
Bayware Documentation

Gregory Walter Igor Tarasenko Adam Dubey

Dec 12, 2019

Introduction

1 Overview 3
1.1 Problem . 3
1.2 Solution . 4
1.3 Product Architecture . 4

2 Managing Cloud Resources 7
2.1 Rethinking Resource Management . 7
2.2 Resource Deployment . 8
2.3 Maintenance Automation . 10
2.4 Summary . 10

3 Connectivity Policies 11
3.1 Layered Security . 11
3.2 Service Connectivity Policy . 14
3.3 Resource Connectivity Policy . 15
3.4 Summary . 15

4 Service Discovery 17
4.1 Overview . 17
4.2 Architecture . 17
4.3 Specification . 19

5 Security Model 21
5.1 Isolation Levels . 21
5.2 Isolation Topology . 22
5.3 Security Entities . 22
5.4 Summary . 25

6 Introduction 27
6.1 Overview . 27
6.2 Fabric Components . 27
6.3 Behind the Scene . 28
6.4 Summary . 29

7 Deploy Resources 31
7.1 Set up Fabric . 31
7.2 Create Orchestrator . 35

i

7.3 Create Processor and Workload . 38
7.4 Summary . 41

8 Create Resource Connectivity Policy 45
8.1 Preparation . 45
8.2 Set up Zone . 46
8.3 Interconnect Zones . 48
8.4 Summary . 48

9 Create Service Connectivity Policy 51
9.1 Preparation . 51
9.2 Upload Communication Rules . 51
9.3 Create Service Graph . 51
9.4 Summary . 55

10 Deploy Application 57
10.1 Preparation . 57
10.2 Generate Token . 57
10.3 Deploy Service . 58
10.4 Summary . 60

11 Clean up 61

12 Deploying Service Interconnection Fabric 63
12.1 Cloud Infrastructure . 63
12.2 SIF Deployment . 71
12.3 Application 1 - Getaway App . 83
12.4 Application 2 - Voting App . 103
12.5 SIS - Example . 123
12.6 Troubleshooting . 129

13 Deploying a Geo-Redundant App 135
13.1 Introduction . 135
13.2 Application Infrastructure . 139
13.3 Application Policy . 148
13.4 Application Microservices . 154
13.5 Feature Showcase . 160
13.6 Telemetry . 176
13.7 What You Need . 186
13.8 What To Expect . 186
13.9 Tutorial Outline . 187

14 Fabric 189
14.1 Bayware Solution . 189
14.2 How Bayware Works . 191
14.3 Why Bayware . 192

15 Orchestrator 195
15.1 Architecture . 195
15.2 Controller . 197
15.3 Telemetry . 200
15.4 Events . 200

16 Processor 205
16.1 Introduction . 205

ii

16.2 Capabilities . 206
16.3 Internals . 208

17 Workload 213
17.1 Overview . 213
17.2 Control Plane Module . 213
17.3 Data Plane Module . 216

18 System Requirements 219
18.1 Server Requirements . 221
18.2 Firewall Settings . 221
18.3 Public Cloud VM Setup . 222
18.4 Private Datacenter VM Setup . 225
18.5 Certificate Requirements . 225

19 Deploying Fabric Manager 231
19.1 Spin up Fabric Manager . 231
19.2 Update BWCTL CLI Tool . 233
19.3 Configure BWCTL . 234
19.4 Create Fabric . 235

20 Deploying Orchestrator 237
20.1 Create VPC . 237
20.2 Create Controller Node . 239
20.3 Create Telemetry Node . 240
20.4 Create Events Node . 242
20.5 Delete Orchestrator Node . 243

21 Deploying Processor 245
21.1 Public Cloud Deployment . 245
21.2 Private Datacenter Deployment . 246

22 Deploying Workload 249
22.1 Public Cloud Deployment . 249
22.2 Private Datacenter Deployment . 250

23 Working with Batches 255
23.1 Extend Existing Fabric . 255
23.2 Create New Fabric . 259
23.3 Summary . 264

24 BWCTL CLI Manual 267
24.1 About BWCTL . 267
24.2 Upgrading BWCTL . 269
24.3 Configuring BWCTL . 269
24.4 Getting started with BWCTL . 271
24.5 Using commands . 275
24.6 BWCTL cheat sheet . 282

25 System Administration 285
25.1 Login to Orchestrator . 285
25.2 Create Administrative Domain . 288
25.3 Create Administrator . 291

26 Resource Connectivity Management 295
26.1 Declare Location . 295

iii

26.2 Create Zone . 298
26.3 Connect Zones . 308
26.4 Working with Batches . 315

27 Service Connectivity Management 319
27.1 Upload Template . 319
27.2 Create Service Graph . 323
27.3 Working with Batches . 336

28 Application Deployment 339
28.1 Generate Token . 339
28.2 Deploy Service . 343
28.3 Working with Batches . 345

29 BWCTL-API Command Line Interface 349
29.1 About BWCTL-API . 349
29.2 Installing BWCTL-API . 351
29.3 Configuring BWCTL-API . 352
29.4 Getting started with BWCTL-API . 353
29.5 Using Commands . 357

30 Policy Agent REST API 375
30.1 About REST API . 375
30.2 Configuring REST API . 375
30.3 Getting started with REST API . 378
30.4 Using REST API . 379
30.5 Quick Reference . 392

31 Network Microservice SDK 395
31.1 About document . 395
31.2 Overview . 395
31.3 Getting Started . 396
31.4 Variables . 399
31.5 Statements . 405

32 API Reference 407
32.1 About Document . 407
32.2 Overview . 407

33 Release Notes 417
33.1 Platform Version 1.3 (Nov, 2019) . 417
33.2 Platform Version 1.2 (Sep, 2019) . 418
33.3 Platform Version 1.1 (Jul, 2019) . 418
33.4 Platform Version 1.0 (May, 2019) . 419

34 Further Reading 421

35 Glossary 423

36 Indices and tables 425

iv

Bayware Documentation

Welcome to Bayware!

Introduction 1

Bayware Documentation

2 Introduction

CHAPTER 1

Overview

1.1 Problem

Compute resources have become instantly available and at ever-finer levels of granularity whenever an ap-
plication requests them. Various orchestration solutions facilitate those requests in private data centers and
public clouds. Some solutions go even further and allow applications to seamlessly spin up compute resources
across multiple clouds and various virtualization platforms.

While compute resource management has greatly improved, connectivity provisioning in a muiticloud en-
vironment, on the contrary, is not so instant, seamless, and granular. Using a declarative language, the
application can set up a new workload anywhere in the world without delay, but its connectivity with other
workloads will depend on third-party configuration of multiple virtual or physical middleboxes–gateways,
routers, load balancers, firewalls–installed in between.

The SDN-style, configuration-centric connectivity model doesn’t allow applications to manage the commu-
nication environment in the same way as the computational environment. It is impossible for an application
to declare a workload connectivity requirement (i.e., intent) one time and then have this desired connectivity
applied each time a new workload instance appears in a private datacenter or a public cloud.

A pure application-level approach, in which communication intent translates into only HTTPS connections,
also doesn’t work. Confining all connectivity provisioning to a layer of mTLS tunnels while removing network
checkpoints between workloads oversimplifies inherent application communication environment complexities.
True, multi-layered security requires enforcing application intent at multiple levels, which implies middlebox
configuration is not eliminated. ‘

To make migration to clouds easier, faster, and more secure, the application connectivity ought to become
part of the application deployment code, with communication intent expressed in an infrastructure-agnostic
manner. As a result, deploying a workload instance in any cloud, on any virtualization platform would
automatically bring up both compute resources and desired connectivity. No middlebox configuration would
be required to establish secure connectivity between workloads in different clouds, clusters, or other trust
domains.

3

Bayware Documentation

1.2 Solution

The Service Interconnection Fabric (SIF) is a cloud migration platform that enforces connectivity policy and
provides service discovery functions for application services packaged as containers or virtual machines and
deployed in private data centers or public clouds. The SIF eliminates network configuration by capturing
and applying application communication intent as a service graph that is infrastructure-agnostic and based
entirely on application service topology.

The SIF is zero-trust right out of the box. An application itself defines its connectivity policy and executes
it at the time of workload deployment. The execution output are ephemeral security segments in the cross-
cloud network, connecting subsets of workloads together. As such, whenever a workload appears anywhere
in the fabric, it automatically receives the desired connectivity with other workloads as specified by the
application service graph. Zero-trust ensures no connectivity exists between workloads that was neither
specified nor requested.

In the SIF, connectivity is part of application deployment code. Moreover, the fabric itself is an
infrastructure-as-code component. As such, connectivity policies and fabric resources easily integrate into
the application CI/CD process. Whether rolling out an entire application or just a few microservices, the
required resources and connectivity come up automatically. The policy and resource code is reusable and
copy-paste portable across clouds.

The figure above presents the SIF software layers and their integration into a broader cloud infrastructure-
as-code stack. The SIF upper layer enforces application connectivity policy and provides service discovery
functions. The SIF bottom layer controls resource connectivity and facilitates resource deployment. In
this way, the application communication environment is fully abstracted from the underlying infrastructure
platforms. This allows an application to declare communication intent one time, using service identities
instead of infrastructure-dependent IP addresses.

The SIF is fast and easy to deploy. The fabric creates a complete set of identity, security, routing and
telemetry services automatically based on the service graph. No SDN or VNF solutions are required to
establish secure connectivity between application services in different clouds or clusters. CNIs and complete
logging and telemetry are built-in and configured automatically. As such, the fabric is ideal for hybrid clouds
and hybrid VM/container deployments.

1.3 Product Architecture

The SIF consists of Fabric Manager and three types of nodes: Orchestrator, Processor, and Workload.
Fabric Manager deploys nodes across clouds. Orchestrator controls connectivity policies. Processor secures
the trust domain boundaries by enforcing resource connectivity policy on orchestrator requests and service
connectivity policy on workload requests. Workload provides application services with connectivity and
service discovery functions in strict accordance with an application communication intent.

Bayware software components in the SIF are as follows:

• BWCTL CLI and BWCTL-API CLI tools (Fabric Manager);

• Policy Controller (Orchestrator nodes);

• Policy Engine (Processor nodes);

• Policy Agent (Workload nodes).

All Bayware software components belong to the SIF control plane only. The application data traverses Linux
kernel datapaths that are controlled by Policy Agents and Engines. The Policy Agent programs the Extended
Berkeley Packet Filter (eBPF) on its workload node and communicates application communication intent
to the desired Policy Engines and Agents. The Policy Engine validates connectivity requests, programs the
Open Virtual Switch (OVS) on its processor node, and forwards requests.

4 Chapter 1. Overview

Bayware Documentation

Fig. 1.1: SIF Cloud Software Stack

1.3. Product Architecture 5

Bayware Documentation

Fig. 1.2: SIF Product Architecture

This unique architecture allows the SIF to automatically generate, configure, and adapt secure connectivity
between application services across any set of public, private or hybrid clouds. Application deployment
tools communicate application intent to the SIF in a fully infrastructure-agnostic manner, and the SIF takes
care of all communication settings: VPCs, subnets, security groups, node firewalls, link encryption, address
translation, packet filtering, policy-based routing, and service discovery.

In summary, application connectivity becomes part of the application deployment code. While deploying an
application, the required resources and connectivity come up in the SIF automatically. This ensures fast,
easy, and secure cloud, multicloud, and hybrid cloud migration.

6 Chapter 1. Overview

CHAPTER 2

Managing Cloud Resources

2.1 Rethinking Resource Management

2.1.1 Moving to Clouds

Nowadays, it is just a matter of time before a company on its digitalization path faces a cloud migration
project. This endeavour could take many forms:

• moving workloads from a private data center to a public cloud (or back and forth),

• stretching an application across multiple VPCs in the same cloud,

• distributing microservices over various public clouds,

• dispatching workloads from a public cloud to a network edge.

In any of the above mentioned scenarios, the ability to set up, operate and maintain the resource layer of
cloud infrastructure in a resilient, secure, and efficient way becomes crucial for the company.

2.1.2 Leaving Configuration Behind

Traditional approaches to the high availability, precise isolation, and maintenance automation of infrastruc-
ture resources stop working the very moment these company resources need to operate in a heterogeneous
and dynamic environment.

Application services begin communicating over numerous and ever-changing administrative, security, tech-
nological, and geographical boundaries. In a traditional paradigm, moving any application service from one
walled-garden location to another requires reconfiguration of several platforms (data center, public cloud,
SD-WAN), at multiple levels (computational, network, application), by multiple teams (NetOps, SecOps,
DevOps, AppDevs).

A long waterfall-defined deployment cycle, wide variety of required skills, and risk of inconsistent policy are
among the major drawbacks of bringing old techniques to the cloud world.

7

Bayware Documentation

2.1.3 Managing Infrastructure as Code

In new realities, the management of the cloud resource layer commonly becomes part of the infrastructure-
as-code domain with its declarative language, ability to quickly reproduce deployments, consistency and
predictiveness of outcome.

Because the resource layer itself doesn’t solve the whole problem of infrastructure setup, operation and
maintenance, the cloud resources integrate into a broader cloud infrastructure-as-code stack.

The SIF cloud resource layer utilizes infrastructure platform capabilities, performs specific jobs, and passes
abstracted resources to an upper layer as outcome. This approach not only decouples the company infras-
tructure from various platform implementations, but guarantees policy consistency with synchronized
and instant response to changes across all layers.

2.2 Resource Deployment

Application services might need to be scaled-out in the same VPC, spread across several VPCs for higher
isolation, replicated to a new public cloud for better redundancy, or moved from a test to a production
multi-cloud environment. In the SIF, a single resource-copy-and-paste approach enables all of these use
cases.

First, the current state of the source VPC, cloud or multi-cloud environment is exported to a file. Next, the
resource instance names in the state file are changed to match a target environment. Finally, the current
state of the target VPC, cloud or multi-cloud environment is updated with new resources from the state file.
It works the same across different clouds, various regions, and multiple VPCs.

The SIF cloud resource layer performs jobs in Azure, AWS, and GCP on the following types of cloud
resources:

• VPC,

• gateway,

• subnet,

• security group,

• virtual machine.

Note: It’s easy to add new types of managed resources or to support a new cloud platform because the
SIF employs HashiCorp Terraform to work with infrastructure platform APIs.

After processing, the cloud resources are abstracted in the SIF as follows:

• fabric,

• VPC,

• node (i.e., orchestrator, processor, workload).

By abstracting the underlying infrastructure, the SIF allows a company to manage its cloud resources using
a small set of basic operations: create, show/export, delete. These operations can be performed on
a single node, entire VPC, or multi-cloud deployment (i.e., fabric). With the SIF, the multi-cloud resource
deployment becomes reproducible, secure, fast, and simple.

8 Chapter 2. Managing Cloud Resources

Bayware Documentation

Fig. 2.1: Resource Deployment in SIF

2.2. Resource Deployment 9

Bayware Documentation

2.3 Maintenance Automation

It is not enough to simply spin up a new virtual machine from a cloud image in order to add it to the
company cloud stack for application deployment. The setup of multiple infrastructure services–ssh, PKI,
telemetry, logs–often is part of the resource bootstrap. Also, in the course of resource operation, it may be
required that the machine change initial settings, restart hosted services, and upgrade software.

While moving to clouds, it is crucial to have in place a maintenance automation tool that allows a company
to automatically set up secure access to resources, to provide these resources with infrastructure services,
to start/stop services on those resources, and to upgrade software across infrastructure boundaries. No less
important is having secure transport between the tool and the distributed resources.

As new resources constantly appear, the maintenance automation tool and multicloud control plane must
transport dynamically adapt to changes. The tool and resources may exchange control traffic across public
network boundaries, and control flows may terminate in overlapping private IP address spaces. Resource
discovery, authentication, and authorization–along with control channel encryption–become necessary com-
ponents of multicloud maintenance automation.

The SIF offers a complete approach to resource maintenance automation, allowing a company to automati-
cally set up the following infrastructure services:

• SSH access,

• X.509 node certificate,

• control plane mTLS,

• telemetry,

• events,

• software upgrade.

Note: It’s easy to add new maintenance procedures or to modify existing maintenance procedures because
the SIF employs RedHat Ansible for task automation.

Again, all maintenance procedures are executed using another small set of basic operations: configure,
start/stop, update. Similar to the resource deployment operations, the maintenance can be performed on
a single node, entire VPC, or multi-cloud deployment (i.e., fabric).

2.4 Summary

Managing infrastructure resources as code allows a company to quickly generate deployments with predictive
outcome in any cloud. With the SIF, cloud resources integrate as a layer into a broader infrastructure-as-code
stack, abstracting application communication and computational environment from cloud platforms. As a
result, the SIF cloud software stack provides a company with a unified and easy-to-use set of resource man-
agement operations–e.g., create, configure, update, delete–across all clouds. As well, the SIF cloud software
stack implementation guarantees application policy consistency with synchronized and instant response to
changes across all infrastructure layers.

10 Chapter 2. Managing Cloud Resources

CHAPTER 3

Connectivity Policies

3.1 Layered Security

3.1.1 What is Segmentation?

Wikipedia notes: “Network segmentation in computer networking is the act or practice of splitting a computer
network into subnetworks, each being a network segment. Advantages of such splitting are primarily for
boosting performance and improving security.”

Network segmentation has become a widely-used practice since the inception of computer networks and,
in recent decades, evolved from the physical separation of Ethernet segments to the splitting of networks
into logical IP subnets, and from the filtering of packet flows down to TCP/UDP ports to the mutual
authorization of flow endpoints. The ability to restrict communication at the flow level paved the way for
the term microsegmentation.

Mostly, the network evolution path led to the layering of segmentation techniques, not replacing one with
another. On the one hand, the layered approach to segmentation has minimized the risk that a single breach
might compromise the entire communication environment. On the other hand, the introduced complexity
of managing multiple layers of defense has resulted in packet processing overhead and, much worse, a high
risk of getting inconsistent security policy.

In the time of cloud migration and multi-platform application deployment, the approach to network segmen-
tation is being revisited. Stretching VLANs and VPNs across clouds or computational platforms; updating
ACLs on hosts and network/cloud firewalls; and employing service discovery mechanisms unaware of service
reachability are not viable options for the segmentation any more. Neither is the option to confine the
segmentation to a single layer of mTLS tunnels while removing all the network checkpoints between services.
Instead, multi-layered segmentation is becoming a part of infrastructure-as-code practice and blending into
the application CI/CD pipelines.

3.1.2 Segmentation in Multicloud

11

Bayware Documentation

Service Connectivity Policy

The approach to microsegmentation in the service interconnection fabric embraces the layered-security con-
cept while enhancing it with a single source of security policy for all segmentation layers. The logical entity
called service graph fully defines security segments for application services in an abstract, infrastructure-
agnostic manner.

Fig. 3.1: Service Graph

Network connectivity between services, filtering packet flows, and mutual service discovery across various
clouds and computational environments (VM and container-based) are all governed in the service intercon-
nection fabric by the application service graph.

Resource Connectivity Policy

Segmentation at the resource layer reinforces the service segmentation. The logical entity called resource
graph represents abstracted computational resources in the service interconnection fabric.

The resource segmentation isolates each computational resource, e.g. physical server, VM or Kubernetes
worker node, from the other and ensures only the application services described in the service graph can
reach each other over the top of the resource layer.

12 Chapter 3. Connectivity Policies

Bayware Documentation

Fig. 3.2: Resource Graph

3.1. Layered Security 13

Bayware Documentation

3.2 Service Connectivity Policy

Microsegmentation in the service interconnection fabric is based on the application service identity and
communication intent, as opposed to the use of service IP/MAC addresses and associated routing/switching
configuration in traditional networks. This approach allows one to define–all at once and in advance–
the security policy for the application. And while the application services might eventually be dispersed
across private and public clouds for both VM and container environments, the policy specification remains
unchanged because it carries no infrastructure and environment dependencies.

The infrastructure-agnostic security policy uniformly governs application behavior at multiple communica-
tion layers. The service identity and communication intent determine:

• Network connectivity – reachability of the service by others in the network;

• Packet filtering – protocols and ports open for packet flows belonging to the service;

• Service discovery – capability of the service to advertise itself and find other services.

The service may have multiple roles, each defining communication intent in a different way. This allows for the
service to be exposed in multiple security segments while maintaining connectivity, filtering, and discovery
policies in each zone independently. The security segment is a logical entity of the service graph called
contract. Only the services that become parties in opposite roles in the same contract can communicate
with each other.

3.2.1 Network Connectivity

The contract determines IP reachability of one service by another in the service interconnection fabric. Only
the services acquiring opposite roles to the same contract can potentially reach each other.

The contract itself might even further restrict the service reachability. As an example, the network connec-
tivity policy might define that the opposite-role services must be within one hop from each other, in other
words, in the same VPC.

Another example of the network connectivity policy is unidirectional communication. The policy might
define that all services in a given role can receive data from the opposite-role services but are not allowed
to send any content into the network. A UDP-streaming service crossing multiple VPCs relies on such a
communication pattern.

3.2.2 Packet Filtering

Another part of the segmentation policy covered by the contract is packet filtering. In addition to packet
filtering at the protocol and port level, every new packet flow must be cryptographically authorized by every
policy processor before opening a connection in the network.

The packet filters at the opposite-role endpoints of the same flow mirror each other. An ingress rule for one
endpoint implies an automatically-generated, opposite-role rule. The rules are synchronously applied across
all clouds for all service endpoints. Moreover, the ingress and egress rules on both sides of the flow function
as stateful firewalls or, more precisely, reflexive ACLs.

Flow authorization happens before protocol and port filtering. It effectively blocks all communication except
the packet exchange between the opposite-role services. The flow authorization ensures the flow originator
always plays the role assigned by the service graph.

14 Chapter 3. Connectivity Policies

Bayware Documentation

3.2.3 Service Discovery

The application service in the service interconnection fabric is able to discover only the opposite-role ser-
vices. Moreover, only reachable and already-authorized remote service instances appear in the local service
discovery database.

The service discovery segmentation ensures the service at a given workload node can resolve only the opposite-
role instances that have been authorized and proved reachable from this particular node.

