common._logic), 489
_ClauseList (class in conda.common._logic), 488
_DISTRO_RELEASE_BASENAME_PATTERN (in module

conda._vendor.distro), 400
_DISTRO_RELEASE_CONTENT_REVERSED_PATTERN (in

module conda._vendor.distro), 400
_DISTRO_RELEASE_IGNORE_BASENAMES (in module

conda._vendor.distro), 400
_DUMPS (in module conda.auxlib.logz), 441
_FORMATTER (in module conda.common.io), 510
_FeaturesField (class in conda.models.records), 656
_GreedySubParsersAction (class in

conda.cli.conda_argparse), 465
_MATCHER_CACHE (MatchSpec attribute), 646
_MENU_RE (in module conda.core.path_actions), 556
_OS_RELEASE_BASENAME (in module

conda._vendor.distro), 400
_PARSE_CACHE (in module conda.models.match_spec),

647
_PaddingError, 561
_PyCryptoSatSolver (class in conda.common._logic),

490
_PySatSolver (class in conda.common._logic), 490
_PycoSatSolver (class in conda.common._logic), 489
_RE_CUSTOM_EXPANDVARS (in module

conda.common.configuration), 505
_RE_UNSAFE (in module conda.utils), 723
_SSLContextAdapterMixin (class in

conda.gateways.connection.adapters.http),
595

_SatSolver (class in conda.common._logic), 489
_SignatureVerification (class in

conda.trust.signature_verification), 721
_StrMatchMixin (class in conda.models.match_spec),

647
_UNIXCONFDIR (in module conda._vendor.distro), 400
_VERBOSITY_LEVELS (in module

conda.gateways.logging), 611
_VERSION_REGEX (in module conda.common.path), 519

__author__ (in module conda), 724
__author__ (in module conda.auxlib), 443
__bool__() (Channel method), 623, 635
__call__() (BooleanOptionalAction method), 468
__call__() (ChannelPriorityMeta method), 449
__call__() (ChannelType method), 634
__call__() (CondaCLIFixture method), 719
__call__() (CondaHttpAuth method), 600
__call__() (CondaSessionType method), 600
__call__() (ContextDecorator method), 510
__call__() (DeprecationHandler method), 569
__call__() (DistType method), 637
__call__() (ExceptionHandler method), 579
__call__() (ExtendConstAction method), 461
__call__() (MatchSpecType method), 644
__call__() (NullCountAction method), 461
__call__() (PackageCacheType method), 552
__call__() (PathFactoryFixture method), 719
__call__() (PrefixDataType method), 562
__call__() (SingleStrArgCachingType method), 662
__call__() (SubdirDataType method), 567
__call__() (TmpChannelFixture method), 720
__call__() (TmpEnvFixture method), 720
__call__() (_GreedySubParsersAction method), 465
__call__() (_SignatureVerification method), 721
__call__() (time_recorder method), 513
__contains__() (Completer method), 590
__contains__() (Dist method), 639
__contains__() (MatchSpec method), 646
__contains__() (RepodataState method), 625
__contains__() (UrlsData method), 553
__contains__() (frozendict method), 408
__copyright__ (in module conda), 724
__copyright__ (in module conda.auxlib), 443
__del__() (TemporaryDirectory method), 603
__delattr__() (ImmutableEntity method), 437
__delete__() (Field method), 432
__dump_fields() (Entity class method), 437
__email__ (in module conda), 724
__email__ (in module conda.auxlib), 443
__enter__() (History method), 628
__enter__() (Spinner method), 511

737

conda, Release 24.3.1.dev75

__enter__() (SwallowBrokenPipe method), 510
__enter__() (TemporaryDirectory method), 603
__enter__() (TmpDownload method), 598
__enter__() (time_recorder method), 513
__eq__() (BaseSpec method), 665
__eq__() (Channel method), 623, 635
__eq__() (Dist method), 638
__eq__() (Entity method), 437
__eq__() (FeatureMatch method), 649
__eq__() (LoadedParameter method), 500
__eq__() (MatchSpec method), 646
__eq__() (PackageRecord method), 659, 718
__eq__() (PrimitiveLoadedParameter method), 501
__eq__() (ProgressiveFetchExtract method), 554
__eq__() (SplitStrMatch method), 648
__eq__() (VersionOrder method), 664
__eq__() (_StrMatchMixin method), 648
__exit__() (History method), 628
__exit__() (Spinner method), 511
__exit__() (SwallowBrokenPipe method), 510
__exit__() (TemporaryDirectory method), 603
__exit__() (TmpDownload method), 599
__exit__() (time_recorder method), 513
__fields__ (Entity attribute), 436
__ge__() (Dist method), 638
__ge__() (VersionOrder method), 664
__get__() (ChannelField method), 656
__get__() (Field method), 432
__get__() (FilenameField method), 657
__get__() (Md5Field method), 660
__get__() (PackageTypeField method), 657
__get__() (ParameterLoader method), 505
__get__() (SubdirField method), 657
__get__() (TimestampField method), 655
__get__() (classproperty method), 426
__getattr__() (ProgressFileWrapper method), 603
__getattr__() (StdStreamHandler method), 612
__getitem__() (PackageRecordList method), 567
__getitem__() (RepodataState method), 625
__getitem__() (frozendict method), 408
__gt__() (Dist method), 638
__gt__() (VersionOrder method), 664
__hash__() (BaseSpec method), 665
__hash__() (Channel method), 623, 635
__hash__() (Dist method), 638
__hash__() (Entity method), 437
__hash__() (FeatureMatch method), 649
__hash__() (LoadedParameter method), 500
__hash__() (MatchSpec method), 646
__hash__() (PackageRecord method), 659, 718
__hash__() (PrimitiveLoadedParameter method), 501
__hash__() (ProgressiveFetchExtract method), 554
__hash__() (Resolve method), 697
__hash__() (SplitStrMatch method), 648

__hash__() (_StrMatchMixin method), 648
__hash__() (frozendict method), 409
__important_split_value (EnvRawParameter prop-

erty), 499
__int__() (LinkType method), 640
__iter__() (Completer method), 590
__iter__() (UrlsData method), 553
__iter__() (frozendict method), 408
__json__() (Arch method), 640
__json__() (Channel method), 623, 635
__json__() (LeasedPathType method), 641
__json__() (LinkType method), 640
__json__() (MatchSpec method), 646
__json__() (PathType method), 641
__json__() (Platform method), 640
__json__() (frozendict method), 409
__key__() (Dist method), 638
__le__() (Dist method), 638
__le__() (VersionOrder method), 664
__len__() (frozendict method), 408
__license__ (in module conda), 724
__license__ (in module conda.auxlib), 443
__lt__() (Dist method), 638
__lt__() (VersionOrder method), 664
__name__ (ChannelPriority attribute), 449
__name__ (in module conda), 724
__ne__() (BaseSpec method), 665
__ne__() (Dist method), 638
__ne__() (VersionOrder method), 664
__nonzero__() (Channel method), 623, 635
__register__() (Entity class method), 436
__repr__() (BaseSpec method), 666
__repr__() (BuildNumberMatch method), 666
__repr__() (Channel method), 623, 635
__repr__() (ChannelMatch method), 649
__repr__() (ClobberError method), 581
__repr__() (CondaError method), 620, 725
__repr__() (CondaMultiError method), 725
__repr__() (Entity method), 436
__repr__() (FeatureMatch method), 649
__repr__() (LinuxDistribution method), 405
__repr__() (MatchSpec method), 646
__repr__() (PackageCacheData method), 553, 621, 717
__repr__() (RawParameter method), 499
__repr__() (SplitStrMatch method), 648
__repr__() (TemporaryDirectory method), 603
__repr__() (VersionOrder method), 664
__repr__() (_Action method), 556
__repr__() (_StrMatchMixin method), 648
__repr__() (frozendict method), 408
__set__() (Field method), 432
__set__() (classproperty method), 426
__setattr__() (ImmutableEntity method), 437
__setattr__() (ProgressFileWrapper method), 603

738 Index

conda, Release 24.3.1.dev75

__setitem__() (RepodataState method), 625
__slots__ (ExactStrMatch attribute), 648
__slots__ (FeatureMatch attribute), 649
__slots__ (GlobStrMatch attribute), 648
__slots__ (SplitStrMatch attribute), 648
__str__() (BaseSpec method), 666
__str__() (BuildNumberMatch method), 666
__str__() (CacheUrlAction method), 560
__str__() (Channel method), 623, 635
__str__() (ChannelMatch method), 649
__str__() (CondaError method), 620, 725
__str__() (CondaMultiError method), 725
__str__() (DepsModifier method), 448
__str__() (Dist method), 638
__str__() (ExtractPackageAction method), 560
__str__() (FeatureMatch method), 649
__str__() (FileMode method), 640
__str__() (LeasedPathType method), 641
__str__() (LinkType method), 640
__str__() (MatchSpec method), 646
__str__() (PackageRecord method), 659, 718
__str__() (ParameterFlag method), 499
__str__() (PathConflict method), 448
__str__() (PathType method), 641
__str__() (SafetyChecks method), 448
__str__() (SplitStrMatch method), 648
__str__() (UpdateModifier method), 448
__str__() (Url method), 535
__str__() (ValueEnum method), 449
__str__() (VersionOrder method), 664
__str__() (_StrMatchMixin method), 647
__summary__ (in module conda), 724
__summary__ (in module conda.auxlib), 443
__url__ (in module conda), 724
__url__ (in module conda.auxlib), 443
__version__ (in module conda), 724
__version__ (in module conda._vendor.appdirs), 383
__version__ (in module conda._version), 409
__version__ (in module conda.auxlib), 443
__version_info__ (in module conda._vendor.appdirs),

383
__version_tuple__ (in module conda._version), 409
_add_http_value_to_dict() (in module

conda.gateways.repodata), 624
_add_info_dir() (in module conda.cli.main_package),

482
_add_prefix_to_path() (_Activator method), 412
_add_specs() (Solver method), 566
_aggressive_update_packages (Context attribute),

455
_alias_canonical_channel_name_cache_to_file_prefixed()

(in module conda.testing.helpers), 705
_aliased (RepodataState attribute), 624

_apply_basic_auth() (CondaHttpAuth static method),
601

_arch_names (in module conda.base.context), 452
_ask_upload() (ExceptionHandler method), 580
_asm_func() (CPUID method), 390, 397
_assign() (Clauses method), 515
_b64_to_obj() (in module conda._vendor.cpuinfo), 396
_b64_to_obj() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_bashrc_content() (in module conda.core.initialize),

548
_broader() (Resolve method), 699
_build_activate_stack() (_Activator method), 412
_build_activator_cls() (in module conda.activate),

415
_build_components() (MatchSpec method), 646
cache (BuildNumberMatch attribute), 666
cache (Channel attribute), 622, 635
cache (Dist attribute), 637
cache (PackageCacheData attribute), 552, 621, 716
cache (PrefixData attribute), 562
cache (SubdirData attribute), 568
cache (VersionOrder attribute), 664
cache (VersionSpec attribute), 666
_calculate_change_report() (UnlinkLinkTransac-

tion static method), 551
_calculate_md5sum() (PackageCacheRecord method),

660
_canonicalize_regex (in module conda_env.pip_util),

731
_change_report_str() (UnlinkLinkTransaction

method), 551
_channel_alias (Context attribute), 456
_channel_packages (SimpleEnvironment property),

712
_channels (Context attribute), 456
_check_arch() (in module conda._vendor.cpuinfo), 396
_check_arch() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_check_files() (PythonDistribution method), 524
_check_literal() (Clauses method), 515
_check_path_data() (PythonDistribution method),

524
_check_value() (ArgumentParser method), 465
_check_variable() (Clauses method), 515
_check_writable() (PackageCacheData method), 553,

621, 717
_classify_bad_deps() (Resolve method), 698
_clean_environments_txt() (in module

conda.core.envs_manager), 539
_clean_tarball_path_and_get_md5sum() (Pack-

ageCacheData static method), 553, 621,
717

_closed (TemporaryDirectory attribute), 603

Index 739

conda, Release 24.3.1.dev75

_collect_all_metadata() (Solver method), 566
_collect_validation_error() (Configuration static

method), 506
_conda_build (Context attribute), 457
_config_fish_content() (in module

conda.core.initialize), 547
_config_xonsh_content() (in module

conda.core.initialize), 547
_convert() (Clauses method), 515
_convert() (FeatureMatch method), 649
_convert() (SplitStrMatch method), 648
_copy_new_fields() (in module

conda._vendor.cpuinfo), 396
_copy_new_fields() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_croot (Context attribute), 457
_cuda_driver_version_detector_target() (in

module conda.plugins.virtual_packages.cuda),
691

_custom_channels (Context attribute), 456
_custom_multichannels (Context attribute), 456
_debug (Context attribute), 456
_dedupe_pkgs_dir_contents() (PackageCacheData

static method), 553, 621, 717
_default_channels (Context attribute), 456
_default_env() (_Activator method), 412
_default_threads (Context attribute), 455
_description (in module conda_env.cli.main_remove),

728
_distro (in module conda._vendor.distro), 408
_do_copy() (in module conda.gateways.disk.create), 603
_do_softlink() (in module

conda.gateways.disk.create), 603
_element_type (LoadedParameter attribute), 500
_element_type (Parameter attribute), 503
_ensure_dir() (time_recorder method), 513
_ensure_value() (NullCountAction static method), 461
_environment (YamlFileSpec attribute), 577, 578
_envs_dirs (Context attribute), 455
_eq() (VersionOrder method), 664
_eval() (Clauses method), 515
_example (in module conda_env.cli.main_remove), 728
_exec() (in module conda.cli.conda_argparse), 465
_exec_unix() (in module conda.cli.conda_argparse),

465
_exec_win() (in module conda.cli.conda_argparse),

465
_execute() (UnlinkLinkTransaction method), 550
_execute() (in module conda.cli.main_clean), 472
_execute_actions() (UnlinkLinkTransaction static

method), 550
_execute_channel() (CacheUrlAction method), 560
_execute_local() (CacheUrlAction method), 560

_execute_post_link_actions() (UnlinkLinkTrans-
action static method), 551

_execute_threads (Context attribute), 455
_execute_upload() (ExceptionHandler method), 580
_expand_channels() (in module conda.env.env), 572
_expand_search_path() (Configuration static

method), 506
_export_subdir_data_to_repodata() (in module

conda.testing.helpers), 705
_fetch_channel_signing_data() (_SignatureVerifi-

cation method), 721
_fetch_threads (Context attribute), 455
_filter_dict_keys_with_empty_values() (in mod-

ule conda._vendor.cpuinfo), 396
_filter_dict_keys_with_empty_values() (in mod-

ule conda._vendor.cpuinfo.cpuinfo), 390
_finalize() (JSONFormatMixin method), 415
_finalize() (_Activator method), 411
_find_inconsistent_packages() (Solver method),

566
_first_important_matches() (LoadedParameter

static method), 501
_first_writable_envs_dir() (in module

conda.base.context), 459
_format_chain_str() (UnsatisfiableError method),

584
_format_exc() (in module conda.exceptions), 587
_format_output() (in module

conda.gateways.subprocess), 627
_friendly_bytes_to_int() (in module

conda._vendor.cpuinfo), 396
_friendly_bytes_to_int() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_generate_message() (DeprecationHandler method),

571
_get_activate_scripts() (_Activator method), 412
_get_attr() (in module conda.auxlib.ish), 438
_get_base_url() (SubdirData method), 568
_get_best_prec_match() (in module conda.plan), 674
_get_binstar_token_directory() (in module

conda.gateways.anaconda_client), 592
_get_channel_for_name() (in module

conda.models.channel), 636
_get_cpu_info() (in module conda.base.context), 459
_get_cpu_info_from_cat_var_run_dmesg_boot()

(in module conda._vendor.cpuinfo), 397
_get_cpu_info_from_cat_var_run_dmesg_boot()

(in module conda._vendor.cpuinfo.cpuinfo),
391

_get_cpu_info_from_cpufreq_info() (in module
conda._vendor.cpuinfo), 397

_get_cpu_info_from_cpufreq_info() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_cpuid() (in module

740 Index

conda, Release 24.3.1.dev75

conda._vendor.cpuinfo), 397
_get_cpu_info_from_cpuid() (in module

conda._vendor.cpuinfo.cpuinfo), 391
_get_cpu_info_from_cpuid_actual() (in module

conda._vendor.cpuinfo), 397
_get_cpu_info_from_cpuid_actual() (in module

conda._vendor.cpuinfo.cpuinfo), 391
_get_cpu_info_from_cpuid_subprocess_wrapper()

(in module conda._vendor.cpuinfo), 397
_get_cpu_info_from_cpuid_subprocess_wrapper()

(in module conda._vendor.cpuinfo.cpuinfo),
391

_get_cpu_info_from_dmesg() (in module
conda._vendor.cpuinfo), 397

_get_cpu_info_from_dmesg() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_ibm_pa_features() (in mod-
ule conda._vendor.cpuinfo), 397

_get_cpu_info_from_ibm_pa_features() (in mod-
ule conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_kstat() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_kstat() (in module
conda._vendor.cpuinfo.cpuinfo), 392

_get_cpu_info_from_lscpu() (in module
conda._vendor.cpuinfo), 397

_get_cpu_info_from_lscpu() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_platform_uname() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_platform_uname() (in module
conda._vendor.cpuinfo.cpuinfo), 392

_get_cpu_info_from_proc_cpuinfo() (in module
conda._vendor.cpuinfo), 397

_get_cpu_info_from_proc_cpuinfo() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_registry() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_registry() (in module
conda._vendor.cpuinfo.cpuinfo), 392

_get_cpu_info_from_sysctl() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_sysctl() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_sysinfo() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_sysinfo() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_sysinfo_v1() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_sysinfo_v1() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_sysinfo_v2() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_sysinfo_v2() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_from_wmic() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_from_wmic() (in module
conda._vendor.cpuinfo.cpuinfo), 391

_get_cpu_info_internal() (in module
conda._vendor.cpuinfo), 398

_get_cpu_info_internal() (in module
conda._vendor.cpuinfo.cpuinfo), 392

_get_deactivate_scripts() (_Activator method),
412

_get_distro_release_info() (LinuxDistribution
method), 407

_get_environment_env_vars() (_Activator method),
412

_get_environment_state_file() (PrefixData
method), 563

_get_field() (in module conda._vendor.cpuinfo), 396
_get_field() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_get_field_actual() (in module

conda._vendor.cpuinfo), 396
_get_field_actual() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_get_index_r_base() (in module

conda.testing.helpers), 706
_get_json_fn() (PrefixData method), 562
_get_lsb_release_info() (LinuxDistribution

method), 407
_get_module() (DeprecationHandler method), 571
_get_multiple_data() (PythonDistributionMetadata

method), 526
_get_os_release_info() (LinuxDistribution method),

407
_get_package_pool() (Resolve method), 699
_get_path_dirs() (_Activator method), 412
_get_pfe() (UnlinkLinkTransaction method), 550
_get_pkgs_dirs() (in module conda.cli.main_clean),

471
_get_python_info() (in module conda.core.initialize),

548
_get_python_version() (UnlinkLinkTransaction

static method), 551
_get_sat_solver_cls() (in module conda.resolve),

697
_get_size() (in module conda.cli.main_clean), 471
_get_solver_base() (in module

conda.testing.helpers), 706
_get_starting_path_list() (_Activator method),

412
_get_strict_channel() (Resolve method), 699
_get_subactions() (_GreedySubParsersAction

method), 465

Index 741

conda, Release 24.3.1.dev75

_get_temp_prefix() (in module
conda.testing.integration), 708

_get_total_size() (in module conda.cli.main_clean),
471

_get_version_tuple() (DeprecationHandler static
method), 569

_get_win_folder (in module conda._vendor.appdirs),
386

_get_win_folder_from_registry() (in module
conda._vendor.appdirs), 385

_get_win_folder_with_ctypes() (in module
conda._vendor.appdirs), 386

_get_win_folder_with_pywin32() (in module
conda._vendor.appdirs), 385

_get_yaml_key_comment() (YamlRawParameter static
method), 500

_get_yaml_list_comment_item() (YamlRawParame-
ter static method), 500

_get_yaml_list_comments() (YamlRawParameter
class method), 500

_get_yaml_map_comments() (YamlRawParameter
static method), 500

_handle_menuinst() (in module conda.plan), 674
_has_python() (PrefixData method), 563
_hash_key() (MatchSpec method), 646
_help (in module conda_env.cli.main_remove), 728
_hook_postamble() (PowerShellActivator method),

415
_hook_postamble() (_Activator method), 411
_hook_preamble() (CmdExeActivator method), 414
_hook_preamble() (CshActivator method), 413
_hook_preamble() (FishActivator method), 414
_hook_preamble() (JSONFormatMixin method), 415
_hook_preamble() (PosixActivator method), 413
_hook_preamble() (PowerShellActivator method), 415
_hook_preamble() (XonshActivator method), 414
_hook_preamble() (_Activator method), 411
_hookspec (in module conda.plugins.hookspec), 675
_hz_friendly_to_full() (in module

conda._vendor.cpuinfo), 396
_hz_friendly_to_full() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_hz_short_to_friendly() (in module

conda._vendor.cpuinfo), 396
_hz_short_to_friendly() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_hz_short_to_full() (in module

conda._vendor.cpuinfo), 396
_hz_short_to_full() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_implementors (in module conda.models.match_spec),

649
_init_solution_precs() (SolverStateContainer

method), 566

_initd (Entity property), 436
_initialize_dev_bash() (in module

conda.core.initialize), 546
_initialize_dev_cmdexe() (in module

conda.core.initialize), 546
_inject_UNLINKLINKTRANSACTION() (in module

conda.plan), 674
_install_file() (in module conda.core.initialize), 547
_is_bit_set() (in module conda._vendor.cpuinfo), 396
_is_bit_set() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_is_http_error_most_400_codes() (in module

conda.gateways.repodata.jlap.fetch), 617
_is_literal() (in module

conda.common.pkg_formats.python), 530
_is_selinux_enforcing() (in module

conda._vendor.cpuinfo), 396
_is_selinux_enforcing() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_is_simple() (MatchSpec method), 646
_is_single() (MatchSpec method), 646
_is_unix_executable_using_ORIGIN() (in module

conda.gateways.disk.create), 603
_isatty (ExceptionHandler property), 579
_iter_records_by_name() (SubdirData method), 568
_lazy_validate (Dist attribute), 637
_lazy_validate (Entity attribute), 436
_load() (SubdirData method), 568
_load_requires_provides_file() (PythonDistribu-

tion method), 524
_load_search_path() (Configuration class method),

506
_load_single_record() (PrefixData method), 563
_load_site_packages() (PrefixData method), 563
_lock_impl() (in module conda.gateways.disk.lock),

605
_lock_noop() (in module conda.gateways.disk.lock),

605
_logger_lock() (in module conda.common.io), 511
_make_channel_priorities() (Resolve static

method), 699
_make_compile_actions() (UnlinkLinkTransaction

static method), 551
_make_component() (MatchSpec static method), 646
_make_entry_point_actions() (UnlinkLinkTransac-

tion static method), 551
_make_legacy_action_groups() (UnlinkLinkTrans-

action method), 551
_make_link_actions() (UnlinkLinkTransaction static

method), 551
_make_milliseconds() (TimestampField static

method), 655
_make_seconds() (TimestampField static method), 655
_make_single_record() (PackageCacheData

742 Index

conda, Release 24.3.1.dev75

method), 553, 621, 717
_make_virtual_package() (in module

conda.core.index), 541
_match_individual() (MatchSpec method), 646
_match_key_is_important() (LoadedParameter

static method), 501
_md5_not_for_security() (in module

conda.gateways.repodata), 626
_merge() (MatchSpec method), 646
_message_to_dict() (PythonDistributionMetadata

class method), 526
_migrated_channel_aliases (Context attribute), 456
_native_subdir() (Context method), 458
_new_makepasv() (in module

conda.gateways.connection.adapters.ftp),
593

_notify_conda_outdated() (Solver method), 566
_obj_to_b64() (in module conda._vendor.cpuinfo), 396
_obj_to_b64() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_old_makepasv (in module

conda.gateways.connection.adapters.ftp),
593

_order_helper (Field attribute), 432
_override() (Context method), 458
_package_cache_records (PackageCacheData prop-

erty), 552, 621, 716
_package_data() (SimpleEnvironment method), 712
_package_has_updates() (Solver method), 566
_parse_and_set_args() (_Activator method), 411
_parse_arch() (in module conda._vendor.cpuinfo), 396
_parse_arch() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_parse_channel() (in module

conda.models.match_spec), 647
_parse_comment_line() (History class method), 629
_parse_cpu_brand_string() (in module

conda._vendor.cpuinfo), 396
_parse_cpu_brand_string() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_parse_cpu_brand_string_dx() (in module

conda._vendor.cpuinfo), 396
_parse_cpu_brand_string_dx() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_parse_distro_release_content() (LinuxDistribu-

tion static method), 407
_parse_distro_release_file() (LinuxDistribution

method), 407
_parse_dmesg_output() (in module

conda._vendor.cpuinfo), 396
_parse_dmesg_output() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_parse_entries_file_data() (PythonDistribution

static method), 524

_parse_iso_timestamp() (ChannelNoticeResponse
static method), 672

_parse_legacy_dist() (in module
conda.models.match_spec), 647

_parse_lsb_release_content() (LinuxDistribution
static method), 407

_parse_notice_level() (ChannelNoticeResponse
static method), 672

_parse_old_format_specs_string() (History static
method), 629

_parse_os_release_content() (LinuxDistribution
static method), 407

_parse_requires_file_data() (PythonDistribution
static method), 524

_parse_spec_str() (in module
conda.models.match_spec), 647

_parse_version_plus_build() (in module
conda.models.match_spec), 646

_patch_for_local_exports() (in module
conda.testing.helpers), 705

_path (LeasedPathEntry attribute), 642
_path (PathData attribute), 657
_pickle_me() (SubdirData method), 568
_pickle_valid_checks() (SubdirData method), 568
_pip_install_via_requirements() (in module

conda.env.installers.pip), 574
_pkey (PackageRecord property), 658, 717
_pkgs_dirs (Context attribute), 455
_plan_from_actions() (in module conda.plan), 674
_platform_map (in module conda.base.context), 452
_post_sat_handling() (Solver method), 566
_post_upload() (ExceptionHandler method), 580
_powershell_profile_content() (in module

conda.core.initialize), 548
_prefix_records (PrefixData property), 562
_prepare() (Solver method), 566
_prepare() (UnlinkLinkTransaction class method), 550
_print_conda_exception() (ExceptionHandler

method), 579
_process_path() (PythonDistributionMetadata static

method), 526
_process_raw_repodata() (SubdirData method), 568
_process_raw_repodata_str() (SubdirData

method), 568
_program_paths() (in module conda._vendor.cpuinfo),

396
_program_paths() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_progress_bar() (ProgressiveFetchExtract static

method), 554
_prompt_modifier() (_Activator method), 412
_python_pkg_record (PrefixData property), 562
_raw_parameters_from_single_source() (Parame-

terLoader method), 505

Index 743

conda, Release 24.3.1.dev75

_read_channel_configuration() (in module
conda.models.channel), 636

_read_local_repodata() (SubdirData method), 568
_read_metadata() (PythonDistributionMetadata class

method), 526
_read_pickled() (SubdirData method), 568
_read_windows_registry() (in module

conda.core.initialize), 548
_read_windows_registry_key() (in module

conda._vendor.cpuinfo), 396
_read_windows_registry_key() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_remove_node() (PrefixGraph method), 652
_remove_prefix_from_path() (_Activator method),

412
_remove_specs() (Solver method), 566
_replace_prefix_in_path() (_Activator method),

412
_repo (RepodataFetch property), 626
_repo (SubdirData property), 567
_repodata_fn (CondaRepoInterface attribute), 624
_repodata_state_copy() (JlapRepoInterface

method), 617
_repodata_state_copy() (ZstdRepoInterface

method), 618
_repodata_threads (Context attribute), 455
_reporters (Context attribute), 456
_reset_cache() (Configuration method), 506
_reset_state() (Channel static method), 622, 635
_reverse_actions() (UnlinkLinkTransaction static

method), 551
_rewrite_environments_txt() (in module

conda.core.envs_manager), 539
_rm_rf() (in module conda.cli.main_clean), 471
_root_prefix (Context attribute), 455
_run_and_get_stdout() (in module

conda._vendor.cpuinfo), 396
_run_and_get_stdout() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_run_asm() (CPUID method), 390, 397
_run_sat() (Clauses method), 491
_run_sat() (Solver method), 566
_safe_toposort() (in module

conda.common.toposort), 533
_sat_solver_cls_to_str (in module

conda.common._logic), 490
_sat_solver_str_to_cls (in module

conda.common._logic), 490
_sat_solvers (in module conda.resolve), 697
_scan_for_dist_no_channel() (PackageCacheData

method), 553, 621, 717
_send_boto3() (S3Adapter method), 597
_set_argparse_args() (Configuration method), 506
_set_entry_name() (time_recorder method), 513