As an example, the network connectivity policy might specify that communication between services be
confined within a single VPC. If two pairs of opposite role service instances are deployed in two separate
VPCs, every single service will discover only one instance from its own VPC.

The service discovery segmentation is fully automatic and doesn’t require adding any specification to the
contract in order to be enacted.

3.3 Resource Connectivity Policy

The resource segmentation in the service interconnection fabric reinforces the service segmentation layer.
Splitting computational resources, i.e. workload nodes, into segments offers an additional layer of security
for applications running on these nodes and ensures only communication defined by the service graph are
present in the fabric.

Each computational resource in the service interconnection fabric possesses an X.509 certificate as a node
identity document on which all resource segmentation layers are built:

• Fabric segmentation - sandbox for application deployment with workload nodes isolated from the
outside world;

• Zone segmentation - group of workload nodes within the fabric whose inbound and outbound traffic is
regulated through policy;

• Workload segmentation - workload node isolation from the nodes in the same group.

The security policy for resource segmentation is infrastructure-agnostic and works the same in all clouds.

3.4 Summary

The service interconnection fabric offers a new approach to network segmentation in public and private
clouds for both VM and container environments. The solution is designed to provide high performance
and uncompromised security. The segmentation is part of the application deployment process, embedded
into infrastructure-as-code rather than coming from a disconnected network configuration system. The
single-source, infrastructure-agnostic policy in the form of service identity and communication intent doesn’t
sacrifice the layered-security approach but governs segmentation across layers in a consistent and real-time
manner.

3.3. Resource Connectivity Policy 15

Bayware Documentation

16 Chapter 3. Connectivity Policies

CHAPTER 4

Service Discovery

4.1 Overview

With Service Interconnection Fabric, services may scale in and out across VM and container environments;
communicating instances may appear in the same private data center or a thousand miles apart in different
clouds; instances may be instantiated in overlapping or even different–IPv4/6–address spaces; and each par-
ticular instance-to-instance interaction may have its own policy to support enterprise security or compliance
requirements.

In such a dynamic and heterogeneous environment, the DNS service must be intelligent, secure, and scalable.
An intelligent DNS reflects infrastructure fluidity at the application level without overburdening applications.
A secure DNS ensures only desired communication happens between application services. And a scalable
DNS does not have a single point of failure nor does it lock to a particular infrastructure or execution
environment.

The DNS service built into Service Interconnection Fabric offers these features without heavy lift-and-shift
migration, with practically zero-touch configuration, and with no maintenance required.

4.2 Architecture

Intelligent DNS is a fully distributed system without centralized DNS record management. Each workload
node receives its own personalized DNS resolver as a part of Policy Agent functionality.

When the policy controller assigns a communication role to a service instance on a workload node, the
workload node starts sending service discovery messages to opposite-role instances to populate their DNS
record databases with new entries. The discovery messages, signed by the policy controller, contain an
instance Relative Distinguished Name (RDN) and an instance Host Identifier (HID), among other fields.

The RDN identifies an instance service endpoint distinctly in the service interconnection fabric. The policy
agent automatically builds the RDN from three components: the host name and host location identifier of
the workload node on which the service instance is deployed plus the instance role identifier.

17

Bayware Documentation

The HID identifies an instance network endpoint distinctly in the service interconnection fabric. The HID is a
cryptographically generated address that decouples the application transport layer from the internetworking
layer (IP).

The policy agent creates a name resolution record in its database when it receives the service discovery
message. The agent forms the name resolution record by augmenting the RDN with the local zone name to
form a fully qualified distinguished name (FQDN) and assigning a virtual IP (VIP) to the newly-discovered
service instance. Additionally, the policy agent may create two service records: one for the service in a given
location and another, more general record, for the service itself.

The policy agent assigns credits to each name resolution record. Records with more credits have a higher
priority than records with fewer credits. This mechanism allows the policy agent to redirect a service record
to a newly-discovered service instance if the new instance has more credits than the existing instance.

To support zero-touch configuration, the service discovery procedure has both embedded keep-alive and
shutdown routines. For example, once a service instance shuts down, the associated records are removed
fabric-wide almost immediately.

Intelligent DNS works in private data centers and public clouds for VMs and containers offering seamless
and secure application connectivity across various security, technological, geographical, and administrative
boundaries.

Fig. 4.1: Intelligent DNS Architecture

18 Chapter 4. Service Discovery

Bayware Documentation

4.3 Specification

4.3.1 Design Principles

Distributed DNS Secure peer-to-peer service discovery combined with service instance authentication and
flow-level microsegmentation interconnects workload node DNS resolvers into a distributed, intelligent
DNS system without centralized record management.

Benefit: Secure, responsive, adjustable, and scalable DNS service with minimal overhead

Host Identity Services communicate with each other by means of virtual IPs (VIP) that are automatically
translated into cryptographically generated host identifiers/addresses (CGA). Communication is built
on host identity, not on host locator.

Benefit: DNS service resolves authenticated hosts only from VIP to CGA

Secure Service Discovery Workload nodes exchange authorized messages so that each service instance
discovers its opposite-role instance.

Benefit: Only authorized service instances may discover each other

Personalized Name Space Each workload node places the discovered remote instance names in the zone
meaningful to that node only e.g., different zones for private DCs, public cloud, and Kubernetes
clusters.

Benefit: Flexible DNS request routing without environment interdependencies

Personalized VIP Space Each workload node receives its own personalized address space for VIP alloca-
tion.

Benefit: Communicating services may be in overlapping IP-address spaces

Personalized Protocol-agnostic Name Resolution Each workload node may switch between IPv4
DNS or IPv6 DNS independently from other nodes (supported in coming version).

Benefit: Automatic translation between IPv4 and IPv6

4.3.2 Interface to Applications

Automatic FQDN Builder Each service instance receives a unique FQDN (within the service intercon-
nection fabric) built automatically from host identifier, location identifier, and instance role configura-
tion.

Benefit: Zero FQDN provisioning

Alternative Names A service instance can have multiple FQDNs, each corresponding to a different com-
munication role.

Benefit: Supports flow-level communication policy

Role-based Access Control Each service instance may propagate only its own role instance names and
resolve only opposite-role instance names.

Benefit: Protection from unsanctioned service discovery

Instance Affinity Service instances can query DNS using opposite-role instance affinity: role.namespace,
location.role.namespace, host.location.role.namespace.

Benefit: Automatic request re-routing

4.3. Specification 19

Bayware Documentation

Instance proximity DNS records are prioritized based on opposite-role instance proximity to the local
service instance. Proximity is defined as the cost of the path between two workload nodes. Cost can
be dynamically assigned to each link in service interconnection fabric by an external system and can
reflect interconnection quality, instance load, traffic cost, etc.

Benefit: Infrastructure-aware request routing

Responsiveness to Connectivity Failure A heartbeat allows detection of remote instance connectivity
failure.

Benefit: Minimize application downtime

Responsiveness to Instance Failure On instance shutdown, corresponding DNS records are removed
fabric-wide almost immediately.

Benefit: Minimize application downtime

REST API for Retrieving Local DNS Records The policy agent RESTful API allows for retrieving
all records from the DNS resolver database on each workload node.

Benefit: Open for integration with workload orchestrators

4.3.3 Deployment and Maintenance

Cloud-agnostic The DNS service is embedded in an infrastructure-agnostic service interconnection fabric
so it does not require services specific to any cloud or private data center.

Benefit: Not locked to any cloud infrastructure

Supports Both VM and Kubernetes Environments On each workload node, the DNS service is ex-
posed to service instances as a libnss library (via nsswitch.conf on VMs) or DNS resolver (via
CoreDNS on a Kubernetes worker node).

Benefit: Consistent DNS service across VM and container environments

Transparent to Applications The DNS service requires no changes to applications apart from updating
URLs and then forwarding requests to the service interconnection fabric DNS.

Benefit: Minimal changes to applications

DNS Resolver Policy Agent Component DNS resolver installation is part of policy agent deployment.

Benefit: Minimal footprint, no additional maintenance

CLI for DNS Service Adjustment The policy agent CLI allows for setting up name and VIP spaces on
each workload node.

Benefit: Minimal or no configuration

Seamless Migration The DNS service does not interrupt or degrade performance of existing DNS services
on workload nodes, allowing for a gradual and automatic migration as service instance communication
is switched from traditional networking to the service interconnection fabric.

Benefit: No lift-and-shift migration required

20 Chapter 4. Service Discovery

CHAPTER 5

Security Model

5.1 Isolation Levels

5.1.1 Concept

With the service interconnection fabric (SIF), organizations can divide application services distributed across
private and public clouds into isolated domains without network configuration and irrespective of geographic
location, virtualization platform, and IP/Ethernet addresses. Services may be running on physical servers
or VMs or containers.

IT teams can explicitly define micorsegments (contracts), specifying interaction patterns, firewall rules, and
data pathways. Each permission set within a contract is labeled as a distinct role. These roles, then, can be
attached to any application service.

As an application service instance binds to an endpoint on a workload node, the endpoint dynamically obtains
permissions based on the service role. In this way, the service instance will be able to establish authorized
connectivity with the policy set not only at the network endpoint, but through the entire infrastructure.

When the service instance initiates a new flow, every processor en route verifies permissions linked
to the service instance role before forwarding packets belonging to the flow. With the SIF, communication
policy preserves uniformity over different virtualization environments and across private and public clouds
while allowing for personalized forwarding, path protection, and load balancing down to the flow level.

The service-level segmentation is reinforced with the resource segmentation and separation of administration
duties. As such, the SIF security model relies on three levels of isolation: fabric, domain, and contract.

5.1.2 Fabric-level Isolation

A fabric isolates all its resources in their own fault domain. Resources within a fabric share a policy
controller—usually deployed for high-availability and scalability as a plurality of nodes—dedicated to that
fabric. The policy controller does not communicate with resources outside of the fabric.

21

Bayware Documentation

5.1.3 Domain-level Isolation

Within a fabric, administrative responsibilities are isolated from each other in domains. Multiple applica-
tions, for example, may be running on resources in a single fabric. However, the services and contracts for
one application may be administratively isolated from the services and contracts for another application
by placing them in distinct domains. By doing this, a unique administrative account manages services and
contracts for its domain only.

5.1.4 Contract-level Isolation

Resources (workloads) for a given application (isolated within a domain) receive contracts from a policy
controller (isolated within a fabric) that dictate allowed paths of communication. These contracts act
as waypoints between service endpoints (application microservice instances) running on workloads that
determine who can talk to whom. This level of micro-segmentation ensures that no data passes between
workloads without authorization from the policy controller.

5.2 Isolation Topology

Fig. 5.1 graphically demonstrates the three levels of isolation as they relate to an application.

• Resource Graph: represents fabric-level isolation containing all workload nodes and processor nodes
that are under the auspices of the same policy controller

• Service Graph: represents domain-level isolation containing services (service graph nodes) within an
application that communicate with each other

• Flow Graph: represents contract-level isolation containing policy (service graph edges) that allows
one service instance to communicate with another service instance

Table 5.1 summarizes the relationship between the Fabric, Domain, and Contract abstraction layers, their
graphical representation, and constituent elements.

Table 5.1: Security Model Abstraction Layers
No. Abstraction Layer Representation Node
1 Fabric Resource graph Resource
2 Domain Service graph Service
3 Contract Flow graph Endpoint

5.3 Security Entities

Two APIs facilitate communication with the policy controller: Northbound API and Southbound API.

5.3.1 Northbound API

The Northbound API provides a mechanism for automation systems to interact with the policy controller.
Tasks that can be performed via the policy controller GUI can also be performed programmatically through
the Northbound API.

A user will typically use this interface extensively when automating tasks.

22 Chapter 5. Security Model

Bayware Documentation

Fig. 5.1: Security Isolation Levels

5.3.2 Southbound API

The Southbound API provides a mechanism for the policy engines and policy agents to communicate with
the policy controller.

Communication on this interface is fully automated. A user will not directly interact with it.

As shown in figure below, there are four security entities: Administrator Credentials, Resource Certificate,
Service Token, and Flow Signature.

Resource Certificate

Each virtual machine in a given fabric uses an X.509 certificate to verify identity within a fabric. Hence, a
policy agent or policy engine can use credentials to establish communication with a policy controller only if
the policy agent or policy engine is running on a virtual machine recognized by the policy controller via its
X.509 certificate.

Once node identity is established, the X.509 certificate is used to

• create a secure communication control channel with the policy controller using mTLS

• create a secure communication data channel using IPsec

• find neighboring nodes using SeND (Secure Neighbor Discovery) protocol

• generate network endpoint identity using CGAs (Cryptographically Generated Addresses)

5.3. Security Entities 23

Bayware Documentation

Fig. 5.2: Security Model

24 Chapter 5. Security Model

Bayware Documentation

Service Token

If the Credential authorizes a policy agent to communicate with the policy controller and the Certificate
establishes the identity of a node that can operate within a fabric, then a Token authorizes a service to run
on an identified node with an authorized policy agent. When a service is authorized to run on a network
endpoint, the corresponding policy agent creates one or more service endpoints.

The domain administrator assigns roles associated with one or more contracts to a service created at the
policy controller. An authorized policy agent at a network endpoint creates a service endpoint for each role
assigned by the domain administrator to that service.

The domain administrator generates a token at the policy controller for a given service. The token consists
of a 128-bit key and a 128-bit value that form a key:value pair. The policy controller stores the key and
a hash of the value only. The domain administrator then authorizes a service at a network endpoint by
attaching the entire 256-bit key:value pair to a policy agent, which then queries the policy controller. If
the policy controller recognizes the key:value pair, it passes contract role information to the policy agent to
establish service endpoints. Recall that the contract role dictates how and to whom the service endpoint
can communicate.

Best practices necessitate that administrators treat tokens as short-lived security entities, rotating them
often and assigning them uniquely to service instances.

Flow Signature

Upon creating a service endpoint for a given contract role, the policy agent requests that the policy controller
send the contract policy to the policy agent in the form of a microprogram. This microprogram is crypto-
graphically bound to the service endpoint that is operating at the given network endpoint using an ECDSA
signature that covers IPv6 control packet headers. The IPv6 control packet headers carry the microprogram
in an extension header along with network endpoint (IPv6 SA), service endpoint (IPv6 FL), and contract
ID (IPv6 DA). Policy engines within the fabric use the policy to create flow state to interconnect authorized
service endpoints.

5.4 Summary

The security model of the service interconnection fabric relies on three levels of isolation and four security
entities. Fabric-level isolation confines resources to a single policy controller; domain-level isolation provides
for administrative isolation among applications; and contract-level isolation inserts policy waypoints along
communication paths between service endpoints.

These isolation levels are enforced using credentials that authorize administrators or automation systems
to communicate with the policy controller. Certificates corroborate the identity of nodes within a service
interconnection fabric that ultimately provides for a secure control channel (mTLS), secure data channel
(IPsec), secure neighbor discovery (SeND), and secure network endpoint identifiers (CGA). Tokens ensure
that only authorized service endpoints communicate through contracts over the service interconnection fabric.
Finally, ECDSA signatures provide for unaltered delivery of inband policy information to policy engines.

5.4. Summary 25

Bayware Documentation

26 Chapter 5. Security Model

CHAPTER 6

Introduction

6.1 Overview

The purpose of this guide is to lead you through four steps in creating your service interconnection fabric,
such as:

• deploying network and computational resources for your application in public clouds,

• configuring interconnection policy for cloud resources,

• configuring interconnection policy for application services,

• deploying application services on cloud resources.

As a result of following the prescribed procedures, your application services will be secured from each other
and the outside world, able to automatically discover each other, tolerant to cloud failures, and easily portable
across private and public clouds.

You will achieve this by representing cloud resources and application services–through resource graph
and service graph correspondingly–and making your resource and service segmentation policy fully
infrastructure-agnostic.

6.2 Fabric Components

You will deploy your service interconnection fabric using Bayware components as follows:

• Fabric Manager,

• Orchestrator Node,

• Processor Node,

• Workload Node.

You manage your application’s infrastructure via the fabric manager. Included with the fabric manager
are two command-line-interface tools: BWCTL and BWCTL-API. The former allows you to easily manage

27

Bayware Documentation

cloud resources and the latter to control resource and application policy. Instead of developing and deploying
numerous cloud-specific policies, you create infrastructure-agnostic policy once and copy-paste it across
private and public clouds, multiple VPCs in the same public cloud, or various public clouds.

The orchestrator is a unified point for the resource and application policy management. It might be initially
deployed as a single node–offering policy controller functionality only–and later enhanced with telemetry and
events nodes. Placing all of these components together, you receive a single source for creating and managing
all layers of security for your application in multicloud environment as well as in-depth metrics and detailed
logs to easily see at a glance the status of your application infrastructure in its entirety.

At a high level, the processor is an infrastructure-as-code component that secures data and control flows
between application services in a multicloud environment. The processor plays multiple roles: ssh jump-
host, microsegmentation firewall, and inter-VPC VPN gateway among others. However, the most remarkable
processor feature is the direct execution of your security policy without requiring any configuration. You
can install the processor policy engine with all its dependencies on any VM or physical server and have it
serving application traffic in a minute.

Each application workload node–either VM or Kubernetes worker–runs policy agent, a software driver that
connects a workload to your service interconnection fabric. The agent manipulates eBPF programs–which
process each and every packet coming to and from your application–all at the interface level. Additionally, the
agent has an embedded cross-cloud service discovery mechanism to serve DNS and REST requests from the
applications located on the node. The agent deployment and autoconfiguration takes just another minute.

6.3 Behind the Scene

The declarative language of BWCTL and BWCTL-API command-line tools abstracts all the specifics of
resource deployment and security policy management in hybrid cloud and multicloud environments. The
tools allow you to interact with cloud provider APIs, manage virtual machines and set up security policy.
So, a lot of activities happen in the background when you just type, for example,

$ bwctl create processor <vpc-name>
$ bwctl-api create link -s <source-processor> -t <target-processor>

Here is a brief outline of what happens behind the scene at each stage of service interconnection fabric
deployment.

(1) Creating fabric

• Setting up certificate authority

• Setting up Terraform state

• Setting up Ansible inventory

• Setting up ssh transport in jump-host configuration

(2) Creating VPC

• Creating virtual network

• Creating subnets

• Creating security groups

(3) Deploying orchestrator

• Creating VM with appropriate firewall rules

• Setting up policy controller containers

28 Chapter 6. Introduction

Bayware Documentation

• Deploying InfluxDB/Grafana for telemetry and ELK for events

• Creating DNS records and certificates

(4) Deploying processor or workload

• Creating VM with appropriate firewall rules

• Deploying policy engine or agent

• Deploying Telegraf for telemetry and Filebeat for events

• Deploying certificate for mTLS channel with orchestrator

(5) Setting up and interconnecting security zones

• Assigning processors and workloads to security zones

• Connecting processors

• Setting up IPsec encryption between processors and workloads

(6) Uploading communication rules and creating service graph

• Installing templates

• Setting up domain for application policy

• Specifying contracts by altering templates

• Assigning application services to contracts

(7) Deploying application

• Authorizing service endpoints with tokens

• Authorizing application packets at source and destination workloads and all transit processors

• Discovering service endpoints and auto-configuring local DNS

6.4 Summary

In the next four steps you will create an environment for multicloud application deployment in which the
infrastructure is just part of your application code and blends into application CI/CD process. You don’t
need to configure networks and clouds in advance in order to deploy application services. And when you
move services, the policy follows them. Also, a single source for your multilayered security policy ensures
there are no gaps or inconsistency in the application defense.

6.4. Summary 29

Bayware Documentation

30 Chapter 6. Introduction

CHAPTER 7

Deploy Resources

7.1 Set up Fabric

7.1.1 Spin up Fabric Manager

The first thing you will need to do is to create and/or choose a VPC for your Fabric Manager deployment.
Next, create a VM in this VPC using the Bayware Multicloud Service Mesh image from the Marketplace.

To quickly start from the Azure marketplace offering, simply search for Bayware, and click on the “Get It
Now” button to begin the download.

7.1.2 Update BWCTL CLI Tool

Upon successfully completing the creation of the new VM image, it is time to update all necessary packages
and dependencies for BWCTL. To do this, you will need to SSH into your newly created VM and switch to
root level access to update all packages as such:

]$ sudo su -

Next, to update BWCTL, run the command:

]# pip3 install --upgrade bwctl

To update the BWCTL-resources package, run the command:

]# pip3 install --upgrade bwctl-resources

To exit from the current command prompt once you have completed updating, run the command:

]# exit

31

Bayware Documentation

Fig. 7.1: Fig. Azure Fabric Manager marketplace offering

32 Chapter 7. Deploy Resources

Bayware Documentation

Configure BWCTL

Next, it’s time to create the BWCTL environment in the home directory of the current user (ubuntu).

First, start BWCTL running the command:

]$ bwctl init

You should see this output:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required):

In interactive mode, provide all required values when prompted.

Note: Press <Enter> to accept the default values.