_set_env_vars() (Configuration method), 506
_set_name() (ParameterLoader method), 505
_set_raw_data() (Configuration method), 506
_set_search_path() (Configuration method), 506
_should_freeze() (Solver method), 566
_signing_metadata_url_base (Context attribute),

455
_solve() (in module conda.env.installers.conda), 574
_solver_helper() (in module conda.testing.fixtures),

702
_split_platform_re() (in module

conda.common.url), 537
_start_spinning() (Spinner method), 511
_strings (RepodataState attribute), 624
_subdir (Context attribute), 455
_subdir_is_win() (in module conda.core.portability),

561
_subdirs (Context attribute), 455
_subprocess_clean_env() (in module

conda.gateways.subprocess), 627
_supplement_index_with_cache() (in module

conda.core.index), 541
_supplement_index_with_features() (in module

conda.core.index), 542
_supplement_index_with_prefix() (in module

conda.core.index), 541
_supplement_index_with_system() (in module

conda.core.index), 542
_symlink_conda_hlp() (in module conda.exports), 591
_sync_channel_to_disk() (in module

conda.testing.helpers), 705
_to_decimal_string() (in module

conda._vendor.cpuinfo), 396
_to_decimal_string() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_to_filename_do_not_use() (MatchSpec method),

646
_to_friendly_bytes() (in module

conda._vendor.cpuinfo), 396
_to_friendly_bytes() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_topo_sort_handle_cycles() (PrefixGraph class

method), 652
_toposort() (PrefixGraph method), 652
_toposort() (in module conda.common.toposort), 532
_toposort_pop_key() (PrefixGraph static method),

652
_toposort_prepare_graph() (PrefixGraph static

method), 652
_toposort_raise_on_cycles() (PrefixGraph class

method), 652
_tqdm() (ProgressBar static method), 512
_trace (Context attribute), 456
_type (BooleanField attribute), 433

744 Index

conda, Release 24.3.1.dev75

_type (DateField attribute), 434
_type (IntegerField attribute), 433
_type (ListField attribute), 435
_type (LoadedParameter attribute), 500
_type (MapField attribute), 436
_type (MapLoadedParameter attribute), 502
_type (MapParameter attribute), 504
_type (NumberField attribute), 433
_type (ObjectLoadedParameter attribute), 502
_type (ObjectParameter attribute), 505
_type (Parameter attribute), 503
_type (SequenceLoadedParameter attribute), 502
_type (SequenceParameter attribute), 504
_type (StringField attribute), 434
_typify_data_structure() (LoadedParameter static

method), 501
_update_old_plan() (in module conda.plan), 674
_update_prompt() (CshActivator method), 413
_update_prompt() (PosixActivator method), 413
_update_prompt() (_Activator method), 412
_upload() (ExceptionHandler method), 580
_url (CondaRepoInterface attribute), 624
_use_only_tar_bz2 (Context attribute), 456
_utf_to_str() (in module conda._vendor.cpuinfo), 396
_utf_to_str() (in module

conda._vendor.cpuinfo.cpuinfo), 390
_valid_file() (RequirementsSpec method), 576, 578
_valid_name() (RequirementsSpec method), 576, 578
_verbosity (Context attribute), 457
_verified (_Action attribute), 556
_verify() (UnlinkLinkTransaction method), 550
_verify_individual_level() (UnlinkLinkTransac-

tion static method), 550
_verify_pre_link_message() (UnlinkLinkTransac-

tion method), 550
_verify_prefix_level() (UnlinkLinkTransaction

static method), 550
_verify_threads (Context attribute), 455
_verify_transaction_level() (UnlinkLinkTransac-

tion static method), 550
_version (DeprecationHandler attribute), 569
_version_less_than() (DeprecationHandler

method), 569
_version_object (DeprecationHandler attribute), 569
_version_tuple (DeprecationHandler attribute), 569
_wait_and_close_handle() (in module

conda.common._os.windows), 493
_write_environment_state_file() (PrefixData

method), 563
_write_installed_packages() (SimpleEnvironment

method), 712
_write_repo_packages() (SimpleEnvironment

method), 712
_write_tempfile() (S3Adapter method), 597

_write_windows_registry() (in module
conda.core.initialize), 548

_yaml_round_trip() (in module
conda.common.serialize), 531

_yaml_safe() (in module conda.common.serialize), 531
_yield_commands() (JSONFormatMixin method), 415
_yield_commands() (_Activator method), 411

A
aarch64 (Arch attribute), 639
ACCESS_DENIED (ERROR attribute), 493
action (CondaHealthCheck attribute), 372, 689, 694
action (CondaPostCommand attribute), 373, 688, 694
action (CondaPostSolve attribute), 690, 694
action (CondaPreCommand attribute), 374, 688, 695
action (CondaPreSolve attribute), 689, 695
action (CondaSubcommand attribute), 377, 686, 687,

696
action() (DeprecationHandler method), 570
ACTION_CODES (in module conda.instructions), 632
ActionGroup (class in conda.core.link), 549
actions (ActionGroup attribute), 549
activate() (_Activator method), 411
ActivateHelp, 580
activator_map (in module conda.activate), 415
active_prefix (Context property), 453
add() (Dependencies method), 573
add() (JLAP method), 614
add_anaconda_token (Context attribute), 456
add_binstar_token() (CondaHttpAuth static method),

601
add_channels() (Environment method), 573
add_clause() (Clauses method), 515
add_clauses() (Clauses method), 515
add_defaults_to_specs() (in module conda.plan),

674
add_export_unset_vars() (_Activator method), 411
add_feature_records_legacy() (in module

conda.testing.helpers), 705
add_output_and_prompt_options() (in module

conda.cli.helpers), 468
add_parser_channels() (in module

conda.cli.helpers), 468
add_parser_create_install_update() (in module

conda.cli.helpers), 468
add_parser_default_packages() (in module

conda.cli.helpers), 469
add_parser_help() (in module conda.cli.helpers), 468
add_parser_help() (in module

conda.plugins.subcommands.doctor), 685
add_parser_json() (in module conda.cli.helpers), 468
add_parser_known() (in module conda.cli.helpers),

469

Index 745

conda, Release 24.3.1.dev75

add_parser_networking() (in module
conda.cli.helpers), 469

add_parser_package_install_options() (in mod-
ule conda.cli.helpers), 469

add_parser_platform() (in module
conda.cli.helpers), 469

add_parser_prefix() (in module conda.cli.helpers),
468

add_parser_prefix() (in module
conda.plugins.subcommands.doctor), 685

add_parser_prune() (in module conda.cli.helpers),
468

add_parser_pscheck() (in module conda.cli.helpers),
468

add_parser_show_channel_urls() (in module
conda.cli.helpers), 468

add_parser_solver() (in module conda.cli.helpers),
468

add_parser_solver_mode() (in module
conda.cli.helpers), 468

add_parser_update_modifiers() (in module
conda.cli.helpers), 468

add_parser_verbose() (in module conda.cli.helpers),
469

add_parser_verbose() (in module
conda.plugins.subcommands.doctor), 685

add_pip_as_python_dependency (Context attribute),
454

add_plugin_setting() (in module
conda.base.context), 459

add_resp_to_mock() (in module
conda.testing.notices.helpers), 711

add_subdir() (in module conda.testing.helpers), 705
add_subdir_to_iter() (in module

conda.testing.helpers), 705
add_unlink() (in module conda.plan), 673
add_url() (UrlsData method), 553
add_username_and_password() (in module

conda.common.url), 537
Administering a multi-user conda

installation, 72
AggregateCompileMultiPycAction (class in

conda.core.path_actions), 558
aggressive_update_packages (Context property),

453
aliases (CondaSetting attribute), 375, 690, 695
All() (Clauses method), 491, 516
all_ancestors() (PrefixGraph method), 652
all_caches_writable_first() (PackageCacheData

class method), 553, 621, 717
all_channel_urls() (in module

conda.models.channel), 636
all_descendants() (PrefixGraph method), 652
all_match() (BaseSpec method), 666

all_subdir_urls() (PrefixData method), 563
allow_conda_downgrades (Context attribute), 454
allow_cycles (Context attribute), 454
allow_non_channel_urls (Context attribute), 456
allow_softlinks (Context attribute), 454
allowlist_channels (Context attribute), 456
altered_files() (in module

conda.plugins.subcommands.doctor.health_checks),
684

always_copy (Context attribute), 456
always_softlink (Context attribute), 456
always_true_match() (BaseSpec method), 666
always_yes (Context attribute), 456
Anaconda Distribution, 12
anaconda_upload (Context attribute), 457
AND (in module conda.common.pkg_formats.python), 530
And() (Clauses method), 491, 516
Any() (Clauses method), 491, 516
any_match() (BaseSpec method), 666
any_subprocess() (in module

conda.gateways.subprocess), 627
APP_NAME (in module conda.base.constants), 446
AppDirs (class in conda._vendor.appdirs), 385
AppDirsError, 383
append() (_ClauseArray method), 489
application_entry_point (LeasedPathType at-

tribute), 641
application_entry_point_template (in module

conda.gateways.disk.create), 603
application_entry_point_windows_exe (Leased-

PathType attribute), 641
application_softlink (LeasedPathType attribute),

641
apply() (ContextStack method), 458
apply() (ContextStackObject method), 458
apply_patches() (in module

conda.gateways.repodata.jlap.fetch), 616
appname (in module conda._vendor.appdirs), 386
Arch (class in conda.models.enums), 639
arch (PackageRecord attribute), 659, 718
arch_name (Context property), 453
arch_name (in module conda.exports), 590
arch_string_raw (DataSource attribute), 388, 395
arg2spec() (in module conda.cli.common), 462
ArgParseRawParameter (class in

conda.common.configuration), 500
argument() (DeprecationHandler method), 570
ArgumentError, 580
ArgumentParser (class in conda.cli.conda_argparse),

464
argv() (in module conda.common.io), 511
arm64 (Arch attribute), 639
armv6l (Arch attribute), 639
armv7l (Arch attribute), 639

746 Index

conda, Release 24.3.1.dev75

as_array() (_ClauseArray method), 489
as_array() (_ClauseList method), 489
as_completed (in module conda.common.io), 513
as_dict() (Url method), 535
as_list() (_ClauseArray method), 489
as_list() (_ClauseList method), 489
as_list() (_SatSolver method), 489
as_list() (Clauses method), 490, 515
ASM (class in conda._vendor.cpuinfo), 396
ASM (class in conda._vendor.cpuinfo.cpuinfo), 390
assert_equals() (in module conda.testing.helpers),

705
assert_in() (in module conda.testing.helpers), 705
assert_not_in() (in module conda.testing.helpers),

705
assert_unsatisfiable() (SolverTests method), 713
assign() (Clauses method), 490
AssignmentError, 438
ASSOC_INCOMPLETE (ERROR attribute), 493
AtMostOne() (Clauses method), 516
AtMostOne_BDD() (Clauses method), 491, 516
AtMostOne_NSQ() (Clauses method), 491, 516
attach_stderr() (in module conda.auxlib.logz), 440
attach_stderr_handler() (in module

conda.common.io), 511
AttrDict (class in conda.auxlib.collection), 422
auth (PrefixRecord attribute), 660
auth (Url property), 535
AuthenticationError, 437, 584
auto_activate_base (Context attribute), 454
auto_injector_fixture() (BaseTestCase method),

701
auto_stack (Context attribute), 454
auto_update_conda (Context attribute), 454
AuxlibError (class in conda.auxlib.exceptions), 437
av_data_dir (Context property), 453

B
backend (CondaSolver attribute), 376, 688, 695
backoff_rename() (in module

conda.gateways.disk.update), 609
backoff_rmdir() (in module

conda.gateways.disk.delete), 604
backslash_to_forwardslash() (in module

conda.activate), 412
BAD_FORMAT (ERROR attribute), 493
bad_installed() (Resolve method), 700
base_url (Channel property), 622, 635
base_url (Dist attribute), 638
base_url (MultiChannel property), 636
base_urls (Channel property), 622, 635
base_urls (MultiChannel property), 636
BaseSpec (class in conda.models.version), 665
BaseTestCase (class in conda.testing.cases), 700

basic_types() (PathType method), 641
BasicClobberError, 581
BDD() (Clauses method), 491
BIN_DIRECTORY (in module conda.testing.integration),

708
binary (FileMode attribute), 640
binary_replace() (in module conda.core.portability),

561
BinaryPrefixReplacementError, 585
binstar() (BinstarSpec method), 576, 578
binstar_upload (Context property), 454
binstar_upload (in module conda.exports), 590
BinstarSpec (class in conda.env.specs), 577
BinstarSpec (class in conda.env.specs.binstar), 575
bits (Context property), 453
bits (DataSource attribute), 388, 395
bits (in module conda.exports), 590
bld_path (Context attribute), 457
body (JLAP property), 613
BooleanField (class in conda.auxlib.entity), 432
BooleanOptionalAction (class in conda.cli.helpers),

467
BoolField (in module conda.auxlib.entity), 433
boolify() (in module conda.auxlib.type_coercion), 442
bottom (ParameterFlag attribute), 499
box() (_FeaturesField method), 656
box() (BooleanField method), 433
box() (ComposableField method), 436
box() (DateField method), 434
box() (EnumField method), 435
box() (Field method), 432
box() (LinkTypeField method), 655
box() (ListField method), 435
box() (MapField method), 436
box() (NoarchField method), 650, 655
box() (StringField method), 434
box() (TimestampField method), 655
breadth_first_search_by_name() (GeneralGraph

method), 653
breadth_first_search_for_dep_graph() (Resolve

method), 698
build (CondaVirtualPackage attribute), 378, 688, 696
build (Dist property), 637
build (PackageInfo property), 651
build (PackageRecord attribute), 658, 717
build_activate() (_Activator method), 411
build_binary_response() (in module

conda.gateways.connection.adapters.ftp),
594

build_conflict_map() (Resolve method), 698
build_deactivate() (_Activator method), 412
build_graph_of_deps() (Resolve method), 698
build_headers() (in module

conda.gateways.repodata.jlap.fetch), 616

Index 747

conda, Release 24.3.1.dev75

build_number (Dist attribute), 638
build_number (DistDetails attribute), 637
build_number (PackageInfo property), 651
build_number (PackageRecord attribute), 658, 717
build_number() (in module conda._vendor.distro), 403
build_number() (LinuxDistribution method), 406
build_reactivate() (_Activator method), 412
build_response() (in module

conda.gateways.connection.adapters.ftp),
594

build_stack() (_Activator method), 411
build_string (Dist attribute), 638
build_string (DistDetails attribute), 637
build_text_response() (in module

conda.gateways.connection.adapters.ftp),
594

BuildNumberMatch (class in conda.models.version), 666
BUILTIN_COMMANDS (in module

conda.cli.conda_argparse), 464

C
cache_actions (ProgressiveFetchExtract property), 553
cache_clear() (_SignatureVerification class method),

721
cache_clear() (CondaSession class method), 600
cache_control (RepodataState property), 624
CACHE_CONTROL_KEY (in module

conda.gateways.repodata), 623
cache_fn_url() (in module conda.gateways.repodata),

626
cache_path_base (RepodataFetch attribute), 626
cache_path_base (SubdirData property), 568
cache_path_json (RepodataCache property), 625
cache_path_json (RepodataFetch property), 626
cache_path_json (SubdirData property), 568
cache_path_pickle (SubdirData property), 568
cache_path_state (RepodataCache property), 625
cache_path_state (RepodataFetch property), 626
cache_path_state (SubdirData property), 568
CACHE_STATE_SUFFIX (in module

conda.gateways.repodata), 623
cached_cuda_version() (in module

conda.plugins.virtual_packages.cuda), 691
cached_response() (in module conda.notices.cache),

667
CacheUrlAction (class in conda.core.path_actions),

559
calculate_channel_urls() (in module

conda.core.index), 542
call_each() (in module conda.auxlib.collection), 423
CAN_CALL_CPUID_IN_SUBPROCESS (in module

conda._vendor.cpuinfo), 394
CAN_CALL_CPUID_IN_SUBPROCESS (in module

conda._vendor.cpuinfo.cpuinfo), 388

can_cpuid (DataSource attribute), 389, 395
can_handle() (BinstarSpec method), 575, 578
can_handle() (RequirementsSpec method), 576, 578
can_handle() (YamlFileSpec method), 577, 578
CancelOperation, 609
canonical_name (Channel property), 622, 635
canonical_name (MultiChannel property), 636
capsys (CondaCLIFixture attribute), 719
captured() (in module conda.common.io), 510
captured() (in module conda.testing.helpers), 705
CaptureTarget (class in conda.common.io), 510
CaseInsensitiveStrMatch (class in

conda.models.match_spec), 649
cat_proc_cpuinfo() (DataSource static method), 389,

395
cat_var_run_dmesg_boot() (DataSource static

method), 389, 395
category_map (Context property), 454
changeps1 (Context attribute), 454
ChangeReport (class in conda.core.link), 550
Channel (class in conda.gateways.repodata), 622
Channel (class in conda.models.channel), 634
channel (Dist attribute), 637
channel (PackageInfo attribute), 651
channel (PackageRecord attribute), 658, 718
channel (RepodataFetch attribute), 626
channel_alias() (Context method), 458
channel_alias_validation() (in module

conda.base.context), 452
CHANNEL_DIR_V2 (in module conda.testing.helpers), 705
channel_location (Channel property), 622, 635
channel_location (MultiChannel property), 635
channel_name (Channel property), 622, 635
channel_name (ChannelNotice attribute), 671
channel_notices (ChannelNoticeResultSet attribute),

671
channel_priority (Context attribute), 456
channel_settings (Context attribute), 456
ChannelAuthBase (class in conda.plugins.types), 689
ChannelError, 583
ChannelField (class in conda.models.records), 656
ChannelMatch (class in conda.models.match_spec), 649
ChannelName (in module conda.notices.core), 668
ChannelNameMixin (class in conda.plugins.types), 689
ChannelNotAllowed, 583
ChannelNotice (class in conda.notices.types), 671
ChannelNoticeResponse (class in

conda.notices.types), 671
ChannelNoticeResultSet (class in

conda.notices.types), 671
ChannelPriority (class in conda.base.constants), 449
ChannelPriorityMeta (class in conda.base.constants),

449
Channels, 46, 98

748 Index

conda, Release 24.3.1.dev75

channels (Context property), 453
ChannelType (class in conda.models.channel), 634
ChannelUrl (in module conda.notices.core), 668
Cheat sheet, 118
check_allowlist() (in module conda.core.index), 540
CHECK_ALTERNATE_FORMAT_INTERVAL (in module

conda.gateways.repodata), 623
check_envs_txt_file() (in module

conda.plugins.subcommands.doctor.health_checks),
684

CHECK_EXTRACT (in module conda.instructions), 631
CHECK_FETCH (in module conda.instructions), 631
check_files_in_package() (in module

conda.instructions), 632
check_non_admin() (in module conda.cli.common),

463
check_prefix() (in module conda.cli.install), 469
check_source() (Configuration method), 506
ChecksumMismatchError, 583
CHUNK_SIZE (in module

conda.gateways.connection.download), 598
CLASSIC_SOLVER (in module conda.base.constants), 449
classproperty (class in conda.auxlib.decorators), 426
Clauses (class in conda.common._logic), 490
Clauses (class in conda.common.logic), 515
CLEAN (Commands attribute), 486, 709
cleanup() (_Action method), 556
cleanup() (CacheUrlAction method), 560
cleanup() (CompileMultiPycAction method), 558
cleanup() (CreateInPrefixPathAction method), 556
cleanup() (ExtractPackageAction method), 560
cleanup() (RegisterEnvironmentLocationAction

method), 559
cleanup() (RemoveMenuAction method), 559
cleanup() (TemporaryDirectory method), 603
cleanup() (UnlinkPathAction method), 559
cleanup() (UnregisterEnvironmentLocationAction

method), 559
cleanup() (UpdateHistoryAction method), 558
clear() (PackageCacheData class method), 553, 621,

717
clear_cached_local_channel_data() (SubdirData

class method), 568
clear_has_format() (RepodataState method), 625
clear_memoized_methods() (in module

conda.auxlib.decorators), 425
clear_subdir_cache() (in module

conda.testing.fixtures), 701
client_ssl_cert (Context attribute), 455
client_ssl_cert_key (Context attribute), 455
clobber (Context attribute), 454
clobber (PathConflict attribute), 448
ClobberError, 581
clone() (in module conda.cli.install), 469

clone_env() (in module conda.misc), 633
close() (EnforceUnusedAdapter method), 600
close() (FTPAdapter method), 594
close() (HashWriter method), 616
close() (LocalFSAdapter method), 596
close() (ProgressBar method), 512
close() (S3Adapter method), 597
CmdExeActivator (class in conda.activate), 414
codename() (in module conda._vendor.distro), 403
codename() (LinuxDistribution method), 406
coerce() (NoarchType static method), 642
collect_all() (Configuration method), 506
collect_errors() (LoadedParameter method), 501
collect_errors() (MapLoadedParameter method),

502
collect_errors() (ObjectLoadedParameter method),

502
collect_errors() (SequenceLoadedParameter

method), 502
com_pat (History attribute), 628
Combine() (Clauses method), 490
combined_depends (PackageRecord property), 658, 717
command_header() (Trace method), 388, 394
command_join (_Activator attribute), 411
command_join (CmdExeActivator attribute), 414
command_join (CshActivator attribute), 413
command_join (FishActivator attribute), 414
command_join (JSONFormatMixin attribute), 415
command_join (PosixActivator attribute), 412
command_join (PowerShellActivator attribute), 415
command_join (XonshActivator attribute), 413
command_output() (Trace method), 388, 394
CommandNotFoundError, 581
Commands, 98
Commands (class in conda.cli.python_api), 486
Commands (class in conda.testing.integration), 709
commands (in module conda.instructions), 632
commands() (_Activator method), 411
COMPARE (Commands attribute), 709
COMPARE_OP (in module

conda.common.pkg_formats.python), 530
compare_packages() (in module

conda.cli.main_compare), 472
compatible_release_operator() (in module

conda.models.version), 665
COMPATIBLE_SHELLS (in module conda.base.constants),

447
compile() (ASM method), 390, 397
compile_action_groups (PrefixActionGroup at-

tribute), 550
compile_multiple_pyc() (in module

conda.gateways.disk.create), 604
CompileMultiPycAction (class in

conda.core.path_actions), 557

Index 749

conda, Release 24.3.1.dev75

Completer (class in conda.exports), 590
ComposableField (class in conda.auxlib.entity), 436
compute_sum() (in module conda.gateways.disk.read),

607
conda

module, 382
Conda for data scientists, 98
conda.__main__

module, 382
conda._vendor

module, 382
conda._vendor.appdirs

module, 382
conda._vendor.cpuinfo

module, 386
conda._vendor.cpuinfo.cpuinfo

module, 386
conda._vendor.distro

module, 398
conda._vendor.frozendict

module, 408
conda._version

module, 409
conda.activate

module, 409
conda.api

module, 416
conda.auxlib

module, 421
conda.auxlib.collection

module, 422
conda.auxlib.compat

module, 423
conda.auxlib.decorators

module, 424
conda.auxlib.entity

module, 426
conda.auxlib.exceptions

module, 437
conda.auxlib.ish

module, 438
conda.auxlib.logz

module, 439
conda.auxlib.type_coercion

module, 441
conda.base

module, 444
conda.base.constants

module, 444
conda.base.context

module, 450
conda.base.exceptions

module, 460
conda.cli

module, 460
conda.cli.actions

module, 460
conda.cli.common

module, 461
conda.cli.conda_argparse

module, 463
conda.cli.find_commands

module, 465
conda.cli.helpers

module, 466
conda.cli.install

module, 469
conda.cli.main

module, 470
conda.cli.main_clean

module, 470
conda.cli.main_compare

module, 472
conda.cli.main_config

module, 472
conda.cli.main_create

module, 473
conda.cli.main_env

module, 474
conda.cli.main_env_config

module, 474
conda.cli.main_env_create

module, 474
conda.cli.main_env_export

module, 475
conda.cli.main_env_list

module, 475
conda.cli.main_env_remove

module, 475
conda.cli.main_env_update

module, 476
conda.cli.main_env_vars

module, 476
conda.cli.main_export

module, 477
conda.cli.main_info

module, 477
conda.cli.main_init

module, 479
conda.cli.main_install

module, 479
conda.cli.main_list

module, 480
conda.cli.main_mock_activate

module, 480
conda.cli.main_mock_deactivate

module, 481
conda.cli.main_notices

750 Index

conda, Release 24.3.1.dev75

module, 481
conda.cli.main_package

module, 482
conda.cli.main_pip

module, 483
conda.cli.main_remove

module, 483
conda.cli.main_rename

module, 484
conda.cli.main_run

module, 484
conda.cli.main_search

module, 485
conda.cli.main_update

module, 485
conda.cli.python_api

module, 486
conda.common

module, 488
conda.common._logic

module, 488
conda.common._os

module, 491
conda.common._os.linux

module, 491
conda.common._os.unix

module, 492
conda.common._os.windows

module, 492
conda.common.compat

module, 494
conda.common.configuration

module, 496
conda.common.constants

module, 507
conda.common.decorators

module, 507
conda.common.disk

module, 507
conda.common.io

module, 508
conda.common.iterators

module, 513
conda.common.logic

module, 514
conda.common.path

module, 517
conda.common.pkg_formats

module, 521
conda.common.pkg_formats.python

module, 521
conda.common.serialize

module, 530
conda.common.signals

module, 531
conda.common.toposort

module, 532
conda.common.url

module, 533
conda.core

module, 538
conda.core.envs_manager

module, 539
conda.core.index

module, 539
conda.core.initialize

module, 543
conda.core.link

module, 548
conda.core.package_cache

module, 551
conda.core.package_cache_data

module, 551
conda.core.path_actions

module, 554
conda.core.portability

module, 560
conda.core.prefix_data

module, 562
conda.core.solve

module, 563
conda.core.subdir_data

module, 566
conda.deprecations

module, 569
conda.env

module, 571
conda.env.env

module, 571
conda.env.installers

module, 573
conda.env.installers.base

module, 573
conda.env.installers.conda

module, 574
conda.env.installers.pip

module, 574
conda.env.pip_util

module, 575
conda.env.specs

module, 575
conda.env.specs.binstar

module, 575
conda.env.specs.requirements

module, 576
conda.env.specs.yaml_file

module, 576
conda.exception_handler

Index 751

conda, Release 24.3.1.dev75

module, 579
conda.exceptions

module, 580
conda.exports

module, 587
conda.gateways

module, 591
conda.gateways.anaconda_client

module, 592
conda.gateways.connection

module, 593
conda.gateways.connection.adapters

module, 593
conda.gateways.connection.adapters.ftp

module, 593
conda.gateways.connection.adapters.http

module, 595
conda.gateways.connection.adapters.localfs

module, 596
conda.gateways.connection.adapters.s3

module, 596
conda.gateways.connection.download

module, 598
conda.gateways.connection.session

module, 599
conda.gateways.disk

module, 601
conda.gateways.disk.create

module, 601
conda.gateways.disk.delete

module, 604
conda.gateways.disk.link

module, 605
conda.gateways.disk.lock

module, 605
conda.gateways.disk.permissions

module, 606
conda.gateways.disk.read

module, 606
conda.gateways.disk.test

module, 608
conda.gateways.disk.update

module, 609
conda.gateways.logging

module, 610
conda.gateways.repodata

module, 612
conda.gateways.repodata.jlap

module, 612
conda.gateways.repodata.jlap.core

module, 612
conda.gateways.repodata.jlap.fetch

module, 614
conda.gateways.repodata.jlap.interface

module, 617
conda.gateways.repodata.lock

module, 618
conda.gateways.subprocess

module, 627
conda.history

module, 627
conda.instructions

module, 630
conda.misc

module, 632
conda.models

module, 633
conda.models.channel

module, 633
conda.models.dist

module, 636
conda.models.enums

module, 639
conda.models.leased_path_entry

module, 642
conda.models.match_spec

module, 643
conda.models.package_info

module, 649
conda.models.prefix_graph

module, 651
conda.models.records

module, 653
conda.models.version

module, 660
conda.notices

module, 667
conda.notices.cache

module, 667
conda.notices.core

module, 668
conda.notices.fetch

module, 670
conda.notices.types

module, 671
conda.notices.views

module, 672
conda.plan

module, 673
conda.plugins

module, 674
conda.plugins.hookspec

module, 675
conda.plugins.manager

module, 680
conda.plugins.post_solves

module, 682
conda.plugins.post_solves.signature_verification

752 Index

conda, Release 24.3.1.dev75

module, 682
conda.plugins.solvers

module, 683
conda.plugins.subcommands

module, 683
conda.plugins.subcommands.doctor

module, 683
conda.plugins.subcommands.doctor.health_checks

module, 683
conda.plugins.types

module, 686
conda.plugins.virtual_packages

module, 690
conda.plugins.virtual_packages.archspec

module, 690
conda.plugins.virtual_packages.conda

module, 691
conda.plugins.virtual_packages.cuda

module, 691
conda.plugins.virtual_packages.freebsd

module, 692
conda.plugins.virtual_packages.linux

module, 692
conda.plugins.virtual_packages.osx

module, 692
conda.plugins.virtual_packages.windows

module, 692
conda.resolve

module, 696
conda.testing

module, 700
conda.testing.cases

module, 700
conda.testing.fixtures

module, 701
conda.testing.gateways

module, 702
conda.testing.gateways.fixtures

module, 702
conda.testing.helpers

module, 703
conda.testing.integration

module, 707
conda.testing.notices

module, 709
conda.testing.notices.fixtures

module, 709
conda.testing.notices.helpers

module, 710
conda.testing.solver_helpers

module, 711
conda.trust

module, 720
conda.trust.constants

module, 720
conda.trust.signature_verification

module, 721
conda.utils

module, 722
conda_auth_handlers() (CondaSpecs method), 677
conda_auth_handlers() (in module

conda.plugins.hookspec.CondaSpecs), 372
conda_build (Context property), 453
conda_build (in module conda.exports), 590
conda_build_form() (MatchSpec method), 646
conda_build_local_paths (Context property), 452
conda_build_local_urls (Context property), 452
conda_cli (TmpChannelFixture attribute), 720
conda_cli (TmpEnvFixture attribute), 719
conda_cli() (in module conda.testing), 719
conda_ensure_sys_python_is_base_env_python()

(in module conda.testing), 719
conda_env

module, 725
conda_env.cli

module, 725
conda_env.cli.common

module, 725
conda_env.cli.main

module, 726
conda_env.cli.main_config

module, 726
conda_env.cli.main_create

module, 727
conda_env.cli.main_export

module, 727
conda_env.cli.main_list

module, 728
conda_env.cli.main_remove

module, 728
conda_env.cli.main_update

module, 729
conda_env.cli.main_vars

module, 729
conda_env.env

module, 730
conda_env.installers

module, 730
conda_env.installers.base

module, 730
conda_env.installers.conda

module, 731
conda_env.installers.pip

module, 731
conda_env.pip_util

module, 731
conda_env.specs

module, 731

Index 753

conda, Release 24.3.1.dev75

conda_env.specs.binstar
module, 731

conda_env.specs.requirements
module, 731

conda_env.specs.yaml_file
module, 731

CONDA_ENV_VARS_UNSET_VAR (in module
conda.base.constants), 450

conda_exception_handler() (in module
conda.exception_handler), 580

conda_exe (Context property), 453
conda_exe_vars_dict (Context property), 453
conda_health_checks() (CondaSpecs method), 678
conda_health_checks() (in module

conda.plugins.hookspec.CondaSpecs), 372
conda_health_checks() (in module

conda.plugins.subcommands.doctor.health_checks),
685

CONDA_HOMEPAGE_URL (in module
conda.base.constants), 446

CONDA_HOMEPAGE_URL (in module
conda.gateways.repodata), 620

conda_http_errors() (in module
conda.gateways.repodata), 624

CONDA_INITIALIZE_PS_RE_BLOCK (in module
conda.core.initialize), 546

CONDA_INITIALIZE_RE_BLOCK (in module
conda.core.initialize), 546

conda_installed_files() (in module conda.misc),
633

CONDA_LOGS_DIR (in module conda.base.constants), 447
conda_move_to_front_of_PATH() (in module

conda.testing), 719
conda_name (PythonDistribution property), 523
conda_notices_args_n_parser() (in module

conda.testing.notices.fixtures), 710
CONDA_PACKAGE_EXTENSION_V1 (in module

conda.base.constants), 447
CONDA_PACKAGE_EXTENSION_V2 (in module

conda.base.constants), 447
CONDA_PACKAGE_EXTENSIONS (in module

conda.base.constants), 447
CONDA_PACKAGE_PARTS (in module

conda.base.constants), 447
CONDA_PACKAGE_ROOT (in module conda), 724
conda_package_types() (PackageType static method),

642
conda_post_commands() (CondaSpecs method), 677
conda_post_commands() (in module

conda.plugins.hookspec.CondaSpecs), 373
conda_post_solves() (CondaSpecs method), 679
conda_post_solves() (in module

conda.plugins.post_solves.signature_verification),
683

conda_pre_commands() (CondaSpecs method), 677
conda_pre_commands() (in module

conda.plugins.hookspec.CondaSpecs), 374
conda_pre_solves() (CondaSpecs method), 678
conda_prefix (Context property), 453
CONDA_SESSION_SCHEMES (in module conda.env.specs),

577
CONDA_SESSION_SCHEMES (in module

conda.gateways.connection.session), 599
conda_settings() (CondaSpecs method), 679
conda_settings() (in module

conda.plugins.hookspec.CondaSpecs), 375
conda_signal_handler() (in module conda), 725
conda_solvers() (CondaSpecs method), 675
conda_solvers() (in module

conda.plugins.hookspec.CondaSpecs), 376
conda_solvers() (in module conda.plugins.solvers),

683
conda_subcommands() (CondaSpecs method), 676
conda_subcommands() (in module

conda.plugins.hookspec.CondaSpecs), 377
conda_subcommands() (in module

conda.plugins.subcommands.doctor), 686
CONDA_TARBALL_EXTENSION (in module

conda.base.constants), 447
CONDA_TEMP_EXTENSION (in module

conda.base.constants), 447
CONDA_TEMP_EXTENSIONS (in module

conda.base.constants), 447
conda_tests_ctxt_mgmt_def_pol (in module

conda.base.context), 459
conda_v_pat (History attribute), 628
conda_virtual_packages() (CondaSpecs method),

676
conda_virtual_packages() (in module

conda.plugins.hookspec.CondaSpecs), 378
conda_virtual_packages() (in module

conda.plugins.virtual_packages.archspec),
690

conda_virtual_packages() (in module
conda.plugins.virtual_packages.conda), 691

conda_virtual_packages() (in module
conda.plugins.virtual_packages.cuda), 691

conda_virtual_packages() (in module
conda.plugins.virtual_packages.freebsd),
692

conda_virtual_packages() (in module
conda.plugins.virtual_packages.linux), 692

conda_virtual_packages() (in module
conda.plugins.virtual_packages.osx), 692

conda_virtual_packages() (in module
conda.plugins.virtual_packages.windows),
693

CondaAuthHandler (class in conda.plugins), 693

754 Index

conda, Release 24.3.1.dev75

CondaAuthHandler (class in conda.plugins.types), 371,
689

CondaCLIFixture (class in conda.testing), 719
CondaDependencyError, 585, 621
CondaEnvException, 586
CondaEnvironmentError, 582
CondaError, 620, 725
CondaExitZero, 717, 725
CondaFileIOError, 582
CondaFileNotFoundError (in module conda.exports),

590
CondaHealthCheck (class in conda.plugins), 694
CondaHealthCheck (class in conda.plugins.types), 372,

689
CondaHistoryError, 585
CondaHistoryWarning, 628
CondaHttpAuth (class in

conda.gateways.connection.session), 600
CondaHTTPError, 583, 622
CondaImportError, 583
CondaIndexError, 584
CondaIOError, 582
CondaKeyError, 583
CondaMemoryError, 585
CondaMultiError, 725
CondaOSError, 582
CondaOSError (in module conda.exports), 590
CondaPluginManager (class in

conda.plugins.manager), 680
CondaPostCommand (class in conda.plugins), 694
CondaPostCommand (class in conda.plugins.types), 373,

688
CondaPostSolve (class in conda.plugins), 694
CondaPostSolve (class in conda.plugins.types), 689
CondaPreCommand (class in conda.plugins), 694
CondaPreCommand (class in conda.plugins.types), 374,

688
CondaPreSolve (class in conda.plugins), 695
CondaPreSolve (class in conda.plugins.types), 689
CONDARC_FILENAMES (in module

conda.common.configuration), 505
CondaRepoInterface (class in

conda.gateways.repodata), 624
CondaSession (class in

conda.gateways.connection.session), 600
CondaSessionType (class in

conda.gateways.connection.session), 600
CondaSetting (class in conda.plugins), 695
CondaSetting (class in conda.plugins.types), 375, 690
CondaSignalInterrupt, 581
CondaSolver (class in conda.plugins), 695
CondaSolver (class in conda.plugins.types), 376, 688
CondaSpecs (class in conda.plugins.hookspec), 675
CondaSSLError, 584, 622

CondaSubcommand (class in conda.plugins), 695
CondaSubcommand (class in

conda.plugins.subcommands.doctor), 685
CondaSubcommand (class in conda.plugins.types), 377,

687
CondaSystemExit, 582
CondaUpgradeError, 585
CondaValueError, 584
CondaVerificationError, 585
CondaVirtualPackage (class in conda.plugins), 696
CondaVirtualPackage (class in conda.plugins.types),

378, 687
CONFIG (Commands attribute), 486, 709
config_description (in module

conda_env.cli.main_config), 726
config_example (in module

conda_env.cli.main_config), 726
config_files (Context property), 454
Configuration (class in conda.common.configuration),

506
ConfigurationError, 498
ConfigurationLoadError, 498
ConfigurationObject (class in

conda.common.configuration), 503
ConfigurationType (class in

conda.common.configuration), 505
configure_parser (CondaSubcommand attribute),

377, 686, 687, 696
configure_parser() (in module

conda.cli.main_clean), 471
configure_parser() (in module

conda.cli.main_compare), 472
configure_parser() (in module

conda.cli.main_config), 473
configure_parser() (in module

conda.cli.main_create), 473
configure_parser() (in module conda.cli.main_env),

474
configure_parser() (in module

conda.cli.main_env_config), 474
configure_parser() (in module

conda.cli.main_env_create), 475
configure_parser() (in module

conda.cli.main_env_list), 475
configure_parser() (in module

conda.cli.main_env_remove), 476
configure_parser() (in module

conda.cli.main_env_update), 476
configure_parser() (in module

conda.cli.main_env_vars), 476
configure_parser() (in module

conda.cli.main_export), 477
configure_parser() (in module conda.cli.main_info),

478

Index 755

conda, Release 24.3.1.dev75

configure_parser() (in module conda.cli.main_init),
479

configure_parser() (in module
conda.cli.main_install), 479

configure_parser() (in module conda.cli.main_list),
480

configure_parser() (in module
conda.cli.main_mock_activate), 481

configure_parser() (in module
conda.cli.main_mock_deactivate), 481

configure_parser() (in module
conda.cli.main_notices), 481

configure_parser() (in module
conda.cli.main_package), 482

configure_parser() (in module
conda.cli.main_remove), 483

configure_parser() (in module
conda.cli.main_rename), 484

configure_parser() (in module conda.cli.main_run),
484

configure_parser() (in module
conda.cli.main_search), 485

configure_parser() (in module
conda.cli.main_update), 485

configure_parser() (in module
conda.plugins.subcommands.doctor), 686

configure_parser_plugins() (in module
conda.cli.conda_argparse), 465

Configuring conda, 118
confirm() (in module conda.cli.common), 462
confirm_yn() (in module conda.cli.common), 462
constant() (DeprecationHandler method), 570
constrains (PackageRecord attribute), 659, 718
construct_states() (History method), 629
contains() (CondaMultiError method), 725
Context (class in conda.base.context), 452
context (in module conda.base.context), 460
context (in module conda.gateways.repodata), 620
context (in module conda.plugins.subcommands.doctor),

685
context (in module conda.testing), 716
context_aware_monkeypatch() (in module

conda.testing), 720
context_stack (in module conda.base.context), 459
ContextDecorator (class in conda.common.io), 510
ContextStack (class in conda.base.context), 458
ContextStackObject (class in conda.base.context),

458
convert_to_dist_str() (in module

conda.testing.helpers), 706
copy (LinkType attribute), 640
copy() (frozendict method), 408
copy() (in module conda.gateways.disk.create), 603
CorruptedEnvironmentError, 585

CouldntParseError, 583
cp_or_copy (in module conda.testing.integration), 708
cpu_count (DataSource attribute), 388, 395
cpu_flags (Context property), 454
cpufreq_info() (DataSource static method), 389, 395
CPUID (class in conda._vendor.cpuinfo), 397
CPUID (class in conda._vendor.cpuinfo.cpuinfo), 390
CPUINFO_VERSION (in module conda._vendor.cpuinfo),

394
CPUINFO_VERSION (in module

conda._vendor.cpuinfo.cpuinfo), 388
CPUINFO_VERSION_STRING (in module

conda._vendor.cpuinfo), 394
CPUINFO_VERSION_STRING (in module

conda._vendor.cpuinfo.cpuinfo), 388
CREATE (Commands attribute), 486, 709
create_actions() (CompileMultiPycAction class

method), 557
create_actions() (CreateNonadminAction class

method), 557
create_actions() (CreatePrefixRecordAction class

method), 558
create_actions() (CreatePythonEntryPointAction

class method), 558
create_actions() (MakeMenuAction class method),

557
create_actions() (RemoveMenuAction class method),

559
create_actions() (UpdateHistoryAction class

method), 558
create_application_entry_point() (in module

conda.gateways.disk.create), 603
create_cache_dir() (in module

conda.gateways.repodata), 626
create_conda_pkg() (in module

conda.cli.main_package), 482
create_default_packages (Context attribute), 454
create_directory_actions() (LinkPathAction class

method), 557
create_envs_directory() (in module

conda.gateways.disk.create), 604
create_fake_executable_softlink() (in module

conda.gateways.disk.create), 603
create_file_link_actions() (LinkPathAction class

method), 557
create_hard_link_or_copy() (in module

conda.gateways.disk.create), 603
create_info() (in module conda.cli.main_package),

482
create_link() (in module conda.gateways.disk.create),

603
create_notice_cache_files() (in module

conda.testing.notices.helpers), 711
create_package_cache_directory() (in module

756 Index

conda, Release 24.3.1.dev75

conda.gateways.disk.create), 604
create_parser() (in module conda_env.cli.main), 726
create_python_entry_point() (in module

conda.gateways.disk.create), 603
create_python_entry_point_windows_exe_action()

(LinkPathAction class method), 557
create_temp_location() (in module

conda.testing.integration), 709
created_at (ChannelNotice attribute), 671
CreateInPrefixPathAction (class in

conda.core.path_actions), 556
CreateNonadminAction (class in

conda.core.path_actions), 557
CreatePrefixRecordAction (class in

conda.core.path_actions), 558
CreatePythonEntryPointAction (class in

conda.core.path_actions), 558
Creating custom channels, 49
Creating projects with conda, 49
CRITICAL (NoticeLevel attribute), 450
croot (Context property), 452
CshActivator (class in conda.activate), 413
cuda_version() (in module

conda.plugins.virtual_packages.cuda), 691
custom_channels() (Context method), 458
custom_expandvars() (in module

conda.common.configuration), 505
custom_multichannels() (Context method), 458
CustomValidationError, 499
CyclicalDependencyError, 584
cygwin_path_to_win() (in module conda.utils), 722

D
dals() (in module conda.auxlib.ish), 438
dashlist() (in module conda.common.io), 510
data_callback_factory() (in module

conda.gateways.connection.adapters.ftp),
594

DataSource (class in conda._vendor.cpuinfo), 395
DataSource (class in conda._vendor.cpuinfo.cpuinfo),

388
date (PackageRecord attribute), 659, 718
DateField (class in conda.auxlib.entity), 434
DDE_BUSY (ERROR attribute), 493
DDE_FAIL (ERROR attribute), 493
DDE_TIMEOUT (ERROR attribute), 493
deactivate() (_Activator method), 411
DeactivateHelp, 580
debug (Context property), 454
DEBUG_FORMATTER (in module conda.auxlib.logz), 440
default (Field property), 432
default (Parameter property), 503
default() (DumpEncoder method), 440
default() (EntityEncoder method), 716

DEFAULT_AGGRESSIVE_UPDATE_PACKAGES (in module
conda.base.constants), 447

DEFAULT_CHANNEL_ALIAS (in module
conda.base.constants), 446

DEFAULT_CHANNELS (in module conda.base.constants),
447

default_channels() (Context method), 458
DEFAULT_CHANNELS_UNIX (in module

conda.base.constants), 447
DEFAULT_CHANNELS_WIN (in module

conda.base.constants), 447
DEFAULT_CUSTOM_CHANNELS (in module

conda.base.constants), 447
default_filter() (Resolve method), 697
default_in_dump (Field property), 432
DEFAULT_IV (in module

conda.gateways.repodata.jlap.core), 613
DEFAULT_MARKER_CONTEXT (in module

conda.common.pkg_formats.python), 530
DEFAULT_NOTICE_MESG (in module

conda.testing.notices.helpers), 711
default_prefix (Context property), 453
default_prefix (in module conda.exports), 590
default_python (Context attribute), 454
default_python (in module conda.exports), 590
default_python_default() (in module

conda.base.context), 452
default_python_validation() (in module

conda.base.context), 452
DEFAULT_SOLVER (in module conda.base.constants), 449
default_threads (Context property), 453
DEFAULTS_CHANNEL_NAME (in module

conda.base.constants), 447
DefaultValueRawParameter (class in

conda.common.configuration), 500
delete_prefix_from_linked_data() (in module

conda.core.prefix_data), 563
delete_trash() (in module

conda.gateways.disk.delete), 604
DeltaSecondsFormatter (class in conda.common.io),

509
Dependencies, 46
Dependencies (class in conda.env.env), 572
dependency_sort() (Resolve method), 699
depends (PackageRecord attribute), 659, 718
deprecated (in module conda._vendor.cpuinfo), 398
deprecated (in module conda._vendor.frozendict), 408
deprecated (in module conda.deprecations), 571
deprecated (in module

conda.plugins.subcommands.doctor), 685
deprecated (in module conda.testing), 717
DeprecatedError, 569
DeprecationHandler (class in conda.deprecations),

569

Index 757

conda, Release 24.3.1.dev75

deps_modifier (Context attribute), 457
DepsModifier (class in conda.base.constants), 448
DepsModifier (in module conda.api), 416
describe_all_parameters() (in module

conda.cli.main_config), 473
describe_parameter() (Configuration method), 506
description (CondaSetting attribute), 375, 690, 695
description (in module conda_env.cli.main_create),

727
description (in module conda_env.cli.main_export),

727
description (in module conda_env.cli.main_list), 728
description (in module conda_env.cli.main_update),

729
description_map() (Context method), 458
detach_stderr() (in module conda.auxlib.logz), 440
detect() (in module conda.env.specs), 579
determine_constricting_specs() (Solver method),

565
determine_link_type() (in module conda.core.link),

549
determine_target_prefix() (in module

conda.base.context), 459
dev (Context attribute), 456
dict_cls (frozendict attribute), 408
dict_cls (FrozenOrderedDict attribute), 409
diff_for_unlink_link_precs() (in module

conda.core.solve), 566
DIGEST_SIZE (in module

conda.gateways.repodata.jlap.core), 613
DIGEST_SIZE (in module

conda.gateways.repodata.jlap.fetch), 615
directory (LinkType attribute), 640
directory (PathType attribute), 641
DirectoryNotACondaEnvironmentError, 582
DirectoryNotFoundError, 581
Disable SSL Verification, 72
disable_channel_notices() (in module

conda.testing.fixtures), 701
disable_external_plugins() (CondaPluginMan-

ager method), 681
disable_logger() (in module conda.common.io), 511
disable_ssl_verify_warning() (in module

conda.gateways.connection.download), 598
DISABLED (ChannelPriority attribute), 449
disabled (SafetyChecks attribute), 448
disallowed_packages (Context attribute), 455
DisallowedPackageError, 584
disp_features() (in module conda.cli.common), 463
display_actions() (in module conda.exports), 591
display_actions() (in module conda.plan), 673
display_health_checks() (in module

conda.plugins.subcommands.doctor.health_checks),
684

display_notices() (in module conda.notices.core),
669

display_report_heading() (in module
conda.plugins.subcommands.doctor.health_checks),
684

Dist (class in conda.models.dist), 637
dist_fields_dump() (PackageRecord method), 659,

718
dist_name (Dist attribute), 638
dist_name (DistDetails attribute), 637
dist_str() (MatchSpec method), 646
dist_str() (PackageInfo method), 651
dist_str() (PackageRecord method), 659, 718
dist_str_in_index() (in module conda.core.index),

541
dist_str_to_quad() (in module conda.models.dist),

639
DistDetails (class in conda.models.dist), 637
distro_release_attr() (in module

conda._vendor.distro), 405
distro_release_attr() (LinuxDistribution method),

406
distro_release_info() (in module

conda._vendor.distro), 404
distro_release_info() (LinuxDistribution method),

406
DistType (class in conda.models.dist), 637
DLL_NOT_FOUND (ERROR attribute), 493
dmesg_a() (DataSource static method), 389, 395
do_cache_action() (in module

conda.core.package_cache_data), 554
do_call() (in module conda.cli.conda_argparse), 464
do_call() (in module conda_env.cli.main), 726
do_cleanup() (in module

conda.core.package_cache_data), 554
do_extract_action() (in module

conda.core.package_cache_data), 554
do_reverse() (in module

conda.core.package_cache_data), 554
done_callback() (in module

conda.core.package_cache_data), 554
downgraded_precs (ChangeReport attribute), 550
download() (in module

conda.core.package_cache_data), 554
download() (in module conda.exports), 591
download() (in module

conda.gateways.connection.download), 598
download_and_extract() (UnlinkLinkTransaction

method), 550
download_and_hash() (in module

conda.gateways.repodata.jlap.fetch), 616
download_http_errors() (in module

conda.gateways.connection.download), 598
download_inner() (in module

758 Index

conda, Release 24.3.1.dev75

conda.gateways.connection.download), 598
download_only (Context attribute), 454
download_partial_file() (in module

conda.gateways.connection.download), 598
download_text() (in module

conda.gateways.connection.download), 598
dry_run (Context attribute), 456
dry_run() (in module conda.env.installers.conda), 574
DRY_RUN_PREFIX (in module conda.base.constants), 447
DryRunExit, 582
DummyArgs (class in conda.testing.notices.helpers), 711
DummyExecutor (class in conda.common.io), 512
dump() (_FeaturesField method), 656
dump() (Channel method), 623, 635
dump() (ChannelField method), 656
dump() (ComposableField method), 436
dump() (DateField method), 434
dump() (Entity method), 436
dump() (EnumField method), 435
dump() (Field method), 432
dump() (ListField method), 435
dump() (MultiChannel method), 636
dump() (TimestampField method), 655
dump_map() (CondaError method), 620, 725
dump_map() (CondaMultiError method), 725
dump_record() (in module conda.cli.main_info), 478
DumpEncoder (class in conda.auxlib.logz), 440

E
emit() (StdStreamHandler method), 612
EMPTY_LINK (in module conda.models.records), 656
EMPTY_MAP (in module conda.common.configuration),

498
empty_prefix() (in module

conda.testing.solver_helpers), 712
enable_private_envs (Context attribute), 455
enabled (_SignatureVerification property), 721
enabled (SafetyChecks attribute), 448
encode_arguments() (in module

conda.common.compat), 495
ENCODE_ENVIRONMENT (in module

conda.common.compat), 495
encode_environment() (in module

conda.common.compat), 495
encode_for_env_var() (in module

conda.common.compat), 495
EncodingError, 586
EnforceUnusedAdapter (class in

conda.gateways.connection.session), 599
ensure_binary() (in module conda.activate), 412
ensure_binary() (in module conda.common.compat),

495
ensure_dir_exists() (in module conda.utils), 724

ensure_fs_path_encoding() (in module
conda.activate), 412

ensure_fs_path_encoding() (in module
conda.common.compat), 495

ensure_pad() (in module conda.common.path), 520
ensure_text_type() (in module

conda.common.compat), 495
ensure_unicode() (in module conda.common.compat),

495
ensure_utf8_encoding() (in module

conda.common.compat), 495
Entity (class in conda.auxlib.entity), 436
EntityEncoder (class in conda.testing), 715
ENTRY_POINT (in module conda_env.installers.base), 730
entry_point_action_groups (PrefixActionGroup at-

tribute), 550
entry_points (Noarch attribute), 650
ENTRY_POINTS_FILES (PythonDistribution attribute),

524
ENTRY_POINTS_FILES (PythonEggInfoDistribution at-

tribute), 525
ENTRY_POINTS_FILES (PythonInstalledDistribution at-

tribute), 525
EnumField (class in conda.auxlib.entity), 434
env() (SolverTests method), 713
env_name() (in module conda.base.context), 459
env_or_set (in module conda.testing.integration), 708
env_override() (in module

conda.common.decorators), 507
env_prompt (Context attribute), 454
env_txt_check() (in module

conda.plugins.subcommands.doctor.health_checks),
684

env_unmodified() (in module conda.common.io), 510
env_var() (in module conda.common.io), 510
env_vars() (in module conda.common.io), 510
EnvAppDirs (class in conda.gateways.anaconda_client),

592
Environment (class in conda.env.env), 573
environment (RequirementsSpec property), 576, 578
environment (YamlFileSpec property), 576, 578
environment() (BinstarSpec method), 576, 578
environment_is_consistent() (Resolve method),

699
ENVIRONMENT_TYPE (in module

conda.env.specs.binstar), 575
EnvironmentFileEmpty, 586
EnvironmentFileExtensionNotValid, 577, 586
EnvironmentFileNotDownloaded, 586
EnvironmentFileNotFound, 577, 586
EnvironmentLocationNotFound, 581
EnvironmentNameNotFound, 582
EnvironmentNotWritableError, 585
Environments, 98

Index 759

conda, Release 24.3.1.dev75

EnvRawParameter (class in
conda.common.configuration), 499

envs_dirs (Context property), 453
envs_dirs (in module conda.exports), 590
ERROR (class in conda.common._os.windows), 493
ERROR_SNIPPET_LENGTH (in module

conda.gateways.repodata), 623
error_upload_url (Context attribute), 456
error_upload_url (ExceptionHandler property), 579
ERROR_UPLOAD_URL (in module conda.base.constants),

446
escape_for_winpath() (in module

conda.testing.integration), 708
escaped_sys_rc_path (in module

conda.cli.conda_argparse), 464
escaped_user_rc_path (in module

conda.cli.conda_argparse), 464
etag (RepodataState property), 624
ETAG_KEY (in module conda.gateways.repodata), 623
Eval() (Clauses method), 490
evaluate() (Evaluator method), 530
Evaluator (class in conda.common.pkg_formats.python),

530
evaluator (in module

conda.common.pkg_formats.python), 530
exact_match() (BaseSpec method), 666
exact_value (_StrMatchMixin property), 647
exact_value (BaseSpec property), 665
exact_value (BuildNumberMatch property), 666
exact_value (FeatureMatch property), 649
exact_value (GlobStrMatch property), 648
exact_value (MatchInterface property), 647
exact_value (SplitStrMatch property), 648
ExactLowerStrMatch (class in

conda.models.match_spec), 648
ExactlyOne() (Clauses method), 516
ExactlyOne_BDD() (Clauses method), 491, 516
ExactlyOne_NSQ() (Clauses method), 491, 516
exactness_and_number_of_deps() (in module

conda.resolve), 697
ExactStrMatch (class in conda.models.match_spec),

648
example (in module conda_env.cli.main_create), 727
example (in module conda_env.cli.main_export), 727
example (in module conda_env.cli.main_list), 728
example (in module conda_env.cli.main_update), 729
ExceptionHandler (class in conda.exception_handler),

579
executable_paths (PreferredEnv attribute), 650
execute() (_Action method), 556
execute() (_Activator method), 411
execute() (CacheUrlAction method), 559
execute() (CompileMultiPycAction method), 558
execute() (CreateNonadminAction method), 557

execute() (CreatePrefixRecordAction method), 558
execute() (CreatePythonEntryPointAction method),

558
execute() (ExtractPackageAction method), 560
execute() (in module conda.cli.main_clean), 472
execute() (in module conda.cli.main_compare), 472
execute() (in module conda.cli.main_config), 473
execute() (in module conda.cli.main_create), 473
execute() (in module conda.cli.main_env), 474
execute() (in module conda.cli.main_env_config), 474
execute() (in module conda.cli.main_env_create), 475
execute() (in module conda.cli.main_env_list), 475
execute() (in module conda.cli.main_env_remove), 476
execute() (in module conda.cli.main_env_update), 476
execute() (in module conda.cli.main_export), 477
execute() (in module conda.cli.main_info), 478
execute() (in module conda.cli.main_init), 479
execute() (in module conda.cli.main_install), 479
execute() (in module conda.cli.main_list), 480
execute() (in module conda.cli.main_mock_activate),

481
execute() (in module conda.cli.main_mock_deactivate),

481
execute() (in module conda.cli.main_notices), 481
execute() (in module conda.cli.main_package), 482
execute() (in module conda.cli.main_remove), 483
execute() (in module conda.cli.main_rename), 484
execute() (in module conda.cli.main_run), 484
execute() (in module conda.cli.main_search), 485
execute() (in module conda.cli.main_update), 485
execute() (in module

conda.plugins.subcommands.doctor), 686
execute() (LinkPathAction method), 557
execute() (MakeMenuAction method), 557
execute() (PrefixReplaceLinkAction method), 557
execute() (ProgressiveFetchExtract method), 554
execute() (RegisterEnvironmentLocationAction

method), 558
execute() (RemoveLinkedPackageRecordAction

method), 559
execute() (RemoveMenuAction method), 559
execute() (UnlinkLinkTransaction method), 550
execute() (UnlinkPathAction method), 559
execute() (UnregisterEnvironmentLocationAction

method), 559
execute() (UpdateHistoryAction method), 558
execute_actions() (in module conda.plan), 674
execute_config() (in module conda.cli.main_config),