After the initialization you should have a configuration similar to:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required): myorg3
[2019-09-25 17:30:30.113] Global
[2019-09-25 17:30:30.113] Cloud providers credentials file [~/.bwctl/credentials.yml]:
[2019-09-25 17:30:34.004] DNS hosted zone (value is required): poc.bayware.io
[2019-09-25 17:30:37.325] Debug enabled [true]:
[2019-09-25 17:30:42.062] Production mode enabled [true]:
[2019-09-25 17:30:44.548] Marketplace images to be used [false]:
[2019-09-25 17:30:48.624] Components
[2019-09-25 17:30:48.624] Family version [1.2]:
[2019-09-25 17:30:51.959] Cloud storage
[2019-09-25 17:30:51.959] Store bwctl state on AWS S3 [false]:
[2019-09-25 17:30:58.786] Store terraform state on AWS S3 [true]:
[2019-09-25 17:31:05.633] AWS S3 bucket name [terraform-states-sandboxes]:
[2019-09-25 17:31:12.933] AWS region [us-west-1]:
[2019-09-25 17:31:15.876] SSH keys
[2019-09-25 17:31:15.876] SSH Private key file []:
[2019-09-25 17:31:21.268] Configuration is done

To view the file with your cloud provider credentials, cat to where the cloud credentials.yml file was
specified during the initialization by running the command with the path to the file–in this example /home/
ubuntu/.bwctl/credentials.yml –as argument:

]$ cd /home/ubuntu/.bwctl/credentials.yml

You should see this output:

Add cloud-provider credentials that will be used when creating
infrastructure and accessing repositories.

aws:
(continues on next page)

7.1. Set up Fabric 33

Bayware Documentation

(continued from previous page)

In the AWS console, select the IAM service for managing users and keys.
Select Users, and then Add User. Type in a user name and check
programmatic access. Users require access to EC2, S3, and Route53.
Copy and paste the secret access key and key ID here.
aws_secret_access_key:
aws_access_key_id:

azr:
Azure provides detailed steps for generating required credentials
on the command line, which you can find at this URL:
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-

↪→configure#set-up-terraform-access-to-azure
azr_client_id:
azr_client_secret:
azr_resource_group_name:
azr_subscription_id:
azr_tennant_id:

gcp:
Google uses a GCP Service Account that is granted a limited set of
IAM permissions for generating infrastructure. From the IAM & Admin
page, select the service account to use and then click "create key"
in the drop-down menu on the right. The JSON file will be downloaded
to your computer. Put the path to that file here.
google_cloud_keyfile_json:

Use your editor of choice (ex: vim, nano) to add your public cloud credentials to credentials.yml.

Create Fabric

The next step is to create a fabric. The fabric acts as a namespace into which your infrastructure components
will be deployed.

Note: The fabric manager allows you to create multiple fabrics to isolate various applications or different
environments.

To get started, SSH into your Fabric Manager VM and enter the BWCTL command prompt:

]$ bwctl

You should be at the bwctl prompt:

(None) bwctl>

Now, to create a new fabric, run the command with your fabric name–in this example myfab2 –as the
argument:

(None) bwctl> create fabric myfab2

You should see output similar to:

34 Chapter 7. Deploy Resources

Bayware Documentation

[2019-09-25 17:33:24.563] Creating fabric: myfab2...
...
[2019-09-25 17:33:29.901] Fabric 'myfab21' created successfully

To configure the fabric, run the command with your organization name–in this example myorg2 –as the
argument:

(None) bwctl> configure fabric myfab2

You should see output similar to:

[2019-09-25 17:34:29.730] Install CA for fabric 'myfab2'
...
[2019-09-25 17:34:36.859 Fabric 'myfab2' configured successfully

To verify the new fabric has been created with the argument provided, run the command:

(None) bwctl> show fabric

You should see output similar to:

[2019-09-25 17:35:50.356] Available fabrics listed. Use “bwctl set fabric FABRIC_NAME”␣
↪→to select fabric.

FABRIC
myfab2

Now, set BWCTL to the new fabric by running this command:

(None) bwctl> set fabric myfab2

You should see output similar to:

[2019-09-25 17:36:22.476] Active fabric: 'myfab2'

Notice that your bwctl prompt has changed, now showing the active fabric:

(myfab2) bwctl>

7.2 Create Orchestrator

Now that you have setup your Fabric Manager, and created a new Fabric, it’s time to create a VPC with
Policy Orchestrator Nodes.

7.2.1 Create VPC

Once you are in the BWCTL command prompt, show a list of available VPC regions by running this
command:

(myfab2) bwctl> show vpc --regions

You should see the list of the regions, in which you can create your VPC, similar to:

7.2. Create Orchestrator 35

Bayware Documentation

aws:
ap-east-1
ap-northeast-1
ap-northeast-2
ap-south-1
ap-southeast-1
ap-southeast-2
ca-central-1
eu-central-1
eu-north-1
eu-west-1
eu-west-2
eu-west-3
sa-east-1
us-east-1
us-east-2
us-west-1
us-west-2

azr:
australiaeast
australiasoutheast
brazilsouth
canadacentral
centralindia
centralus
eastasia
eastus
eastus2
japaneast
northcentralus
northeurope
southcentralus
southeastasia
southindia
westcentralus
westeurope
westus
westus2

gcp:
asia-east1
asia-east2
asia-northeast1
asia-northeast2
asia-south1
asia-southeast1
australia-southeast1
europe-north1
europe-west1
europe-west2
europe-west3
europe-west4
europe-west6

(continues on next page)

36 Chapter 7. Deploy Resources

Bayware Documentation

(continued from previous page)

northamerica-northeast1
southamerica-east1
us-central1
us-east1
us-east4
us-west1
us-west2

Now, to create a new VPC for orchestrator nodes, run the command with the cloud and region names–in
this example azr and westus, respectively, as an argument:

]$ bwctl> create vpc azr westus

You should see output similar to:

[2019-09-25 17:36:58.649] Creating VPC: azr1-vpc-myfab2...
...
[2019-09-25 17:38:26.089] VPCs ['azr1-vpc-myfab2'] created successfully

Note: The VPC name has been autogenerated. Use this name from the command output at the next step.

7.2.2 Create Controller Node

To create a controller node for the orchestrator, run this command with the orchestrator VPC name–in this
example azr1-vpc-myfab2 –as argument:

(myfab2) bwctl> create orchestrator controller azr1-vpc-myfab2

You should see output similar to:

[2019-09-25 17:39:48.091] Creating new orchestrator 'azr1-c01-myfab2'...
...
[2019-09-25 17:43:56.811] ['azr1-c01-myfab2'] created successfully
[2019-09-25 17:43:56.840] Generating SSH config...

Note: The orchestrator node name has been autogenerated. Use this name at the next step.

Next, configure the orchestrator node by running this command with the orchestrator node name–in this
example azr1-c01-myfab2 –as argument:

(myfab2) bwctl> configure orchestrator azr1-c01-myfab2

You should see output similar to:

[2019-09-25 17:44:38.177] Setup/check swarm manager on orchestrator 'azr1-c01-myfab2'
...
[2019-09-25 17:50:14.166] Orchestrators: ['azr1-c01-myfab2'] configured successfully

(continues on next page)

7.2. Create Orchestrator 37

Bayware Documentation

(continued from previous page)

[2019-09-25 17:50:14.166] IMPORTANT: Here is administrator's password that was used to␣
↪→initialize controller. Please change it after first login
[2019-09-25 17:50:14.166] Password: RWpoi5RkMDBi

Note: Be sure to write down the PASSWORD as it appears on your screen, it will be needed later.

To login to the orchestrator, you will use the FQDN of orchestrator northbound interface (NBI).

The FQDN of orchestrator NBI has been auto-generated on the prior step and in this example has the
structure as follows:

orchestrator-myfab2.myorg2.poc.bayware.io

Note: The FQDN of orchestrator NBI is always defined in the following manner: orchestrator-<fabric>.
<company>.<DNS hosted zone> wherein company and DNS hosted zone are from the fabric management
configuration and same for all fabrics.

Authenticate into the orchestrator via a web browser and use the following information:

• Orchestrator URL - FQDN of orchestrator NBI,

• Domain - default,

• Username - admin,

• Password - PASSWORD from the prior step.

7.3 Create Processor and Workload

The next step is very similar to step 3 where you created a VPC with Policy Orchestrator Nodes, however,
now you must create the Processor and Workload nodes within a new VPC. Be aware that some of the
commands may appear very similar to prior commands, however they do have different consequences.

7.3.1 Create VPC

To create a new VPC for application deployment, with the cloud and region names– in this example azr
and westus-as an argument:

(myfab2) bwctl> create vpc azr westus

You should see output similar to:

[2019-09-25 17:51:51.688] Creating VPC: azr2-vpc-myfab2...
...
[2019-09-25 17:52:50.803] VPCs ['azr2-vpc-myfab2'] created successfully

7.3.2 Create Processor Node

Next, to create a processor, run the command with the target VPC name as an argument:

38 Chapter 7. Deploy Resources

Bayware Documentation

Fig. 7.2: Orchestrator Login Page

7.3. Create Processor and Workload 39

Bayware Documentation

(myfab2) bwctl> create processor azr2-vpc-myfab2

You should see output similar to:

[2019-09-25 17:53:22.613] Creating new processor 'azr2-p01-myfab2'...
...
[2019-09-25 17:57:27.735] ['azr2-p01-myfab2'] created successfully
[2019-09-25 17:57:27.763] Generating SSH config...

To configure the processor, you will use the FQDN of orchestrator southbound interface (SBI).

The FQDN of orchestrator SBI has been auto-generated on the prior step and in this example has the
structure as follows:

controller-myfab2.myorg2.poc.bayware.io

Note: The FQDN of orchestrator SBI is always defined in the following manner: controller-
<fabric>.<company>.<DNS hosted zone>

To configure the processor, run the command with the FQDN of orchestrator SBI – in this example
controller-myfab2.myorg2.poc.bayware.io as an argument:

(myfab2) bwctl> configure processor azr2-p01-myfab2 --orchestrator-fqdn controller-
↪→myfab2.mayorg2.poc.bayware.io

You should see output similar to:

[2019-09-25 17:58:58.573] Generate ansible inventory...
...
[2019-09-25 18:00:18.506] Processors ['azr2-p01-myfab2'] configured successfully

To start the processor, run the command:

(myfab2) bwctl> start processor azr2-p01-myfab2

You should see output similar to:

[2019-09-25 18:00:44.719] Processors to be started: ['azr2-p01-myfab2']
...
[2019-09-25 18:00:47.537] Processors ['azr2-p01-myfab2'] started successfully

7.3.3 Create Workload Node

Now create a new workload in the current VPC, run the command:

(myfab2) bwctl> create workload azr2-vpc-myfab2

You should see output similar to:

[2019-09-25 18:03:26.462] Creating new workload 'azr2-w01-myfab2'...
...

(continues on next page)

40 Chapter 7. Deploy Resources

Bayware Documentation

(continued from previous page)

[2019-09-25 18:06:24.269] ['azr2-w01-myfab2'] created successfully
[2019-09-25 18:06:24.297] Generating SSH config...

To configure the workload, run the command with the FQDN of orchestrator SBI – in this example
controller-myfab2.myorg2.poc.bayware.io as an argument:

(myfab2) bwctl> configure workload azr2-w01-myfab2 --orchestrator-fqdn controller-myfab2.
↪→myorg2.poc.bayware.io

You should see output similar to:

[2019-09-25 18:07:17.658] Generate ansible inventory...
...
[2019-09-25 18:08:25.858] Workloads ['azr2-w01-myfab2'] configured successfully

To start the workload, run the command:

(myfab2) bwctl> start workload azr2-w01-myfab2

You should see output similar to:

[2019-09-25 18:09:18.375] Workloads to be started: ['azr2-w01-myfab2']
...
[2019-09-25 18:09:21.495] Workloads ['azr2-w01-myfab2'] started successfully

7.3.4 Check Resource Graph

To verify that both the processor and workload nodes have joined the service interconnection fabric, go to
orchestrator and click on Resource Graph.

7.4 Summary

7.4.1 Review Steps

You now have an environment for multi-cloud application deployment with two core components–fabric
manager and policy orchestrator.

The fabric manager allows you to add or remove cloud resources in AWS, Azure, and GCP to satisfy your
application’s computational needs. Whereas the policy orchestrator is a tool for over-the-top segmentation
of the application services deployed on those resources.

For practice purposes, you have already set up one VPC with the policy processor, securing the location,
and one workload node, ready for deployment of an application service. You can now add more workload
nodes to the VPC and/or create more VPCs with processor and workload nodes in each.

At this point, you can exit from the BWCTL prompt by running the command:

(myfab2) bwctl> quit

7.4. Summary 41

Bayware Documentation

Fig. 7.3: Fig. Orchestrator Resource Graph Page

42 Chapter 7. Deploy Resources

Bayware Documentation

7.4.2 Next Step

At the next step, you will create a resource interconnection policy for your workload nodes. For now, the
nodes you have created are isolated from each other and the external world.

Before you start the deployment of resources in your service interconnection fabric, you need to make sure
you have:

• a Microsoft Azure account to obtain a copy of the fabric manager image from the Bayware Multicloud
Service Mesh offer in Azure Marketplace;

• an AWS account to backup the fabric manager configuration in s3 and create orchestrator DNS record
in Route53.

Note: Each section of this tutorial will take approximately 20 minutes to complete.

7.4. Summary 43

Bayware Documentation

44 Chapter 7. Deploy Resources

CHAPTER 8

Create Resource Connectivity Policy

8.1 Preparation

To set up the resource connectivity policy in your service interconnection fabric you will need an access to
the fabric manager and the policy orchestrator created in the prior step.

All the tasks presented in this tutorial can be accomplished using either orchestrator Web-interface or
BWCTL-API command-line tool. The tutorial shows how to perform them in BWCTL-API CLI.

Note: This tutorial will take approximately 10 minutes to complete.

8.1.1 Update BWCTL-API Tool

To make sure you are working with the latest version of software, update the BWCTL-API CLI tool already
installed on your fabric manager node. To do this, you will need to SSH into the fabric manager node and
switch to root level access to update all packages as such:

]$ sudo su -

Next, to update BWCTL-API, run this commands:

]# apt-get update
]# apt-get --only-upgrade install bwctl-api

To exit from the current command prompt once you have completed updating, run this command:

]# exit

45

Bayware Documentation

8.1.2 Configure BWCTL-API

Before you can run BWCTL-API, you must configure the tool with your orchestrator credentials from the
prior step:

• Orchestrator URL - FQDN of orchestrator NBI

• Domain - default

• Username - admin

• Password - PASSWORD from the prior step.

You store configuration locally in the file called config.yaml located at ~/.bwctl-api/config.yml.

To edit information in the config.yml file, run this command:

]$ nano /home/ubuntu/.bwctl-api/config.yml

After editing, the config.yml file in this example contains:

hostname: 'orchestrator-myfab2.myorg2.poc.bayware.io'
domain: 'default'
login: 'admin'
password: 'RWpoi5RkMDBi'

8.2 Set up Zone

To set up resource policy for the processor and workload nodes you have already created, all you need is to
put them in security zones.

8.2.1 Create Zone

First, create the new zone by running this command with a desired zone name (any string without spaces)–in
this example azure-uswest as an argument:

]$ bwctl-api create zone azure-uswest

You should see output similar to this:

[2019-09-26 19:26:52.543] Zone 'azure-uswest' created successfully

8.2.2 Add Processor to Zone

Next, assign the processor to the zone by running this command with the processor name–in this example
azr2-p01-myfab2 as an argument:

]$ bwctl-api update zone azure-uswest -a azr2-p01-myfab2

You should see output similar to this:

[2019-09-26 19:27:58.424] Processor 'azr2-p01-myfab2' assigned to zone 'azure-uswest'
[2019-09-26 19:27:58.424] Zone 'azure-uswest' updated successfully

46 Chapter 8. Create Resource Connectivity Policy

Bayware Documentation

8.2.3 Add Workload to Zone

Finally, put the location with workload nodes into the zone by running this command with the location
name–in this example azr2 as an argument:

]$ bwctl-api update location azr2 -z azure-uswest

You should see output similar to this:

[2019-09-26 19:29:29.498] Location 'azr2' updated successfully

Note: Node’s default location name is the left outmost part of the name of the VPC, in which the node is
created, as for example: vpc-name: azr2-vpc-myfab2 ==> location-name: azr2

At this point, you can open the orchestrator resource graph page and see the workload node now is connected
to the processor node.

Fig. 8.1: Fig. Orchestrator Resource Graph Page

8.2. Set up Zone 47

Bayware Documentation

8.3 Interconnect Zones

To interconnect zones, you must specify a link between two processor nodes located in the zones. In the link
specification, you can use references to already deployed nodes or nodes you are planning to create later.

8.3.1 Declare Processor

If the processor node doesn’t exist yet, declare the node by running this command with the expected node
name–in this example gcp1-p01-myfab2 as an argument:

]$ bwctl-api create resource gcp1-p01-myfab2 -type processor -l default

You should see output similar to this:

[2019-09-26 19:30:16.487] Resource 'gcp1-p01-myfab2' created successfully

8.3.2 Specify Link

To specify a link between nodes, run this command with the source and target processor node names–in this
example azr2-p01-myfab2 and gcp1-p01-myfab2 as arguments:

]$ bwctl-api create link -s gcp1-p01-myfab2 -t azr2-p01-myfab2

You should see output similar to this:

[2019-09-26 19:30:52.559] Link 'azr2-p01-myfab2_gcp1-p01-myfab2' created successfully

At this point, you can open the orchestrator page called Resources and see the operational status of your
resources– active for already running nodes and init for declared-only nodes.

8.4 Summary

8.4.1 Review Steps

In a couple steps you have created and applied the resource interconnection policy for your workload nodes.

In step one, the workload node location received permission to join the fabric using a particular processor,
so the workload node automatically established a security association with the processor.

In step two, the processor was authorized to automatically connect to another processor–as soon as the latter
is deployed–establishing in this way a secure communication channel between clouds for workload nodes.

8.4.2 Next Step

At the next step, you will create infrastructure-agnostic service interconnection policy for your application.
As for now, each processor node keeps acting in its default-deny mode by blocking all data communications
from the workload nodes attached to it.

48 Chapter 8. Create Resource Connectivity Policy

Bayware Documentation

Fig. 8.2: Fig. Orchestrator Resources Page

8.4. Summary 49

Bayware Documentation

50 Chapter 8. Create Resource Connectivity Policy

CHAPTER 9

Create Service Connectivity Policy

9.1 Preparation

To set up the service connectivity policy in your service interconnection fabric you will need an access to the
fabric manager and the policy orchestrator.

All the tasks presented in this tutorial can be accomplished using either orchestrator Web-interface or
BWCTL-API command-line tool. The tutorial shows how to perform them in BWCTL-API CLI.

Note: This tutorial will take approximately 10 minutes to complete.

9.2 Upload Communication Rules

You can program your own communication rules using the policy orchestrator SDK or start with a default
set of rules coming with BWCTL-API tool. To upload the default set of rules, run this command:

]$ bwctl-api create template default

You should see this output:

[2019-09-26 19:41:53.528] Template 'default' created successfully

9.3 Create Service Graph

9.3.1 Create Domain

To create a namespace for your application policy, run this command with a desired domain name (any
string without spaces)–in this example myapp as an argument:

51

Bayware Documentation

]$ bwctl-api create domain myapp

You should see output similar to this:

[2019-09-26 19:42:38.726] Domain 'myapp' created successfully

9.3.2 Specify Contract

To specify a security segment in the newly created namespace, run this command with a desired contract
name (any string without spaces) preceding the domain name–in this example frontend@myapp as an argu-
ment:

]$ bwctl-api create contract frontend@myapp

You should see output similar to this:

[2019-09-26 19:43:13.294] Contract 'frontend@myapp' created successfully

9.3.3 Name Service

To name a service in the newly created namespace, run this command with a desired service name (any
string without spaces) preceding the domain name–in this example http-proxy@myapp as an argument:

]$ bwctl-api create service http-proxy@myapp

You should see this output:

[2019-09-26 19:43:45.779] Service 'http-proxy@myapp' created successfully

9.3.4 Authorize Service

To authorize the newly created service to access the security segment, you have to assign the service a role
in the contract.

To check available roles, run this command with the contract name–in this example frontend@myapp as an
argument:

]$ bwctl-api show contract frontend@myapp

You should see output similar to this:

apiVersion: policy.bayware.io/v1
kind: Contract
metadata:

description: frontend
domain: myapp
name: frontend

spec:
contract_roles:

(continues on next page)

52 Chapter 9. Create Service Connectivity Policy

Bayware Documentation

(continued from previous page)

- cfg_hash: c40f2ddc0843e983a4ea4088e2ea0f8e
description: null
id: 1
ingress_rules:
- {}
name: originator
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 0
service_rdn: originator.frontend.myapp
stat_enabled: false

- cfg_hash: 84dcec61d02bb315a50354e38b1e6a0a
description: null
id: 2
ingress_rules:
- {}
name: responder
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 1
service_rdn: responder.frontend.myapp
stat_enabled: false

enabled: true
template: default

Note: The contract specification always includes two roles. A unique role identifier is built using such
notation – <role_name>:<contract_name>.

To assign a contract role to the service, run this command with the service name and the contract role–in
this example originator:frontend as an argument:

]$ bwctl-api update service http-proxy@myapp -a originator:frontend

You should see output similar to this:

[2019-09-26 19:44:23.626] Service 'http-proxy@myapp' updated successfully

To verify that your application policy is now in place, go to orchestrator, select your application domain and
click on Service Graph.

9.3. Create Service Graph 53

Bayware Documentation

Fig. 9.1: Fig. Application Service Graph Page

54 Chapter 9. Create Service Connectivity Policy

Bayware Documentation

9.4 Summary

9.4.1 Review Steps

You now have set up an infrastructure-agnostic segmentation policy for your application.

Firstly, you uploaded a template that implements default communication rules of interaction between appli-
cation services in multi-cloud environment.

Secondly, you created a security segment–called contract using the template and specified that one of your
application services is authorized to access this segment in a particular role.

9.4.2 Next Step

At the final step, you will deploy authorized application services on workload nodes in your service intercon-
nection fabric.

No changes to application code, no proxies in between, and no network configuration is needed. Just
install existing packages alongside with service authorization tokens and you will automatically receive
multicloud secure segmentation, service discovery, and on-the-fly traffic rerouting for disaster recovery and
cost optimization.

9.4. Summary 55

Bayware Documentation

56 Chapter 9. Create Service Connectivity Policy

CHAPTER 10

Deploy Application

10.1 Preparation

To deploy an application in your service interconnection fabric, you will need access to the fabric manager
and the policy orchestrator.

Note: This tutorial will take approximately 10 minutes to complete.

10.2 Generate Token

To generate a new authorization token for your application service, run this command using
service_name@contract_name–in this example http-proxy@myapp as an argument:

]$ bwctl-api create service_token http-proxy@myapp

You should see output similar to this:

apiVersion: policy.bayware.io/v1
kind: ServiceToken
metadata:

token_ident: 00c1babd-3197-465a-beec-6d144e53d4ef:46a55e4963263260c3d61eb4b4b67882
spec:

domain: myapp
expiry_time: 30 Sep 2020 18:41:52 GMT
service: http-proxy
status: Active

57

Bayware Documentation

Warning: Token comprises two parts–token identity and token secret–separated by a colon. This is the
only time you can see the token secret. Be sure to copy the entire TOKEN as it appears on your screen,
it will be needed later.

10.3 Deploy Service

10.3.1 SSH to Workload Node

To deploy the service on the workload node, first ssh to the workload node from your fabric manager as such:

]$ ssh azr2-w01-myfab2

Note: SSH service is set up automatically for easy and secure access to workload nodes in your service
interconnection fabric.

When you are on the workload node, switch to root level access:

[ubuntu@azr2-w01-myfab2]$ sudo su -

10.3.2 Add Token

Next, edit the policy agent token file by running this command:

]# nano /opt/bayware/ib-agent/conf/tokens.dat

Add the token to the tokens.dat file and save the file, which in this example will contain after editing:

00c1babd-3197-465a-beec-6d144e53d4ef:46a55e4963263260c3d61eb4b4b67882

To apply the token, reload the policy agent by running this command:

]# systemctl reload ib-agent

At this point, you can visit the policy orchestrator and find a registered endpoint on the Service Graph
page of your application.

10.3.3 Install Service

Now, you can install your application service on this workload node. In this example, a package called
getaway-proxy installs by running the command:

]# apt-get install getaway-proxy

The service automatically discovers all remote services sharing the same contract. So, edit the application
service configuration file to update the remote service URL, by running this command:

]# nano /opt/getaway-proxy/conf/app.conf

58 Chapter 10. Deploy Application

Bayware Documentation

Fig. 10.1: Fig. Service Graph with Registered Service Endpoint

10.3. Deploy Service 59

Bayware Documentation

After editing, the service configuration file in this example contains:

WS_APP = 'http://responder.frontend.myapp.ib.loc:8080/'

Note: The FQDN part of remote service URL is automatically built in such a manner:
<role>.<contract>.<domain>.ib.loc

Finally, to start the application service, run this command:

]# systemctl start getaway-proxy

10.4 Summary

You have successfully installed the application service on the workload node in your service interconnection
fabric.

Your application policy for this service is infrastructure-agnostic and allows the service to access only partic-
ular security segment. You can move this service across workload nodes in multiple clouds and the security
segment will expand or shrink automatically.

The service will automatically discover the opposite-role services in its security segment as those services
will go up or down across multiple clouds.

60 Chapter 10. Deploy Application

CHAPTER 11

Clean up

If you would like to completely delete your current fabric installation, follow these commands in order to
do so. Please note, this operation is irreversible and very destructive, do exercise extreme caution when
executing this procedure!

To delete the entire service interconnection fabric, first start BWCTL by running this command:

]$ bwctl

You should see output with your fabric name similar to this:

(myfab2) bwctl>

Now, export the current fabric configuration by running this command:

(myfab2) bwctl> export fabric myfab2.yml

You should see output similar to this:

[2019-09-27 21:24:52.558] Exporting to 'myfab2.yml'
[2019-09-27 21:24:52.670] Fabric configuration exported successfully

To delete all fabric components, run this command:

(myfab2) bwctl> delete batch myfab2.yml

You should see output similar to this:

[2019-09-27 21:25:23.189] Deleting batch: file='myfab2.yml', input=format='yaml', dry-
↪→run=False
[2019-09-27 21:25:23.199] Found batch 'myfab2' (Fabric "myfab2" export at Thu Oct 3␣
↪→21:24:52 2019) with 6 objects
[2019-09-27 21:25:23.199] Fabric: ['myfab2']
[2019-09-27 21:25:23.199] Vpc: ['azr1-vpc-myfab2', 'azr2-vpc-myfab2']

(continues on next page)

61

Bayware Documentation

(continued from previous page)

[2019-09-27 21:25:23.199] Orchestrator: ['azr1-c01-myfab2']
[2019-09-27 21:25:23.199] Processor: ['azr2-p01-myfab2']
[2019-09-27 21:25:23.199] Workload: ['azr2-w01-myfab2']
[2019-09-27 21:25:23.199] Do you want to delete these objects? [y/N]

Type y and press Enter:

y

You should see output similar to this:

[2019-09-27 21:25:29.159] Fabric 'myfab2' is going to be deleted with all nested objects
...
[2019-09-27 21:44:55.341] Fabric 'myfab2' deleted successfully

Once the BWCTL CLI commands finish running, you may safely delete the fabric manager’s VM and cor-
responding components via the Azure Console. Also, you can delete the S3 bucket used for fabric manager’s
state backup via the AWS Console.

62 Chapter 11. Clean up

CHAPTER 12

Deploying Service Interconnection Fabric

12.1 Cloud Infrastructure

12.1.1 Introduction

This tutorial gives the user hands-on experience with Bayware’s SDK, Orchestrator, Processors, and Agents.
By following the steps outlined below, you will create a Bayware network that spans three public cloud
providers, manually deploy a microservice-based application called Getaway App, use Ansible to deploy a
second microservice-based application called Voting App, and finally use Bayware’s Network Microservices
to experience the simplicity in managing your network in a hybrid cloud environment.

To use this tutorial, you should have already received an email from Bayware with an attached personal
Sandbox Installation Summary (SIS) page. If you have not received this email or have not yet contacted
Bayware regarding your interest in running this tutorial, please reach out to us from our contacts page.
Alternatively, you may follow along by referring to an example SIS.

This tutorial assumes you have internet access, a web browser, and a terminal window all running on the
same computer. Your computer should have an ssh client installed and you should be familiar with using
and executing commands using a command-line interface. This tutorial runs equally well in Linux, MacOS,
and Windows.

12.1.2 Tutorial Outline

This tutorial is broken up into the following steps.

1. Setup Enterprise Cloud Infrastructure

2. Deploy Service Interconnection Fabric for Applications

3. Deploy Application 1 - Getaway App

a. Manually Install Application Microservices with Bayware Interface

b. Demonstrate Microservice Mobility

63

https://www.bayware.io/company

Bayware Documentation

c. Demonstrate Policy Enforcement with Network Microservices

d. Delete Application & Clean VMs

4. Deploy Application 2 - Voting App

a. Use Ansible to Install Application Microservices with Bayware Interface

b. Demonstrate Microservice Mobility

c. Demonstrate Policy Enforcement with Network Microservices

d. Delete Application & Clean VMs

12.1.3 Enterprise Cloud Infrastructure

Compute Resources

You have been tasked with deploying two microservice-based applications in a multi-cloud environment.
The cost and service-level differences among public cloud providers are substantial enough that you need to
ensure easy mobility of your microservices from one public cloud to another and, moreover, guarantee that
your customers are using your resources in an efficient, cost-effective manner. Security requirements and
other policy enforcement considerations are tantamount to a successful deployment.

Imagine that you have setup your enterprise cloud infrastructure using 17 virtual machines (VMs) spread
across Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft’s Azure. For security
concerns, you will manage your network from a single node. This node, VM1 or aws-bastion (see your SIS
page), is called the Customer Command Center (CCC). All interaction with VM2 through VM17 takes place
from your CCC. As such, you have ssh password access to your CCC and ssh key access to all other VMs
from your CCC.

Since you’ll be referring to it frequently, keep a copy of the SIS available that you received in the Welcome
to the Bayware Tutorial email. (Alternatively, you may refer to the example SIS that is in this tutorial. In
that case, you will have no VM resources, but you will be able to read through the tutorial in context.)

On your SIS page, note that this tutorial may refer to the VMs in the table using either the VM number
indicated in column one or the host name indicated in column two. For example, in the next section you
will be asked to log into the Bayware processor in GCP. The tutorial will refer to this VM as either VM12
(its VM number) or gcp-p1-382fd7 (its host name). Since the suffix of each host name is user- (or sandbox,
sb-) specific, the tutorial would, for instance, abbreviate the host name associated with VM12 as gcp-p1.

From your CCC, you may log into other VMs using their public IP addresses or their truncated host name.
When the tutorial uses a public IP address, it will be referred to as VM<num>-IP. So the IP address for
VM12 is written as VM12-IP, which can easily be referenced from the table in the SIS. The /etc/hosts file
on the CCC, however, has been pre-configured to map truncated host names with their IP addresses. So
you can login to gcp-12-382fd7, for instace, using ssh@gcp-12 from the CCC.

Web pages used throughout the tutorial use FQDNs and are listed near the top of your SIS.

Command Center

So let’s get started with some typing by logging into your CCC from your local computer using the username
(centos) and the password listed in the table on your SIS for aws-bastion. For your convenience, you can
use the bastion’s FQDN, which should look something like ap382fd7.sb.bayware.io. You can find the full
bastion FQDN on your SIS just above table row 1 of the VM table (look for bastion FQDN). Just be sure to
replace the 382fd7 with your own sandbox name. Enter the following command and hit return:

64 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]$ ssh centos@ap382fd7.sb.bayware.io

Be aware that the first time you log in to a new machine, you might see a scary warning message that looks
like

]$ ssh centos@ap382fd7.sb.bayware.io
The authenticity of host 'ap382fd7.sb.bayware.io (13.56.241.123)' can't be established.
ECDSA key fingerprint is SHA256:6LLVP+3QvrIb8FjRGNleLQRy7zL2eXeNCdOoYRbbxqw.
ECDSA key fingerprint is MD5:7b:fd:15:4c:35:d3:1d:20:fd:3e:3d:b7:1b:14:6a:1b.

Where it asks if you wish to contine, just type yes.

Are you sure you want to continue connecting (yes/no)? yes

You will be prompted for your password with the following query

centos@ap382fd7.sb.bayware.io password:

Type in the password for your aws-bastion. Again, this is located in the rightmost column of row one on
the VM table in your SIS.

If all goes well, you should now see a prompt in your terminal window such as

[centos@aws-bastion-382fd7 ~]$

That’s all for now on your CCC. But don’t close the terminal window since you’ll use it the next section
when you install the service interconnection fabric. And, if it’s not completely clear, you can always open up
more terminal windows on your local computer and log into your CCC from them so you have more windows
to work with.

Good Housekeeping

The 17 VMs running across the three public cloud providers started with stock CentOS 7 images. You can
ping your VMs, but not much else, since cloud provider security groups have been set to allow SSH, ICMP,
and a couple of UDP ports you’ll need for IPsec.

To ensure the operating systems on all VMs are starting from the same point, we’ve already done a few
upgrades for you including the following

• updated all CentOS 7 packages

• added repository epel-release and bayware-repo

• installed, started, and enabled firewalld

• set firewall rules on public zone, which includes eth0, to allow IPsec and accept GRE tunnels

• and installed orchestrator and telemetry tools: telegraf, InfluxDB, Grafana

Now all your VMs are locked down with only the minimally required access allowed.

Orchestrator

Finally, you will be performing many tasks in this tutorial using the Bayware Orchestrator. As such, open a
new tab in your browser and navigate to the web address for the orchestrator listed in the table near the top
of your SIS. The address should look something like https://c1382fd7.sb.bayware.io. The login page
should appear as

12.1. Cloud Infrastructure 65

Bayware Documentation

Fig. 12.1: Orchestrator Admin Login Page

66 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Use the orchestrator credentials shown in your SIS to sign in. You’ll find this on row 18 in the tables in
your SIS. (Note that your orchestrator login credentials are different from the username and password for
aws-c1 shown in the table in your SIS. The former logs you into the orchestrator application running in
your browser while the latter, if allowed, would simply log you into the Linux operating system running on
aws-c1.)

After successfully logging into your orchestrator, you should see a page such as

Fig. 12.2: Clean Orchestrator After Login

Now you’re all set up for the steps that follow.

Visibility

If you’re commanding a giant infrastructure of 17 virtual machines using Bayware technology, it’s good to be
able to have a look at what they’re doing. For that, Bayware has teamed with Grafana to display all types
of telemetry information–from the usual processor load and memory usage to Bayware-specific dashboards
such as GRE interface usage and IPsec traffic. You can conveniently get to telemetry information by clicking
the Telemetry link in the left-side navigation bar on the orchestrator as shown in Fig. 12.3.

You can scroll through the dashboard to see telemetry information for the server indicated at the top of the
window.

12.1. Cloud Infrastructure 67

Bayware Documentation

Fig. 12.3: Access Telemetry from the Orchestrator

68 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.4: Telemetry Using Grafana

12.1. Cloud Infrastructure 69

Bayware Documentation

Or use the drop down menu as shown in Fig. 12.5 to check out stats for a different virtual machine.

Fig. 12.5: View Telemetry for a VM

12.1.4 Summary

Good job! Now you have an idea where you’re headed in the next sections and you’ve practiced logging into
your control center from which you’ll manage all your infrastructure resources. You should be comfortable
navigating to your orchestrator browser page and know that you can get telemetry information about any
of your virtual machines through the Grafana application. And, importantly, you have reviewed some of the
information on your Sandbox Information Sheet (SIS) and you know not to confuse the example SIS located
in this documentation with the personalized version you received from Bayware, which you’ll use extensively
throughout the remainder of this tutorial.

Next up: create a Bayware service interconnection fabric…

70 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

12.2 SIF Deployment

A full Bayware system utilizes an orchestrator, processors, and agents. The processors in your system work
together to form a service interconnection fabric between your application microservices. For this tutorial,
you will go through the steps to turn four of your VMs (Virtual Machines) into processors: aws-p1 and
aws-p2 in AWS; azr-p1 in Azure; and gcp-p1 in GCP. But to be clear–and recalling the importance of policy
enforcement in your deployments–installing a service interconnection fabric presents a zero-trust network in
which no communication is allowed between your microservices until contracts are explicitly put in place.

Before we begin, let’s use the orchestrator to show that no processors (and no agents) currently exist in
your network. To do this, go back to the browser window in which you logged into the orchestrator. In the
navigation bar on the left, find the Topology button under the Admin heading as shown in Fig. 12.6.

Fig. 12.6: Empty Orchestrator Topology

Click Topology. The pane on the right should be empty. Later, you will see that processors appear as large
circles in this pane.

The subsequent commands can be broken up into

1. Login to a processor VM’s OS

2. Install Bayware’s engine and Open vSwitch

12.2. SIF Deployment 71

Bayware Documentation

3. Configure the engine

4. Repeat steps 1 - 3 for each processor VM

5. Create links between processors

12.2.1 Step 1: SSH to VM

Let’s begin with aws-p1. From the command-line prompt on your CCC, login

]$ ssh centos@aws-p1

You will not need a password since a public key has already been installed on aws-p1.

You should now have a prompt on aws-p1 that looks similar to

[centos@aws-p1-382fd7 ~]$

The following commands require super-user privileges, so become root

[centos@aws-p1-382fd7 ~]$ sudo su -

which should give you a prompt like

[root@aws-p1-382fd7 ~]#

The root prompt will be abbreviated in the description below to]#.

12.2.2 Step 2: Install Bayware’s engine and Open vSwitch

Each processor node in a service interconnection fabric is comprised of two pieces: an engine that determines
intent and a data path that moves traffic. The engine, part of Bayware’s core technology, is an Erlang- and
C-based application available from the bayware-repo. The data path for this particular implementation
utilizes the open-source application, Open vSwitch. The bayware-repo and the epel-release repo, both
required for these applications, have been preinstalled on your virtual machines.

Now install the engine and Open vSwitch on aws-p1

]# yum install ib_engine openvswitch -y

12.2.3 Step 3: Configure the engine

Now you will configure the engine so that it becomes visible to the orchestrator. For security purposes, each
engine in the network may have its own login credentials. And that’s how this tutorial has been configured.
In your SIS page, locate the table with Bayware Processor login credentials (overall, table rows 19 - 22).
Note the domain, username, and password associated with the first processor (row 19) as you’ll need it in
the next step.

To configure the engine, cd to the directory that contains the configuration script, /opt/ib_engine/bin.

]# cd /opt/ib_engine/bin

The script is called ib_configure. You can display the usage instructions by typing

72 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]# ./ib_configure -h

You will run the script now in interactive mode. The script will prompt you to enter the following information

• orchestrator IP or FQDN: use c1382fd7 .sb.bayware.io as shown in the URL table at the top of the
SIS. Your FQDN prefix will be different than c1382fd7 shown here. Do not include the https://
that is present in the URL.

• node domain: use the domain from login credentials, row 19

• node username: use the username for this engine from login credentials, row 19

• node password: use the password for this engine from login credentials, row 19

• configure IPsec: answer YES

Begin the interactive script now by entering the following at your prompt

]# ./ib_configure -i

After you work your way through the script and it does its magic, the engine will be configured, but it
won’t be running. Since the engine is controlled by Linux systemd, you should start and enable it with the
following

]# systemctl start ib_engine
]# systemctl enable ib_engine

The aws-p1 node should now be registered as a processor on the orchestrator. To see this, once again go to
the orchestrator tab open in your browser and click Topology.

You should see a green circle with the node name of this processor next to it as shown in Fig. 12.7. You can
also see this registered resource by clicking on the orchestrator’s Resources button located near the top of
the left-side navigation bar.

12.2.4 Step 4: Repeat steps 1 - 3 for each processor VM

Now that you have successfully installed one processor, repeat steps 1 through 3 above with the three
remaining Proc VMs and processor login credentials listed in your SIS. When you’re finished, the four
Bayware processors should be running on VMs as shown in the table below.

Table 12.1: Mapping Bayware Processors to Virtual Machines
VM Processor Login Username
aws-p1 proc-1
aws-p2 proc-2
azr-p1 proc-3
gcp-p1 proc-4

You can do this by logging out of aws-p1 in the terminal window you used above by exiting from root and
then exiting from the VM altogether by typing

]# exit
]$ exit

which should get you back to your CCC VM and its prompt

12.2. SIF Deployment 73

Bayware Documentation

Fig. 12.7: Bayware Processor Installed on aws-11

74 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

[centos@aws-bastion-382fd7 ~]$

For the quick studies among you, the essential commands have been reproduced in the CHEAT SHEET -
PROC INSTALL with a few hints about what goes where. If you’re comfortable with the whys of all this
typing, the cheat sheet simply saves a little scrolling. Otherwise, feel free to go back through each of the
steps in detail.

CHEAT SHEET - PROC INSTALL

]$ ssh centos@aws-p2 hint: [aws-p2, azr-p1, gcp-p1]
]$ sudo su -
]# yum install ib_engine openvswitch -y
]# cd /opt/ib_engine/bin
]# ./ib_configure -i hint: [proc-2, proc-3, proc-4]
]# systemctl start ib_engine
]# systemctl enable ib_engine
]# exit
]$ exit

Once all four engines are installed, return to the orchestrator Topology page and Resources page to ensure
everything went smoothly. You should see that the orchestrator has recognized four processors as shown in
Fig. 12.8.

After that, you’re ready to move on to creating a full mesh between your processor nodes.

12.2.5 Step 5: Create links between processor

Your service interconnection fabric, currently, consists only of processors with no knowledge of each other nor
the ability to communicate with each other. To set up links between the processors that allow communication,
you’ll work with the orchestrator.

On the browser tab with the orchestrator, click on Resources in the left-side navigation bar.

Find the Node Name of your first processor node in the first column in the right pane. You’re looking for
aws-p1-382fd7 . Click it.

You should see the Resources page for node name aws-p1-382fd7 .

Scroll to the bottom of the page and click Add Link.

Fill in the fields as follows (recalling you will have a different 382fd7 suffix):

• Domain = cloud-net

• Node = aws-p2-382fd7

• Tunnel IPs = External

• IPsec = Yes

• Admin Status = Enabled

Now click Submit in the upper right. You should briefly see a Success message and then be directed back
to the Resources page for aws-p1-382fd7 . Scroll back to the bottom of the page. There should be a Link
Configuration entry for aws-p2-382fd7 .

While you’re on the Resources page for aws-p1-382fd7 , go ahead and add two more links, just as you did
above, except using Node Names gcp-p1-382fd7 for one link and azr-p1-328fd7 for the other link.

When you’ve finished, you should see three entries under Link Configuration for aws-p1-382fd7 .

12.2. SIF Deployment 75

Bayware Documentation

Fig. 12.8: Four Processors on the Orchestrator Topology Page

76 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.9: Bayware Orchestrator Resources Button

12.2. SIF Deployment 77

Bayware Documentation

Fig. 12.10: Resources Page For aws-p1-382fd7

78 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.11: Link Configuration Page For aws-p1-382fd7

12.2. SIF Deployment 79

Bayware Documentation

Now that three of the six links have been added, there are three more to add.

Click again on Resources in the left-side navigation bar. Find aws-p2-382fd7 and select it. Scroll to the
bottom as before and add two links: one between aws-p2-382fd7 and azr-p1-382fd7 and another between
aws-p2-382fd7 and gcp-p1-382fd7 .

When you’ve finished, you should see three entries under Link Configuration for aws-p2-382fd7 : the link
originally created from the aws-p1-382fd7 ` Resources page and the other two links you just created.

Five down, one to go…

Finally, for a full-mesh interconnect, you need to create a link between gcp-p1-382fd7 and azr-p1-382fd7`.
You can do this from the Resources page of either node by following the previous examples.

When you’re finished, navigate back to the Topology page of the orchestrator. Now you should see your
interconnection network with its four nodes and six links. Note that it may take up to a minute for links to
appear between the processor nodes.

Fig. 12.12: Orchestrator Topology Showing Nodes and Interconnection Links

For yet more proof that something good has happened, go to the Resources page for one of the processors
using the Resources link in the left-side navigation bar.

Tip: You can also find the Resources page for a specific processor by clicking on that processor in the

80 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Topology page and then clicking its Node Name that appears in the information overlay in the upper-right
corner.

Fig. 12.13: Orchestrator Topology Showing Node Information Overlay

Once back on one of the Resources page of one of your processors, you’ll note that in addition to the
Link Configuration information at the bottom, now you should also see three entries each under Links and
Connections.

12.2.6 Summary

In this chapter you installed Bayware processors and Open vSwitch on four VMs in your infrastructure. You
used the orchestrator Topology and Resources buttons extensively to monitor the installation processor. You
finally created a full-mesh between all four processor nodes with a few simple clicks on the orchestrator.