473
execute_instructions() (in module conda.plan), 674
execute_list() (in module conda.cli.main_env_vars),

477
execute_plan() (in module conda.plan), 674

760 Index

conda, Release 24.3.1.dev75

execute_set() (in module conda.cli.main_env_vars),
477

execute_threads (Context property), 453
execute_unset() (in module

conda.cli.main_env_vars), 477
exp_backoff_fn() (in module conda.gateways.disk),

610
expand() (in module conda.activate), 412
expand() (in module conda.common.path), 519
expand() (LoadedParameter method), 501
expand_environment_variables() (in module

conda.common.configuration), 498
expected_error_prefix (in module

conda.testing.helpers), 705
experimental (Context attribute), 457
expired_at (ChannelNotice attribute), 671
explicit() (in module conda.misc), 633
explode_directories() (in module

conda.common.path), 519
export_var_tmpl (_Activator attribute), 411
export_var_tmpl (CmdExeActivator attribute), 414
export_var_tmpl (CshActivator attribute), 413
export_var_tmpl (FishActivator attribute), 414
export_var_tmpl (PosixActivator attribute), 412
export_var_tmpl (PowerShellActivator attribute), 415
export_var_tmpl (XonshActivator attribute), 413
EXPORTED_CHANNELS_DIR (in module

conda.testing.helpers), 705
extend() (_ClauseArray method), 489
ExtendConstAction (class in conda.cli.actions), 461
extensions (RequirementsSpec attribute), 576, 578
extensions (YamlFileSpec attribute), 577, 578
extra_safety_checks (Context attribute), 455
EXTRACT (in module conda.instructions), 631
extract_actions (ProgressiveFetchExtract property),

553
EXTRACT_CMD() (in module conda.instructions), 632
extract_tarball() (in module

conda.gateways.disk.create), 603
EXTRACT_THREADS (in module

conda.core.package_cache_data), 552
extracted_package_dir (PackageCacheRecord

attribute), 660
extracted_package_dir (PackageInfo attribute), 651
extracted_package_dir (PrefixRecord attribute), 660
ExtractPackageAction (class in

conda.core.path_actions), 560

F
fail() (Trace method), 388, 394
FALSE (in module conda.common._logic), 488
FALSE (in module conda.common.logic), 515
FeatureMatch (class in conda.models.match_spec), 649
features (PackageRecord attribute), 659, 718

FETCH (in module conda.instructions), 631
FETCH_CMD() (in module conda.instructions), 632
fetch_index() (in module conda.core.index), 541
fetch_index() (in module conda.exports), 591
fetch_jlap() (in module

conda.gateways.repodata.jlap.fetch), 616
fetch_latest() (RepodataFetch method), 626
fetch_latest_parsed() (RepodataFetch method), 626
fetch_latest_path() (RepodataFetch method), 626
fetch_precs (ChangeReport attribute), 550
fetch_threads (Context property), 453
Field (class in conda.auxlib.entity), 431
FIELD_NAMES (MatchSpec attribute), 645
FIELD_NAMES_SET (MatchSpec attribute), 646
file_data() (BinstarSpec method), 576, 578
file_is_empty() (History method), 628
file_mode (PathData attribute), 658
FILE_NAMES (PythonDistributionMetadata attribute),

526
FILE_NOT_FOUND (ERROR attribute), 493
file_path_is_writable() (in module

conda.gateways.disk.test), 608
file_scheme (in module conda.common.url), 535
FileMode (class in conda.models.enums), 640
FilenameField (class in conda.models.records), 657
FileNotFoundError (in module

conda.core.package_cache_data), 552
FileNotFoundError (in module

conda.core.path_actions), 556
files (PrefixRecord attribute), 660
FileSpecTypes (in module conda.env.specs), 578
FILESYSTEM_ENCODING (in module

conda.common.compat), 495
filter() (TokenURLFilter method), 611
filter_notices() (in module conda.notices.core), 669
final (ParameterFlag attribute), 499
find_altered_packages() (in module

conda.plugins.subcommands.doctor.health_checks),
684

find_builtin_commands() (in module
conda.cli.conda_argparse), 464

find_commands() (in module
conda.cli.find_commands), 466

find_conflicts() (Resolve method), 698
find_executable() (in module

conda.cli.find_commands), 466
find_index_cache() (in module

conda.cli.main_clean), 471
find_logfiles() (in module conda.cli.main_clean),

472
find_matches() (Resolve method), 699
find_matches_with_strict() (Resolve method), 698
find_or_none() (in module conda.auxlib.ish), 438
find_or_raise() (in module conda.auxlib.ish), 439

Index 761

conda, Release 24.3.1.dev75

find_package() (SolverTests method), 713
find_package_in_list() (SolverTests method), 713
find_packages_with_missing_files() (in module

conda.plugins.subcommands.doctor.health_checks),
684

find_patches() (in module
conda.gateways.repodata.jlap.fetch), 616

find_pkgs() (in module conda.cli.main_clean), 471
find_pkgs_dirs() (in module conda.cli.main_clean),

471
find_tarballs() (in module conda.cli.main_clean),

471
find_tempfiles() (in module conda.cli.main_clean),

471
finish() (ProgressBar method), 511
first() (in module conda.auxlib.collection), 422
first_writable() (PackageCacheData class method),

553, 621, 716
first_writable() (PackageCacheData static method),

420
firstitem() (in module conda.auxlib.collection), 423
FishActivator (class in conda.activate), 414
fix_shebang() (in module conda.cli.main_package),

482
fixture_names (BaseTestCase attribute), 701
flatten_notice_responses() (in module

conda.notices.core), 669
FLEXIBLE (ChannelPriority attribute), 449
fmt (Dist attribute), 638
fmt (DistDetails attribute), 637
fn (Dist property), 637
fn (MatchSpec property), 645
fn (PackageRecord attribute), 658, 718
force (Context attribute), 456
force_32bit (Context attribute), 455
force_reinstall (Context attribute), 457
force_remove (Context attribute), 457
FORCE_temp_prefix() (in module

conda.testing.integration), 708
format() (DeltaSecondsFormatter method), 510
format_dict() (in module conda.cli.main_config), 473
format_hash() (in module

conda.gateways.repodata.jlap.fetch), 616
format_usage() (BooleanOptionalAction method), 468
formatter_map (in module conda.activate), 415
Free channel (deprecated), 72
free() (ASM method), 390, 397
freebsd (Platform attribute), 640
FREEZE_INSTALLED (UpdateModifier attribute), 448
fresh_context() (in module conda.base.context), 458
from_channel_name() (Channel static method), 622,

635
from_dist_str() (MatchSpec class method), 646
from_environment() (in module conda.env.env), 572

from_file() (in module conda.env.env), 572
from_index() (Clauses method), 515
from_json() (Entity class method), 436
from_lines() (JLAP class method), 613
from_name() (Clauses method), 515
from_name() (ParameterFlag class method), 499
from_objects() (Entity class method), 436
from_parse_result() (Url class method), 535
from_path() (JLAP class method), 614
from_string() (Dist class method), 638
from_string() (ParameterFlag class method), 499
from_sys() (Arch class method), 639
from_sys() (Platform class method), 640
from_url() (Channel static method), 622, 635
from_url() (Dist class method), 638
from_value() (Channel static method), 623, 635
from_value() (ParameterFlag class method), 499
from_yaml() (in module conda.env.env), 572
frozendict (class in conda._vendor.frozendict), 408
FrozenOrderedDict (class in

conda._vendor.frozendict), 409
FTPAdapter (class in conda.gateways.connection.adapters.ftp),

593
full_name (Dist property), 637
fullname() (in module conda.auxlib.logz), 441

G
g_trace (in module conda._vendor.cpuinfo), 394
g_trace (in module conda._vendor.cpuinfo.cpuinfo),

388, 392
gen_clauses() (Resolve method), 699
GeneralGraph (class in conda.models.prefix_graph),

653
generate_feature_count() (Resolve method), 699
generate_feature_metric() (Resolve method), 699
generate_install_count() (Resolve method), 699
generate_package_count() (Resolve method), 699
generate_parser() (in module

conda.cli.conda_argparse), 464
generate_parser() (in module conda.cli.main), 470
generate_pre_parser() (in module

conda.cli.conda_argparse), 464
generate_removal_count() (Resolve method), 699
generate_shebang_for_entry_point() (in module

conda.core.portability), 562
generate_spec_constraints() (Resolve method),

699
generate_update_count() (Resolve method), 699
generate_version_metrics() (Resolve method), 699
generic (NoarchType attribute), 642
GenericHelp, 581
get() (MatchSpec method), 646
get() (PackageCacheData method), 419, 553, 621, 716
get() (PrefixData method), 420, 563

762 Index

conda, Release 24.3.1.dev75

get_all_directories() (in module
conda.common.path), 519

get_all_extracted_entries() (PackageCacheData
class method), 553, 621, 717

get_all_matches() (MapParameter method), 504
get_all_matches() (ObjectParameter method), 505
get_all_matches() (Parameter method), 503
get_all_matches() (SequenceParameter method), 504
get_archspec_name() (in module conda.core.index),

542
get_auth_handler() (CondaPluginManager method),

681
get_bin_directory_short_path() (in module

conda.common.path), 519
get_blank_actions() (in module conda.plan), 674
get_cache() (CPUID method), 391, 397
get_cache_control_max_age() (in module

conda.core.subdir_data), 567
get_cache_control_max_age() (in module

conda.gateways.repodata), 626
get_cache_key() (ChannelNoticeResponse class

method), 672
get_cached_solver_backend (CondaPluginManager

attribute), 680
get_canonical_name() (CondaPluginManager

method), 680
get_channel_name_and_urls() (in module

conda.notices.core), 669
get_channel_name_from_url() (in module

conda.gateways.connection.session), 600
get_channel_notice_response() (in module

conda.notices.fetch), 670
get_channel_objs() (in module

conda.models.channel), 636
get_classifiers() (PythonDistributionMetadata

method), 529
get_clause_count() (_ClauseArray method), 489
get_clause_count() (_ClauseList method), 488
get_clause_count() (_SatSolver method), 489
get_clause_count() (Clauses method), 490, 515
get_comspec() (in module conda.utils), 723
get_conda_anchor_files_and_records() (in mod-

ule conda.core.prefix_data), 563
get_conda_build_local_url() (in module

conda.models.channel), 636
get_conda_dependencies() (PythonDistribution

method), 524
get_conflicting_specs() (Resolve method), 699
get_constrained_packages() (Solver method), 566
get_cpu_info() (in module conda._vendor.cpuinfo),

398
get_cpu_info() (in module

conda._vendor.cpuinfo.cpuinfo), 392
get_cpu_info_json() (in module

conda._vendor.cpuinfo), 398
get_cpu_info_json() (in module

conda._vendor.cpuinfo.cpuinfo), 392
get_default_marker_context() (in module

conda.common.pkg_formats.python), 530
get_default_urls (in module conda.exports), 590
get_descriptions() (Configuration method), 506
get_descriptions() (Context method), 458
get_dist_file_from_egg_link() (in module

conda.common.pkg_formats.python), 529
get_dist_obsolete() (PythonDistributionMetadata

method), 528
get_dist_provides() (PythonDistributionMetadata

method), 528
get_dist_requirements() (PythonDistribution

method), 524
get_dist_requirements() (PythonDistributionMeta-

data method), 526
get_entry_points() (PythonDistribution method),

524
get_entry_to_link() (PackageCacheData class

method), 553, 621, 717
get_env_vars_str() (in module conda.cli.main_info),

478
get_environment_env_vars() (PrefixData method),

563
get_error_report() (ExceptionHandler method), 579
get_exact_value() (MatchSpec method), 646
get_export_unset_vars() (_Activator method), 411
get_external_requirements() (PythonDistribution

method), 524
get_external_requirements() (PythonDistribution-

Metadata method), 527
get_extra_provides() (PythonDistribution method),

524
get_extra_provides() (PythonDistributionMetadata

method), 528
get_filename() (in module conda.env.env), 573
get_flags() (CPUID method), 391, 397
get_free_space_on_unix() (in module

conda.common._os.unix), 492
get_free_space_on_windows() (in module

conda.common._os.windows), 493
get_hook_results() (CondaPluginManager method),

681
get_host_and_path_from_url() (FTPAdapter

method), 594
get_index() (in module conda.core.index), 540
get_index() (in module conda.exports), 591
get_index_cuda() (in module conda.testing.helpers),

706
get_index_must_unfreeze() (in module

conda.testing.helpers), 706
get_index_r_1() (in module conda.testing.helpers),

Index 763

conda, Release 24.3.1.dev75

706
get_index_r_2() (in module conda.testing.helpers),

706
get_index_r_4() (in module conda.testing.helpers),

706
get_index_r_5() (in module conda.testing.helpers),

706
get_info() (CPUID method), 391, 397
get_info_dict() (in module conda.cli.main_info), 478
get_installed_version() (in module

conda.cli.main_package), 482
get_installer() (in module

conda.env.installers.base), 573
get_instrumentation_record_file() (in module

conda.common.io), 513
get_items() (Completer method), 590
get_leaf_directories() (in module

conda.common.path), 519
get_local_urls (in module conda.exports), 590
get_lock() (ProgressBar class method), 511
get_main_info_str() (in module

conda.cli.main_info), 478
get_major_minor_version() (in module

conda.common.path), 519
get_matcher() (BuildNumberMatch method), 666
get_matcher() (VersionSpec method), 666
get_max_extension_support() (CPUID method),

391, 397
get_node_by_name() (PrefixGraph method), 652
get_notice_cache_filenames() (in module

conda.testing.notices.helpers), 711
get_notice_response_from_cache() (in module

conda.notices.cache), 667
get_notice_responses() (in module

conda.notices.fetch), 670
get_notices_cache_dir() (in module

conda.notices.cache), 667
get_notices_cache_file() (in module

conda.notices.cache), 667
get_optional_dependencies() (PythonDistribution

method), 524
get_packages() (in module conda.cli.main_compare),

472
get_packages() (in module conda.cli.main_list), 480
get_paths() (PythonDistribution method), 524
get_pinned_specs() (in module conda.core.solve), 566
get_pip_installed_packages() (in module

conda.env.pip_util), 575
get_pkgs() (Resolve method), 699
get_plugin_config_data() (in module

conda.base.context), 459
get_plugin_manager() (in module

conda.plugins.manager), 682
get_prefix() (in module

conda.plugins.subcommands.doctor), 686
get_processor_brand() (CPUID method), 391, 397
get_proxy_username_and_pass() (in module

conda.common.url), 537
get_python_noarch_target_path() (in module

conda.common.path), 520
get_python_requirements() (PythonDistribution

method), 524
get_python_requirements() (PythonDistribution-

Metadata method), 527
get_python_short_path() (in module

conda.common.path), 519
get_python_site_packages_short_path() (in mod-

ule conda.common.path), 519
get_python_version_for_prefix() (in module

conda.core.prefix_data), 563
get_raw_hz() (CPUID method), 391, 397
get_raw_value() (MatchSpec method), 646
get_rc_urls (in module conda.exports), 590
get_reduced_index() (in module conda.core.index),

542
get_reduced_index() (Resolve method), 699
get_repo_interface() (in module

conda.gateways.repodata), 624
get_request_package_in_solution() (Solver

method), 565
get_requested_specs_map() (History method), 629
get_revision() (in module conda.cli.install), 470
get_scripts_export_unset_vars() (_Activator

method), 411
get_scripts_export_unset_vars() (JSONFormat-

Mixin method), 415
get_session() (in module

conda.gateways.connection.session), 600
get_session() (in module conda.gateways.repodata),

623
get_session_storage_key() (in module

conda.gateways.connection.session), 600
get_settings() (CondaPluginManager method), 681
get_shortcut_dir() (in module

conda.testing.integration), 709
get_signal_name() (in module

conda.common.signals), 532
get_site_packages_anchor_files() (in module

conda.common.pkg_formats.python), 529
get_solver() (in module conda.testing.helpers), 706
get_solver_2() (in module conda.testing.helpers), 706
get_solver_4() (in module conda.testing.helpers), 706
get_solver_5() (in module conda.testing.helpers), 706
get_solver_aggregate_1() (in module

conda.testing.helpers), 706
get_solver_aggregate_2() (in module

conda.testing.helpers), 706
get_solver_backend() (CondaPluginManager

764 Index

conda, Release 24.3.1.dev75

method), 681
get_solver_cuda() (in module conda.testing.helpers),

706
get_solver_must_unfreeze() (in module

conda.testing.helpers), 706
get_solvers() (CondaPluginManager method), 681
get_spec_class_from_file() (in module

conda.env.specs), 578
get_state() (History method), 629
get_status_code_from_code_response() (in mod-

ule conda.gateways.connection.adapters.ftp),
594

get_subcommands() (CondaPluginManager method),
682

get_test_notices() (in module
conda.testing.notices.helpers), 711

get_ticks_func() (CPUID method), 391, 397
get_url() (UrlsData method), 553
get_user_environments_txt_file() (in module

conda.core.envs_manager), 539
get_user_requests() (History method), 629
get_user_site() (in module conda.cli.main_info), 478
get_username_password_from_header() (FT-

PAdapter method), 594
get_vendor_id() (CPUID method), 391, 397
get_viewed_channel_notice_ids() (in module

conda.notices.cache), 668
get_virtual_packages() (CondaPluginManager

method), 682
Getting started, 118
GlobLowerStrMatch (class in

conda.models.match_spec), 648
GlobStrMatch (class in conda.models.match_spec), 648
groupby_to_dict() (in module

conda.common.iterators), 514

H
h (in module conda.history), 629
handle_407() (CondaHttpAuth static method), 601
handle_application_exception() (ExceptionHan-

dler method), 579
handle_exception() (ExceptionHandler method), 579
handle_reportable_application_exception()

(ExceptionHandler method), 579
handle_txn() (in module conda.cli.install), 470
handle_unexpected_exception() (ExceptionHan-

dler method), 579
handler (CondaAuthHandler attribute), 372, 689, 694
hardlink (LinkType attribute), 640
hardlink (PathType attribute), 641
hardlink_supported() (in module

conda.gateways.disk.test), 608
has_cpufreq_info() (DataSource static method), 389,

395

has_dmesg() (DataSource static method), 389, 395
has_format() (RepodataState method), 624
has_ibm_pa_features() (DataSource static method),

389, 395
has_isainfo() (DataSource static method), 389, 395
has_kstat() (DataSource static method), 389, 395
has_lscpu() (DataSource static method), 389, 395
has_platform() (in module conda.common.url), 537
has_proc_cpuinfo() (DataSource static method), 389,

395
has_pyzzer_entry_point() (in module

conda.core.portability), 561
has_scheme() (in module conda.common.url), 536
has_sestatus() (DataSource static method), 389, 395
has_sysctl() (DataSource static method), 389, 395
has_sysinfo() (DataSource static method), 389, 395
has_var_run_dmesg_boot() (DataSource static

method), 389, 395
has_wmic() (DataSource static method), 389, 395
hash() (in module conda.gateways.repodata.jlap.fetch),

616
hash_file() (in module conda.exports), 591
HashWriter (class in conda.gateways.repodata.jlap.fetch),

616
header() (Trace method), 388, 394
HEADERS (in module conda.gateways.repodata.jlap.fetch),

615
Help, 580
hex_octal_to_int() (in module conda.common.url),

535
HIDE (SW attribute), 492
History (class in conda.history), 628
hook() (_Activator method), 411
hook_source_path (_Activator attribute), 411
hook_source_path (CmdExeActivator attribute), 414
hook_source_path (CshActivator attribute), 413
hook_source_path (FishActivator attribute), 414
hook_source_path (PosixActivator attribute), 413
hook_source_path (PowerShellActivator attribute), 415
hook_source_path (XonshActivator attribute), 413
hookimpl (in module conda.plugins), 693
hookimpl (in module conda.plugins.hookspec), 675
hookimpl (in module conda.plugins.subcommands.doctor),

686
http_timeout (ExceptionHandler property), 579
HTTPAdapter (class in

conda.gateways.connection.adapters.http),
595

human_bytes() (in module conda.utils), 723

I
ibm_pa_features() (DataSource static method), 389,

395
icondata (PackageInfo attribute), 651

Index 765

conda, Release 24.3.1.dev75

id (ChannelNotice attribute), 671
id() (in module conda._vendor.distro), 400
id() (LinuxDistribution method), 405
IDENTIFIER (in module

conda.common.pkg_formats.python), 529
IGNORE_FIELDS (in module conda.cli.main_info), 478
ignore_pinned (Context attribute), 457
immutable (Field property), 432
ImmutableEntity (class in conda.auxlib.entity), 437
in_dump (Field property), 432
index_packages() (in module

conda.testing.solver_helpers), 712
INFO (Commands attribute), 486, 709
info (Context property), 454
INFO (NoticeLevel attribute), 450
info() (in module conda._vendor.distro), 403
info() (LinuxDistribution method), 406
INFO_FORMATTER (in module conda.auxlib.logz), 440
init() (PythonDistribution static method), 524
init_cmd_exe_registry() (in module

conda.core.initialize), 548
init_fish_user() (in module conda.core.initialize),

547
init_log_file() (History method), 628
init_loggers() (in module conda.cli.main), 470
init_long_path() (in module conda.core.initialize),

548
init_poolmanager() (_SSLContextAdapterMixin

method), 595
init_powershell_user() (in module

conda.core.initialize), 548
init_sh_system() (in module conda.core.initialize),

548
init_sh_user() (in module conda.core.initialize), 548
init_xonsh_user() (in module conda.core.initialize),

547
INITIAL_TRUST_ROOT (in module

conda.trust.constants), 720
InitializationError, 437
initialize() (in module conda.core.initialize), 546
initialize_dev() (in module conda.core.initialize),

546
initialize_logging() (in module conda.auxlib.logz),

440
initialize_logging() (in module

conda.gateways.logging), 612
initialize_root_logger() (in module

conda.gateways.logging), 612
initialize_std_loggers() (in module

conda.gateways.logging), 612
inode_paths (PathDataV1 attribute), 658
insert() (PackageCacheData method), 552, 621, 716
insert() (PrefixData method), 563
INSTALL (Commands attribute), 486, 709

install() (in module conda.cli.install), 470
install() (in module conda.core.initialize), 546
install() (in module conda.env.installers.conda), 574
install() (in module conda.env.installers.pip), 574
install() (Resolve method), 700
install() (SimpleEnvironment method), 712
install_actions() (in module conda.plan), 674
install_activate() (in module conda.core.initialize),

547
install_activate_bat() (in module

conda.core.initialize), 547
install_anaconda_prompt() (in module

conda.core.initialize), 547
install_conda_csh() (in module

conda.core.initialize), 547
install_conda_fish() (in module

conda.core.initialize), 547
install_conda_hook_ps1() (in module

conda.core.initialize), 547
install_conda_psm1() (in module

conda.core.initialize), 547
install_conda_sh() (in module conda.core.initialize),

547
install_conda_xsh() (in module

conda.core.initialize), 547
install_condabin_conda_activate_bat() (in mod-

ule conda.core.initialize), 547
install_condabin_conda_auto_activate_bat()

(in module conda.core.initialize), 547
install_condabin_conda_bat() (in module

conda.core.initialize), 547
install_condabin_hook_bat() (in module

conda.core.initialize), 547
install_condabin_rename_tmp_bat() (in module

conda.core.initialize), 547
install_deactivate() (in module

conda.core.initialize), 547
install_deactivate_bat() (in module

conda.core.initialize), 547
install_library_bin_conda_bat() (in module

conda.core.initialize), 547
install_Scripts_activate_bat() (in module

conda.core.initialize), 547
install_specs() (Resolve method), 700
InstalledPackages (class in conda.exports), 590
Installing conda, 118
Installing with conda, 98
IntegerField (class in conda.auxlib.entity), 433
interpret() (in module

conda.common.pkg_formats.python), 530
INTERRUPT_SIGNALS (in module

conda.common.signals), 532
interval (ChannelNotice attribute), 671
IntField (in module conda.auxlib.entity), 433

766 Index

conda, Release 24.3.1.dev75

invalid_chains() (Resolve method), 698
InvalidInstaller, 587
InvalidMatchSpec, 586
InvalidSpec, 586
InvalidTypeError, 499
InvalidVersionSpec, 586
invoke() (_PycoSatSolver method), 490
invoke() (_PyCryptoSatSolver method), 490
invoke() (_PySatSolver method), 490
invoke() (_SatSolver method), 489
invoke_health_checks() (CondaPluginManager

method), 682
invoke_post_commands() (CondaPluginManager

method), 681
invoke_post_solves() (CondaPluginManager

method), 682
invoke_pre_commands() (CondaPluginManager

method), 681
invoke_pre_solves() (CondaPluginManager

method), 682
is_active_prefix() (in module conda.cli.common),

462
is_admin_on_unix() (in module

conda.common._os.unix), 492
is_admin_on_windows() (in module

conda.common._os.windows), 493
is_channel (Dist property), 637
is_channel_notices_cache_expired() (in module

conda.notices.core), 669
is_channel_notices_enabled() (in module

conda.notices.core), 669
is_conda_environment() (in module

conda.gateways.disk.test), 608
is_diff() (in module conda.history), 628
is_exact() (BaseSpec method), 665
is_executable() (in module

conda.gateways.disk.permissions), 606
is_extracted (PackageCacheRecord property), 660
is_feature_package (Dist property), 637
is_fetched (PackageCacheRecord property), 660
IS_INTERACTIVE (in module conda.common.io), 509
is_ip_address() (in module conda.common.url), 536
is_ipv4_address() (in module conda.common.url),

536
is_ipv6_address() (in module conda.common.url),

536
is_linked() (in module conda.exports), 591
is_manageable (PythonEggInfoDistribution property),

525
is_manageable (PythonEggLinkDistribution attribute),

525
is_manageable (PythonInstalledDistribution attribute),

525
is_name_only_spec (MatchSpec property), 645

is_notice_response_cache_expired() (in module
conda.notices.cache), 667

is_nullable (Field property), 432
is_package_file() (in module conda.common.path),

521
is_path() (in module conda.common.path), 519
is_private_env_name() (in module

conda.common.path), 520
is_private_env_path() (in module

conda.common.path), 520
is_unmanageable (PackageRecord property), 658, 717
is_url() (in module conda.common.url), 536
is_windows (DataSource attribute), 388, 395
is_writable (PackageCacheData property), 419, 552,

621, 716
is_writable (PrefixData property), 420, 562
isainfo_vb() (DataSource static method), 389, 395
isiterable() (in module conda.auxlib.compat), 423
isiterable() (in module conda.common.compat), 495
islink (in module conda.gateways.disk.link), 605
ITE() (Clauses method), 491, 516
iter_records() (PackageCacheData method), 419,

553, 621, 716
iter_records() (PrefixData method), 421, 563
iter_records() (SubdirData method), 418, 568
iter_records_sorted() (PrefixData method), 563
iteritems (in module conda._vendor.frozendict), 408
iteritems() (in module conda.exports), 590
itersolve() (Clauses method), 516
itervalues() (PackageCacheData method), 553, 621,

717

J
JLAP (class in conda.gateways.repodata.jlap.core), 613
Jlap304NotModified, 616
JLAP_KEY (in module conda.gateways.repodata.jlap.fetch),

615
JlapPatchNotFound, 616
JlapRepoInterface (class in

conda.gateways.repodata.jlap.interface),
617

JlapSkipZst, 616
join() (in module conda.common.url), 536
join_url (in module conda.common.url), 536
join_url (in module conda.gateways.repodata), 620
json (Context attribute), 457
json() (Entity method), 436
json() (MockResponse method), 711
json_data (ChannelNoticeResponse attribute), 672
json_dump() (in module conda.common.serialize), 531
json_load() (in module conda.common.serialize), 531
jsondumps() (in module conda.auxlib.logz), 441
JSONFormatMixin (class in conda.activate), 415

Index 767

conda, Release 24.3.1.dev75

K
key_mgr (_SignatureVerification property), 721
KEY_MGR_FILE (in module conda.trust.constants), 720
keyed_hash() (in module

conda.gateways.repodata.jlap.core), 613
keyflag() (ArgParseRawParameter method), 500
keyflag() (DefaultValueRawParameter method), 500
keyflag() (EnvRawParameter method), 499
keyflag() (RawParameter method), 499
keyflag() (YamlRawParameter method), 500
KEYS (in module conda.exports), 590
keys() (Trace method), 388, 394
KEYS_DIR (in module conda.exports), 591
KNOWN_EXTENSIONS (in module conda.common.path),

519
known_subdirs() (Context method), 458
KnownPackageClobberError, 581
kstat_m_cpu_info() (DataSource static method), 389,

395

L
last (JLAP property), 613
last() (in module conda.auxlib.collection), 423
LAST_CHANNEL_URLS (in module conda.core.index), 540
LAST_MODIFIED_KEY (in module

conda.gateways.repodata), 623
LATEST (in module conda.gateways.repodata.jlap.fetch),

616
LB_Preprocess() (Clauses method), 491
lchmod (in module conda.gateways.disk.link), 605
leased_path (LeasedPathEntry attribute), 642
leased_path_type (LeasedPathEntry attribute), 642
LeasedPathEntry (class in

conda.models.leased_path_entry), 642
LeasedPathType (class in conda.models.enums), 641
legacy_bz2_md5 (PackageRecord attribute), 658, 718
legacy_bz2_size (PackageRecord attribute), 658, 718
level (ChannelNotice attribute), 671
libc_family_version() (Context method), 458
license (PackageRecord attribute), 659, 718
license_family (PackageRecord attribute), 659, 718
like() (in module conda._vendor.distro), 403
like() (LinuxDistribution method), 406
line_and_pos() (in module

conda.gateways.repodata.jlap.core), 613
LinearBound() (Clauses method), 491, 516
Link (class in conda.models.records), 655
link (in module conda.gateways.disk.link), 605
LINK (in module conda.instructions), 632
link (PrefixRecord attribute), 660
link_action_groups (PrefixActionGroup attribute),

549
link_precs (PrefixSetup attribute), 549
linked() (in module conda.exports), 591

linked_data() (in module conda.exports), 591
linked_package_record (PathType attribute), 641
LinkError, 582
LinkError (in module conda.exports), 590
LinkPathAction (class in conda.core.path_actions),

557
LinkType (class in conda.models.enums), 640
LinkTypeField (class in conda.models.records), 654
linux (Platform attribute), 640
linux_distribution() (in module

conda._vendor.distro), 400
linux_distribution() (LinuxDistribution method),

405
linux_get_libc_version() (in module

conda.common._os.linux), 491
LinuxDistribution (class in conda._vendor.distro),

405
LIST (Commands attribute), 486, 709
list() (FTPAdapter method), 594
list_all_known_prefixes() (in module

conda.core.envs_manager), 539
list_description (in module

conda_env.cli.main_vars), 729
list_example (in module conda_env.cli.main_vars),

729
list_packages() (in module conda.cli.main_list), 480
list_parameters() (Configuration method), 506
listdir (in module conda.gateways.disk.read), 607
ListField (class in conda.auxlib.entity), 435
listify() (in module conda.auxlib.type_coercion), 443
load() (Entity class method), 436
load() (MapParameter method), 504
load() (ObjectParameter method), 505
load() (PackageCacheData method), 552, 621, 716
load() (Parameter method), 503
load() (PrefixData method), 562
load() (PrimitiveParameter method), 503
load() (RepodataCache method), 625
load() (SequenceParameter method), 504
load() (SubdirData method), 568
load_condarc (in module conda.exports), 590
load_entrypoints() (CondaPluginManager method),

680
load_file_configs() (in module

conda.common.configuration), 500
load_plugins() (CondaPluginManager method), 680
load_settings() (CondaPluginManager method), 682
load_state() (RepodataCache method), 625
LoadedParameter (class in

conda.common.configuration), 500
local_build_root (Context property), 452
local_repodata_ttl (Context attribute), 455
LocalFSAdapter (class in

conda.gateways.connection.adapters.localfs),

768 Index

conda, Release 24.3.1.dev75

596
locate_prefix_by_name() (in module

conda.base.context), 459
lock() (in module conda.gateways.disk.lock), 605
lock() (in module conda.gateways.repodata), 623
lock() (RepodataCache method), 625
LOCK_ATTEMPTS (in module conda.gateways.disk.lock),

605
LOCK_BYTE (in module conda.gateways.disk.lock), 605
LOCK_SLEEP (in module conda.gateways.disk.lock), 605
LockError, 580
log_level (Context property), 454
log_totals() (time_recorder class method), 513
logger (in module conda.notices.cache), 667
logger (in module conda.notices.core), 669
logger (in module conda.notices.fetch), 670
logger (in module conda.plugins.subcommands.doctor.health_checks),

684
lsb_release_attr() (in module

conda._vendor.distro), 404
lsb_release_attr() (LinuxDistribution method), 406
lsb_release_info() (in module

conda._vendor.distro), 404
lsb_release_info() (LinuxDistribution method), 406
lscpu() (DataSource static method), 389, 395

M
m (Clauses property), 515
machine_bits (in module conda.base.constants), 446
main() (in module conda._vendor.cpuinfo), 398
main() (in module conda._vendor.cpuinfo.cpuinfo), 392
main() (in module conda._vendor.distro), 408
main() (in module conda.cli), 487
main() (in module conda.cli.main), 470
main() (in module conda.cli.main_pip), 483
main() (in module conda_env.cli.main), 726
main_sourced() (in module conda.cli.main), 470
main_subshell() (in module conda.cli.main), 470
main_subshell() (in module conda.testing), 716
major_version() (in module conda._vendor.distro),

403
major_version() (LinuxDistribution method), 406
make_actions_for_record() (ProgressiveFetchEx-

tract static method), 554
make_conda_egg_link() (in module

conda.core.initialize), 548
make_dev_egg_info_file() (in module

conda.core.initialize), 548
make_diff() (in module conda.core.initialize), 548
make_entry_point() (in module conda.core.initialize),

547
make_entry_point_exe() (in module

conda.core.initialize), 547

make_executable() (in module
conda.gateways.disk.permissions), 606

make_feature_record() (in module
conda.core.subdir_data), 569

make_immutable() (in module conda.auxlib.collection),
422

make_initialize_plan() (in module
conda.core.initialize), 546

make_install_plan() (in module
conda.core.initialize), 546

make_menu() (in module conda.gateways.disk.create),
603

make_menu_action_groups (PrefixActionGroup
attribute), 550

make_raw_parameters() (ArgParseRawParameter
class method), 500

make_raw_parameters() (EnvRawParameter class
method), 500

make_raw_parameters() (RawParameter class
method), 499

make_raw_parameters() (YamlRawParameter class
method), 500

make_raw_parameters_from_file() (YamlRawPa-
rameter class method), 500

make_read_only() (in module
conda.gateways.disk.permissions), 606

make_simple_channel() (Channel static method), 623,
635

make_tarbz2() (in module conda.cli.main_package),
482

make_temp_channel() (in module
conda.testing.integration), 709

make_temp_env() (in module conda.testing.integration),
709

make_temp_package_cache() (in module
conda.testing.integration), 709

make_temp_prefix() (in module
conda.testing.integration), 708

make_unlink_actions() (in module conda.core.link),
549

make_writable() (in module
conda.gateways.disk.permissions), 606

MakeMenuAction (class in conda.core.path_actions),
557

Managing channels, 49
Managing conda, 49
Managing environments, 49
Managing packages, 49
Managing python, 49
Managing virtual packages, 49
MANDATORY_FILES (PythonDistribution attribute), 524
MANDATORY_FILES (PythonEggInfoDistribution at-

tribute), 525
MANDATORY_FILES (PythonInstalledDistribution at-

Index 769

conda, Release 24.3.1.dev75

tribute), 525
MANIFEST_FILES (PythonDistribution attribute), 524
MANIFEST_FILES (PythonEggInfoDistribution attribute),

525
MANIFEST_FILES (PythonInstalledDistribution at-

tribute), 525
manifest_full_path() (PythonDistribution method),

524
map() (DummyExecutor method), 512
MapField (class in conda.auxlib.entity), 435
MapLoadedParameter (class in

conda.common.configuration), 501
MapParameter (class in conda.common.configuration),

504
mark_channel_notices_as_viewed() (in module

conda.notices.cache), 668
MARKER_OP (in module

conda.common.pkg_formats.python), 530
mask_anaconda_token() (in module

conda.common.url), 537
massage_arguments() (in module conda.utils), 723
match() (CaseInsensitiveStrMatch method), 649
match() (ChannelMatch method), 649
match() (ExactLowerStrMatch method), 648
match() (ExactStrMatch method), 648
match() (FeatureMatch method), 649
match() (GlobStrMatch method), 648
match() (MatchInterface method), 647
match() (MatchSpec method), 646
match() (SplitStrMatch method), 648
match_any() (Resolve method), 699
match_specs_to_dists() (in module conda.core.link),

549
matches() (MatchInterface method), 647
matches_all (GlobStrMatch property), 648
MatchInterface (class in conda.models.match_spec),

647
MatchSpec (class in conda.models.match_spec), 644
MatchSpecType (class in conda.models.match_spec),

644
MAX_CHANNEL_PRIORITY (in module

conda.base.constants), 447
MAX_REPODATA_VERSION (in module

conda.core.subdir_data), 567
MAX_SHEBANG_LENGTH (in module

conda.core.portability), 561
MAX_TRIES (in module conda.gateways.disk), 610
MAXIMIZE (SW attribute), 492
maybe_add_auth() (in module conda.common.url), 538
maybe_raise() (in module conda.exceptions), 587
maybe_unquote() (in module conda.common.url), 538
maybe_unquote() (in module

conda.gateways.repodata), 620
maybecall() (in module conda.auxlib.type_coercion),

443
md5 (PackageCacheRecord attribute), 660
md5 (PackageRecord attribute), 658, 718
Md5Field (class in conda.models.records), 659
memoizedproperty() (in module

conda.auxlib.decorators), 425
memoizemethod() (in module conda.auxlib.decorators),

424
merge() (BaseSpec method), 666
merge() (BuildNumberMatch method), 666
merge() (LoadedParameter method), 501
merge() (MapLoadedParameter method), 502
merge() (MatchInterface method), 647
merge() (MatchSpec class method), 646
merge() (ObjectLoadedParameter method), 503
merge() (PrimitiveLoadedParameter method), 501
merge() (SequenceLoadedParameter method), 502
merge() (VersionSpec method), 666
message (ChannelNotice attribute), 671
messages() (in module conda.core.link), 551
metadata (PackageRecord attribute), 659, 718
MetadataWarning, 523
migrated_channel_aliases (Context property), 453
migrated_custom_channels (Context attribute), 456
Miniconda, 12
Miniforge, 12
minimal_unsatisfiable_subset() (in module

conda.common.logic), 516
MINIMIZE (SW attribute), 493
minimize() (Clauses method), 491, 516
MINIO_EXE (in module conda.testing.gateways.fixtures),

703
minio_s3_server() (in module

conda.testing.gateways.fixtures), 703
minor_version() (in module conda._vendor.distro),

403
minor_version() (LinuxDistribution method), 406
Mirroring channels, 72
missing_files() (in module

conda.plugins.subcommands.doctor.health_checks),
684

missing_pyc_files() (in module
conda.common.path), 519

mkdir_p (in module conda.gateways.disk.create), 603
mkdir_p() (in module conda.gateways.disk), 610
mkdir_p_sudo_safe() (in module

conda.gateways.disk), 610
mkdir_p_sudo_safe() (in module

conda.gateways.repodata), 623
mockable_context_envs_dirs() (in module

conda.base.context), 452
MockResponse (class in conda.testing.notices.helpers),

711
mod (RepodataState property), 624

770 Index

conda, Release 24.3.1.dev75

MODIFIED (Result attribute), 546
modify_easy_install_pth() (in module

conda.core.initialize), 548
module

conda, 382
conda.__main__, 382
conda._vendor, 382
conda._vendor.appdirs, 382
conda._vendor.cpuinfo, 386
conda._vendor.cpuinfo.cpuinfo, 386
conda._vendor.distro, 398
conda._vendor.frozendict, 408
conda._version, 409
conda.activate, 409
conda.api, 416
conda.auxlib, 421
conda.auxlib.collection, 422
conda.auxlib.compat, 423
conda.auxlib.decorators, 424
conda.auxlib.entity, 426
conda.auxlib.exceptions, 437
conda.auxlib.ish, 438
conda.auxlib.logz, 439
conda.auxlib.type_coercion, 441
conda.base, 444
conda.base.constants, 444
conda.base.context, 450
conda.base.exceptions, 460
conda.cli, 460
conda.cli.actions, 460
conda.cli.common, 461
conda.cli.conda_argparse, 463
conda.cli.find_commands, 465
conda.cli.helpers, 466
conda.cli.install, 469
conda.cli.main, 470
conda.cli.main_clean, 470
conda.cli.main_compare, 472
conda.cli.main_config, 472
conda.cli.main_create, 473
conda.cli.main_env, 474
conda.cli.main_env_config, 474
conda.cli.main_env_create, 474
conda.cli.main_env_export, 475
conda.cli.main_env_list, 475
conda.cli.main_env_remove, 475
conda.cli.main_env_update, 476
conda.cli.main_env_vars, 476
conda.cli.main_export, 477
conda.cli.main_info, 477
conda.cli.main_init, 479
conda.cli.main_install, 479
conda.cli.main_list, 480
conda.cli.main_mock_activate, 480

conda.cli.main_mock_deactivate, 481
conda.cli.main_notices, 481
conda.cli.main_package, 482
conda.cli.main_pip, 483
conda.cli.main_remove, 483
conda.cli.main_rename, 484
conda.cli.main_run, 484
conda.cli.main_search, 485
conda.cli.main_update, 485
conda.cli.python_api, 486
conda.common, 488
conda.common._logic, 488
conda.common._os, 491
conda.common._os.linux, 491
conda.common._os.unix, 492
conda.common._os.windows, 492
conda.common.compat, 494
conda.common.configuration, 496
conda.common.constants, 507
conda.common.decorators, 507
conda.common.disk, 507
conda.common.io, 508
conda.common.iterators, 513
conda.common.logic, 514
conda.common.path, 517
conda.common.pkg_formats, 521
conda.common.pkg_formats.python, 521
conda.common.serialize, 530
conda.common.signals, 531
conda.common.toposort, 532
conda.common.url, 533
conda.core, 538
conda.core.envs_manager, 539
conda.core.index, 539
conda.core.initialize, 543
conda.core.link, 548
conda.core.package_cache, 551
conda.core.package_cache_data, 551
conda.core.path_actions, 554
conda.core.portability, 560
conda.core.prefix_data, 562
conda.core.solve, 563
conda.core.subdir_data, 566
conda.deprecations, 569
conda.env, 571
conda.env.env, 571
conda.env.installers, 573
conda.env.installers.base, 573
conda.env.installers.conda, 574
conda.env.installers.pip, 574
conda.env.pip_util, 575
conda.env.specs, 575
conda.env.specs.binstar, 575
conda.env.specs.requirements, 576

Index 771

conda, Release 24.3.1.dev75

conda.env.specs.yaml_file, 576
conda.exception_handler, 579
conda.exceptions, 580
conda.exports, 587
conda.gateways, 591
conda.gateways.anaconda_client, 592
conda.gateways.connection, 593
conda.gateways.connection.adapters, 593
conda.gateways.connection.adapters.ftp,

593
conda.gateways.connection.adapters.http,

595
conda.gateways.connection.adapters.localfs,

596
conda.gateways.connection.adapters.s3,

596
conda.gateways.connection.download, 598
conda.gateways.connection.session, 599
conda.gateways.disk, 601
conda.gateways.disk.create, 601
conda.gateways.disk.delete, 604
conda.gateways.disk.link, 605
conda.gateways.disk.lock, 605
conda.gateways.disk.permissions, 606
conda.gateways.disk.read, 606
conda.gateways.disk.test, 608
conda.gateways.disk.update, 609
conda.gateways.logging, 610
conda.gateways.repodata, 612
conda.gateways.repodata.jlap, 612
conda.gateways.repodata.jlap.core, 612
conda.gateways.repodata.jlap.fetch, 614
conda.gateways.repodata.jlap.interface,

617
conda.gateways.repodata.lock, 618
conda.gateways.subprocess, 627
conda.history, 627
conda.instructions, 630
conda.misc, 632
conda.models, 633
conda.models.channel, 633
conda.models.dist, 636
conda.models.enums, 639
conda.models.leased_path_entry, 642
conda.models.match_spec, 643
conda.models.package_info, 649
conda.models.prefix_graph, 651
conda.models.records, 653
conda.models.version, 660
conda.notices, 667
conda.notices.cache, 667
conda.notices.core, 668
conda.notices.fetch, 670
conda.notices.types, 671

conda.notices.views, 672
conda.plan, 673
conda.plugins, 674
conda.plugins.hookspec, 675
conda.plugins.manager, 680
conda.plugins.post_solves, 682
conda.plugins.post_solves.signature_verification,

682
conda.plugins.solvers, 683
conda.plugins.subcommands, 683
conda.plugins.subcommands.doctor, 683
conda.plugins.subcommands.doctor.health_checks,

683
conda.plugins.types, 686
conda.plugins.virtual_packages, 690
conda.plugins.virtual_packages.archspec,

690
conda.plugins.virtual_packages.conda, 691
conda.plugins.virtual_packages.cuda, 691
conda.plugins.virtual_packages.freebsd,

692
conda.plugins.virtual_packages.linux, 692
conda.plugins.virtual_packages.osx, 692
conda.plugins.virtual_packages.windows,

692
conda.resolve, 696
conda.testing, 700
conda.testing.cases, 700
conda.testing.fixtures, 701
conda.testing.gateways, 702
conda.testing.gateways.fixtures, 702
conda.testing.helpers, 703
conda.testing.integration, 707
conda.testing.notices, 709
conda.testing.notices.fixtures, 709
conda.testing.notices.helpers, 710
conda.testing.solver_helpers, 711
conda.trust, 720
conda.trust.constants, 720
conda.trust.signature_verification, 721
conda.utils, 722
conda_env, 725
conda_env.cli, 725
conda_env.cli.common, 725
conda_env.cli.main, 726
conda_env.cli.main_config, 726
conda_env.cli.main_create, 727
conda_env.cli.main_export, 727
conda_env.cli.main_list, 728
conda_env.cli.main_remove, 728
conda_env.cli.main_update, 729
conda_env.cli.main_vars, 729
conda_env.env, 730
conda_env.installers, 730

772 Index

conda, Release 24.3.1.dev75

conda_env.installers.base, 730
conda_env.installers.conda, 731
conda_env.installers.pip, 731
conda_env.pip_util, 731
conda_env.specs, 731
conda_env.specs.binstar, 731
conda_env.specs.requirements, 731
conda_env.specs.yaml_file, 731

module() (DeprecationHandler method), 570
ms_depends() (Resolve method), 699
msg (BinstarSpec attribute), 575, 578
msg (RequirementsSpec attribute), 576, 578
msys2_shell_base (in module conda.utils), 723
MultiChannel (class in conda.models.channel), 635
MultiPathAction (class in conda.core.path_actions),

556
MULTIPLE_USE_KEYS (PythonDistributionMetadata at-

tribute), 526
MultipleKeysError, 498
MultiValidationError, 499

N
Name, 46
name (ChannelNoticeResponse attribute), 672
name (CondaAuthHandler attribute), 372, 689, 694
name (CondaHealthCheck attribute), 372, 689, 694
name (CondaPostCommand attribute), 373, 688, 694
name (CondaPostSolve attribute), 690, 694
name (CondaPreCommand attribute), 374, 688, 694
name (CondaPreSolve attribute), 689, 695
name (CondaSetting attribute), 375, 690, 695
name (CondaSolver attribute), 376, 688, 695
name (CondaSubcommand attribute), 377, 686, 687, 696
name (CondaVirtualPackage attribute), 378, 688, 696
name (Dist attribute), 638
name (DistDetails attribute), 637
name (Field property), 432
name (MatchSpec property), 645
name (PackageInfo property), 651
name (PackageRecord attribute), 658, 717
name (ParameterLoader property), 505
name (PreferredEnv attribute), 650
name (PythonDistribution property), 523
name (PythonDistributionMetadata property), 526
name (TemporaryDirectory attribute), 603
name() (in module conda._vendor.distro), 402
name() (LinuxDistribution method), 405
name_var() (Clauses method), 515
namekey (PackageRecord property), 658, 717
names (ParameterLoader property), 505
names_in_specs() (in module conda.cli.common), 463
NAMESPACE_PACKAGE_NAMES (in module

conda.base.constants), 450
NAMESPACES (in module conda.base.constants), 450

NAMESPACES_MAP (in module conda.base.constants), 450
native_path_to_unix() (in module conda.activate),

412
NEEDS_SUDO (Result attribute), 546
netloc (Url property), 535
neutered_specs (PrefixSetup attribute), 549
new_precs (ChangeReport attribute), 550
new_var() (Clauses method), 490, 515
nlst() (FTPAdapter method), 594
NO_ASSOC (ERROR attribute), 493
NO_CHANGE (Result attribute), 546
NO_DEPS (DepsModifier attribute), 448
no_link (PathData attribute), 658
no_lock (Context attribute), 457
no_plugins (Context attribute), 457
NO_PLUGINS (in module conda.base.constants), 450
Noarch (class in conda.models.package_info), 650
noarch (PackageMetadata attribute), 650
noarch (PackageRecord attribute), 659, 718
NOARCH_GENERIC (PackageType attribute), 641
NOARCH_PYTHON (PackageType attribute), 641
NoarchField (class in conda.models.package_info), 650
NoarchField (class in conda.models.records), 655
NoarchType (class in conda.models.enums), 642
NoBaseEnvironmentError, 582
NOMINAL_HASH (in module

conda.gateways.repodata.jlap.fetch), 615
non_admin_enabled (Context attribute), 455
NON_SPACE (in module

conda.common.pkg_formats.python), 530
non_x86_linux_machines (in module conda.exports),

590
non_x86_machines (in module conda.base.context), 452
NoneType (in module conda.common.compat), 495
norm_name (PythonDistribution property), 523
norm_package_name() (in module

conda.common.pkg_formats.python), 529
norm_package_version() (in module

conda.common.pkg_formats.python), 529
NORMALIZED_DISTRO_ID (in module

conda._vendor.distro), 400
NORMALIZED_LSB_ID (in module conda._vendor.distro),

400
NORMALIZED_OS_ID (in module conda._vendor.distro),

400
normalized_version() (in module

conda.models.version), 662
NoSpaceLeftError, 586
Not() (Clauses method), 491, 516
NOT_SET (DepsModifier attribute), 448
NotFoundError, 437
nothing_to_do (UnlinkLinkTransaction property), 550
NoticeLevel (class in conda.base.constants), 449
notices (ChannelNoticeResponse property), 671

Index 773

conda, Release 24.3.1.dev75

NOTICES (Commands attribute), 486
notices() (in module conda.notices), 672
notices() (in module conda.notices.core), 669
notices_cache_dir() (in module

conda.testing.notices.fixtures), 710
NOTICES_CACHE_FN (in module conda.base.constants),

447
NOTICES_CACHE_SUBDIR (in module

conda.base.constants), 447
notices_decorator_assert_message_in_stdout()

(in module conda.testing.notices.helpers), 711
NOTICES_DECORATOR_DISPLAY_INTERVAL (in module

conda.base.constants), 447
NOTICES_FN (in module conda.base.constants), 447
notices_mock_fetch_get_session() (in module

conda.testing.notices.fixtures), 710
notify_outdated_conda (Context attribute), 454
NotWritableError, 585, 622
NoWritableEnvsDirError, 585
NoWritablePkgsDirError, 585
NULL (in module conda.common.constants), 507
nullable (Field property), 432
NullCountAction (class in conda.cli.actions), 460
NullHandler (in module conda.auxlib.logz), 440
number_channel_notices (Context attribute), 457
NumberField (class in conda.auxlib.entity), 433
numberify() (in module conda.auxlib.type_coercion),

441

O
object_log() (History method), 629
ObjectLoadedParameter (class in

conda.common.configuration), 502
ObjectParameter (class in

conda.common.configuration), 504
offline (Context attribute), 457
offline_keep() (in module conda.models.channel),

636
offset_cache_file_mtime() (in module

conda.testing.notices.helpers), 711
OK_MARK (in module conda.plugins.subcommands.doctor.health_checks),

684
ON_DISK_HASH (in module

conda.gateways.repodata.jlap.fetch), 615
on_linux (in module conda.common.compat), 495
on_mac (in module conda.common.compat), 495
on_win (in module conda.common._os), 494
on_win (in module conda.common.compat), 495
on_win (in module conda.gateways.disk), 610
on_win (in module conda.testing), 716
ONLY_DEPS (DepsModifier attribute), 448
OOM (ERROR attribute), 493
OP_ORDER (in module conda.instructions), 632
open() (in module conda.common.compat), 495

openbsd (Platform attribute), 640
OperationNotAllowed, 583
operations (Evaluator attribute), 530
OPERATOR_MAP (in module conda.models.version), 665
operator_match() (BaseSpec method), 666
OPERATOR_START (in module conda.models.version), 665
optional (MatchSpec property), 645
OR (in module conda.common.pkg_formats.python), 530
Or() (Clauses method), 491, 516
OrderedDict (in module conda._vendor.frozendict), 408
original_spec_str (MatchSpec property), 645
os_distribution_name_version() (Context

method), 458
os_release_attr() (in module conda._vendor.distro),

404
os_release_attr() (LinuxDistribution method), 406
os_release_info() (in module conda._vendor.distro),

404
os_release_info() (LinuxDistribution method), 406
osx (Platform attribute), 640
override_channels_enabled (Context attribute), 456

P
Package search and install, 98
Package specification, 98
package() (BinstarSpec method), 576, 578
package_cache() (in module conda.exports), 591
PACKAGE_CACHE_MAGIC_FILE (in module

conda.base.constants), 450
PACKAGE_CACHE_MAGIC_FILE (in module

conda.testing), 716
package_dict() (in module

conda.testing.solver_helpers), 712
PACKAGE_ENV_VARS_DIR (in module

conda.base.constants), 450
package_is_installed() (in module

conda.testing.integration), 709
package_metadata (PackageInfo attribute), 651
package_metadata_version (PackageMetadata

attribute), 650
package_name (LeasedPathEntry attribute), 642
package_string() (in module

conda.testing.solver_helpers), 712
package_string_set() (in module

conda.testing.solver_helpers), 712
package_tarball_full_path (PackageCacheRecord

attribute), 660
package_tarball_full_path (PackageInfo attribute),

651
package_tarball_full_path (PrefixRecord at-

tribute), 660
package_type (PackageRecord attribute), 659, 718
PackageCacheData (class in conda.api), 418

774 Index

conda, Release 24.3.1.dev75

PackageCacheData (class in
conda.core.package_cache_data), 552

PackageCacheData (class in conda.gateways.repodata),
620

PackageCacheData (class in conda.testing), 716
PackageCacheRecord (class in conda.models.records),

660
PackageCacheType (class in

conda.core.package_cache_data), 552
PackageInfo (class in conda.models.package_info), 651
PackageMetadata (class in

conda.models.package_info), 650
packagename() (BinstarSpec method), 576, 578
PackageNotInstalledError, 583
PackageRecord (class in conda.models.records), 658
PackageRecord (class in conda.testing), 717
PackageRecordList (class in conda.core.subdir_data),

567
Packages, 98
PackagesNotFoundError, 584
PackageType (class in conda.models.enums), 641
PackageTypeField (class in conda.models.records),

657
PaddingError, 582
PaddingError (in module conda.exports), 590
pair (Dist property), 637
Parameter (class in conda.common.configuration), 503
parameter (CondaSetting attribute), 375, 690, 695
parameter_description_builder() (in module

conda.cli.main_config), 473
ParameterFlag (class in conda.common.configuration),

499
ParameterLoader (class in

conda.common.configuration), 505
parametrized_solver_fixture() (in module

conda.testing.fixtures), 702
parse() (Dependencies method), 572
parse() (History method), 629
parse_args() (ArgumentParser method), 465
parse_conda_channel_url() (in module

conda.models.channel), 636
parse_dist_name() (Dist static method), 638
parse_entry_point_def() (in module

conda.common.path), 519
parse_marker() (in module

conda.common.pkg_formats.python), 529
parse_multipart_files() (in module

conda.gateways.connection.adapters.ftp),
594

parse_specification() (in module
conda.common.pkg_formats.python), 529

ParseError, 583
PARTIAL_PYPI_SPEC_PATTERN (in module

conda.common.pkg_formats.python), 523

path (PathData property), 657
path_conflict (Context attribute), 455
path_conversion (_Activator attribute), 410
path_conversion (CmdExeActivator attribute), 414
path_conversion (CshActivator attribute), 413
path_conversion (FishActivator attribute), 414
path_conversion (PosixActivator attribute), 412
path_conversion (PowerShellActivator attribute), 415
path_conversion (XonshActivator attribute), 413
path_factory (TmpChannelFixture attribute), 720
path_factory (TmpEnvFixture attribute), 719
path_factory() (in module conda.testing), 719
path_identity() (in module conda.activate), 412
path_identity() (in module conda.utils), 722
path_is_clean() (in module

conda.gateways.disk.delete), 604
PATH_MATCH_REGEX (in module conda.common.path),

519
PATH_NOT_FOUND (ERROR attribute), 493
path_to_url() (in module conda.common.url), 535
path_to_url() (in module conda.testing), 716
path_type (PathData attribute), 658
PathAction (class in conda.core.path_actions), 556
PathConflict (class in conda.base.constants), 448
PathData (class in conda.models.records), 657
PathDataV1 (class in conda.models.records), 658
PathFactoryFixture (class in conda.testing), 719
PathNotFoundError, 581
paths (PathsData attribute), 658
paths_data (PackageInfo attribute), 651
paths_data (PrefixRecord attribute), 660
paths_equal() (in module conda.common.path), 519
paths_version (PathsData attribute), 658
PathsData (class in conda.models.records), 658
pathsep_join (_Activator attribute), 410
pathsep_join (CmdExeActivator attribute), 414
pathsep_join (CshActivator attribute), 413
pathsep_join (FishActivator attribute), 414
pathsep_join (JSONFormatMixin attribute), 415
pathsep_join (PosixActivator attribute), 412
pathsep_join (PowerShellActivator attribute), 414
pathsep_join (XonshActivator attribute), 413
PathType (class in conda.models.enums), 640
penultimate (JLAP property), 613
percent_decode() (in module conda.common.url), 535
Performance, 98
PHANDLE (in module conda.common._os.windows), 492
pinned_packages (Context attribute), 455
pinned_specs() (SolverStateContainer method), 566
Pip interoperability (experimental), 72
pip_installed_post_parse_hook() (in module

conda.cli.main_pip), 483
pip_interop_enabled (Context attribute), 455
pip_subprocess() (in module conda.env.pip_util), 575