Next up: install your first application, Getaway App…

12.2. SIF Deployment 81

Bayware Documentation

Fig. 12.14: Node Resources Links & Connections

82 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

12.3 Application 1 - Getaway App

12.3.1 A Microservice-Based Application & Its Components

Service Graph

Your applications are the lifeblood of your organization. Whether you are supporting internal or external
customers, when an app is down your company is losing money. But now that you’ve deployed Bayware’s
service interconnection fabric, deploying your application is a snap.

You need to deploy a travel application called Getaway App for your customers. This microservice-based
application can be represented with the following service graph.

Fig. 12.15: Getaway App Service Graph

Your users, armed with their smart phones and web browsers, first hit the http-proxy microservice in front
of the firewall. The http-proxy requests information from the getaway-svc that, in turn, collates data
collected from news-gw, places-gw, and weather-gw and returns the information to http-proxy for display
to the customer.

Nodes & Host Owners

What does this mean for your service interconnection fabric? It’s simple. You need to deploy the five Get-
away App microservices on five different VMs in your cloud infrastructure. Next to each microservice, you
will install a Linux interface and a small daemon called the Bayware agent. The Bayware agent handles reg-
istration, authentication, and microcode delivery in conjunction with the orchestrator for your microservice.
The agent uses the new Bayware interface to communicate with the service interconnection fabric.

So before we actually login to your VMs and deploy code, we need to tell the orchestrator about your service
graph so all the registration, authentication, and microcode delivery is handled properly.

To that end, each service graph node (microservice-agent pair) requires a Resource User with a role of
hostOwner. Go back to the orchestrator tab on your web browser and click Resource Users in the left-side
navigation bar to see a list of resource users that have been pre-populated in your system as shown in Fig.
12.16.

During Getaway App installation, you will be using the five resource users of type hostOwner with the
usernames shown here

• http-proxy

• getaway-svc

• news-gw

12.3. Application 1 - Getaway App 83

Bayware Documentation

Fig. 12.16: A List of Resource Users Pre-Populated on the Orchestrator

84 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

• places-gw

• weather-gw

and all are in the domain getaway-app.

It’s no coincidence, then, that these usernames, along with their passwords, are shown again in rows 23
through 27 of the table in your SIS. You’ll need this information once we start installing.

Important: The nodes in a service graph map to host owners on the Bayware orchestrator.

Edges & Contracts

With host owners defined above, your microservices now have a place to live, but they still don’t have any
way to communicate. A service graph needs edges in addition to nodes.

The edges in your service graph define the communicative relationships between your microservices. At
Bayware, we call these communicative relationships Contracts.

Fig. 12.17: Contracts Used in this Tutorial

12.3. Application 1 - Getaway App 85

Bayware Documentation

As the Getaway App has four edges, your deployment has four contracts. Back on the orchestrator in your
web browser, click on Contracts in the left-side navigation bar. You’ll find four Contract Names that reside
in the getaway-app domain as shown in Fig. 12.17. These are

• frontend

• news-API

• places-API

• weather-API

The contracts have been pre-populated for your convenience, but they are easily generated on the fly. We
won’t do it now, but one would simply click Add Contract and fill in a few fields. The chosen Template
determines the allowed Roles in the contract–although, you can add additional Roles later. Once you have
submitted the contract, you assign Roles by clicking on the contract name in the Contracts pane and clicking
on the Roles in the bottom of the window.

Go ahead and do a little exploring now so you can see how the relationships in your service graph have shaped
the contracts on the orchestrator. Your contract roles are related to your microservices using the hostOwner
names described in the previous section. Note that all Getaway App contracts use the client-server template,
which have role client and role server.

Table 12.2: Getaway Contracts & Roles
Contract Name Client Role Server Role
frontend http-proxy getaway-svc
news-API getaway-svc news_gw
places-API getaway-svc places_gw
weather-API getaway-svc weather_gw

Important: The edges in a service graph map to contracts on the Bayware orchestrator.

Authentication, Registration, & Microcode

Now that you understand host owners and contracts (nodes and edges), let’s take a look at what’s going to
happen behind the scenes.

As described above, after installing a microservice on a VM, an interface and small daemon known as the
Bayware interface and agent are installed next to the microservice. During agent configuration, the user
supplies the host owner’s domain, username, and password previously created on the orchestrator. The
agent then reaches out to the orchestrator, but is redirected to the identity service, which authenticates the
agent. After successful authentication, the agent obtains tokens that enable access to orchestrator services.

The orchestrator now supplies the agent with a net prefix from which the agent generates its own host
identifier–a Cryptographically Generated Address (CGA) in the format of an IPv6 address. Using this
CGA, the agent requests registration at the orchestrator, which kicks off the node discovery protocol that
ultimately attaches the VM to the service interconnection fabric through the Bayware interface.

The orchestrator, at this point, has also pushed microcode associated with contract roles described above to
the agent. The agent, sitting between the microservice and the Bayware interface, embeds the microcode
into the data stream to create self-steering flows.

86 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

12.3.2 Installation

Fig. 12.18 shows how you will deploy Getaway App microservices. As shown, aws-11 and aws-12 will attach
to the processor running on aws-p1 and run the http-proxy and getaway-svc microservices respectively.
The places-gw, weather-gw, and news-gw will be deployed on aws-21, aws-31, and aws-41 respectively.
These three nodes are all attached to the processor running on aws-p2.

Fig. 12.18: Getaway Microservices Nodes and the Interconnection Fabric

Each of the five microservices runs alongside an instance of the Bayware agent, which connects to the service
interconnection fabric through the Bayware interface. Each microservice runs as a service unit under the
RHEL 7 systemd system and service manager. Installation steps are provided in detail below.

But wait. Here’s a detail that will become interesting later once you get to Hybrid Cloud - Moving Mi-
croservices. Fig. 12.18 and Table 12.3 reveal that you will be running all your microservices in AWS. Make
a mental note of that.

Table 12.3: Getaway Microservices VM Mapping
Microservice VM Service Unit
http-proxy aws-11 getaway-proxy
getaway-svc aws-12 getaway-service
news-gw aws-41 getaway-news
places-gw aws-21 getaway-places
weather-gw aws-31 getaway-weather

To deliver the microservices to their VMs, you’ll perform the following steps

1. Login to a workload VM’s OS

2. Install, configure, & start agent

3. Install and start service unit

4. Repeat 1 - 3 for remaining microservices

12.3. Application 1 - Getaway App 87

Bayware Documentation

5. Interact with Getaway App

Before you begin, take a look at the Resources page again on the orchestrator. You should only see four
nodes all of type switch. Once you add workloads, they will also appear under Resources, but as type host.

Step 1: SSH to VM

Let’s start with the http-proxy microservice, which needs to be installed on aws-11. Starting from the
prompt on your Command Center, login to aws-11.

]$ ssh centos@aws-11

You should now see a prompt on aws-11 similar to

[centos@aws-11-382fd7 ~]$

The following commands all require super-user credentials, so become root

[centos@aws-11-382fd7 ~]$ sudo su -

You should now see a prompt on aws-11

[root@aws-11-382fd7 ~]#

(The root prompt above is abbreviated simply as]# in the commands that follow.)

Step 2: Install, configure, & start agent and interface

Installation of the agent and interface requires access to the bayware-repo and the epel-release repository.
These have been preinstalled on your virtual machines.

Execute the following command at the root prompt to install the agent on aws-11:

]# yum install -y ib_agent

Similar to configuring the processors in your interconnection fabric in the SIF Deployment chapter, you
will now run the configuration script interactively in order to configure the agent that will run next to the
microservice and its new Linux interface.

First, to save some typing, let’s cd to the directory that contains the script

]# cd /opt/ib_agent/bin

The script is called ib_configure. You can display the usage instructions by typing

]# ./ib_configure -h
usage: ib_configure [-h] [-i] [-o OUTFILE] [-s] [-c ORCHESTRATOR] [-d DOMAIN]

[-l USERNAME] [-p PASSWORD] [-a IP_ADDR] [-t TCP_PORT]

Configure the Bayware Agent.

optional arguments:
-h, --help show this help message and exit
-i, --interactive set up configuration parameters interactively
-o OUTFILE, -f OUTFILE, --outfile OUTFILE

(continues on next page)

88 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

(continued from previous page)

create text file listing all configuration parameters
-s, --ipsec set up IPsec for this Agent
-c ORCHESTRATOR, --orchestrator ORCHESTRATOR

orchestrator FQDN or IP address
-d DOMAIN, --domain DOMAIN

domain in which host owner of this node was created on
the orchestrator

-l USERNAME, --username USERNAME
username for the host owner of this node that was
configured on the orchestrator

-p PASSWORD, --password PASSWORD
password associated with the username of the host
owner of this node that was configured on the
orchestrator

-a IP_ADDR IPv4 address of REST interface on which Agent listens
-t TCP_PORT TCP port of REST interface on which Agent listens

When you run the script in interactive mode, you will be prompted for orchestrator FQDN, and the domain,
username, and password assigned to the http-proxy microservice.

• orchestrator IP or FQDN: use c1382fd7 .sb.bayware.io as shown in the URL table at the top of the
SIS. Your FQDN prefix will be different than c1382fd7 shown here. Do not include the https://
that is present in the URL.

• node domain: use the http-proxy domain from agent login credentials, row 23

• node username: use the http-proxy username from agent login credentials, row 23

• node password: use the http-proxy password from agent login credentials, row 23

• configure IPsec: answer YES

Note that, for convenience, the username is the same as the name of the microservice.

With that information in hand, execute the following command and follow the prompts.

]# ./ib_configure -i

Now start and enable the agent

]# systemctl start ib_agent
]# systemctl enable ib_agent

If all went well, you should see a small, green circle appear on the Topology page of the orchestrator as
shown in Fig. 12.19. The agent should also automatically form a link with your processor, aws-p1-382fd7 ,
in your service interconnection fabric. As you install agents on your workload nodes and their small, green
circles appear in the Topology window, clicking on a circle brings up overlay information related to the node.
The Owner information at the bottom of the overlay shows the host owner and domain used on the given
resource.

Step 3: Install and start service unit

As shown in Table 12.3, you need to install the microservice http-proxy on aws-11. The package (service
unit) associated with this microservice is called getaway-proxy. While you’re still signed in as root execute
the following three commands

12.3. Application 1 - Getaway App 89

Bayware Documentation

Fig. 12.19: Agent Installed on aws-11 in Getaway App

90 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]# yum install -y getaway-proxy
]# systemctl start getaway-proxy
]# systemctl enable getaway-proxy

Step 4: Repeat 1 - 3 for remaining microservices

Easy, right?

One down, four to go… finish installing the remaining components of your application by following steps 1
through 3 above for the microservices getaway-svc, news-gw, places-gw, and weather-gw. Remember to
follow the microservice-to-VM mapping shown in Getaway Microservices VM Mapping above.

Hint: It’s like a test, right? Even if it’s open-book and you can scroll back through the detailed descriptions
above (and you probably should if you want to recall why you’re typing something), we’ve created a CHEAT
SHEET to help you install the remaining four microservices without scrolling. Just be sure to have your
personal SIS open for the ib_configure part as you’ll need to lookup the login credentials for the host
owner user names hinted at. The CHEAT SHEET assumes you are starting from your CCC.

CHEAT SHEET - GETAWAY APP INSTALL

hint: use elements in the lists [] below for each iteration

]$ ssh centos@aws-12 hint: [aws-12, aws-41, aws-21, aws-31]
]$ sudo su -
]# yum install -y ib_agent
]# cd /opt/ib_agent/bin
]# ./ib_configure -i hint: [getaway-svc, news-gw, places-gw, weather-gw]
]# systemctl start ib_agent
]# systemctl enable ib_agent
]# yum install -y getaway-service hint: [getaway-service, getaway-news, getaway-
↪→places, getaway-weather]
]# systemctl start getaway-service hint: [getaway-service, getaway-news, getaway-
↪→places, getaway-weather]
]# systemctl enable getaway-service hint: [getaway-service, getaway-news, getaway-
↪→places, getaway-weather]
]# exit
]$ exit

When you’re finished installing all microservice components, take a look again at the Topology page and
ensure that there are five microservices and that each is connected to one of the processors as shown in Fig.
12.20. (You can get overlay information about a green circle on the Topology page by clicking it.)

Step 5: Interact with the Getaway App

Getaway App

Now your Getaway App–and all its microservices–is up and running on Bayware technology. In the next
section, you will have an opportunity to play with some of the innovative features this brings to your
application.

But first, let’s spend some time with the Getaway App itself since, in the end, that is the whole point of
application deployment.

12.3. Application 1 - Getaway App 91

Bayware Documentation

Fig. 12.20: Orchestrator Topology for Getaway App

92 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Open a new tab in your browser and type in the web address for the Getaway App Entry Point shown in
the URL table at the top of your SIS, similar to https://ap382fd7.sb.bayware.io/getaway.

Fig. 12.21: Getaway App Running in a Browser

As shown in Fig. 12.21, three panes show weather, places, and news (operated by the microservices
weather-gw, places-gw, and news-gw respectively) for a particular city. You can choose the city using
the drop-down selector box at the top of the page.

Of primary interest to the devOps professional–and irrelevant to a real end user–is the notation on the right
end of each title bar for WEATHER, PLACES, and NEWS that shows the VM on which the given microser-
vice is running. If you followed the tutorial to this point, you should see NEWS running on gcp-11-382fd7 ,
PLACES running on aws-21-382fd7 , and WEATHER running on aws-31-382fd7 . In the next section,
we’ll show how easy it is to direct microservice requests to a different VM no matter the public cloud provider.

Service Graph Revisited

With all the security inherent in running Getaway App over a Bayware service interconnection fabric, the
orchestrator knows which microservices (host owners) are installed and their communicative relationships
(contracts). As described in Service Graph and Nodes & Host Owners and Edges & Contracts, one starts by
adding hostOwners and Contracts to the orchestrator that correlate to the application service graph nodes
and edges.

12.3. Application 1 - Getaway App 93

Bayware Documentation

Now that you’ve installed all your Getaway App components, you can do a quick sanity check to ensure
that you correctly entered host owners and contracts into the orchestrator. Back on the orchestrator, click
on Domains in the left-side navigation menu. Of the four domain names that are displayed, now click on
getaway-app. At the bottom of the getaway-app domain window, click on Domain Topology. You should
see Getaway App service graph recreated by the orchestrator as shown in Fig. 12.22.

Fig. 12.22: Getaway App Service Graph Generated By Orchestrator

Telemetry

Now might be the right time to revisit telemetry. We introduced Grafana in the first section of this tutorial
to confirm that 17 virtual machines were really up and running. Now they’re actually doing something.

Go to the Grafana page by clicking on Telemetry in the left-side navigation menu on the orchestrator.
Grafana will open in a new tab in your browser. Start by checking out server aws-11-382fd7 , which is
running microservice http-proxy, as shown in Fig. 12.23. Scroll down and you will be able to see both
System and Network dashboards.

94 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.23: Telemetry: Getaway App http-proxy Load

12.3. Application 1 - Getaway App 95

Bayware Documentation

12.3.3 Hybrid Cloud - Moving Microservices

So everything’s up and running along smoothly. All your Getaway microservices are deployed alongside an
instance of the Bayware agent and interface, you can see your processor nodes and your workload nodes
in the orchestrator Topology and you can be confident that security is in place and your policies are being
enforced.

But you are still at the mercy of your public cloud provider. Maybe the cost will go way up or the level
of service will go way down. It would be nice to know that you can easily have a backup microservice at
the ready in another cloud provider or two and quickly direct traffic from the current provider to the new
provider.

With Bayware you can.

Fig. 12.24: Getaway App Utilizes Redundent, Hybrid-Cloud Microservices

Fig. 12.24 shows where we are and where we’re going. Recall that all Getaway App microservices were
deployed in AWS. Let’s focus on weather-gw and news-gw specifically.

The dashed lines in Fig. 12.24 show how requests from http-proxy are currently routed to aws-31 (for
weather-gw) and to aws-41 (for news-gw). Again, both of these VMs are operating in AWS.

And then it happens. Some catastrophe befalls aws-31 and aws-41 and they go offline. Time is money and
the prepared devOps engineer already has backup news-gw and weather-gw microservices operating in GCP
and Azure, respectively. Your customers won’t notice a thing.

The Setup

Here’s how will simulate such an event.

1. Install news-gw and agent on gcp-11

2. Install weather-gw and agent on azr-11

3. Simulate failed aws-31 by shutting down agent

96 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

4. Simulate failed aws-41 by shutting down agent

Let’s get started.

Redundant Installation

Table 12.4 shows the microservices you need to set up on redundant VMs, the name of the new VMs, and
the name of the application serivce unit.

Table 12.4: Redundant Microservices VM Mapping
Microservice VM Service Unit
news-gw gcp-11 getaway-news
weather-gw azr-11 getaway-weather

You’re likely a pro at this by now. As such, here’s another CHEAT SHEET to help you install agents
and service units in GCP and AZR. If anything seems unclear, go back to the installation steps for review.
Remember to find the credentials for news and weather on your SIS, rows 25 and 27 .

CHEAT SHEET - GETAWAY APP MULTI-CLOUD

hint: use elements in the lists [] below for each iteration

]$ ssh centos@gcp-11 hint: [gcp-11, azr-11]
]$ sudo su -
]# yum install -y ib_agent
]# cd /opt/ib_agent/bin
]# ./ib_configure -i hint: [news-gw, weather-gw]
]# systemctl start ib_agent
]# systemctl enable ib_agent
]# yum install -y getaway-service hint: [getaway-news, getaway-weather]
]# systemctl start getaway-service hint: [getaway-news, getaway-weather]
]# systemctl enable getaway-service hint: [getaway-news, getaway-weather]
]# exit
]$ exit

Go back to the Topology page in the orchestrator. You should see new small green circles representing gcp-11
and azr-11 as shown in Fig. 12.25.

Stop Systems

Now you’re going to take aws-31 and aws-41 offline. You’ll do this by stopping the ib_agent service
running on each of these virtual machines. The service interconnection fabric will detect that news-gw
and weather-gw microservices operating on aws-31 and aws-41 are no longer registered and traffic will
automatically be re-routed to the new microservice instances you just created.

Starting from your Command Center, login to aws-31 and become root just as you did above.

Now execute the following

]# systemctl stop ib_agent

You will repeat these steps now on aws-41. First, get back to your CCC by exiting out of the two shells
you’ve opened on aws-31

12.3. Application 1 - Getaway App 97

Bayware Documentation

Fig. 12.25: Getaway App Topology with Seven Agents

98 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]# exit
]$ exit

After you’re back at your CCC, ssh into aws-41, become root, and stop the ib_agent running on that
system.

Did it Work?

At the Orchestrator

Now go back to your browser tab that has the orchestrator open. Click on the Topology link in the left-side
navigation menu. You should see your service interconnection fabric, but now two of the workload nodes are
red, aws-31 and aws-41, as shown in Fig. 12.26.

Fig. 12.26: Getaway App Topology with Two Red Workload Nodes

The orchestrator detected that the agents running on these two VMs were down and turned their circles red.

Now find the new workload node for news-gsw, gcp-11. Click on its circle in the Topology window to show
the overlay information as shown in Fig. 12.26.

Note that the owner, shown at the bottom of the overlay information, is now news-gw.

12.3. Application 1 - Getaway App 99

Bayware Documentation

Verify that weather-gw now owns azr-11 by clicking on the appropriate circle in the Topology and noting
its owner.

On the App

If you still have Getaway App open in your browser, go back to that tab. Recall that you can find the URL
for Getaway App at the top of your SIS.

Fig. 12.27: Getaway App News & Weather On New VMs

The right end of each title bar shows the VM on which the particular microservice is running. If all went well
in the preceding steps, you should see that NEWS running on gcp-11 and WEATHER running on azr-11
as shown in Fig. 12.27.

12.3.4 Good (Secure) Housekeeping

There’s more work ahead and your CFO definitely isn’t going to approve a whole new set of virtual machines.
So once you (and they) are done with Getaway App, let’s clean it up by removing agents and microservices.
(Hold on to your service interconnection fabric processors, though. Those work quite nicely with any app.)

There’s a script for that.

100 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Back on your Command Center, be sure you are logged in as centos and not root. If you’re at your root
prompt, simply type

]# exit

Ensure you are in your homedir by typing cd. You should now be at a prompt that looks like

[centos@aws-bastion-382fd7 ~]$

Now type

]$./purge-apps.sh

But that’s not quite the end. All the workload nodes are now cleaned up i.e., ib_agent services and
microservices have been stopped and deleted. But the orchestrator doesn’t forget so easily. If someone
were to try to use one of your workload nodes for another microservice–even if he or she already had a new,
valid set of orchestrator host owner credentials–the orchestrator would not recognize its credentials until the
previous resource is deleted explicitly from the system.

Fig. 12.28: Orchestrator Topology Showing Stopped Getaway App Workloads

Now go back to the orchestrator and click on Topology. You should see your service interconnection fabric
with a bunch of red circles attached to it. Those are your stopped (deleted) agents from the Getaway App
workloads as shown in Fig. 12.28.

12.3. Application 1 - Getaway App 101

Bayware Documentation

Fig. 12.29: Orchestrator Resources

102 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

You need to delete those red circles from the orchestrator. Do that by clicking on Resources in the left-side
navigation menu. Click on the column header, Node Domain, to sort the rows and then click the red x at
the right end of each row that is part of the getaway-app domain as shown in Fig. 12.29.

What you’re not deleting…

You are not going to delete resources of type switch. These refer to the four processors you installed in SIF
Deployment and can be used with any app, including the Voting App coming up next.

You also will not delete any of the pre-populated configuration such as those under Resource Users and
Contracts on the orchestrator. Recall that resource users and contracts simply describe your application’s
service graph nodes and edges. If you decide to install your app again, that configuration will still be in
place.

So as a final sanity check, navigate to the Topology page. It should look clean with only the original four
processors in place.

12.3.5 Summary

In this section you learned how your application’s service graph maps to components in Bayware’s technology:
service graph nodes map to host owners and service graph edges map to contracts. You went through the
process of installing and configuring the microservices and agents required for Getaway App. With Getaway
App up and running, you explored the Grafana telemetry UI. Finally, you created redundant nodes for
news and weather and saw how Bayware technology automatically re-routed traffic when the original nodes
became unavailable.