Index 775

conda, Release 24.3.1.dev75

pkg_data (ActionGroup attribute), 549
pkgs_dirs (Context property), 453
pkgs_dirs (in module conda.exports), 590
Platform (class in conda.models.enums), 640
platform (Context property), 453
platform (Dist attribute), 638
platform (in module conda.exports), 590
platform (PackageRecord attribute), 659, 718
platform_system_release() (Context method), 458
plugin_manager (Context property), 452
PluginConfig (class in conda.base.context), 459
PluginError, 586
Plugins, 98
plugins (in module conda.plugins.post_solves), 683
plugins (in module conda.plugins.subcommands), 686
plugins (in module conda.plugins.virtual_packages),

693
plugins() (Context method), 457
pop() (ContextStack method), 459
pop_key() (in module conda.common.toposort), 533
POPULAR_ENCODINGS (in module

conda.core.portability), 561
PosixActivator (class in conda.activate), 412
post_build_validation() (Configuration method),

506
post_build_validation() (Context method), 457
PowerShellActivator (class in conda.activate), 414
ppc64 (Arch attribute), 639
ppc64le (Arch attribute), 639
preferred_env (PackageMetadata attribute), 650
preferred_env (PackageRecord attribute), 659, 718
PreferredEnv (class in conda.models.package_info),

650
prefix (ChangeReport attribute), 550
prefix_data() (SolverStateContainer method), 566
PREFIX_MAGIC_FILE (in module conda.base.constants),

450
PREFIX_NAME_DISALLOWED_CHARS (in module

conda.base.constants), 447
PREFIX_PLACEHOLDER (in module

conda.base.constants), 446
prefix_placeholder (PathData attribute), 657
prefix_record_groups (PrefixActionGroup attribute),

550
prefix_specified (Context property), 453
PREFIX_STATE_FILE (in module conda.base.constants),

450
PrefixActionGroup (class in conda.core.link), 549
PrefixData (class in conda.api), 420
PrefixData (class in conda.core.prefix_data), 562
PrefixDataType (class in conda.core.prefix_data), 562
PrefixGraph (class in conda.models.prefix_graph), 651
PrefixPathAction (class in conda.core.path_actions),

556

PrefixRecord (class in conda.models.records), 660
PrefixReplaceLinkAction (class in

conda.core.path_actions), 557
PrefixSetup (class in conda.core.link), 549
prepare() (ProgressiveFetchExtract method), 554
prepare() (UnlinkLinkTransaction method), 550
pretty_content() (in module conda.history), 628
pretty_diff() (in module conda.history), 628
pretty_json() (Entity method), 436
pretty_list() (in module

conda.common.configuration), 498
pretty_map() (in module

conda.common.configuration), 498
pretty_package() (in module conda.cli.main_info),

478
pretty_record() (in module conda.cli.main_search),

485
prevent (PathConflict attribute), 448
Prevent() (Clauses method), 491, 515
primitive_types (in module conda.common.compat),

495
PrimitiveLoadedParameter (class in

conda.common.configuration), 501
PrimitiveParameter (class in

conda.common.configuration), 503
PRINT (in module conda.instructions), 631
print_activate() (in module conda.cli.install), 469
PRINT_CMD() (in module conda.instructions), 632
print_conda_exception() (in module

conda.exceptions), 587
print_config_item() (in module

conda.cli.main_config), 473
print_dists() (in module conda.plan), 673
print_envs_list() (in module conda.cli.common),

463
print_expected_error_report() (ExceptionHan-

dler method), 580
print_explicit() (in module conda.cli.main_list), 480
print_export_header() (in module

conda.cli.main_list), 480
print_instrumentation_data() (in module

conda.common.io), 513
print_log() (History method), 629
print_more_notices_message() (in module

conda.notices.views), 672
print_notice_message() (in module

conda.notices.views), 672
print_notices() (in module conda.notices.views), 672
print_packages() (in module conda.cli.main_list), 480
print_plan_results() (in module

conda.core.initialize), 547
print_result() (in module conda.env.env), 573
print_transaction_summary() (UnlinkLinkTransac-

tion method), 551

776 Index

conda, Release 24.3.1.dev75

print_unexpected_error_report() (ExceptionHan-
dler method), 579

prioritize_channels() (in module
conda.models.channel), 636

process_jlap_response() (in module
conda.gateways.repodata.jlap.fetch), 616

process_solution() (_PycoSatSolver method), 490
process_solution() (_PyCryptoSatSolver method),

490
process_solution() (_PySatSolver method), 490
process_solution() (_SatSolver method), 489
PROGRESS (in module conda.instructions), 631
PROGRESS_COMMANDS (in module conda.instructions),

632
progress_update() (ProgressFileWrapper method),

603
ProgressBar (class in conda.common.io), 511
ProgressFileWrapper (class in

conda.gateways.disk.create), 603
ProgressiveFetchExtract (class in

conda.core.package_cache_data), 553
ProgressiveFetchExtract (in module

conda.core.package_cache), 551
PROGRESSIVEFETCHEXTRACT (in module

conda.instructions), 632
PROGRESSIVEFETCHEXTRACT_CMD() (in module

conda.instructions), 632
proxy_servers (Context attribute), 455
ProxyError, 582, 622
prune() (PrefixGraph method), 652
push() (ContextStack method), 458
push_MatchSpec() (Resolve method), 699
PY3 (in module conda._vendor.appdirs), 383
PY3 (in module conda.exports), 590
PY_FILE_RE (in module

conda.common.pkg_formats.python), 523
pyc_file (PathType attribute), 641
pyc_path() (in module conda.common.path), 519
PYCOSAT (SatSolverChoice attribute), 449
PycoSatSolver (in module conda.common.logic), 515
PYCRYPTOSAT (SatSolverChoice attribute), 449
PyCryptoSatSolver (in module conda.common.logic),

515
PYPI_CONDA_DEPS (in module

conda.common.pkg_formats.python), 523
pypi_name_to_conda_name() (in module

conda.common.pkg_formats.python), 529
PYPI_TO_CONDA (in module

conda.common.pkg_formats.python), 523
PYSAT (SatSolverChoice attribute), 449
PySatSolver (in module conda.common.logic), 515
PySpec (in module conda.common.pkg_formats.python),

523
python (NoarchType attribute), 642

PYTHON_BINARY (in module conda.testing.integration),
708

python_entry_point_template (in module
conda.gateways.disk.create), 603

python_implementation_name_version() (Context
method), 458

PythonDistribution (class in
conda.common.pkg_formats.python), 523

PythonDistributionMetadata (class in
conda.common.pkg_formats.python), 525

PythonEggInfoDistribution (class in
conda.common.pkg_formats.python), 525

PythonEggLinkDistribution (class in
conda.common.pkg_formats.python), 525

PythonInstalledDistribution (class in
conda.common.pkg_formats.python), 524

Q
quad (Dist property), 637
query() (PackageCacheData method), 419, 553, 621,

716
query() (PrefixData method), 420, 563
query() (SubdirData method), 418, 568
query_all() (PackageCacheData class method), 553,

621, 716
query_all() (PackageCacheData static method), 419
query_all() (SubdirData static method), 418, 568
query_all_prefixes() (in module

conda.core.envs_manager), 539
quiet (Context attribute), 457
quote_for_shell() (in module conda.utils), 723

R
Raise() (in module conda.auxlib.exceptions), 437
raise_errors() (in module

conda.common.configuration), 499
raises() (in module conda.testing.helpers), 705
raw_parameters_from_single_source() (Parame-

terLoader static method), 505
raw_value (BaseSpec property), 665
raw_value (MatchInterface property), 647
RawParameter (class in conda.common.configuration),

499
RE_ROOT_METADATA (in module

conda.trust.signature_verification), 721
reactivate() (_Activator method), 411
read() (ProgressFileWrapper method), 603
read_binstar_tokens() (in module

conda.gateways.anaconda_client), 592
read_cache() (RepodataFetch method), 626
read_has_prefix() (in module

conda.gateways.disk.read), 608
read_icondata() (in module

conda.gateways.disk.read), 608

Index 777

conda, Release 24.3.1.dev75

read_index_json() (in module
conda.gateways.disk.read), 607

read_index_json_from_tarball() (in module
conda.gateways.disk.read), 608

read_no_link() (in module conda.gateways.disk.read),
608

read_only_caches() (PackageCacheData class
method), 553, 621, 717

read_package_info() (in module
conda.gateways.disk.read), 607

read_package_metadata() (in module
conda.gateways.disk.read), 608

read_paths_json() (in module
conda.gateways.disk.read), 608

read_python_record() (in module
conda.gateways.disk.read), 608

read_repodata_json() (in module
conda.gateways.disk.read), 608

read_soft_links() (in module
conda.gateways.disk.read), 608

RECOGNIZED_URL_SCHEMES (in module
conda.base.constants), 447

record() (in module conda.testing.helpers), 706
record_file (time_recorder attribute), 513
record_id() (PackageRecord method), 659, 719
records (PrefixGraph property), 652
recursive_make_writable() (in module

conda.gateways.disk.permissions), 606
refresh() (ProgressBar method), 512
refresh() (RepodataCache method), 625
regex_match() (BaseSpec method), 666
regex_split_re (in module conda.models.version), 665
register() (CondaPluginManager method), 680
register_action_groups (PrefixActionGroup at-

tribute), 549
register_env() (in module

conda.core.envs_manager), 539
register_envs (Context attribute), 454
register_reset_callaback() (Configuration

method), 506
RegisterEnvironmentLocationAction (class in

conda.core.path_actions), 558
rel_path() (in module conda.misc), 633
reload() (PackageCacheData method), 420, 552, 621,

716
reload() (PrefixData method), 421, 562
reload() (SubdirData method), 418, 568
reload_config() (in module conda.testing.integration),

709
remote_backoff_factor (Context attribute), 456
remote_connect_timeout_secs (Context attribute),

455
remote_max_retries (Context attribute), 456
remote_read_timeout_secs (Context attribute), 456

REMOVE (Commands attribute), 486, 709
remove() (in module conda.cli.main_package), 482
remove() (PackageCacheData method), 553, 621, 716
remove() (PrefixData method), 563
remove() (Resolve method), 700
remove() (SimpleEnvironment method), 712
remove_all_plugin_settings() (in module

conda.base.context), 459
remove_auth() (in module conda.common.url), 538
remove_binstar_token() (in module

conda.gateways.anaconda_client), 592
remove_channels() (Environment method), 573
remove_conda_in_sp_dir() (in module

conda.core.initialize), 548
remove_empty_parent_paths() (in module

conda.gateways.disk.delete), 604
remove_menu_action_groups (PrefixActionGroup at-

tribute), 549
remove_spec() (PrefixGraph method), 652
remove_specs (PrefixSetup attribute), 549
remove_specs() (Resolve method), 700
remove_youngest_descendant_nodes_with_specs()

(PrefixGraph method), 652
removed_precs (ChangeReport attribute), 550
RemoveError, 584
RemoveFromPrefixPathAction (class in

conda.core.path_actions), 559
RemoveLinkedPackageRecordAction (class in

conda.core.path_actions), 559
RemoveMenuAction (class in conda.core.path_actions),

559
rename() (in module conda.gateways.disk.update), 609
rename_context() (in module

conda.gateways.disk.update), 609
replace() (ContextStack method), 459
replace() (RepodataCache method), 625
replace() (Url method), 535
replace_context() (in module conda.base.context),

459
replace_context_default() (in module

conda.base.context), 459
replace_first_api_with_conda() (in module

conda.gateways.anaconda_client), 592
replace_long_shebang() (in module

conda.core.portability), 561
replace_prefix() (in module conda.core.portability),

561
replace_pyzzer_entry_point_shebang() (in mod-

ule conda.core.portability), 561
repo_cache (RepodataFetch property), 626
repo_cache (SubdirData property), 567
REPO_DATA_KEYS (SimpleEnvironment attribute), 712
repo_fetch (SubdirData property), 568
repo_interface_cls (RepodataFetch attribute), 626

778 Index

conda, Release 24.3.1.dev75

repodata() (CondaRepoInterface method), 624
repodata() (JlapRepoInterface method), 617
repodata() (RepoInterface method), 624
REPODATA_FN (in module conda.base.constants), 447
REPODATA_FN (in module conda.gateways.repodata), 620
repodata_fn (RepodataFetch attribute), 626
repodata_fns (Context attribute), 456
REPODATA_HEADER_RE (in module

conda.core.subdir_data), 567
repodata_parsed() (JlapRepoInterface method), 617
REPODATA_PICKLE_VERSION (in module

conda.core.subdir_data), 567
repodata_record (PackageInfo attribute), 651
repodata_threads (Context property), 453
repodata_use_zst (Context attribute), 457
RepodataCache (class in conda.gateways.repodata), 625
RepodataFetch (class in conda.gateways.repodata), 625
RepodataIsEmpty, 623
RepodataOnDisk, 623
RepodataState (class in conda.gateways.repodata), 624
RepodataStateSkipFormat (class in

conda.gateways.repodata.jlap.interface),
617

RepoInterface (class in conda.gateways.repodata), 624
report_errors (Context attribute), 457
reportable (CondaError attribute), 620, 725
reporters() (Context method), 458
REPR_IGNORE_KWARGS (in module

conda.core.path_actions), 556
request_header_sort_dict (in module

conda.auxlib.logz), 441
request_header_sort_key() (in module

conda.auxlib.logz), 441
request_jlap() (in module

conda.gateways.repodata.jlap.fetch), 616
request_url_jlap_state() (in module

conda.gateways.repodata.jlap.fetch), 617
requested_spec (PrefixRecord attribute), 660
requests_version() (Context method), 458
Require() (Clauses method), 491, 515
required (Field property), 432
RequirementsSpec (class in conda.env.specs), 578
RequirementsSpec (class in

conda.env.specs.requirements), 576
REQUIRES_FILES (PythonDistribution attribute), 524
REQUIRES_FILES (PythonEggInfoDistribution attribute),

525
REQUIRES_FILES (PythonInstalledDistribution at-

tribute), 525
reset_conda_context() (in module

conda.testing.fixtures), 702
reset_context() (in module conda.base.context), 458
reset_context() (in module conda.testing), 716
Resolve (class in conda.resolve), 697

ResolvePackageNotFound, 580
ResolvePackageNotFound (in module conda.resolve),

697
Response (in module conda.gateways.subprocess), 627
Response304ContentUnchanged, 624
response_header_sort_dict (in module

conda.auxlib.logz), 441
response_header_sort_key() (in module

conda.auxlib.logz), 441
RESTORE (SW attribute), 493
restore_bad() (Resolve method), 700
restore_free_channel (Context attribute), 456
restore_state() (_ClauseArray method), 489
restore_state() (_ClauseList method), 489
restore_state() (_SatSolver method), 489
Result (class in conda.core.initialize), 546
retr() (FTPAdapter method), 594
RETRIES (in module conda.gateways.connection.session),

599
retrieve_notices() (in module conda.notices.core),

669
return_code (ArgumentError attribute), 580
return_code (CondaError attribute), 620, 725
return_code (CondaExitZero attribute), 717, 725
reverse() (_Action method), 556
reverse() (CacheUrlAction method), 560
reverse() (CompileMultiPycAction method), 558
reverse() (CreateNonadminAction method), 557
reverse() (CreatePrefixRecordAction method), 558
reverse() (CreatePythonEntryPointAction method),

558
reverse() (ExtractPackageAction method), 560
reverse() (LinkPathAction method), 557
reverse() (MakeMenuAction method), 557
reverse() (RegisterEnvironmentLocationAction

method), 558
reverse() (RemoveLinkedPackageRecordAction

method), 559
reverse() (RemoveMenuAction method), 559
reverse() (UnlinkPathAction method), 559
reverse() (UnregisterEnvironmentLocationAction

method), 559
reverse() (UpdateHistoryAction method), 558
revert_actions() (in module conda.plan), 674
right_pad_os_sep() (in module conda.common.path),

520
riscv64 (Arch attribute), 639
RM_EXTRACTED (in module conda.instructions), 631
RM_FETCHED (in module conda.instructions), 631
rm_fetched() (in module

conda.core.package_cache_data), 554
rm_items() (in module conda.cli.main_clean), 472
rm_pkgs() (in module conda.cli.main_clean), 471
rm_rf() (in module conda.exports), 590

Index 779

conda, Release 24.3.1.dev75

rm_rf() (in module conda.gateways.disk.delete), 604
rmtree() (in module conda.gateways.disk.delete), 604
rollback_enabled (Context attribute), 455
root_dir (Context property), 453
root_dir (in module conda.exports), 590
ROOT_ENV_NAME (in module conda.base.constants), 447
root_log (in module conda.auxlib.logz), 440
ROOT_NO_RM (in module conda.base.constants), 447
root_prefix() (Context method), 458
root_writable (Context property), 453
root_writable (in module conda.exports), 590
rsplit() (Dist method), 639
RUN (Commands attribute), 486, 709
run() (_SatSolver method), 489
run() (ASM method), 390, 397
run_as_admin() (in module

conda.common._os.windows), 493
run_command() (in module conda.cli.python_api), 486
run_command() (in module conda.testing.integration),

709
run_for (CondaPostCommand attribute), 373, 689, 694
run_for (CondaPreCommand attribute), 374, 688, 695
run_plan() (in module conda.core.initialize), 546
run_plan_elevated() (in module

conda.core.initialize), 546
run_plan_from_stdin() (in module

conda.core.initialize), 547
run_plan_from_temp_file() (in module

conda.core.initialize), 547
run_script() (in module conda.core.link), 551
run_script_tmpl (_Activator attribute), 411
run_script_tmpl (CmdExeActivator attribute), 414
run_script_tmpl (CshActivator attribute), 413
run_script_tmpl (FishActivator attribute), 414
run_script_tmpl (PosixActivator attribute), 413
run_script_tmpl (PowerShellActivator attribute), 415
run_script_tmpl (XonshActivator attribute), 413
running_a_python_capable_of_unicode_subprocessing()

(in module conda.testing.integration), 708

S
s390x (Arch attribute), 639
S3Adapter (class in conda.gateways.connection.adapters.s3),

597
safety_checks (Context attribute), 455
SafetyChecks (class in conda.base.constants), 447
SafetyError, 585
sat() (Clauses method), 491, 516
sat_solver (Context attribute), 457
SatSolverChoice (class in conda.base.constants), 449
save() (Environment method), 573
save() (RepodataCache method), 625
save_state() (_ClauseArray method), 489
save_state() (_ClauseList method), 488

save_state() (_SatSolver method), 489
schannel (PackageRecord property), 658, 717
script_extension (_Activator attribute), 411
script_extension (CmdExeActivator attribute), 414
script_extension (CshActivator attribute), 413
script_extension (FishActivator attribute), 414
script_extension (PosixActivator attribute), 412
script_extension (PowerShellActivator attribute), 415
script_extension (XonshActivator attribute), 413
SEARCH (Commands attribute), 486, 709
SEARCH_PATH (in module conda.base.constants), 446
send() (EnforceUnusedAdapter method), 599
send() (FTPAdapter method), 594
send() (LocalFSAdapter method), 596
send() (S3Adapter method), 597
SenderError, 437
sep (_Activator attribute), 410
sep (CmdExeActivator attribute), 414
sep (CshActivator attribute), 413
sep (FishActivator attribute), 414
sep (PosixActivator attribute), 412
sep (PowerShellActivator attribute), 415
sep (XonshActivator attribute), 413
separate_format_cache (Context attribute), 455
SequenceLoadedParameter (class in

conda.common.configuration), 502
SequenceParameter (class in

conda.common.configuration), 504
sestatus_b() (DataSource static method), 389, 395
set_active_prefix() (in module

conda.testing.helpers), 705
set_all_logger_level() (in module

conda.gateways.logging), 612
set_binstar_token() (in module

conda.gateways.anaconda_client), 592
set_conda_log_level() (in module

conda.gateways.logging), 612
set_description (in module conda_env.cli.main_vars),

730
set_environment_env_vars() (PrefixData method),

563
set_example (in module conda_env.cli.main_vars), 730
set_file_logging() (in module

conda.gateways.logging), 612
set_has_format() (RepodataState method), 624
set_log_level() (in module conda.gateways.logging),

612
set_name() (Field method), 432
set_repository_metadata() (SolverStateContainer

method), 566
set_root_level() (in module conda.auxlib.logz), 440
set_tmpdir() (in module conda.testing.integration),

708
set_value() (ContextStackObject method), 458

780 Index

conda, Release 24.3.1.dev75

set_var_tmpl (_Activator attribute), 411
set_var_tmpl (CmdExeActivator attribute), 414
set_var_tmpl (CshActivator attribute), 413
set_var_tmpl (FishActivator attribute), 414
set_var_tmpl (PosixActivator attribute), 412
set_var_tmpl (PowerShellActivator attribute), 415
set_var_tmpl (XonshActivator attribute), 413
set_verbosity() (in module conda.gateways.logging),

612
setter() (classproperty method), 426
Settings, 72
setup() (_PycoSatSolver method), 490
setup() (_PyCryptoSatSolver method), 490
setup() (_PySatSolver method), 490
setup() (_SatSolver method), 489
sha256 (PackageRecord attribute), 658, 718
sha256 (PathDataV1 attribute), 658
sha256_in_prefix (PathDataV1 attribute), 658
SHARE (ERROR attribute), 493
SharedLinkPathClobberError, 581
shebang_pat (in module conda.cli.main_package), 482
SHEBANG_REGEX (in module conda.core.portability), 561
SHEBANG_REGEX (in module

conda.gateways.disk.update), 609
shells (in module conda.utils), 723
shlex_split_unicode() (in module

conda.auxlib.compat), 423
shlvl (Context property), 453
shortcuts (Context attribute), 457
shortcuts_only (Context attribute), 457
should_check_format() (RepodataState method), 625
should_check_format() (RepodataStateSkipFormat

method), 617
SHOW (SW attribute), 493
show_channel_urls (Context attribute), 456
show_help_on_empty_command() (in module

conda_env.cli.main), 726
SHOWDEFAULT (SW attribute), 493
SHOWMAXIMIZED (SW attribute), 493
SHOWMINIMIZED (SW attribute), 493
SHOWMINNOACTIVE (SW attribute), 493
SHOWNA (SW attribute), 493
SHOWNOACTIVATE (SW attribute), 493
SHOWNORMAL (SW attribute), 493
shutdown() (DummyExecutor method), 512
signal_handler() (in module conda.common.signals),

532
signature_verification (in module

conda.trust.signature_verification), 721
SignatureError, 721
signing_metadata_url_base (Context property), 453
SimpleEnvironment (class in

conda.testing.solver_helpers), 712

SINGLE_USE_KEYS (PythonDistributionMetadata at-
tribute), 526

SingleStrArgCachingType (class in
conda.models.version), 662

site_data_dir (AppDirs property), 385
site_data_dir (EnvAppDirs property), 592
site_data_dir() (in module conda._vendor.appdirs),

384
six_with_metaclass() (in module

conda.common.compat), 495
size (PackageRecord attribute), 659, 718
size_in_bytes (PathDataV1 attribute), 658
SKIP_FIELDS (in module conda.cli.main_info), 478
skip_formats (RepodataStateSkipFormat attribute),

617
skip_tests() (SolverTests method), 713
softlink (LinkType attribute), 640
softlink (PathType attribute), 641
softlink_paths (PreferredEnv attribute), 650
softlink_supported() (in module

conda.gateways.disk.test), 608
solve() (Resolve method), 700
solve_final_state() (Solver method), 416, 565
solve_for_diff() (Solver method), 417, 564
solve_for_transaction() (Solver method), 417, 564
Solver (class in conda.api), 416
Solver (class in conda.core.solve), 564
solver (Context attribute), 457
Solver (in module conda.testing.fixtures), 702
solver() (SimpleEnvironment method), 712
solver_class (SolverTests property), 712
solver_class() (in module conda.testing.helpers), 706
solver_classic() (in module conda.testing.fixtures),

702
solver_ignore_timestamps (Context attribute), 457
solver_libmamba() (in module conda.testing.fixtures),

702
solver_transaction() (SimpleEnvironment method),

712
solver_user_agent() (Context method), 458
SolverStateContainer (class in conda.core.solve),

566
SolverTests (class in conda.testing.solver_helpers),

712
source (ArgParseRawParameter attribute), 500
source (EnvRawParameter attribute), 499
source (Link attribute), 656
source_full_path (CreateInPrefixPathAction prop-

erty), 556
source_full_paths (CompileMultiPycAction prop-

erty), 557
SPACER_CHARACTER (in module

conda.testing.integration), 708
spec (BaseSpec property), 665

Index 781

conda, Release 24.3.1.dev75

spec (MatchSpec property), 645
spec_from_line() (in module conda.cli.common), 463
spec_name (in module conda.plugins.hookspec), 675
spec_pat (History attribute), 628
spec_pat (in module conda.cli.common), 462
SpecNotFound, 577, 586
specs_from_args() (in module conda.cli.common),

462
specs_from_history_map() (SolverStateContainer

method), 566
specs_from_url() (in module conda.cli.common), 463
SPECS_SATISFIED_SKIP_SOLVE (UpdateModifier at-

tribute), 448
specs_to_add (ChangeReport attribute), 550
specs_to_remove (ChangeReport attribute), 550
SpecsConfigurationConflictError, 584
SpecTypes (in module conda.env.specs), 578
Spinner (class in conda.common.io), 511
spinner_cycle (Spinner attribute), 511
split() (Dist method), 638
split_anaconda_token() (in module

conda.common.url), 537
split_conda_url_easy_parts() (in module

conda.common.url), 537
split_extension() (in module conda.models.dist),

637
split_filename() (in module conda.common.path),

520
split_platform() (in module conda.common.url), 537
split_scheme_auth_token() (in module

conda.common.url), 537
split_spec() (in module

conda.common.pkg_formats.python), 529
SplitStrMatch (class in conda.models.match_spec),

648
ssl_verify (Context attribute), 455
ssl_verify_validation() (in module

conda.base.context), 452
stack_context() (in module conda.base.context), 459
stack_context_default() (in module

conda.base.context), 459
stale() (RepodataCache method), 625
start() (Spinner method), 511
start_time (time_recorder attribute), 513
startswith() (Dist method), 639
startswith() (VersionOrder method), 664
status_code (UnavailableInvalidChannel attribute),

583, 622
stderr_log_level() (in module conda.common.io),

511
stderrlog (in module conda.cli.install), 469
stderrlog (in module

conda.gateways.connection.adapters.s3),
597

stderrlog (in module conda.gateways.repodata), 623
STDOUT (CaptureTarget attribute), 510
STDOUT (in module conda.cli.python_api), 486
stdout_json() (in module conda.cli.common), 463
stdout_json_success() (in module

conda.cli.common), 463
stdoutlog (in module conda.gateways.disk.create), 603
stdoutlog (in module conda.resolve), 697
StdStreamHandler (class in conda.gateways.logging),

611
stop() (Spinner method), 511
stor() (FTPAdapter method), 594
STORE_HEADERS (in module

conda.gateways.repodata.jlap.fetch), 616
STRICT (ChannelPriority attribute), 449
strictness (MatchSpec property), 645
STRING (CaptureTarget attribute), 510
STRING (in module conda.cli.python_api), 486
STRING_CHUNK (in module

conda.common.pkg_formats.python), 530
string_types (in module conda.exports), 590
StringField (class in conda.auxlib.entity), 433
stringify() (in module conda.auxlib.logz), 441
stringify() (in module conda.gateways.repodata), 620
strip_comment() (in module conda.cli.common), 462
strip_expected() (in module conda.testing.helpers),

705
strip_extension() (in module conda.models.dist),

637
strip_pkg_extension() (in module

conda.common.path), 520
strip_scheme() (in module conda.common.url), 536
subdir (Channel property), 622, 635
subdir (Context property), 453
subdir (Dist property), 637
subdir (in module conda.exports), 590
subdir (PackageRecord attribute), 658, 718
subdir_url (Channel property), 622, 635
SubdirData (class in conda.api), 418
SubdirData (class in conda.core.subdir_data), 567
SubdirDataType (class in conda.core.subdir_data), 567
SubdirField (class in conda.models.records), 656
subdirs (Context property), 453
submit() (DummyExecutor method), 512
submit() (ThreadLimitedThreadPoolExecutor method),

513
subprocess_call() (in module

conda.gateways.subprocess), 627
subprocess_call_with_clean_env() (in module

conda.gateways.subprocess), 627
success() (Trace method), 388, 394
summary (CondaSubcommand attribute), 377, 686, 687,

696
superseded_precs (ChangeReport attribute), 550

782 Index

conda, Release 24.3.1.dev75

supplement_index_with_repodata() (in module
conda.testing.helpers), 705

suppress_resource_warning() (in module
conda.testing.fixtures), 701

SW (class in conda.common._os.windows), 492
swallow_broken_pipe (in module conda.common.io),

510
SwallowBrokenPipe (class in conda.common.io), 510
SYMLINK_CONDA (in module conda.instructions), 631
symlink_conda() (in module conda.exports), 591
sys_prefix_unfollowed() (in module conda.utils),

723
sys_rc_path (in module conda.base.context), 452
sysctl_machdep_cpu_hw_cpufrequency() (Data-

Source static method), 389, 395
sysinfo_cpu() (DataSource static method), 389, 395

T
T (in module conda.deprecations), 569
tarball_basename (PackageCacheRecord property),

660
tarball_file_in_cache() (PackageCacheData class

method), 553, 621, 717
tarball_file_in_this_cache() (PackageCache-

Data method), 553, 621, 717
target (MatchSpec property), 645
target_full_path (CacheUrlAction property), 559
target_full_path (ExtractPackageAction property),

560
target_full_path (PathAction property), 556
target_full_path (PrefixPathAction property), 556
target_full_path (RegisterEnvironmentLocationAc-

tion property), 558
target_full_path (UnregisterEnvironmentLocation-

Action property), 559
target_full_paths (CompileMultiPycAction prop-

erty), 557
target_full_paths (MultiPathAction property), 556
target_path (LeasedPathEntry attribute), 642
target_prefix (ActionGroup attribute), 549
target_prefix (Context property), 453
target_prefix (LeasedPathEntry attribute), 642
target_prefix (PrefixSetup attribute), 549
target_prefix_override (Context attribute), 457
target_short_paths (PrefixPathAction property), 556
temp_package_cache() (in module

conda.testing.fixtures), 702
temp_path (in module conda.core.initialize), 548
temp_simple_env() (in module

conda.testing.solver_helpers), 712
tempdir() (in module conda.testing.helpers), 705
tempdir() (in module conda.testing.integration), 709
tempfile_extension (_Activator attribute), 411
tempfile_extension (CmdExeActivator attribute), 414

tempfile_extension (CshActivator attribute), 413
tempfile_extension (FishActivator attribute), 414
tempfile_extension (JSONFormatMixin attribute),

415
tempfile_extension (PosixActivator attribute), 412
tempfile_extension (PowerShellActivator attribute),

415
tempfile_extension (XonshActivator attribute), 413
temporary_content_in_file() (in module

conda.common.disk), 507
TemporaryDirectory (class in

conda.gateways.disk.create), 602
terminate() (JLAP method), 614
terminator (StdStreamHandler attribute), 611
test_accelerate() (SolverTests method), 713
test_anaconda_nomkl() (SolverTests method), 713
test_arch_preferred_over_noarch_when_otherwise_equal()

(SolverTests method), 714
test_channel_priority_1() (SolverTests method),

714
test_circular_dependencies() (SolverTests

method), 714
TEST_DATA_DIR (in module conda.testing.helpers), 705
test_empty() (SolverTests method), 713
test_get_dists() (SolverTests method), 713
test_get_reduced_index_broadening_preferred_solution()

(SolverTests method), 714
test_get_reduced_index_broadening_with_unsatisfiable_early_dep()

(SolverTests method), 714
test_install_package_with_feature()

(SolverTests method), 713
test_iopro_mkl() (SolverTests method), 713
test_iopro_nomkl() (SolverTests method), 713
test_irrational_version() (SolverTests method),

714
TEST_LOG_LEVEL (in module conda.testing.integration),

708
test_mkl() (SolverTests method), 713
test_no_features() (SolverTests method), 714
test_noarch_preferred_over_arch_when_build_greater()

(SolverTests method), 714
test_noarch_preferred_over_arch_when_build_greater_dep()

(SolverTests method), 714
test_noarch_preferred_over_arch_when_version_greater()

(SolverTests method), 714
test_noarch_preferred_over_arch_when_version_greater_dep()

(SolverTests method), 714
test_nonexistent() (SolverTests method), 713
test_nonexistent_deps() (SolverTests method), 713
test_pseudo_boolean() (SolverTests method), 713
test_remove() (SolverTests method), 714
test_scipy_mkl() (SolverTests method), 713
test_surplus_features_1() (SolverTests method),

714

Index 783

conda, Release 24.3.1.dev75

test_surplus_features_2() (SolverTests method),
714

test_timestamps_and_deps() (SolverTests method),
713

test_unintentional_feature_downgrade()
(SolverTests method), 714

test_unsat_any_two_not_three() (SolverTests
method), 713

test_unsat_chain() (SolverTests method), 713
test_unsat_channel_priority() (SolverTests

method), 714
test_unsat_expand_single() (SolverTests method),

713
test_unsat_from_r1() (SolverTests method), 713
test_unsat_missing_dep() (SolverTests method), 713
test_unsat_shortest_chain_1() (SolverTests

method), 713
test_unsat_shortest_chain_2() (SolverTests

method), 713
test_unsat_shortest_chain_3() (SolverTests

method), 713
test_unsat_shortest_chain_4() (SolverTests

method), 713
test_unsat_simple() (SolverTests method), 713
tests_to_skip (SolverTests property), 713
text (FileMode attribute), 640
text_type (in module conda.exports), 590
ThisShouldNeverHappenError, 438
ThreadLimitedThreadPoolExecutor (class in

conda.common.io), 512
THREADSAFE_EXTRACT (in module

conda.core.package_cache_data), 552
time_recorder (class in conda.common.io), 513
timeme() (in module conda.gateways.repodata.jlap.fetch),

616
timeout() (in module conda.common.io), 511
timeout() (RepodataCache method), 625
timestamp (PackageRecord attribute), 659, 718
TimestampField (class in conda.models.records), 655
tmp_channel() (in module conda.testing), 720
tmp_env() (in module conda.testing), 720
tmp_path (PathFactoryFixture attribute), 719
tmp_pkgs_dir() (in module conda.testing), 720
TmpChannelFixture (class in conda.testing), 720
tmpdir() (in module conda.testing.fixtures), 701
tmpdir_in_use (in module conda.testing.integration),

708
TmpDownload (class in

conda.gateways.connection.download), 598
TmpEnvFixture (class in conda.testing), 719
to_dict() (ChannelNotice method), 671
to_dict() (Environment method), 573
to_dict() (Trace method), 388, 394
to_feature_metric_id() (Resolve static method), 699

to_filename() (Dist method), 638
to_json() (frozendict method), 409
to_match_spec() (Dist method), 638
to_match_spec() (PackageRecord method), 659, 718
to_matchspec() (Dist method), 638
to_package_ref() (Dist method), 638
to_sat_name() (Resolve static method), 699
to_simple_match_spec() (PackageRecord method),

659, 719
to_url() (Dist method), 638
to_yaml() (Environment method), 573
TOKEN_REPLACE (TokenURLFilter attribute), 611
TOKEN_URL_PATTERN (TokenURLFilter attribute), 611
tokenized_conda_url_startswith() (in module

conda.models.channel), 636
tokenized_startswith() (in module

conda.common.path), 519
tokenized_startswith() (in module

conda.models.channel), 636
TokenURLFilter (class in conda.gateways.logging), 611
TooManyArgumentsError, 581
top (ParameterFlag attribute), 499
topic() (DeprecationHandler method), 570
toposort() (in module conda.common.toposort), 533
total_call_num (time_recorder attribute), 513
total_number_channel_notices (ChannelNoticeRe-

sultSet attribute), 671
total_run_time (time_recorder attribute), 513
touch() (in module conda.gateways.disk.update), 609
touch_nonadmin() (in module conda.misc), 633
Trace (class in conda._vendor.cpuinfo), 394
Trace (class in conda._vendor.cpuinfo.cpuinfo), 388
trace (Context property), 454
TRACE (in module conda.common.constants), 507
TRACE (in module conda.gateways.disk), 610
trace() (in module conda.gateways.logging), 612
track_features (Context attribute), 455
track_features (PackageRecord attribute), 659, 718
track_features_specs() (SolverStateContainer

method), 566
translate_stream() (in module conda.utils), 723
trash_dir() (Context method), 458
treeify() (in module conda.models.version), 664
Troubleshooting, 118
TRUE (in module conda.common._logic), 488
TRUE (in module conda.common.logic), 515
trusted_root (_SignatureVerification property), 721
type (ActionGroup attribute), 549
type (Field property), 432
type (Link attribute), 656
type (Noarch attribute), 650
TYPE_CHECKING (in module conda._version), 409
typify() (in module conda.auxlib.type_coercion), 442
typify() (LoadedParameter method), 501

784 Index

conda, Release 24.3.1.dev75

typify() (Parameter method), 503
typify_parameter() (Configuration method), 506

U
uname_string_raw (DataSource attribute), 389, 395
UnavailableInvalidChannel, 583, 622
unbox() (Field method), 432
unbox() (ListField method), 435
UNDEFINED_MESSAGE_ID (in module

conda.notices.types), 671
unicode (in module conda._vendor.appdirs), 383
UNICODE_CHARACTERS (in module

conda.testing.integration), 708
UNICODE_CHARACTERS_RESTRICTED (in module

conda.testing.integration), 708
union() (BuildNumberMatch method), 666
union() (MatchInterface method), 647
union() (MatchSpec class method), 646
union() (VersionSpec method), 666
unique() (in module conda.common.iterators), 514
unique_sequence_map() (in module

conda.common.configuration), 506
unix_path_to_win() (in module conda.utils), 722
unix_python_entry_point (PathType attribute), 641
unix_shell_base (in module conda.utils), 723
UNKNOWN_CHANNEL (in module conda.base.constants),

447
UnknownPackageClobberError, 581
UNLINK (in module conda.instructions), 632
unlink_action_groups (PrefixActionGroup attribute),

549
unlink_or_rename_to_trash() (in module

conda.gateways.disk.delete), 604
unlink_precs (PrefixSetup attribute), 549
UnlinkLinkTransaction (class in conda.core.link),

550
UNLINKLINKTRANSACTION (in module

conda.instructions), 632
UNLINKLINKTRANSACTION_CMD() (in module

conda.instructions), 632
UnlinkPathAction (class in conda.core.path_actions),

559
unmanageable_package_types() (PackageType static

method), 642
unregister_action_groups (PrefixActionGroup at-

tribute), 549
unregister_env() (in module

conda.core.envs_manager), 539
UnregisterEnvironmentLocationAction (class in

conda.core.path_actions), 559
unsat (Clauses property), 515
Unsatisfiable (in module conda.resolve), 697
unsatisfiable_hints (Context attribute), 457

unsatisfiable_hints_check_depth (Context at-
tribute), 457

UnsatisfiableError, 584
unset_description (in module

conda_env.cli.main_vars), 730
unset_environment_env_vars() (PrefixData

method), 563
unset_example (in module conda_env.cli.main_vars),

730
unset_var_tmpl (_Activator attribute), 411
unset_var_tmpl (CmdExeActivator attribute), 414
unset_var_tmpl (CshActivator attribute), 413
unset_var_tmpl (FishActivator attribute), 414
unset_var_tmpl (PosixActivator attribute), 412
unset_var_tmpl (PowerShellActivator attribute), 415
unset_var_tmpl (XonshActivator attribute), 413
untracked() (in module conda.misc), 633
untreeify() (in module conda.models.version), 665
UPDATE (Commands attribute), 486, 709
update() (History method), 628
UPDATE_ALL (UpdateModifier attribute), 448
UPDATE_DEPS (UpdateModifier attribute), 448
update_file_in_place_as_binary() (in module

conda.gateways.disk.update), 609
update_modifier (Context attribute), 457
update_prefix() (in module conda.core.portability),

561
update_specs (PrefixSetup attribute), 549
UPDATE_SPECS (UpdateModifier attribute), 448
update_to() (ProgressBar method), 511
updated_precs (ChangeReport attribute), 550
UpdateHistoryAction (class in

conda.core.path_actions), 558
UpdateModifier (class in conda.base.constants), 448
UpdateModifier (in module conda.api), 416
url (ChannelNoticeResponse attribute), 672
Url (class in conda.common.url), 535
url (PackageInfo attribute), 651
url (PackageRecord attribute), 658, 718
url() (Channel method), 623, 635
url() (MultiChannel method), 636
url_attrs (in module conda.common.url), 535
url_channel_wtf (Channel property), 622, 635
URL_KEY (in module conda.gateways.repodata), 623
url_pat (in module conda.misc), 633
url_to_path() (in module conda.common.path), 519
url_to_s3_info() (in module conda.common.url), 535
url_w_credentials (RepodataFetch attribute), 626
url_w_repodata_fn (RepodataFetch property), 625
url_w_repodata_fn (SubdirData property), 568
url_w_subdir (RepodataFetch attribute), 626
urlparse() (in module conda.common.url), 535
urls() (Channel method), 623, 635
urls() (MultiChannel method), 636

Index 785

conda, Release 24.3.1.dev75

UrlsData (class in conda.core.package_cache_data),
553

use_index_cache (Context attribute), 455
use_local (Context attribute), 456
use_only_tar_bz2 (Context property), 454
user_agent (ExceptionHandler property), 579
user_agent() (Context method), 458
user_cache_dir (AppDirs property), 385
user_cache_dir (EnvAppDirs property), 592
user_cache_dir() (in module conda._vendor.appdirs),

384
user_data_dir (AppDirs property), 385
user_data_dir (EnvAppDirs property), 592
user_data_dir() (in module conda._vendor.appdirs),

383
user_data_dir() (in module conda.base.context), 452
user_log_dir (AppDirs property), 385
user_log_dir (EnvAppDirs property), 592
user_log_dir() (in module conda._vendor.appdirs),

385
user_rc_path (in module conda.base.context), 452
username() (BinstarSpec method), 576, 578
Using conda for your project, 118
Using non-standard certificates, 72
Using the .condarc conda configuration file,

72
utf8_writer() (in module conda.auxlib.compat), 423
Utf8NamedTemporaryFile() (in module

conda.auxlib.compat), 423

V
valid() (Resolve method), 697
valid2() (Resolve method), 698
VALID_KEYS (in module conda.env.env), 572
valid_name() (BinstarSpec method), 575, 578
valid_package() (BinstarSpec method), 575, 578
validate() (Entity method), 436
validate() (Field method), 432
validate() (ListField method), 435
validate_all() (Configuration method), 506
validate_configuration() (Configuration method),

506
validate_destination() (in module

conda.cli.main_rename), 484
validate_keys() (in module conda.env.env), 572
validate_prefix() (in module conda.cli.common),

463
validate_prefix_name() (in module

conda.base.context), 459
validate_src() (in module conda.cli.main_rename),

484
ValidationError, 438, 498
value() (ArgParseRawParameter method), 500
value() (DefaultValueRawParameter method), 500

value() (EnvRawParameter method), 499
value() (RawParameter method), 499
value() (YamlRawParameter method), 500
ValueEnum (class in conda.base.constants), 449
valueflags() (ArgParseRawParameter method), 500
valueflags() (DefaultValueRawParameter method),

500
valueflags() (EnvRawParameter method), 500
valueflags() (RawParameter method), 499
valueflags() (YamlRawParameter method), 500
values() (PackageCacheData method), 553, 621, 717
var_description (in module conda_env.cli.main_vars),

729
var_example (in module conda_env.cli.main_vars), 729
ver_eval() (in module conda.models.version), 662
verbose (Context property), 454
verbosity (Context property), 454
verified (_Action property), 556
verify() (_Action method), 556
verify() (_SignatureVerification method), 721
verify() (CacheUrlAction method), 559
verify() (CompileMultiPycAction method), 558
verify() (CreateInPrefixPathAction method), 556
verify() (ExtractPackageAction method), 560
verify() (in module conda.exports), 591
verify() (LinkPathAction method), 557
verify() (PrefixReplaceLinkAction method), 557
verify() (RegisterEnvironmentLocationAction

method), 558
verify() (RemoveFromPrefixPathAction method), 559
verify() (UnlinkLinkTransaction method), 550
verify() (UnregisterEnvironmentLocationAction

method), 559
verify_specs() (Resolve method), 698
verify_threads (Context property), 453
version (CondaVirtualPackage attribute), 378, 688, 696
version (Dist attribute), 638
version (DistDetails attribute), 637
version (in module conda._version), 409
version (MatchSpec property), 645
version (PackageInfo property), 651
version (PackageRecord attribute), 658, 717
version (PythonDistribution property), 524
version (PythonDistributionMetadata property), 526
version() (in module conda._vendor.distro), 402
version() (LinuxDistribution method), 405
version_cache (in module conda.models.version), 662
version_check_re (in module conda.models.version),

662
VERSION_IDENTIFIER (in module

conda.common.pkg_formats.python), 530
version_key() (Resolve method), 699
version_parts() (in module conda._vendor.distro),

402

786 Index

conda, Release 24.3.1.dev75

version_parts() (LinuxDistribution method), 405
version_relation_re (in module

conda.models.version), 665
version_split_re (in module conda.models.version),

662
VERSION_TUPLE (in module conda._version), 409
version_tuple (in module conda._version), 409
VersionMatch (in module conda.models.version), 666
VersionOrder (class in conda.models.version), 662
VersionSpec (class in conda.models.version), 666
View command line help, 49
viewed_channel_notices (ChannelNoticeResultSet at-

tribute), 671
VIRTUAL_PRIVATE_ENV (PackageType attribute), 641
VIRTUAL_PYTHON_EGG_LINK (PackageType attribute),

642
VIRTUAL_PYTHON_EGG_MANAGEABLE (PackageType at-

tribute), 641
VIRTUAL_PYTHON_EGG_UNMANAGEABLE (PackageType

attribute), 641
VIRTUAL_PYTHON_WHEEL (PackageType attribute), 641
VIRTUAL_SYSTEM (PackageType attribute), 642
VSPEC_TOKENS (in module conda.models.version), 664

W
walk_prefix() (in module conda.misc), 633
warn (PathConflict attribute), 448
warn (SafetyChecks attribute), 448
WARNING (NoticeLevel attribute), 450
which() (in module conda.common.path), 520
which_or_where (in module conda.testing.integration),

708
which_package() (in module conda.cli.main_package),

483
which_prefix() (in module conda.cli.main_package),

483
win (Platform attribute), 640
win_conda_bat_redirect() (in module

conda.exports), 591
win_path_backout() (in module conda.common.path),

520
win_path_double_escape() (in module

conda.common.path), 520
win_path_ok() (in module conda.common.path), 519
win_path_to_cygwin() (in module conda.utils), 722
win_path_to_unix() (in module conda.common.path),

520
windows_python_entry_point_exe (PathType at-

tribute), 641
windows_python_entry_point_script (PathType at-

tribute), 641
winreg_arch_string_raw() (DataSource static

method), 389, 396

winreg_feature_bits() (DataSource static method),
389, 396

winreg_hz_actual() (DataSource static method), 389,
396

winreg_processor_brand() (DataSource static
method), 389, 396

winreg_vendor_id_raw() (DataSource static method),
389, 396

withext() (in module
conda.gateways.repodata.jlap.fetch), 616

wmic_cpu() (DataSource static method), 389, 396
Working with environments, 118
Working with packages, 118
working_state_reset() (SolverStateContainer

method), 566
wrap_subprocess_call() (in module conda.utils), 723
writable_caches() (PackageCacheData class

method), 553, 621, 716
write() (HashWriter method), 616
write() (JLAP method), 614
write() (Trace method), 388, 394
write_as_json_to_file() (in module

conda.gateways.disk.create), 603
write_changes() (History method), 629
write_head() (in module conda.history), 628
write_notice_response_to_cache() (in module

conda.notices.cache), 668
write_out() (ExceptionHandler method), 579
write_specs() (History method), 629

X
x86 (Arch attribute), 639
x86_64 (Arch attribute), 639
X_MARK (in module conda.plugins.subcommands.doctor.health_checks),

684
XonshActivator (class in conda.activate), 413
Xor() (Clauses method), 491, 516

Y
YAML_EXTENSIONS (in module

conda.common.configuration), 505
yaml_round_trip_dump() (in module

conda.common.serialize), 531
yaml_round_trip_load() (in module

conda.common.serialize), 531
yaml_safe_dump() (in module

conda.common.serialize), 531
yaml_safe_load() (in module

conda.common.serialize), 531
YamlFileSpec (class in conda.env.specs), 578
YamlFileSpec (class in conda.env.specs.yaml_file), 576
YamlRawParameter (class in

conda.common.configuration), 500

Index 787

conda, Release 24.3.1.dev75

yield_lines() (in module conda.gateways.disk.read),
607

Z
z (Arch attribute), 639
ZERO (ERROR attribute), 493
zos (Platform attribute), 640
ZstdRepoInterface (class in

conda.gateways.repodata.jlap.interface),
618

788 Index

	Install
	New to conda?
	Other useful resources
	Contributors welcome
	User guide
	Getting started with conda
	Before you start
	Starting conda
	Creating environments
	Listing environments
	Installing packages
	Specifying channels
	Updating conda
	More information

	Installing conda
	System requirements
	Regular installation
	Installing in silent mode
	Cryptographic hash verification
	Installing on Windows
	Installing in silent mode
	Updating conda
	Uninstalling conda

	Installing on macOS
	Installing in silent mode
	Updating Anaconda or Miniconda
	Uninstalling Anaconda or Miniconda

	Installing on Linux
	Using with fish shell
	Installing in silent mode
	Updating conda
	Uninstalling conda

	RPM and Debian Repositories for Miniconda

	Tasks
	Managing conda
	Verifying that conda is installed
	Determining your conda version
	Updating conda to the current version
	Suppressing warning message about updating conda

	Managing environments
	Creating an environment with commands
	Creating an environment from an environment.yml file
	Specifying a location for an environment
	Updating an environment
	Cloning an environment
	Building identical conda environments
	Activating an environment
	Conda init
	Nested activation
	Environment variable for DLL loading verification

	Deactivating an environment
	Determining your current environment
	Viewing a list of your environments
	Viewing a list of the packages in an environment
	Using pip in an environment
	Setting environment variables
	Saving environment variables
	Windows
	macOS and Linux

	Sharing an environment
	Exporting the environment.yml file
	Exporting an environment file across platforms
	Creating an environment file manually

	Restoring an environment
	Removing an environment

	Managing channels
	Strict channel priority

	Managing packages
	Searching for packages
	Installing packages
	Installing similar packages
	Installing packages from Anaconda.org
	Installing non-conda packages
	Installing commercial packages
	Viewing a list of installed packages
	Listing package dependencies
	Updating packages
	Preventing packages from updating (pinning)
	Adding default packages to new environments automatically
	Removing packages

	Managing Python
	Viewing a list of available Python versions
	Installing a different version of Python
	Installing PyPy
	Using a different version of Python
	Updating Python

	Managing virtual packages
	Listing detected virtual packages
	Overriding detected packages

	Creating custom channels
	Creating projects
	Requirements
	Creating the project's files
	Creating our environment
	Creating our Python application
	Updating our project with new dependencies
	Conclusion

	Viewing command-line help
	Common Tasks
	Tutorials

	Configuration
	Using the .condarc conda configuration file
	Overview
	Creating and editing
	Searching for .condarc
	Conflict merging strategy
	Precedence

	Obtaining information from the .condarc file
	Saving settings to your .condarc file
	Sample .condarc file

	Settings
	General configuration
	channels: Channel locations
	default_channels: Default channels
	channel_settings: Extra settings for individual channels
	auto_update_conda: Update conda automatically
	always_yes: Always yes
	show_channel_urls: Show channel URLs
	changeps1: Change command prompt
	add_pip_as_python_dependency: Add pip as Python dependency
	use_pip: Use pip
	proxy_servers: Configure conda for use behind a proxy server
	ssl_verify: SSL verification
	offline: Offline mode only

	Advanced configuration
	allow_softlinks: Disallow soft-linking
	channel_alias: Set a channel alias
	create_default_packages: Always add packages by default
	track_features: Track features
	update_dependencies: Disable updating of dependencies
	disallow: Disallow installation of specific packages
	add_anaconda_token: Add Anaconda.org token to automatically see private packages
	envs_dirs: Specify environment directories
	pkgs_dirs: Specify package directories
	use_only_tar_bz2: Force conda to download only .tar.bz2 packages

	Conda-build configuration
	root-dir: Specify conda-build output root directory
	output_folder: Specify conda-build build folder (conda-build 3.16.3+)
	pkg_version: Specify conda-build package version
	anaconda_upload: Automatically upload conda-build packages to Anaconda.org
	anaconda_token: Token to be used for Anaconda.org uploads (conda-build 3.0+)
	quiet: Limit build output verbosity (conda-build 3.0+)
	filename_hashing: Disable filename hashing (conda-build 3.0+)
	no_verify: Disable recipe and package verification (conda-build 3.0+)
	set_build_id: Disable per-build folder creation (conda-build 3.0+)
	skip_existing: Skip building packages that already exist (conda-build 3.0+)
	include_recipe: Omit recipe from package (conda-build 3.0+)
	activate: Disable activation of environments during build/test (conda-build 3.0+)
	long_test_prefix: Disable long prefix during test (conda-build 3.16.3+)
	pypirc: PyPI upload settings (conda-build 3.0+)
	pypi_repository: PyPI repository to upload to (conda-build 3.0+)

	Expansion of environment variables
	Configuring number of threads
	repodata_threads
	verify_threads
	execute_threads
	default_threads

	Administering a multi-user conda installation
	Example administrator-controlled installation
	System configuration file
	User configuration file

	Mirroring channels
	The default setup
	Mirror defaults
	Mirror all community channels
	Mirror only some community channels

	Disabling SSL verification
	Disabling SSL verification via conda settings
	Using non-standard certificates
	Improving interoperability with pip
	Using the free channel
	Adding the free channel to defaults
	Changing .condarc
	Package name changes
	Troubleshooting

	Concepts
	Commands
	Packages
	What is a package?
	.conda file format
	Using packages
	Package structure
	Metapackages
	Anaconda metapackage
	Mutex metapackages
	Building NumPy with BLAS variants
	Installing NumPy with BLAS variants
	Track_features
	More info

	Noarch packages
	Noarch Python

	Link and unlink scripts
	More information

	Package specification
	Package metadata
	Info
	info/index.json
	info/files
	info/has_prefix
	info/license.txt
	info/no_link
	info/about.json
	info/recipe
	meta.yaml.rendered

	Repository structure and index
	Package match specifications
	Examples

	Version ordering
	Supported version strings
	Predictable version ordering

	Package search and install specifications
	Package search
	Standard specification
	Key-value pairs

	Package installation
	Installing with wildcards
	Concrete install example

	Channels
	What is a "channel"?
	Specifying channels when installing packages
	Conda clone channel RSS feed

	Environments
	Conda directory structure
	ROOT_DIR
	/pkgs
	/envs

	Virtual environments
	Why use venv-based virtual environments
	Why use conda virtual environments?