Next up: deploy Voting App using Ansible and insert a transit node into a contract…

12.4 Application 2 - Voting App

12.4.1 Containerized Microservices

Setting the Scene

So you’re developing a reputation within you’re company as the go-to DevOps engineer who can ensure quick
and hiccup-free deployment of the company’s most important applications (the devs love this) and, yet, can
respond quickly to changing pricing structures among the major public cloud providers (the CFO loves this).
That super easy Getaway App deployment put you on the map.

But now the powers-that-be are upping the ante. The devs have written a quickie application to see if end
users prefer working with Mesos or Kubernetes in their containerized environments. They call it Voting
App. And true to its raison d’être, it’s containerized.

After the accolades of your last deployment, you decide Bayware is the way to go, containers and all. And
the Voting App being a bit more involved, you decide to save yourself some typing by using Ansible for
working with much of your hybrid cloud infrastructure.

A Word about Containers

Everybody’s doing it. And, they say, if they’re not doing it now, they will be doing it. Bayware knows this
and that’s why our technology is designed with container support from the bottom up.

12.4. Application 2 - Voting App 103

Bayware Documentation

Just as a microservice running directly on a virtual machine may be composed of one or more packages
(RPMs, say, in an RHEL environment), a containerized microservice may be composed of one or more
container images. As long as the containers require the same roles and policy from the network, a simple,
single Bayware daemon (the agent) attaches the containers to the Bayware service interconnection fabric
through the Bayware interface just as it does for RPMs on a virtual machine.

Service Graph

Your devs have given you the following service graph so that you can get started setting up your host owners
and contracts in the Bayware orchestrator.

Fig. 12.30: Voting App Service Graph

First, here’s how it works. There are two web pages that provide a GUI interface to the Voting App.
The first web page allows end users to vote for either Mesos or Kubernetes as their preferred container
management system. Once the application is installed, it will be available on a URL similar to https://
ap382fd7 .bayware.io/voting/vote. Recall that the URLs for your sandbox are listed at the top of your
SIS.

The voting web page is shown in Fig. 12.31.

The second web page allows end users to see the aggregate result of all previous voting. Once the application
is installed, it will be available on a URL similar to (https://ap382fd7.bayware.io/voting/result).
Again, check your personal SIS for the precise URL.

The result web page is shown in Fig. 12.32.

Behind the scenes, the http-proxy microservice queries the voting-svc and result-svc microservices to
serve up the two aforementioned web pages respectively.

On the back end, the voting-svc microservice writes cast ballots into the in-memory database microservice
called voting-db while the result-svc reads tabulated results out of the postgres database microservice
called result-db. The worker microservice, meanwhile, reads the cast ballots from voting-db, crunches
the numbers, and writes the tabulated results to result-db.

Nodes & Host Owners

Recall from the Nodes & Host Owners discussion in Getaway App that service graph nodes map to host
owners in the Bayware service interconnection fabric.

Go back to the orchestrator tab in your browser and click Resource Users in the left-side navigation bar.
As shown in Fig. 12.33, you should find six hostOwner resource users pre-populated that are part of the
voting-app domain. (Note that Resource Users from other domains are also visible.) They are

104 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.31: Voting App Vote Interface in Browser

12.4. Application 2 - Voting App 105

Bayware Documentation

Fig. 12.32: Voting App Result Interface in Browser

106 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.33: Resource Users in the Orchestrator

12.4. Application 2 - Voting App 107

Bayware Documentation

• http-proxy

• voting-svc

• voting-db

• result-svc

• result-db

• worker

The six host owner names map one-to-one with the six microservices shown in Fig. 12.30. During the
installation process described in the next section, consult rows 28 through 33 in the table in your SIS for
the passwords associated with the host owner usernames shown above.

Edges & Contracts

In the Edges & Contracts discussion in Getaway App, we defined the communicative relationships (edges)
between microservices (nodes) as Contracts.

From Voting App service graph shown in Fig. 12.30, note that there are six communicative relationships
between microservices (six edges).

You can check out the contracts relevant to Voting App back on the orchestrator (see Fig. 12.34). Return to
the tab in your browser that has the orchestrator GUI open and click on Contracts in the left-side navigation
bar. Look for the Contract Names that reside in the voting-app domain. They are

• voting-frontend

• result-frontend

• voting-backend

• result-backend

• voting-worker

• result-worker

As with the Getaway App, you can explore the relationships between contracts and microservices (host
owners) by clicking on a contract name in your browser and then on a Role Name in the list at the bottom
of the Contract page that comes up. Among other things, the Role page’s User Access List shows connected
microservices.

The contract roles in the Voting App are assigned as follows

Contract Name Client Role Server Role
voting-frontend http-proxy voting-service
result-frontend http-proxy result-service
voting-backend voting-service voting-db
result-backend result-service result-db
voting-worker worker voting-db
result-worker worker result-db

Authentication, Registration, & Microcode

One of the great things about Bayware technology is that you, the devOps engineer, do not have to fret the
details. You simply set up your host owners and contracts in the orchestrator based off the service graph
you get from your devs and then you’re ready for app deployment.

108 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.34: Contracts in the Orchestrator

12.4. Application 2 - Voting App 109

Bayware Documentation

That is, all the behind-the-scenes details discussed during the Getaway App installation, like authentica-
tion, registration, and microcode applies equally here to the Voting App container environment. So feel
free to go back and review and, when you’re ready, onward to installation.

12.4.2 Installation with Ansible

The Script

Fig. 12.35 shows a familiar picture of your service interconnection fabric with attached workload nodes.
Microservices for Voting App are highlighted in red.

Fig. 12.35: Voting App Deployment on the Interconnection Fabric

Table 12.5 shows the VM on which each microservice will be deployed. Note that this table does not specify
the service unit (microservice executable) as in Getaway App. The Ansible script knows those details so
none of that typing is required.

Table 12.5: Voting Microservices VM Mapping
Microservice VM
http-proxy aws-11
worker aws-12
voting-svc gcp-11
voting-db gcp-12
result-svc azr-11
result-db azr-12

Microservice deployment and agent configuration all happen using a script that you can find on your Com-

110 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

mand Center. So start by opening a terminal window on your local computer and use SSH to log in to your
Command Center.

You won’t need super-user privileges to run the Ansible script so you can do everything from

[centos@aws-bastion-382fd7 ~]$

Since you just logged in, you should be in the user centos home directory. Ensure the script is present by
typing

[centos@aws-bastion-382fd7 ~]$ ls -alt deploy-voting-app.sh

This should give you output similar to

-rwxr-xr-x. 1 centos centos 2343 Oct 4 20:46 deploy-voting-app.sh

Of course, the time stamp may be different. If you’re in the wrong spot or the script has disappeared from
your system, the ls command above will respond with something that says No such file or directory.
If that happens, ensure you’re in your home directory by simply typing cd at the prompt and then try the
ls again.

Now that you’re on your control center and you’ve confirmed the presence of the script, you only need to
repeat two steps for each Voting App microservice to get full application deployment.

1. Run script specifying host owner and VM for one microservice

2. Repeat 1 and 2 for remaining microservices

Step 1: Run Script

Let’s start by deploying http-proxy. Table 12.5 indicates you should put this on aws-11. Enter the following
at your prompt

]$./deploy-voting-app.sh --hostowner=http-proxy --virtualmachine=aws-11

After you press return, the script will determine the correct domain and password for http-proxy, install
the correct container image on aws-11, and register the agent with orchestrator.

Step 2: Repeat

Well, that definitely saved some typing. So give it a shot with the remaining five microservices and the
corresponding virtual machines listed in Table 12.5. After you execute deploy-voting-app.sh five more
times, everything should be deployed.

CHEAT SHEET - VOTING APP INSTALL

hint: use elements in the list [] below for each iteration

]$./deploy-voting-app.sh --hostowner=worker --virtualmachine=aws-12
hint: [(worker, aws-12), (voting-svc, gcp-11), (voting-db, gcp-12), (result-

↪→svc, azr-11), (result-db, azr-12)]

12.4. Application 2 - Voting App 111

Bayware Documentation

Back at the Orchestrator

Now go back to your browser window that has the orchestrator open. Click on the Topology button on the
left-side navigation menu. You should see the four large, green circles that represent Bayware processors as
well as smaller circles labeled with the host names of the workload nodes.

Fig. 12.36: Orchestrator Topology After Voting App Deployment

Find the host names used during Voting App deployment. If you click on a host name, you’ll see overlay
information about the node. The last item in the overlay information is Owner. This should correspond to
the host owner of each microservice–which, in this setup is the same name as the microservice listed in Table
12.5–and the voting-app domain.

Service Graph Revisited

Just as you saw with Getaway App, the orchestrator generates a service graph based off the host owners
and contracts that have been added to the system. That way you can sanity check that the information you
entered matches the service graph given to you by your devs.

Back on the orchestrator, click on Domains in the left-side navigation menu. Of the four domain names that
are displayed, now click on voting-app. At the bottom of the voting-app domain window, click on Domain
Topology. You should see Voting App service graph recreated by the orchestrator as shown in Fig. 12.37.

112 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.37: Voting App Service Graph Generated By Orchestrator

12.4. Application 2 - Voting App 113

Bayware Documentation

Vote

Before you go back to your devs and report on the successful deployment of Voting App, you should… VOTE!

You can find the URLs for the voting application at the top of your SIS. Open a new browser tab and type
in the URL that ends in /voting/vote. You should see a window similar to Fig. 12.38.

Fig. 12.38: Voting App - The Vote Web Page

Choose your favorite container management system and then open another browser window and type in the
URL from your SIS that ends in /voting/result. You should see the results of the voting similar to Fig.
12.39.

If you don’t like the result, just go back to the vote page and cast your ballot again. The new tally is reflected
on the result page.

Congratulations! You voted and–if you voted often enough–your favorite management system won.

That’s it!

Go back to your devs, tell them that Voting App is deployed in a hybrid cloud environment, and buttoned
up with Bayware’s innovative security and policy enforcement tools. Just don’t tell them how easy it was.
Anyway, rumor has it that they’re cooking up some new intrusion detection system to ensure one-person �
one-vote and they’re going to ask you to deploy it.

114 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.39: Voting App - The Result Web Page

12.4. Application 2 - Voting App 115

Bayware Documentation

Carry on.

12.4.3 Use Case - Transit Nodes

Once the higher-ups got the secOps team involved, everything went top secret. But word came down that
they had someone install something on aws-p2 and they needed you to ensure that all traffic moving in
either direction between http-proxy on aws-11 and voting-svc on gcp-11 now go through aws-p2 as a
transit point.

Bayware’s got you covered.

Fig. 12.40: Voting App Transit Node

Fig. 12.40 shows a dotted line between aws-p1 and gcp-p1 that indicates the shortest path to move traf-
fic from http-proxy to voting-svc. Without any other restrictions, Bayware’s technology finds shortest
paths between agents using Dijkstra’s algorithm. Sending traffic through aws-p2 as a transit node between
these two point requires a slight modification to the communicative relationship between http-proxy and
voting-svc. Recall that in Bayware’s technology, communicative relationships between nodes are repre-
sented by the edges in a service graph. Edges are described with Bayware contracts. If you refer back to
Voting App Service Graph, you will note that the contract between http-proxy and voting-svc is called
voting-frontend. You will need to add a transit point into this contract.

But first, we’ll make sure that aws-p2 isn’t doing much right now. Without jumping too far into the weeds,
let’s take a look at a couple stats in Open vSwitch (OVS) on aws-p2. Recall that a Bayware processor
is composed of two pieces: the Bayware engine (control plane) and OVS (data plane). When the engine
processes control packets, it updates rules inside OVS. OVS stores rules in tables.

Two tables are relevant to this exercise

• Table 30: aggregates all non-control packets

116 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

• Table 50: filters all packets at the flow level

As shown in Fig. 12.40, your current Voting App installation does not utilize aws-p2 at all.

Go back to your terminal window and be sure you’re logged into Command Center. Now log into aws-p2
and become root:

[centos@aws-bastion-382fd7 ~]$ ssh centos@aws-p2
[centos@aws-p2-382fd7 ~]$ sudo su -
[root@aws-p2-382fd7 ~]#

Read OVS table 50

]# ovs-ofctl dump-flows ib-br table=50

You should see an empty result that looks like

NXST_FLOW reply (xid=0x4):

Table 50 is updated dynamically by the engine. When a new flow is introduced at this processor node, new
rules are created in Table 50.

Now read OVS table 30

]# ovs-ofctl dump-flows ib-br table=30

You should see two entries similar to

NXST_FLOW reply (xid=0x4):
cookie=0x3066303030303537, duration=87124.231s, table=30, n_packets=0, n_bytes=0, idle_
↪→age=65534, hard_age=65534, priority=1500,ipv6,ipv6_dst=fd32:10d7:b78f:9fc6::/64␣
↪→actions=resubmit(,40)
cookie=0x3066303030303537, duration=87124.231s, table=30, n_packets=57, n_bytes=11202,␣
↪→idle_age=3660, hard_age=65534, priority=1200,ipv6,ipv6_dst=ff3c::/32 actions=resubmit(,
↪→50)

Table 30 entries are created during node registration and act as a catch-all for all data packets. The
second table row is particularly important as it counts all IPv6 SSM packets, which just happens to be
how Bayware packets move around a network. In the example above, remember that n_packets=57. Your
number of packets will differ, but just remember whatever baseline is.

To convince yourself that nothing is happening on aws-p2, read Table 30 multiple times. The value in the
n_packets field should not change.

Now let’s bring aws-p2 into the equation. Modification of the voting-frontend contract is all done at the
orchestrator.

Start by clicking the Contracts button on the orchestrator and then click on the voting-frontend contract
as shown in Fig. 12.41.

First you’ll edit the contract’s client role–but pay attention because you’ll need to modify the server role
later. Click on client under Role Name near the bottom of the window.

Now click on EDIT in the Path Params row. You’ll be inserting the transit node into the path parameters.

Your browser window should now be split between an editor on the left and some examples and explanation
on the right. Modify the JSON description of the path parameters as shown in Fig. 12.44. Careful to use
your personal sandbox name when describing aws-p2-382fd7 . The contents of the JSON description in its
entirety should read

12.4. Application 2 - Voting App 117

Bayware Documentation

Fig. 12.41: Click on voting-fronted Contract

118 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.42: Click on Client Role

12.4. Application 2 - Voting App 119

Bayware Documentation

Fig. 12.43: Click on Edit Next to Path Params

120 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

Fig. 12.44: Edit Path Params JSON Description

12.4. Application 2 - Voting App 121

Bayware Documentation

{
"role": "server",
"contract": "voting-frontend",
"transit": "aws-p2-382fd7"

}

Don’t miss the comma at the end of the contract line, either. Click SET in the upper-right corner. Then be
sure to click SUBMIT after you are returned back to the Contract Role page.

Important: You need to click both SET and SUBMIT to get the new Path Params to stick.

Since the client role in frontend-contract is assigned to http-proxy, traffic from http-proxy to the server
will now go through aws-p2.

Now repeat the changes you made to the path parameters on the client role to those on the server role. That
will force traffic coming from voting-svc to go to aws-p2 before going to http-proxy.

Once you have edited path parameters on both client and server roles of frontend-contract, you can check
if everything is working. Go back to the browser tab that has the Voting App vote window open. The URL
is similar to https://ap382fd7 .sb.bayware.io/voting/vote. Now vote.

Check out the OVS tables again to ensure traffic is routed through the transit point, aws-p2.

Go back to your terminal window where you’re logged in as root on aws-p2. Read Table 30.

[root@aws-p2-382fd7 ~]# ovs-ofctl dump-flows ib-br table=30
NXST_FLOW reply (xid=0x4):
cookie=0x3066303030303537, duration=88250.285s, table=30, n_packets=0, n_bytes=0, idle_
↪→age=65534, hard_age=65534, priority=1500,ipv6,ipv6_dst=fd32:10d7:b78f:9fc6::/64␣
↪→actions=resubmit(,40)
cookie=0x3066303030303537, duration=88250.285s, table=30, n_packets=72, n_bytes=15301,␣
↪→idle_age=3, hard_age=65534, priority=1200,ipv6,ipv6_dst=ff3c::/32 actions=resubmit(,50)

See in this example that n_packets=72. So 72-57=15 packets have been sent through aws-p2 after modifying
both client and server roles and voting one time.

Similarly, take a look at Table 50.

[root@aws-p2-382fd7 ~]# ovs-ofctl dump-flows ib-br table=50
NXST_FLOW reply (xid=0x4):
cookie=0x3066303130343564, duration=2.857s, table=50, n_packets=0, n_bytes=0, idle_
↪→timeout=60, hard_timeout=60, idle_age=33, priority=1000,ipv6,in_port=3,ipv6_
↪→src=fd32:10d7:b78f:9fc6:240d:8cb4:1db0:4082,ipv6_dst=ff3c::4001:86a6,ipv6_
↪→label=0x63b71 actions=output:2
cookie=0x3066303130343631, duration=2.641s, table=50, n_packets=0, n_bytes=0, idle_
↪→timeout=60, hard_timeout=60, idle_age=18, priority=1000,ipv6,in_port=2,ipv6_
↪→src=fd32:10d7:b78f:9fc6:28a3:eea2:e22e:2103,ipv6_dst=ff3c::4001:86a6,ipv6_
↪→label=0x0c894 actions=output:3

Whereas the table was previously empty, now it contains two entries. Note that n_packets=0 simply because
the entry refresh rate makes it difficult to catch a non-zero value. However, you can verify the relationship
between the table entires and your service interconnection fabric. Find the ipv6_src address in each entry
above and compare it with the Node ID column on the Resources page in the orchestrator. One entry should
map to aws-11 and the other to gcp-11: the workload nodes running the microservices between which the

122 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

transit node aws-p2 was injected. Further, the lower four bytes of the ipv6_dst address in each entry above
indicate the Contract used. Find this in the Contract ID column on the Contracts page in the orchestrator.

12.4.4 Good (Secure) Housekeeping

If you’ve been following along, you know things change quickly around here: Getaway App was here and
now it’s gone. Likewise, when the votes have been counted, you’ll want to scrub your infrastructure so you
have nothing left but a pristine Bayware service interconnection fabric. That way, if you need a vacation
after all the voting brouhaha, re-install Getaway App and start planning a week in Columbus or Frankfurt!

Back on your Command Center, be sure you are logged in as centos and not root. If you’re at your root
prompt, simply type

]# exit

Ensure you are in your homedir by typing cd. You should now be at a prompt that looks like

[centos@aws-bastion-382fd7 ~]$

Now type

]$./purge-apps.sh

As with the purge of Getaway App, all workload nodes in your infrastructure are now disconnected from the
orchestrator. They should appear red in the Topology window.

For security reasons described in Getaway App, those red workload nodes now need to be deleted from
the orchestrator by clicking Resources and then clicking the red x next to the hosts that are part of the
voting-app domain. Once you have deleted those, you should only see your four processor nodes back on
the Topology page.

12.4.5 Summary

In this chapter you learned that Bayware’s innovative technology works natively with containers. You
deployed Voting App, a containerized application using Ansible. After interacting with the Voting App
in your browser, you easily modified voting-frontend contract’s path parameters to insert a transit node
between http-proxy and voting-svc.

12.5 SIS - Example

The following Sandbox Installation Summary (SIS) serves as an example so that tutorial readers may follow
along with the text before receiving their personal SIS. Only the SB number itself, 382fd7 , will be different
in a generated SIS.

Note: since this is a replica of the SIS you will receive from Bayware, some of the tables below may exceed
the width of your visible browser area. You can simply scroll horizontally to see the obstrutcted text. Other
literal blocks in this tutorial–showing code or a command-line interface–function similarly.

BAYWARE SANDBOX INSTALLATION SUMMARY: 382fd7

Welcome to Bayware!

(continues on next page)

12.5. SIS - Example 123

Bayware Documentation

Fig. 12.45: Voting App Topology After Purge

124 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

12.5. SIS - Example 125

Bayware Documentation

(continued from previous page)

We are happy that you have taken the opportunity to become more familiar with
Bayware's Network Microservices.

While you are working through Bayware's tutorial, you will be utilizing a suite
a virtual machines dedicated to you. The machines come from three public cloud
providers: Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP).

You have DNS access to the following services via your web browser. You will
be asked to navigate to these pages during the tutorial.

+--+-------------------------------+---------
↪→---+
| HTTP Address | Service Name |␣
↪→Description |
+==+===============================+==+
| https://ap382fd7.sb.bayware.io/getaway | Getaway App Entry Point | Web␣
↪→address for App1, the Getaway App |
+--+-------------------------------+---------
↪→---+
| https://ap382fd7.sb.bayware.io/voting/vote | Voting App Input Entry Point | Web␣
↪→address for App2 input, the Voting App vote. |
+--+-------------------------------+---------
↪→---+
| https://ap382fd7.sb.bayware.io/voting/result | Voting App Output Entry Point | Web␣
↪→address for App 2 output, the Voting App result. |
+--+-------------------------------+---------
↪→---+
| https://c1382fd7.sb.bayware.io | Orchestrator | Bayware␣
↪→orchestrator GUI interface application. |
+--+-------------------------------+---------
↪→---+

One VM in AWS functions as your Customer Command Center (aws-bastion-382fd7).
You will execute scripts on aws-bastion-382fd7 and you will SSH into other
VMs in your network from aws-bastion-382fd7. In the tutorial, this node
is generally referred to as your CCC.

You have password access to aws-bastion-382fd7.

bastion FQDN: ap382fd7.sb.bayware.io
+-----+----------------------+-------------------+-------+-----------+-----------+-------
↪→-------+--------------+----------+----------+
| No. | Host Name | Description | Cloud | Region | Geography |␣
↪→Public IP | Private IP | Username | Password |
+=====+======================+===================+=======+===========+===========+==============+==============+==========+==========+
| 1 | aws-bastion-382fd7 | customer cmd cntr | AWS | us-west-1 | N. Calif | 18.
↪→219.1.181 | 172.18.89.89 | centos | ik77J349 |
+-----+----------------------+-------------------+-------+-----------+-----------+-------
↪→-------+--------------+----------+----------+

(continues on next page)

126 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

(continued from previous page)

The tutorial will provide you with detailed instructions for logging into your
command center.

The remaining VMs in your network are listed below. Each VM contains a public
key that allows SSH access from your command center VM without a password.

+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| No. | Host Name | Description | Cloud | Region | Geography | Public IP ␣
↪→ | Private IP | Username | Password |
+=====+===============+==================+=======+============+=============+==============+================+==========+==========+
| 2 | aws-c1-382fd7 | Orch - Main | AWS | us-west-1 | N. Calif | 18.219.1.
↪→182 | 172.18.22.10 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 3 | aws-c2-382fd7 | Orch - Telemetry | AWS | us-west-1 | N. Calif | 18.214.28.
↪→16 | 172.18.18.3 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 4 | aws-c3-382fd7 | Orch - Events | AWS | us-west-1 | N. Calif | 18.214.28.
↪→17 | 172.18.52.9 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 5 | aws-p1-382fd7 | Proc - Pub Cld1 | AWS | us-west-1 | N. Calif | 18.214.28.
↪→18 | 172.18.231.63 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 6 | aws-p2-382fd7 | Proc - Pub Cld1 | AWS | us-west-1 | N. Calif | 18.214.28.
↪→19 | 172.18.99.29 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 7 | aws-11-382fd7 | Wkld - Pub Cld1 | AWS | us-west-1 | N. Calif | 18.214.28.
↪→20 | 172.18.103.200 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 8 | aws-12-382fd7 | Wkld - Pub Cld1 | AWS | us-west-1 | N. Calif | 18.214.28.
↪→21 | 172.18.103.201 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 9 | azr-p1-382fd7 | Proc - Pub Cld2 | Azure | S Cntrl US | Texas | 44.22.81.4␣
↪→ | 10.1.8.8 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 10 | azr-11-382fd7 | Wkld - Pub Cld2 | Azure | S Cntrl US | Texas | 44.22.81.5␣
↪→ | 10.1.8.9 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 11 | azr-12-382fd7 | Wkld - Pub Cld2 | Azure | S Cntrl US | Texas | 44.22.81.6␣
↪→ | 10.1.8.10 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 12 | gcp-p1-382fd7 | Proc - Pub Cld3 | GCP | us-east-4 | N. Virginia | 18.9.9.3 ␣
↪→ | 10.87.1.11 | centos | n/a | (continues on next page)

12.5. SIS - Example 127

Bayware Documentation

(continued from previous page)

+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 13 | gcp-11-382fd7 | Wkld - Pub Cld3 | GCP | us-east-4 | N. Virginia | 18.9.9.4 ␣
↪→ | 10.87.1.2 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 14 | gcp-12-382fd7 | Wkld - Pub Cld3 | GCP | us-east-4 | N. Virginia | 18.9.9.5 ␣
↪→ | 10.87.1.3 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 15 | aws-21-382fd7 | Wkld - Pub Cld1 | AWS | us-east-2 | Ohio | 18.214.28.
↪→22 | 172.18.103.201 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 16 | aws-31-382fd7 | Wkld - Pub Cld1 | AWS | us-east-2 | Ohio | 18.214.28.
↪→23 | 172.18.103.202 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+
| 17 | aws-41-382fd7 | Wkld - Pub Cld1 | AWS | us-east-1 | N. Virginia | 18.214.28.
↪→24 | 172.18.103.203 | centos | n/a |
+-----+---------------+------------------+-------+------------+-------------+------------
↪→--+----------------+----------+----------+

Your Bayware Orchestrator login credentials

+-----+--------------+---------+----------+------------------+
| No. | VM Function | Domain | Username | Password |
+=====+==============+=========+==========+==================+
| 18 | orchestrator | default | admin | greencowsdrive13 |
+-----+--------------+---------+----------+------------------+

Your Bayware Processor login credentials

+-----+-------------+------------------------+-----------+----------+--------------+
| No. | VM Function | Orch FQDN | Domain | Username | Password |
+=====+=============+========================+===========+==========+==============+
| 19 | processor | c1382fd7.sb.bayware.io | cloud-net | proc-1 | olivesoda74 |
+-----+-------------+------------------------+-----------+----------+--------------+
| 20 | processor | c1382fd7.sb.bayware.io | cloud-net | proc-2 | itchysugar32 |
+-----+-------------+------------------------+-----------+----------+--------------+
| 21 | processor | c1382fd7.sb.bayware.io | cloud-net | proc-3 | greatmoose33 |
+-----+-------------+------------------------+-----------+----------+--------------+
| 22 | processor | c1382fd7.sb.bayware.io | cloud-net | proc-4 | lumpywish36 |
+-----+-------------+------------------------+-----------+----------+--------------+

Your Bayware Agent login credentials Application1: Getaway App

+-----+-------------+------------------------+-------------+-------------+---------------
↪→+
| No. | VM Function | Orch FQDN | Domain | Username | Password ␣
↪→|

(continues on next page)

128 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

(continued from previous page)

+=====+=============+========================+=============+=============+===============+
| 23 | workload | c1382fd7.sb.bayware.io | getaway-app | http-proxy | curlycanary14␣
↪→|
+-----+-------------+------------------------+-------------+-------------+---------------
↪→+
| 24 | workload | c1382fd7.sb.bayware.io | getaway-app | getaway-svc | busyparrot65 ␣
↪→|
+-----+-------------+------------------------+-------------+-------------+---------------
↪→+
| 25 | workload | c1382fd7.sb.bayware.io | getaway-app | news-gw | silkycat20 ␣
↪→|
+-----+-------------+------------------------+-------------+-------------+---------------
↪→+
| 26 | workload | c1382fd7.sb.bayware.io | getaway-app | places-gw | giantstop52 ␣
↪→|
+-----+-------------+------------------------+-------------+-------------+---------------
↪→+
| 27 | workload | c1382fd7.sb.bayware.io | getaway-app | weather-gw | fuzzylamb20 ␣
↪→|
+-----+-------------+------------------------+-------------+-------------+---------------
↪→+

Your Bayware Workload login credentials Application2: Voting App

+-----+-------------+------------------------+------------+------------+--------------+
| No. | VM Function | Orch FQDN | Domain | Username | Password |
+=====+=============+========================+============+============+==============+
| 28 | workload | c1382fd7.sb.bayware.io | voting-app | http-proxy | swiftstar33 |
+-----+-------------+------------------------+------------+------------+--------------+
| 29 | workload | c1382fd7.sb.bayware.io | voting-app | voting-svc | messycard58 |
+-----+-------------+------------------------+------------+------------+--------------+
| 30 | workload | c1382fd7.sb.bayware.io | voting-app | voting-db | emptypet53 |
+-----+-------------+------------------------+------------+------------+--------------+
| 31 | workload | c1382fd7.sb.bayware.io | voting-app | result-svc | poorhelp59 |
+-----+-------------+------------------------+------------+------------+--------------+
| 32 | workload | c1382fd7.sb.bayware.io | voting-app | result-db | wildsummer93 |
+-----+-------------+------------------------+------------+------------+--------------+
| 33 | workload | c1382fd7.sb.bayware.io | voting-app | worker | tallfeet16 |
+-----+-------------+------------------------+------------+------------+--------------+

12.6 Troubleshooting

12.6.1 Bayware Engine Diagnostics

1. I have just installed and configured the Bayware processor (proc-1, proc-2, proc-3, proc-4), but it does
not show up in Topology on the orchestrator.

• Ensure that the service is running. As root on the processor node, type the following

]# systemctl status ib_engine

12.6. Troubleshooting 129

Bayware Documentation

The status should indicate both loaded and active (along with either exited or running). If you
do not see this status, restart the service

]# systemctl restart ib_engine

• Check login credentials used to attach node to orchestrator. You can verify the orchestrator
FQDN, domain, username, and password used during engine configuration. As root, view the
following

]# more /opt/ib_engine/releases/1/sys.config

Find keystone_token near the top. This shows the FQDN of the orchestrator (ignore the trailing
path), for example

{keystone_token,"https://c1382fd7.sb.bayware.io/api/v1"}

You would ensure that c1382fd7.sb.bayware.io matches the FQDN for the orchestrator shown
on the SIS. You can find the SIS FQDN in the URL section (everything that comes after https://
for the orchestrator row).

Search further for login, password, and domain and ensure that these match processor login
credentials on your SIS.

If credentials do not match, simply re-run the ib_engine configuration script again

]# /opt/ib_engine/bin/ib_configure -i

2. The Bayware processor shows up on the orchestrator, but it doesn’t make connections with any other
processor.

• Be patient. It can take up to one minute to form the link.

• Click Resources and then click on the processor Node Name on the orchestrator. Scroll to the
bottom and ensure you configured the expected link.

• As root on the processor node, ensure the IPsec client, strongSwan, has been configured.

]# systemctl status strongswan

If strongSwan is not active, restart the service

]# systemctl restart strongswan

Once strongSwan is active, ensure that it has security associations set up with other nodes. There
should be one security association established for each green link shown on the Topology page.

]# strongswan status

If there are no security associations or if systemctl indicated that the strongswan service is not
running, then it may not have been configured. Re-run engine configuration bullet point above
and be sure to answer yes to IPsec.

12.6.2 Bayware Agent Diagnostics

1. I have just installed and configured the Bayware agent, but it does not show up in Topology on the
orchestrator.

• Ensure that the service is running. As root on the workload node, type the following

130 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]# systemctl status ib_agent

The status should indicate both loaded and active (running) If you do not see this status, restart
the service

]# systemctl restart ib_agent

• Check login credentials used to attach node to orchestrator. You can verify the orchestrator
FQDN, domain, username, and password used during agent configuration. As root, view the
following

]# more /etc/ib_agent.conf

Ensure correct controller_ip by cross-checking the IP address with that for aws-c1 on your
SIS. Ensure correct login, password, and domain with that expected from the SIS.

If credentials do not match, simply re-run the ib_agent configuration script again

]# /opt/ib_agent/bin/ib_configure -i

• Check ib_agent status to ensure that it is properly registered with the orchestrator. To do this,
you need the IP address and port used for the REST interface. Look for the [rest] section near
the bottom of the following file

]# more /etc/ib_agent.conf

It should look like

...

[rest]
rest_ip = 192.168.250.1
rest_port = 5500
log_file = /var/log/ib_agent_rest.log
log_level = DEBUG

Note the rest_ip and rest_port and use them in the following curl command. For example,

[root@aws-11-382fd7 ~]# curl 192.168.250.1:5500/api/v1/status

The ready, registered, and success keys should all be assigned a value of true. You can also
verify login credentials as well as orchestrator IP address (which is called controller in this
context.)

2. The Bayware agent shows up on the orchestrator, but it doesn’t make connections with any other
processor.

• Be patient. It can take up to one minute to form the link.

• As root on the workload node, ensure the IPsec client, strongSwan, has been configured.

]# systemctl status strongswan

If strongSwan is not active, restart the service

]# systemctl restart strongswan

12.6. Troubleshooting 131

Bayware Documentation

Once strongSwan is active, ensure that it has security associations set up with other nodes. There
should be one security association established for each green link shown on the Topology page.

]# strongswan status

If there are no security associations or if systemctl indicates that the strongswan service is not
running, then it may not have been configured. Re-run agent configuration bullet point above and
be sure to answer yes to IPsec.

12.6.3 Getaway App & Voting App Diagnostics

It’s best to ensure that the App is running on a properly configured Bayware interconnection fabric before
checking individual microservices.

Table 12.6: Getaway App Connectivity
Host Host Owner URL
aws-11 http-proxy frontend.getaway-app.ib.loc
aws-12 getaway-svc news-api.getaway-app.ib.loc
aws-12 getaway-svc weather-api.getaway-

app.ib.loc
aws-12 getaway-svc places-api.getaway-app.ib.loc

Table 12.7: Voting App Connectivity
Host Host Owner URL
aws-11 http-proxy result-frontend.voting-app.ib.loc
aws-11 http-proxy voting-frontend.voting-app.ib.loc
aws-12 worker result-worker.voting-app.ib.loc
aws-12 worker voting-worker.voting-app.ib.loc
gcp-11 voting-svc voting-backend.voting-app.ib.loc
azr-11 result-svc result-backend.voting-app.ib.loc

Do this by logging in to one of the workload hosts listed in Table 12.6 and Table 12.7. From the workload
host, issue a ping command to the URL listed. For example,

[centos@aws-11-382fd7]$ ping frontend.getaway-app.ib.loc

If connectivity exists over the Bayware interconnection fabric, then you should see ongoing responses indi-
cating 64 bytes from If you do not see response packets, then resume troubleshooting ib_agent and
ib_engine in the sections above.

If you do see ping response packets as indicated, then ensure the application service units are installed and
running on the proper VMs. This is performed differently for Getaway App and Voting App.

With Getaway App for instance, as indicated in Getaway Microservices VM Mapping, the http-proxy
microservice running on aws-11 relies on a service unit called getaway-proxy. getaway-proxy should be
installed and started on aws-11. Login to aws-11 as root and ensure it is installed

]# yum list installed | grep getaway-proxy

If you get a positive response, then ensure that the service unit is running under systemd

132 Chapter 12. Deploying Service Interconnection Fabric

Bayware Documentation

]# systemctl status getaway-proxy

You should see a response of active (running). If the service unit is not installed or it is not running,
you can follow the tutorial installation instructions to reinstall and start or restart it (systemctl start
getaway-proxy or systemctl restart getaway-proxy).

Also ensure that only a single getaway service is running i.e., there should be only a single getaway-* listed
among running services. Show all running services with

]# systemctl list-units --type service

If an unexpected getaway-* service appears in the list, stop the service. For example, to stop the getaway-
service service

]# systemctl stop getaway-service

With Voting App, you should find a container image running on each VM where you expect a microservice.
Login to a workload node as root and execute the following

]# systemctl list-units --type service --all | grep _container

A positive response should show a container service recognizable as being part of Voting App, for instance,
http-proxy_container. It should be loaded, active, and running with an output similar to

http-proxy_container.service loaded active running "http-proxy_container"

Re-run the deploy-voting-app.sh script as described in Installation with Ansible if any service is missing
or its status is incorrect.

12.6. Troubleshooting 133

Bayware Documentation

134 Chapter 12. Deploying Service Interconnection Fabric

CHAPTER 13

Deploying a Geo-Redundant App

13.1 Introduction

This tutorial demonstrates how to use Service Interconnection Fabric to quickly and securely deploy a three-
tier, geo-redudant application in a multi-cloud or a hybrid-cloud environment using only a description of the
application topology. The application topology can be depicted in an application service-type graph, which
we will refer to here simply as the service graph.

After describing the service graph in the Service Interconnection Fabric orchestrator, you will see how easy it
is to move service instances from private data centers to public clouds or between public clouds: all network
address translation, encryption, protocol filtering, and routing will be established automatically.

13.1.1 The Scenario

You will install Getaway, a three-tier application spread across three VPCs located in three public clouds.
The first VPC, located in AWS, contains a virtual machine (VM) running microservice getaway-proxy that
functions as the presentation tier while another VM running microservice getaway-service functions as the
application tier.

The AWS VPC and virtual machines come pre-installed in this tutorial. An additional AWS VPC contains
three virtual machines that comprise the orchestrator components: a controller, a telemetry node, and an
events node. These are also pre-installed.

The next VPC, in Google Cloud (GCP), functions as the data tier by responding to requests from the
application tier for weather, places, and news data for a given city. You will install this VPC and its three
VMs using the Fabric Manager (FM) node.

The final VPC, located in Microsoft’s Azure, duplicates the weather, places, and news data VMs from the
GCP VPC to create a geographically-redundant data center for disaster recovery or data migration from
one cloud to another. Again, you will also install these resources using the Fabric Manager.

135

Bayware Documentation

Fig. 13.1: AWS VPC: Proxy + Application

Fig. 13.2: GCP VPC: Weather, Places & News Data

136 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.3: Azure VPC: Disaster Recovery

13.1.2 Personalized Installation

Bayware creates a customized tutorial sandbox for each user. Your welcome email has an attachment called
Sandbox Installation Summary (SIS), which looks similar to the following

The Orchestrator and Getaway buttons are linked to your dedicated sandbox orchestrator and the example
application you are building, respectively. The former requires login credentials, which are given in the SIS;
the latter won’t resolve until you finish deploying the application.

Use these buttons whenever you need to open the orchestrator or Getaway in a browser window. You may
also copy and paste the underlying links into your browser, if that suits your needs better.

13.1.3 Fabric Manager

You will interact with the application’s infrastructure through the Fabric Manager (FM). The FM has two
command-line tools: bwctl and bwctl-api that allow you to manage cloud-based infrastructure resources
and application policy, respectively.

To get started, open a terminal window on your computer as outlined in Requirements for your operating
system. At the prompt, use the user name and FQDN for your fabric manager that is in the welcome email
SIS attachment and type (using your FM FQDN, not the example FQDN for jsmith shown here):

]$ ssh ubuntu@fm.jsmithinc.poc.bayware.io

Be aware that the first time you log in to a new machine, you might see a warning message that looks like

13.1. Introduction 137

Bayware Documentation

Fig. 13.4: Example Sandbox Installation Summary

138 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

]$ ssh ubuntu@fm.jsmithinc.poc.bayware.io
The authenticity of host 'jsmithinc.poc.bayware.io (13.56.241.123)' can't be established.
ECDSA key fingerprint is SHA256:6LLVP+3QvrIb8FjRGNleLQRy7zL2eXeNCdOoYRbbxqw.
ECDSA key fingerprint is MD5:7b:fd:15:4c:35:d3:1d:20:fd:3e:3d:b7:1b:14:6a:1b.

Where it asks if you wish to continue, just type yes.

Are you sure you want to continue connecting (yes/no)? yes

You will be prompted for your password with the following query

ubuntu@fm.jsmithinc.poc.bayware.io password:

Type in the password for your fabric manager. You should now be logged in and ready to go. Your Linux
command-line prompt should look similar to

ubuntu@jsmith-c0:~$

Throughout the remainder of the tutorial, the Linux command-line prompt will be abbreviated as

]$

If it’s not entirely clear, keep in mind that you can open up as many SSH sessions with your fabric manager
as you require. Simply fire up another terminal window on your computer and log in as just described.

13.1.4 Orchestrator: Controller, Telemetry, & Events

Access the orchestrator from a browser window using the button and credentials shown in your welcome
email (see this example above). You will need Domain, User Name, and Password as shown in Fig. 13.5.
From the orchestrator’s controller window you will be able to access windows for telemetry and events using
the sidebar navigation menu. Be sure to keep the orchestrator browser window open throughout this tutorial
since you will be referring to it frequently.

13.1.5 Summary

In this section you were introduced to Getaway, the application you will work with throughout this tutorial.
You prepared for the following sections by learning how to log into your Fabric Manager node and bring up
the SIF Orchestrator in your browser.

Next up: build out the infrastructure needed to deploy Getaway services in Google Cloud and Azure.

13.2 Application Infrastructure

13.2.1 Requirements

The required infrastructure must be geographically-distributed, preferably among different public cloud
providers. It must have enough VMs to function as workload nodes to run five unique microservices, with
three of the five duplicated, for a total of eight.

The Service Interconnection Fabric fulfills these requirements by creating VPCs and VMs, as described in
the next section.

13.2. Application Infrastructure 139

Bayware Documentation

Fig. 13.5: Orchestrator Login Page

140 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

13.2.2 Service Interconnection Fabric

One can operate in isolated networks in public clouds by creating Virtual Private Clouds (VPCs). Within a
VPC, one can create virtual machines (VMs) giving a virtual computing instance running its own operating
system.

A Service Interconnection Fabric (SIF) is comprised of a set of VPCs (in a single public cloud, in multiple
public clouds, or in public clouds and private data centers) whose VMs inter-communicate only through SIF
processors. Generally, one SIF processor is deployed on one VM in each VPC.

We collectively refer to VMs used as SIF processors and VMs used to run application microservices as nodes.

In the remainder of this section, you will create VPCs and nodes.

13.2.3 Fabric Manager Tool: bwctl

This tutorial uses infrastructure components in AWS, Google Cloud, and Azure. The components in AWS
are pre-installed; you will create the components in GCP and Azure using your fabric manager’s tool called
bwctl.

AWS Infrastructure

…on the Orchestrator

The AWS VPC contains two workload nodes and a processor node to connect it to the service interconnection
fabric. You can see this on the orchestrator.

Return to your browser tab with the open orchestrator GUI. (Recall that you can find the orchestrator
button and credentials on the SIS attachment from your welcome email.) Click Resource Graph in the
sidebar navigation menu. You should see one large green circle representing the processor node and two
smaller green circles representing the workload nodes as shown in Fig. 13.6.

…and from the FM CLI

Fabric Manager’s command-line interface, bwctl, was used to create the AWS infrastructure just as you
will be using it to create additional infrastructure in GCP and Azure in the following sections. You can
use bwctl both interactively and from the Linux prompt. Let’s take a look at the AWS infrastructure from
within bwctl by issuing a show command.

To do this, return to your terminal window where you are logged into FM and type bwctl at the Linux
prompt to start an interactive session.

]$ bwctl

You should be at the bwctl prompt

(none) bwctl>

This prompt shows you are operating outside of a fabric (or namespace) with the word none. Determine the
name of the fabric pre-installed for you by typing

(none) bwctl> show fabric --list-all

You will see output similar to

13.2. Application Infrastructure 141

Bayware Documentation

Fig. 13.6: AWS Infrastructure on the Orchestrator

142 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

FABRIC
protof

In this example, the name of the pre-installed fabric is protof. Now enter the namespace of your fabric by
typing the following (using your own fabric name) at the bwctl prompt

(none) bwctl> set fabric protof

You should now see output similar to

[2019-05-10 00:04:19.624] Active fabric: 'protof'

Notice that your bwctl prompt has changed, now showing the active fabric

(protof) bwctl>

Now show the components of your fabric by entering

(protof) bwctl> show fabric

Take some time to scroll up and scan through the components in your fabric. At the bottom you’ll see the
AWS VPCs. A little further up you’ll see six nodes: three of these comprise the orchestrator, two are used
as workloads, and another is used as a processor node.