	Workflow differentiators
	Package system differentiators

	Installing with conda
	Conda update versus conda install
	Installing conda packages offline
	Installing conda packages with a specific build number

	Performance
	How a package is installed
	Improving conda performance
	Set strict channel priority
	Reduce the index

	Conda for data scientists
	Plugins
	Implementation
	Hook
	Packaging using a pyproject.toml file

	Conda plugins use cases
	Benefits of conda plugins

	Troubleshooting
	Using conda in Windows Batch script exits early
	NumPy MKL library load failed
	Cause
	Solution

	SSL connection errors
	CondaHTTPError: HTTP 000 CONNECTION FAILED
	Cause
	Solution

	SSL certificate errors
	Cause
	Solution

	SSL verification errors
	Cause
	Solution

	Permission denied errors during installation
	Cause
	Solution

	Permission denied errors after using sudo conda command
	Solution

	Already installed error message
	Cause
	Solution

	Conda reports that a package is installed, but it appears not to be
	Cause
	Solution
	Cause
	Solution
	Cause
	Solution
	Cause
	Solution
	Cause
	Solution

	pkg_resources.DistributionNotFound: conda==3.6.1-6-gb31b0d4-dirty
	Cause
	Solution

	macOS error "ValueError unknown locale: UTF-8"
	Cause
	Solution

	AttributeError or missing getproxies
	Cause
	Solution

	Shell commands open from the wrong location
	Cause
	Solution

	Programs fail due to invoking conda Python instead of system Python
	Cause
	Solution

	UnsatisfiableSpecifications error
	Cause
	Solution

	Package installation fails from a specific channel
	Cause
	Solution

	Conda automatically upgrades to unwanted version
	Cause
	Solution

	Conda upgrade error
	Cause
	Solution

	ValidationError: Invalid value for timestamp
	Cause
	Solution

	Unicode error after installing Python 2
	Cause
	Solution

	Windows environment has not been activated
	Cause
	Solution

	The system cannot find the path specified on Windows
	Cause
	Solution

	Cheat sheet
	Versions

	First steps
	Learn more
	Additional resources

	Configuration
	Commands
	conda clean
	Removal Targets
	Output, Prompt, and Flow Control Options

	conda compare
	Positional Arguments
	Output, Prompt, and Flow Control Options
	Target Environment Specification

	conda config
	Output, Prompt, and Flow Control Options
	Config File Location Selection
	Config Subcommands
	Config Modifiers

	conda create
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Channel Customization
	Solver Mode Modifiers
	Package Linking and Install-time Options
	Networking Options
	Output, Prompt, and Flow Control Options

	conda doctor
	Named Arguments
	Target Environment Specification

	conda env
	Positional Arguments
	conda env config
	conda env config vars
	conda env config vars list
	Target Environment Specification
	Output, Prompt, and Flow Control Options
	conda env config vars set
	Positional Arguments
	Target Environment Specification
	conda env config vars unset
	Positional Arguments
	Target Environment Specification

	conda env create
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Networking Options
	Output, Prompt, and Flow Control Options

	conda env export
	Named Arguments
	Target Environment Specification
	Output, Prompt, and Flow Control Options

	conda env list
	Output, Prompt, and Flow Control Options

	conda env remove
	Named Arguments
	Target Environment Specification
	Output, Prompt, and Flow Control Options

	conda env update
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Output, Prompt, and Flow Control Options

	conda info
	Named Arguments
	Output, Prompt, and Flow Control Options

	conda init
	Positional Arguments
	Named Arguments
	setup type
	Output, Prompt, and Flow Control Options

	conda install
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Channel Customization
	Solver Mode Modifiers
	Package Linking and Install-time Options
	Networking Options
	Output, Prompt, and Flow Control Options

	conda list
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Output, Prompt, and Flow Control Options

	conda notices
	Channel Customization
	Output, Prompt, and Flow Control Options

	conda package
	Named Arguments
	Target Environment Specification

	conda remove
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Channel Customization
	Solver Mode Modifiers
	Networking Options
	Output, Prompt, and Flow Control Options

	conda rename
	Positional Arguments
	Named Arguments
	Target Environment Specification

	conda run
	Positional Arguments
	Named Arguments
	Target Environment Specification

	conda search
	Named Arguments
	Channel Customization
	Networking Options
	Output, Prompt, and Flow Control Options

	conda update
	Positional Arguments
	Named Arguments
	Target Environment Specification
	Channel Customization
	Solver Mode Modifiers
	Package Linking and Install-time Options
	Networking Options
	Output, Prompt, and Flow Control Options

	Conda vs. pip vs. virtualenv commands

	Release notes
	24.3.0 (2024-03-12)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	24.1.2 (2024-02-15)
	Bug fixes
	Contributors

	24.1.1 (2024-02-12)
	Bug fixes
	Contributors

	24.1.0 (2024-01-24)
	Special announcement
	The conda_env.* modules have been merged into the conda package!

	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	23.11.0 (2023-11-30)
	Special announcement
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	23.10.0 (2023-10-30)
	✨ Special announcement ✨
	With this 23.10.0 release we are changing the default solver of conda to conda-libmamba-solver! 🥳 🚀
	Why are we switching the solver?
	What can I do if this update doesn’t work for me?
	Where can I learn more about conda-libmamba-solver?

	Enhancements
	Bug fixes
	Deprecations
	Other
	Contributors

	23.9.0 (2023-09-27)
	Special announcement
	Plan to change the default solver
	Context

	Enhancements
	Bug fixes
	Deprecations
	Other
	Contributors

	23.7.4 (2023-09-12)
	Enhancements
	Bug fixes
	Contributors

	23.7.3 (2023-08-21)
	Bug fixes
	Contributors

	23.7.2 (2023-07-27)
	Bug fixes
	Contributors

	23.7.1 (2023-07-26)
	Bug fixes
	Contributors

	23.7.0 (2023-07-25)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	23.5.2 (2023-07-13)
	Bug fixes
	Contributors

	23.5.1 (2023-07-12)
	Bug fixes
	Contributors

	23.5.0 (2023-05-17)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	23.3.1 (2023-03-28)
	Enhancements
	Bug fixes
	Other
	Contributors

	23.3.0 (2023-03-14)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	23.1.0 (2023-01-17)
	Bug fixes
	Docs
	Other
	Contributors

	22.11.1 (2022-12-06)
	Bug fixes
	Other
	Contributors

	22.11.0 (2022-11-23)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	22.9.0 (2022-09-14)
	Special announcement
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	4.14.0 (2022-08-02)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	4.13.0 (2022-05-19)
	Enhancements
	Bug fixes
	Deprecations
	Docs
	Other
	Contributors

	4.12.0 (2022-03-08)
	Enhancements
	Bug fixes
	Docs
	Other
	Contributors

	4.11.0 (2021-11-22)
	Enhancements
	Bug fixes
	Docs
	Other
	Contributors

	4.10.3 (2021-06-29)
	Bug fixes

	4.10.2 (2021-06-25)
	Enhancements
	Bug fixes
	Docs
	Contributors

	4.10.1 (2021-04-12)
	Bug fixes
	Contributors

	4.10.0 (2021-03-30)
	Enhancements
	Bug fixes
	Docs
	Miscellaneous
	Contributors

	4.9.2 (2020-11-10)
	Enhancements
	Bug fixes
	Docs
	Contributors

	4.9.1 (2020-10-26)
	Enhancements
	Bug fixes
	Contributors

	4.9.0 (2020-10-19)
	Enhancements
	Bug fixes:
	Docs
	Miscellaneous
	Contributors

	4.8.5 (2020-09-14)
	Enhancements
	Contributors

	4.8.4 (2020-08-06)
	Enhancements
	Bug fixes:
	Docs
	Miscellaneous
	Contributors

	4.8.3 (2020-03-13)
	Docs
	Bug fixes:
	Contributors

	4.8.2 (2020-01-24)
	Enhancements
	Docs
	Bug fixes:
	Contributors

	4.8.1 (2019-12-19)
	Enhancements
	Docs
	Bug fixes:
	Contributors

	4.8.0 (2019-11-04)
	Enhancements
	Docs
	Bug fixes
	Contributors

	4.7.12 (2019-09-12)
	Enhancements
	Bug fixes
	Contributors

	4.7.11 (2019-08-06)
	Enhancements
	Bug fixes
	Docs
	Contributors

	4.7.10 (2019-07-19)
	Bug fixes
	Contributors

	4.7.9 (2019-07-18)
	Bug fixes
	Contributors

	4.7.8 (2019-07-17)
	Improvements
	Bug fixes
	Contributors

	4.7.7 (2019-07-12)
	Improvements
	Bug fixes
	Contributors

	4.7.6 (2019-07-11)
	Improvements
	Bug fixes
	Contributors

	4.7.5 (2019-06-24)
	Improvements
	Bug fixes
	Contributors

	4.7.4 (2019-06-19)
	Improvements
	Bug fixes
	Docs improvements
	Contributors

	4.7.3 (2019-06-14)
	Bug fixes
	Contributors

	4.7.2 (2019-06-10)
	Behavior changes
	Improvements
	Bug fixes
	Contributors

	4.7.1 (2019-05-30)
	Improvements
	Bug fixes
	Deprecations/Breaking Changes
	Docs improvements
	Contributors

	4.7.0 (2019-05-17)
	Improvements
	Bug fixes
	Contributors

	4.6.14 (2019-04-17)
	Bug fixes
	Contributors

	4.6.13 (2019-04-16)
	Bug fixes
	Contributors

	4.6.12 (2019-04-10)
	Bug fixes
	Docs improvements
	Contributors

	4.6.11 (2019-04-04)
	Bug fixes
	Docs improvements
	Contributors

	4.6.10 (2019-04-01)
	Bug fixes
	Docs improvements
	Contributors

	4.6.9 (2019-03-29)
	Improvements
	Bug fixes
	Docs improvements
	Contributors

	4.6.8 (2019-03-06)
	Bug fixes
	Docs improvements
	Contributors

	4.6.7 (2019-02-21)
	Bug fixes
	Docs improvements
	Contributors

	4.6.6 (2019-02-18)
	Bug fixes
	Contributors

	4.6.5 (2019-02-15)
	Bug fixes
	Contributors

	4.6.4 (2019-02-13)
	Improvements
	Bug fixes
	Deprecations/Breaking Changes
	Contributors

	4.6.3 (2019-02-07)
	Improvements
	Bug fixes
	Contributors

	4.6.2 (2019-01-29)
	Improvements
	Bug fixes
	Contributors

	4.5.13 (2019-01-29)
	Improvements
	Contributors

	4.6.1 (2019-01-21)
	Improvements
	Bug Fixes
	Contributors

	4.6.0 (2019-01-15)
	New Feature Highlights
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes
	Non-User-Facing Changes
	Preview Releases
	Contributors

	4.5.12 (2018-12-10)
	Improvements
	Bug Fixes
	Contributors

	4.5.11 (2018-08-21)
	Improvements
	Contributors

	4.5.10 (2018-08-13)
	Bug Fixes
	Contributors

	4.5.9 (2018-07-30)
	Improvements
	Bug Fixes
	Contributors

	4.5.8 (2018-07-10)
	Bug Fixes
	Contributors

	4.5.7 (2018-07-09)
	Improvements
	Bug Fixes
	Contributors

	4.5.6 (2018-07-06)
	Bug Fixes
	Contributors

	4.5.5 (2018-06-29)
	Bug Fixes
	Contributors

	4.5.4 (2018-05-14)
	Improvements
	Bug Fixes
	Contributors

	4.5.3 (2018-05-07)
	Bug Fixes

	4.5.2 (2018-04-27)
	Bug Fixes

	4.5.1 (2018-04-13)
	Improvements
	Bug Fixes

	4.5.0 (2018-03-20)
	New Feature Highlights
	Deprecations/Breaking Changes
	Improvements
	API
	Bug Fixes
	Non-User-Facing Changes

	4.4.11 (2018-02-23)
	Improvements
	Bug Fixes

	4.4.10 (2018-02-09)
	Bug Fixes

	4.4.9 (2018-02-06)
	Improvements
	Bug Fixes

	4.4.8 (2018-01-25)
	Improvements
	Bug Fixes

	4.4.7 (2018-01-08)
	Improvements
	Bug Fixes

	4.4.6 (2017-12-31)
	Bug Fixes

	4.4.5 (2017-12-29)
	Bug Fixes

	4.4.4 (2017-12-24)
	Improvements
	Bug Fixes

	4.4.3 (2017-12-22)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.4.2 (2017-12-22)
	Deprecations/Breaking Changes
	Bug Fixes

	4.4.1 (2017-12-21)
	Bug Fixes

	4.4.0 (2017-12-20)
	Recommended change to enable conda in your shell
	New Feature Highlights
	Deprecations/Breaking Changes
	API
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.34 (2018-02-09)
	Bug Fixes

	4.3.33 (2018-01-24)
	Bug Fixes

	4.3.32 (2018-01-10)
	Improvements
	Bug Fixes

	4.3.31 (2017-12-15)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.30 (2017-10-17)
	Improvements
	Bug Fixes

	4.3.29 (2017-10-09)
	Bug Fixes

	4.3.28 (2017-10-06)
	Bug Fixes

	4.3.27 (2017-09-18)
	Bug Fixes

	4.3.26 (2017-09-15)
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes

	4.3.25 (2017-08-16)
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes

	4.3.24 (2017-07-31)
	Bug Fixes

	4.3.23 (2017-07-21)
	Improvements
	Bug Fixes

	4.3.22 (2017-06-12)
	Improvements
	Bug Fixes

	4.3.21 (2017-05-25)
	Bug Fixes

	4.3.20 (2017-05-23)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.19 (2017-05-18)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.18 (2017-05-09)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.17 (2017-04-24)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.16 (2017-03-30)
	Improvements
	Bug Fixes

	4.3.15 (2017-03-20)
	Improvements
	Bug Fixes

	4.3.14 (2017-03-03)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.13 (2017-02-17)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.12 (2017-02-14)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.11 (2017-02-09)
	Bug Fixes

	4.3.10 (2017-02-07)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.9 (2017-01-31)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.8 (2017-01-23)
	Bug Fixes

	4.3.7 (2017-01-20)
	Bug Fixes

	4.3.6 (2017-01-18)
	Bug Fixes

	4.3.5 (2017-01-17)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.4 (2017-01-13)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.3 (2017-01-10)
	Improvements
	Bug Fixes

	4.3.2 (2017-01-06)
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.3.1 (2016-12-19)
	Improvements
	Bug Fixes

	4.3.0 (2016-12-14) Safety
	New Features
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.17 (unreleased)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.16 (2017-01-20)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.15 (2017-01-10)
	Improvements
	Bug Fixes

	4.2.14 (2017-01-07)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.13 (2016-11-22)
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.12 (2016-11-02)
	Bug Fixes

	4.2.11 (2016-10-23)
	Improvements
	Bug Fixes

	4.2.10 (2016-10-18)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.9 (2016-09-27)
	Bug Fixes

	4.2.8 (2016-09-26)
	Improvements
	Bug Fixes

	4.2.7 (2016-09-16)
	Deprecations/Breaking Changes
	Bug Fixes
	Non-User-Facing Changes

	4.2.6 (2016-09-14)
	Improvements
	Bug Fixes

	4.2.5 (2016-09-08)
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes

	4.2.4 (2016-08-18)
	Bug Fixes
	Non-User-Facing Changes

	4.2.3 (2016-08-11)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.2 (2016-08-09)
	Improvements
	Bug Fixes

	4.2.1 (2016-08-01)
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.2.0 (2016-07-28) Configuration
	New Features
	Deprecations/Breaking Changes
	Improvements
	Bug Fixes
	Non-User-Facing Changes

	4.1.13 (unreleased)
	4.1.12 (2016-09-08)
	4.1.11 (2016-07-26)
	4.1.10 (2016-07-25)
	4.1.9 (2016-07-20)
	4.1.8 (2016-07-12)
	4.0.11 2016-07-09
	4.1.7 (2016-07-07)
	4.1.6 (2016-07-01)
	4.1.5 (2016-06-29)
	4.0.10 (2016-06-29)
	4.1.4 (2016-06-27)
	4.1.3 (2016-06-23)
	4.1.2 (2016-06-17)
	4.1.1 (2016-06-16)
	4.0.9 (2016-06-15)
	4.1.0 (2016-06-14) Channel Priority
	4.0.8 (2016-06-03)
	4.0.7 (2016-05-26)
	4.0.6 (2016-05-11)
	4.0.5 (2016-03-16)
	4.0.4 (2016-03-10)
	4.0.3 (2016-03-10)
	4.0.2 (2016-03-08)
	4.0.1 (2016-03-07)
	4.0.0 (2016-03-04) Solver
	3.19.4 (unreleased)
	3.19.3 (2016-02-19)
	3.19.2 (2016-02-19)
	3.19.1 (2016-02-01)
	3.19.0 (2015-12-17)
	3.18.9 (2015-12-10)
	3.18.8 (2015-12-03)
	3.18.7 (2015-12-02)
	3.18.6 (2015-11-19)
	3.18.5 (2015-11-11)
	3.18.4 (2015-11-09)
	3.18.3 (2015-10-15)
	3.18.2 (2015-10-12)
	3.18.1 (2015-09-28)
	3.18.0 (2015-09-28)
	3.17.0 (2015-09-11)
	3.16.0 (2015-08-10)
	3.15.1 (2015-07-23)
	3.15.0 (2015-07-22)
	3.14.1 (2015-06-29)
	3.14.0 (2015-06-16)
	3.13.0 (2015-06-04)
	3.12.0 (2015-05-05)
	3.11.0 (2015-04-22)
	3.10.1 (2015-04-06)
	3.10.0 (2015-03-12)
	3.9.1 (2015-02-24)
	3.9.0 (2015-02-16)
	3.8.4 (2015-02-03)
	3.8.3 (2015-01-28)
	3.8.2 (2015-01-27)
	3.8.1 (2015-01-23)
	3.8.0 (2015-01-22)
	3.7.4 (2014-12-18)
	3.7.3 (2014-11-05)
	3.7.2 (2014-10-31)
	3.7.1 (2014-10-07)
	3.7.0 (2014-09-19)
	3.6.4 (2014-09-08)
	3.6.3 (2014-09-04)
	3.6.2 (2014-08-20)
	3.6.1 (2014-08-13)
	3.6.0 (2014-08-11)
	3.5.5 (2014-06-10)
	3.5.4 (2014-06-10)
	3.5.3 (2014-06-09)
	3.5.2 (2014-05-27)
	3.5.1 (2014-05-26)
	3.5.0 (2014-05-15)
	3.4.3 (2014-05-05)
	3.4.2 (2014-04-21)
	3.4.1 (2014-04-07)
	3.4.0 (2014-04-02)
	3.3.2 (2014-03-24)
	3.3.1 (2014-03-19)
	3.3.0 (2014-03-18)
	3.2.1 (2014-03-12)
	3.2.0 (2014-03-11)
	3.2.0a1 (2014-03-07)
	3.1.1 (2014-03-07)
	3.1.0 (2014-03-07)
	3.0.6 (2014-02-20)
	3.0.5 (2014-02-17)
	3.0.4 (2014-02-14)
	3.0.3 (2014-02-06)
	3.0.2 (2014-02-03)
	3.0.1 (2014-01-31)
	3.0.0 (2014-01-24)
	2.3.1 (2014-01-17)
	2.3.0 (2014-01-16)
	2.2.8 (2014-01-06)
	2.2.7 (2014-01-02)
	2.2.6 (2013-12-31)
	2.2.5 (2013-12-17)
	2.2.4 (2013-12-10)
	2.2.3 (2013-12-03)
	2.2.2 (2013-11-27)
	2.2.1 (2013-11-15)
	2.2.0 (2013-11-14)
	2.1.0 (2013-11-07)
	2.0.4 (2013-11-04)
	2.0.3 (2013-10-28)
	2.0.2 (2013-10-27)
	2.0.1 (2013-10-23)
	2.0.0 (2013-10-01)
	1.9.1 (2013-09-06)
	1.9.0 (2013-09-05)
	1.8.2 (2013-08-16)
	1.8.1 (2013-08-07)
	1.8.0 (2013-07-31)
	1.7.2 (2013-07-02)
	1.7.1 (2013-06-21)
	1.7.0 (2013-06-20)
	1.7.0a2 (2013-06-20)
	1.7.0a1 (2013-06-13)
	1.6.0 (2013-06-05)
	1.6.0rc2 (2013-05-31)
	1.6.0rc1 (2013-05-30)
	1.5.2 (2013-04-29)
	1.5.1 (2013-04-19)
	1.5.0 (2013-03-22)
	1.4.6 (2013-03-12)
	1.4.5 (2013-03-11)
	1.4.4 (2013-03-09)
	1.4.3 (2013-03-09)
	1.4.2 (2013-03-08)
	1.4.1 (2013-03-07)
	1.4.0 (2013-03-05)
	1.3.5 (2013-02-05)
	1.3.4 (2013-01-28)
	1.3.3 (2013-01-23)
	1.3.2 (2013-01-23)
	1.3.1 (2013-01-22)
	1.3.0 (2013-01-22)
	1.2.1 (2012-11-21)
	1.2.0 (2012-11-20)
	1.1.0 (2012-11-13)
	1.0.0 (2012-09-06)

	Glossary
	.condarc
	Activate/Deactivate environment
	Anaconda
	Anaconda.org
	Anaconda Navigator
	Channels
	conda
	conda environment
	conda package
	conda repository
	Metapackage
	Miniconda
	Noarch package
	Package manager
	Packages
	Plugins
	Repository
	Silent mode installation

	Developer guide
	Architecture
	Level 1: Context
	Level 2: Container
	Channels
	Conda

	Level 3: Component
	Level 4: Code

	Contributing to conda
	Hosted on GitHub
	Code of Conduct
	Conda Contributor License Agreement
	Ways to contribute
	Bug reports and feature requests
	Contributing your changes to conda
	Issue sorting

	Conda capitalization standards
	Examples
	In sentences
	In titles and headers
	In links

	Development Environment
	Static Code Analysis
	Testing

	Deep dives
	conda install
	Command line interface
	Fetching the index
	Channel priorities

	Solving the install request
	Generating the transaction and the corresponding actions
	Download and extraction
	Populating the prefix
	Linking the files in the environment
	Action groups and actions, in detail
	Conclusion

	conda init and conda activate
	Conda initialization
	Conda activate
	Activation/deactivation scripts

	conda config and context
	Anatomy of the Context class
	Setting values in the different origins

	Solvers
	MatchSpec vs PackageRecord
	Remote state: the index
	Local state: the prefix and context
	The high-level logic in conda.cli.install
	Early exit tasks
	Explicit package installs
	Cloning an environment
	Renaming an environment
	History rollback
	Forced removals
	Skip solve if already satisfied

	Details of Solver.solve_final_state()
	Details of conda.resolve.Resolve
	Resolve.solve()
	The Clauses object wraps the SAT solver using several layers

	Writing Tests
	Guides
	Integration Tests
	conda_cli Fixture: Running CLI level tests
	tmp_env Fixture: Creating a temporary environment
	path_factory Fixture: Creating a unique (non-existing) path
	Tests with fixtures

	General Guidelines
	Preferred test style (pytest)
	Organizing tests
	The "conda.testing" module
	Adding new fixtures
	The context object

	Deprecations
	Functions, Methods, Properties, and Classes
	Keyword Arguments
	argparse.Action
	Constants and Enums
	Modules
	Topics

	Releasing
	Plugins
	Quick start
	More examples
	Using other plugin hooks
	Auth Handlers
	Health Checks
	Post-commands
	Pre-commands
	Settings
	Solvers
	Subcommands
	Virtual Packages

	More information about how plugins work
	API
	A note on licensing

	Specifications
	Technical specification: solver state
	Common initialization
	Processing specs for conda install
	Preparation
	Refine specs that match installed records
	Handle pinned specs

	Processing specs for conda remove

	API
	conda
	__main__
	_vendor
	appdirs
	Classes
	Functions
	Attributes
	cpuinfo
	cpuinfo
	Classes
	Functions
	Attributes
	Classes
	Functions
	Attributes
	distro
	Classes
	Functions
	Attributes
	frozendict
	Classes
	Attributes

	_version
	activate
	Classes
	Functions
	Attributes

	api
	Classes
	Attributes

	auxlib
	collection
	Classes
	Functions
	compat
	Functions
	decorators
	Classes
	Functions
	entity
	Tutorial
	Chapter 1: Entity and Field Basics
	Chapter 2: Entity and Field Composition
	Chapter 3: Immutability
	Chapter X: The del and null Weeds
	Classes
	Attributes
	exceptions
	Classes
	Functions
	ish
	Functions
	logz
	Classes
	Functions
	Attributes
	type_coercion
	Functions

	base
	constants
	Classes
	Attributes
	context
	Classes
	Functions
	Attributes
	exceptions

	cli
	actions
	Classes
	common
	Functions
	Attributes
	conda_argparse
	Classes
	Functions
	Attributes
	find_commands
	Functions
	helpers
	Classes
	Functions
	install
	Functions
	Attributes
	main
	Functions
	main_clean
	Functions
	main_compare
	Functions
	main_config
	Functions
	main_create
	Functions
	main_env
	Functions
	main_env_config
	Functions
	main_env_create
	Functions
	main_env_export
	main_env_list
	Functions
	main_env_remove
	Functions
	main_env_update
	Functions
	main_env_vars
	Functions
	main_export
	Functions
	main_info
	Functions
	Attributes
	main_init
	Functions
	main_install
	Functions
	main_list
	Functions
	main_mock_activate
	Functions
	main_mock_deactivate
	Functions
	main_notices
	Functions
	main_package
	Functions
	Attributes
	main_pip
	Functions
	main_remove
	Functions
	main_rename
	Functions
	main_run
	Functions
	main_search
	Functions
	main_update
	Functions
	python_api
	Classes
	Functions
	Attributes
	Functions

	common
	_logic
	Classes
	Attributes
	_os
	linux
	Functions
	unix
	Functions
	windows
	Classes
	Functions
	Attributes
	compat
	Functions
	Attributes
	configuration
	Classes
	Functions
	Attributes
	constants
	decorators
	Functions
	disk
	Functions
	io
	Classes
	Functions
	Attributes
	iterators
	Functions
	logic
	Classes
	Functions
	Attributes
	path
	Functions
	Attributes
	pkg_formats
	python
	Classes
	Functions
	Attributes
	serialize
	Functions
	signals
	Functions
	Attributes
	toposort
	Functions
	url
	Classes
	Functions
	Attributes

	core
	envs_manager
	Functions
	index
	Functions
	Attributes
	initialize
	Classes
	Functions
	Attributes
	link
	Classes
	Functions
	package_cache
	package_cache_data
	Classes
	Functions
	Attributes
	path_actions
	Classes
	Attributes
	portability
	Functions
	Attributes
	prefix_data
	Classes
	Functions
	solve
	Classes
	Functions
	subdir_data
	Classes
	Functions
	Attributes

	deprecations
	Classes
	Attributes

	env
	env
	Classes
	Functions
	Attributes
	installers
	base
	Functions
	conda
	Functions
	pip
	Functions
	pip_util
	Functions
	specs
	binstar
	Classes
	Attributes
	requirements
	Classes
	yaml_file
	Classes
	Classes
	Functions
	Attributes

	exception_handler
	Classes
	Functions

	exceptions
	Functions

	exports
	Classes
	Functions
	Attributes

	gateways
	anaconda_client
	Classes
	Functions
	connection
	adapters
	ftp
	Classes
	Functions
	Attributes
	http
	Classes
	localfs
	Classes
	s3
	Classes
	Attributes
	download
	Classes
	Functions
	Attributes
	session
	Classes
	Functions
	Attributes
	disk
	create
	Classes
	Functions
	Attributes
	delete
	Functions
	link
	lock
	Functions
	Attributes
	permissions
	Functions
	read
	Functions
	Attributes
	test
	Functions
	update
	Functions
	Attributes
	Functions
	Attributes
	logging
	Classes
	Functions
	Attributes
	repodata
	jlap
	core
	Classes
	Functions
	Attributes
	fetch
	Classes
	Functions
	Attributes
	interface
	Classes
	lock
	Classes
	Functions
	Attributes
	subprocess
	Functions
	Attributes

	history
	Classes
	Functions
	Attributes

	instructions
	Functions
	Attributes

	misc
	Functions
	Attributes

	models
	channel
	Classes
	Functions
	dist
	Classes
	Functions
	enums
	Classes
	leased_path_entry
	Classes
	match_spec
	Classes
	Functions
	Attributes
	package_info
	Classes
	prefix_graph
	Classes
	records
	Classes
	Attributes
	version
	Classes
	Functions
	Attributes

	notices
	cache
	Functions
	Attributes
	core
	Functions
	Attributes
	fetch
	Functions
	Attributes
	types
	Classes
	Attributes
	views
	Functions
	Functions

	plan
	Functions

	plugins
	hookspec
	Classes
	Attributes
	manager
	Classes
	Functions
	post_solves
	signature_verification
	Functions
	solvers
	Functions
	subcommands
	doctor
	health_checks
	Functions
	Attributes
	Classes
	Functions
	Attributes
	types
	Classes
	virtual_packages
	archspec
	Functions
	conda
	Functions
	cuda
	Functions
	freebsd
	Functions
	linux
	Functions
	osx
	Functions
	windows
	Functions
	Classes
	Attributes

	resolve
	Classes
	Functions
	Attributes

	testing
	cases
	Classes
	fixtures
	Functions
	Attributes
	gateways
	fixtures
	Functions
	Attributes
	helpers
	Functions
	Attributes
	integration
	Classes
	Functions
	Attributes
	notices
	fixtures
	Functions
	helpers
	Classes
	Functions
	Attributes
	solver_helpers
	Classes
	Functions
	Classes
	Functions
	Attributes

	trust
	constants
	signature_verification
	Classes
	Attributes

	utils
	Functions
	Attributes

	Functions
	Attributes

	conda_env
	cli
	common
	main
	Functions
	main_config
	main_create
	main_export
	main_list
	main_remove
	main_update
	main_vars

	env
	installers
	base
	conda
	pip

	pip_util
	specs
	binstar
	requirements
	yaml_file

	Python Module Index
	Index