In the next section you’ll examine a YAML file that is used as input to the bwctl tool in order to create
infrastructure.

For now, simply quit out of the interactive bwctl session by typing

(protof) bwctl> quit

You should now be back at the Linux prompt.

ubuntu@jsmith-c0:~$

GCP Infrastructure

In this section you will add components from GCP: one VPC, one processor node, and three workload nodes.
The tool will add a small piece of software to the processor node to create an engine. The engine provides
communication and policy enforcement among VPCs and workloads. The tool will also add a small piece
of software to the workload nodes called the agent. The agent acts as a daemon for communicating with
engines and the orchestrator.

BWCTL Batch Processing

While you could issue commands interactively at the bwctl prompt to add each component to the fabric, it
will be more expedient to use a bwctl batch command and have the tool do everything in one shot.

bwctl batch commands are issued at the Linux prompt and operate on an input file in YAML format that
describes the desired infrastructure. As an example, consider the following

13.2. Application Infrastructure 143

Bayware Documentation

1 ---
2

3 apiVersion: fabric.bayware.io/v1
4 kind: Batch
5 metadata:
6 name: backend-infra-and-config-template
7 description: 'Creates VPC, processor, and three workloads'
8 spec:
9 - kind: Fabric

10 metadata:
11 description: 'optional description'
12 name: 'protof'
13 spec:
14 companyName: acmeinc
15 credentialsFile:
16 aws: /home/ubuntu/credentials/aws-cred.yaml
17 azr: /home/ubuntu/credentials/azr-cred.yaml
18 gcp: /home/ubuntu/credentials/gcp-credentials.json
19 ssh: {}
20 s3: /home/ubuntu/credentials/s3-cred.yaml
21 - kind: Node
22 metadata:
23 description: 'optional description'
24 fabric: 'protof'
25 name: 'gcp1-p01-protof'
26 spec:
27 properties:
28 type: 'processor'
29 vpc: 'gcp1-vpc-protof'
30 - kind: Vpc
31 metadata:
32 description: 'optional description'
33 fabric: 'protof'
34 name: 'gcp1-vpc-protof'
35 spec:
36 cloud: 'gcp'
37 properties:
38 zone: 'us-east4'

This YAML file specifies three components: a fabric (or namespace) called protof, a node for a processor,
and a VPC in GCP. When executed, the tool determines which components already exist and adds the
remaining components to bring the current state of the fabric in line with the YAML description.

GCP Infrastructure YAML Description

To see the components that you will add in GCP, you can view the YAML file description using the popular
Linux cat command. The file is located in the ~ubuntu home directory, which is where you should be in
the terminal session open on your FM node if you’ve been following along. Type the following at the Linux
prompt

]$ cat gcp-infra-batch.yml

The contents of the file will be displayed on the screen. You can use the scroll feature of your terminal

144 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

window to see the entire file if it doesn’t fit on your screen.

GCP Infrastructure: create batch

Now you’ll actually execute the command to add the GCP infrastructure. Again, in the ~ubuntu home
directory, type the following

]$ bwctl create batch gcp-infra-batch.yml

This command kicks off a series of Terraform and Ansible instructions that interact with Google Cloud and
with the newly-created virtual machines. The whole process takes approximately 10 minutes.

Continue with the tutorial once the command completes.

GCP Infrastructure: on the Orchestrator

Now return to the browser tab that has the open orchestrator GUI. Click on the Resource Graph button
in the navigation menu. If everything went well, you should now see an additional processor node (a large
green circle) and three additional workload nodes (small green circles). The new processor node should have
a connection to the processor node in AWS and the three new workload nodes should be connected to the
GCP processor node, as shown in Fig. 13.7.

Azure Infrastructure

Similar to GCP, you will now create one VPC, one processor node, and three workload nodes in Microsoft’s
Azure. You will do this in a similar manner, using a bwctl batch command with a YAML description of
the resources.

Azure Infrastructure YAML Description

Creating infrastructure in Azure uses the same type of YAML description that you used in GCP. In fact,
the two files are nearly identical. Take a look at the Azure YAML infrastructure description using the cat
command

]$ cat azr-infra-batch.yml

As you scan through the file, notice that only the name of the cloud provider has changed and the region-
specific information.

Azure Infrastructure: create batch

Go ahead and execute the command

]$ bwctl create batch azr-infra-batch.yml

As before, wait approximately 12 minutes for this to complete before continuing.

13.2. Application Infrastructure 145

Bayware Documentation

Fig. 13.7: AWS & GCP Infrastructure Resource Graph

146 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Azure Infrastructure: on the Orchestrator

Now that the tool has completed adding the Azure components, return to the orchestrator browser window’s
Resource Graph page. The additional Azure processor should be present and connected to both the GCP
and AWS processors and the new Azure workload nodes should be connected to the Azure processor, as
shown in Fig. 13.8.

Fig. 13.8: AWS & GCP & Azure Infrastructure Resource Graph

Completed Infrastructure

Before moving on, use bwctl interactively once more to show all the components in your fabric as you did
in AWS Infrastructure above. That is, first type bwctl at the Linux prompt

]$ bwctl

which should put you at the bwctl command line. This should look similar to

(protof) bwctl>

13.2. Application Infrastructure 147

Bayware Documentation

but your fabric name will be different. Then type show fabric

(protof) bwctl> show fabric

As you scroll through the output, notice the newly-created components in GCP and Azure.

Don’t forget to quit out of the interactive bwctl session by typing quit at the bwctl prompt:

(protof) bwctl> quit

You should now be back at the Linux prompt.

ubuntu@jsmith-c0:~$

13.2.4 Summary

In this section you used your fabric manager’s infrastructure command-line tool, bwctl, both interactively,
to show fabric infrastructure, and in batch mode, to create new infrastructure. The YAML batch file
descriptions demonstrated how creating the same components in different cloud providers is nearly as simple
as doing a search-and-replace. You also used the orchestrator GUI to track components as they registered
themselves with the controller.

Next up: use fabric manager’s bwctl-api command-line tool to interact with the orchestrator’s controller
via an API.

13.3 Application Policy

13.3.1 Requirements

Your application service graph defines the required communicative relationships between the application
microservices. The service graph for Getaway is shown in Fig. 13.9.

Service Interconnection Fabric allows the application developer to set policy based on the relationships
between the nodes in the service graph. To do this, Bayware introduces two new concepts: services and
contracts.

13.3.2 Service Graph

Nodes & Edges

The nodes in the service graph map to SIF services. Edges between nodes in the service graph map to SIF
contracts. One service may communicate with another service only through a contract. The contract defines
the policy that allows the services to communicate.

Contracts in the Service Interconnection Fabric

A contract, which defines policy that allows one service to communicate with another service, may be used by
more than two services within a service graph. It may describe, for instance, policy for point-to-multipoint
communication and not simply point-to-point communcation. A contract is essentially a waypoint on the
path between services that describes the policy that allows those services to communicate.

148 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.9: Getaway Application Service Graph

13.3. Application Policy 149

Bayware Documentation

A contract has pre-defined roles: you can think of these as being an endpoint of an edge eminating from the
contract waypoint. In its simplest form, a role might be client or server. So the policy inherently embedded
within the contract might allow, simply, that the client can initiate communication with the server, but not
the other way around.

Services in the Service Interconnection Fabric

A developer’s application microservice maps to an SIF service (the node in the application’s service graph).
When creating an SIF service on the orchestrator, the developer may assign a role from a contract to the
service. This assignment defines how the service may communicate.

The developer permits a service in a container or on a VM to communicate with other services by creating
a service token on the SIF orchestrator and then installing that service token directly on the VM or via a
container orchestration platform such as Kubernetes. That token authenticates the service and authorizes
the communication defined by the contract role assigned to that service.

Essentially, defining the policy for your application, then, only requires you to define the service graph: the
microservices (SIF services) and how they communicate (SIF contracts).

13.3.3 Fabric Manager Tool: bwctl-api

In Application Infrastructure you were introduced to the bwctl command-line tool that allows you to interact
with public cloud providers to create virtual private clouds and virtual machines. In this section, you will
use another fabric manager command-line tool, bwctl-api, that allows you to interact directly with the
SFI orchestrator. Actions that can be performed by clicking around on the GUI can also be performed by
scripting them through bwctl-api.

First, you will use bwctl-api to generate Getaway’s service graph (contracts and services) and, second, you
will use bwctl-api to generate service tokens that authorize Getaway’s microservices to operate on the SIF
infrastructure.

Generating the Service Graph

Before we begin, let’s confirm that there are, indeed, no contracts and services pre-installed on the orches-
trator. Back on the orchestrator GUI open in your browser, click on the Services button in the sidebar
navigation menu. It should look similar to Fig. 13.10.

You may click on the Contracts button in the sidebar navigation menu to confirm that there are no contracts,
as well.

Just as you used a YAML description of infrastructure components with bwctl in the last section, here you
will use a YAML description of Getaway’s service graph with bwctl-api.

Back in the terminal window that has an SSH session open on your FM node, take a look at the service
graph’s YAML description located in the ~ubuntu home directory. Recall that you can do this using Linux
cat command

]$ cat getaway-app.yml

As you navigate through the text (scrolling up, if required), notice that the YAML spells out requirements for
generating a domain (getaway-app), four contracts (frontend, weather-api, places-api, and news-api),
and five services (http-proxy, getaway-svc, weather-gw, places-gw, and news-gw). If you look carefully,
you’ll see that contracts and services are defined within a given domain and that services are assigned a
particular role within a contract. In fact, the getaway-svc service, given its place in Getaway’s service
graph, takes on four contract roles.

150 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.10: No Services Installed

13.3. Application Policy 151

Bayware Documentation

Now back at the Linux prompt, execute the batch file by typing

]$ bwctl-api create batch getaway-app.yml

This should complete pretty quickly. Once it does, return to the orchestrator GUI in your browser and reload
it. You can do this in most web browsers by clicking the reload button in the address bar or by typing �+R
on a Mac keyboard or CTRL+F5 on a Windows keyboard.

If your orchestrator browser window is still showing the Services or Contracts page, it should now be popu-
lated.

With services and contracts populated, you can now see the service graph. In the navigation menu, click on
Domains under Admin. You should now see a domain called getaway-app. Click it.

On the Domain page for getaway-app, click the View Graph button at the bottom. Voilà! There is the
service graph for Getaway with all its contracts and services depicted (see Fig. 13.11).

Fig. 13.11: Getaway Service Graph on the Orchestrator

152 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Generating the Service Tokens

Getting back to a (somewhat) more physical world, although the policy is now in place to allow the microser-
vices to communicate (http-proxy can request data from getaway-svc; getaway-svc can request data from
the three back-end services, weather-gw, places-gw, and news-gw), they have not yet been authorized to
communicate within a workload i.e., a container or a virtual machine.

That’s where tokens come in. For a service in a given domain, you can ask the orchestrator to generate a
token that can be used to authorize the service to operate. Once you have the token, you, as the devOps
engineer, can use it in whichever workload you choose. You will see this in the next section, Application
Microservices, when you install the tokens. For now, you simply generate the tokens.

As with all things related to the orchestrator, you could generate service tokens using the orchestrator GUI
or using the bwctl-api tool. Here you will use the latter.

A YAML file in the ~ubuntu home directory describes the service token request. You can explore it by using
cat

]$ cat getaway-tokens.yml

Notice that the YAML description requests multiple tokens for the three back-end services, weather-gw,
places-gw, and news-gw. Each of these services runs both in GCP and in Azure. By creating a unique
token for each running service instance, you can control authorization independently in each cloud. This will
come in handy later on when you delete a token for news-gw in one cloud and see that the same microservice
operating in the other cloud automatically takes over.

Now execute the command to get the tokens from the orchestrator. Here you will redirect Linux stdout to
a file where the tokens will be saved.

]$ bwctl-api create batch getaway-tokens.yml > tokens.yml

This should be quick. Once it has completed, use cat to explore the file containing the service tokens
returned by the orchestrator

]$ cat tokens.yml

The orchestrator has returned a YAML sequence of eight tokens, each associated with a particular service
within a given domain in a given cloud, as prescribed by the requesting YAML file. You will use these in the
next section to create service endpoints that get Getaway’s microservices up and running and communicating
with each other.

13.3.4 Summary

In this section you learned about the relationship between an application’s service graph and SIF services
and contracts to inject policy between microservices. Services map to service graph nodes; contracts map to
service graph edges. You created the service graph for Getaway and then asked the orchestrator to generate
tokens that you will use in the next section to create service endpoints. All this was done using your fabric
manager’s command-line tool, bwctl-api, that allows orchestrator GUI operations to be scripted through
its API.

Next up: You will install service tokens that authorize Getaway’s microservices to operate over the service
interconnection fabric.

13.3. Application Policy 153

Bayware Documentation

13.4 Application Microservices

13.4.1 Requirements

Getaway’s first two tiers should be deployed in AWS and the back-end data tier should be deployed in a
geo-redundant matter, in this case, both in GCP and Azure as shown in Fig. 13.12.

Fig. 13.12: Geo-redundant Application

Each workload node should be authorized to operate within the service interconnection fabric and the
microservices should be installed and started.

13.4.2 Authorized Microservices

The service interconnection fabric authorizes workloads (VMs or containers) to operate using tokens. Au-
thorization tokens for a given service may be generated using the orchestrator GUI or the orchestrator API,
as you did in the last section. The tokens must then be installed on each workload before that workload can
communicate over the fabric.

When operating in a VM environment, the user configures the agent running on a workload with the required
token. This can be done manually or using orchestration software, such as Ansible.

When operating in a container environment, a call from kublete to the CNI triggers the SIF plugin to request
a token from the Kubernetes server, which has them stored as pod annotations.

154 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

13.4.3 Workload Orchestration

Recall that in Application Infrastructure you were introduced to the fabric manager’s bwctl command-line
tool in order to interact with public cloud services and create the infrasturcture for Getaway. In Application
Policy you were introduced to FM’s bwctl-api command-line tool in order to interact with the orchestrator
to create policy and authorization for Getaway.

The success in this section, however, is up to the devOps engineer. It’s up to him or her to decide how and
where to deploy microservices and then use the service tokens to authorize the chosen containers or virtual
machines to communicate over the fabric. This would typically be done with a workload orchestrator, such
as Kubernetes for containers or Ansible for VMs.

Our example application, Getaway, runs on virtual machines. You will use an Ansible playbook to interact
with the workloads.

The Ansible playbook needs to do two things

1. configure the workload Agent to use a service token

2. install and start Getaway’s microservices

These functions have been wrapped into a single playbook.

Back in your terminal session on FM, ensure that you are in th ~ubuntu home directory

]$ cd

Now change into the directory that contains the Ansible playbook

]$ cd application

Notice that your Linux prompt, which contains the current path, has changed. Previously, it looked similar
to

]$ ubuntu@jsmith-c0:~$

but now it should look more like

]$ ubuntu@jsmith-c0:~/application$

Execute the following playbook from this directory by typing

]$ ansible-playbook deploy-app.yml

This playbook shouldn’t take longer than a minute or so to complete since the tasks are relatively quick,
although it does touch eight workload nodes.

Once the playbook completes, you can continue with the tutorial.

Back at the Ochestrator

Let’s ensure that your workloads have been properly authorized at the orchestrator. To do that, we will
introduce one more term, network endpoint. Fig. 13.13 shows the relationship between network endpoint,
service endpoint, and your workloads.

When you used the Ansible playbook above to install a token on a given workload, a network endpoint and a
service endpoint were added to that workload. Each service has its own service endpoint. If multiple services
exist on a workload, they all communicate through the same network endpoint.

13.4. Application Microservices 155

Bayware Documentation

Fig. 13.13: SEs, NEs, & Workloads

Return to the orchestrator GUI open in your browser. Click on Services in the sidebar navigation menu
and then click on weather-gw. Scroll to the bottom. Here you should see two network endpoints,
gcp1-w01-protof and azr1-w01-protof: the weather service has been installed and authorized on one
node in GCP and one node in Azure. This is highlighted in Fig. 13.14.

Recall from the Getaway service graph that getaway-svc service communicates with four other ser-
vices: http-proxy, weather-gw, news-gw, and places-gw. Click on Services again, but this time select
getaway-svc. At the bottom of the page you should see a single network endpoint: getaway-svc is run-
ning on aws2-w02-protof workload. Click NE Name. A pop-up dialog box shows the service endpoints
communicating through this network endpoint. There are four.

Getaway Application

Finally, click on the Getaway button on the SIS attachment that was included in your welcome email to
launch Getaway in a browser window. You should see weather, places, and news for the city selected at
the top of the app. Each pane in the browser displays the node on which it is running. The geo-redundant
microservices should all be running in Azure at this point in the tutorial. See Fig. 13.16 below.

13.4.4 Summary

In this section you learned how application microservices are authorized to use the service interconnection
fabric to communicate with policy dictated by the user. Tokens created in the last section are installed on
VMs or containers with the help of commonly-used workload orchestration software, such as Ansible and
Kubernetes. You learned how SIF network and service endpoints are related to authorization tokens and
where these are displayed in the orchestartor. Finally, you saw and interacted with Getaway running in your
browser.

Next up: With Getaway installed over a service interrconnection fabric, you will discover some cool features
that help ensure a resilient application.

156 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.14: Network Endpoints for weather-gw Service

13.4. Application Microservices 157

Bayware Documentation

Fig. 13.15: Service Endpoints for getaway-svc

158 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.16: Getaway App

13.4. Application Microservices 159

Bayware Documentation

13.5 Feature Showcase

13.5.1 Getaway - A Complete Picture

Now that Getaway is up and running with three back-end services running redundantly in both GCP and
Azure, you will walk through a few scenarios that demonstrate how the service interconnection fabric reacts
to changing infrastructure conditions.

Fig. 13.17: Getaway Application

As you can see from Fig. 13.18, weather-gw, places-gw, and news-gw are each running on a workload node
in a VPC called gcp1 and another VPC called azr1: the former represents Google Cloud and the latter
represents Azure.

Remember, you can find your service graph by clicking on Domains in the sidebar navigation menu and then
clicking on Show Graph for getaway-app.

Going back to your Resource Graph panel (choose this from sidebar navigation menu), you should note once
again how your three VPCs are interconnected via three SIF processor nodes, one in each VPC.

160 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.18: Getaway Service Graph

13.5. Feature Showcase 161

Bayware Documentation

Fig. 13.19: Getaway Resource Graph

162 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

13.5.2 Rising Infrastructure Cost

If the cost to service your clients from one VPC becomes too expensive, you might want to switch to a
different VPC. In this section you’ll simulate what happens if the cost of getting to Azure rises.

To start, notice in Fig. 13.20 that all backend data is currently coming from Azure. You can see the azr1-
names in the upper-right corner of each microservice panel.

Fig. 13.20: Services From Azure

Back on the Resource Graph page in the orchestrator, click on the link between aws2-p01-protof and
azr1-p01-protof i.e., the link that connects the AWS VPC to the Azure VPC. As shown in Fig. 13.21, you
can see that the cost is set to 1.

In the overlay panel in the upper-right corner of the Resource Graph page, click on the hyperlink to the
azr1- node. You should see a figure similar to Fig. 13.22. Under the Links section at the bottom of the
page, find the row associated with aws2-p01-protof (remembering that the suffix on your node name will
differ) and click on the settings icon (the gear) as shown in Fig. 13.22.

Change the cost to 10, as shown in Fig. 13.23.

Return to your application open in another browser window. You’ll see that all Getaway back-end services
are now coming from GCP rather than Azure because the cost of getting to Azure became too expensive.

13.5. Feature Showcase 163

Bayware Documentation

Fig. 13.21: Resource Graph - Link Cost

164 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.22: Link Configuration

13.5. Feature Showcase 165

Bayware Documentation

Fig. 13.23: Cost 10

166 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.24: Services From GCP

13.5. Feature Showcase 167

Bayware Documentation

13.5.3 Revoking Authorization

Recall that you used tokens to authorize your microservices to operate on each workload node. Let’s see
what happens when you become uneasy about the security of one of your nodes and you want to de-authorize
it from operating in your application.

Back in the orchestrator GUI, click on Services in the sidebar navigation menu. Then click on weather-gw.

Fig. 13.25: Services

Scrolling down slightly, you should see two entries under the Tokens section. (Recall that the weather-gw
microservice is deployed in both Azure and GCP and that each uses a distinct token.) This should look
similar to Fig. 13.26.

Inspect each token by clicking on the hyperlinks under # of SEs as shown in Fig. 13.27. Note which token
has been utilized in Azure and which has been utilized in GCP.

After you have finished inspecting the tokens, delete the token used to authorize the endpoint in GCP by
clicking on the red x on the right as shown in Fig. 13.28.

Return to your application running in your browser and refresh the window. Since you de-authorized
weather-gw in GCP, it is now being serviced by Azure. (Recall that the upper right corner of each microser-
vice window in the application indicates the node supplying the data.)

168 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.26: weather-gw Service

13.5. Feature Showcase 169

Bayware Documentation

Fig. 13.27: Tokens

170 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.28: Delete Token

13.5. Feature Showcase 171

Bayware Documentation

Fig. 13.29: Weather Service From Azure

172 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

13.5.4 Failing Workload

Now let’s see what happens when you’ve received one of those familiar emails from your public cloud service
provider that explains that one of your VMs has become unreachable because of an underlying problem with
the hardware. How does your application respond?

Bring up the Resource Graph page in the orchestrator GUI and note that all the circles are green.

Fig. 13.30: Resource Graph - Everything’s Green

Now, some typing. Return to your terminal window with the SSH connection to your fabric manager. Ensure
you are in the ~ubuntu home directory by typing cd

]$ cd

To simulate a node failure, you will stop the policy agent running on gcp1-w02-protof. Type the following
at your Linux prompt, ensuring you use your own fabric name, which is the suffix to all the node names
displayed in the Resource Graph page:

]$ bwctl stop workload gcp1-w02-protof

After a little chugging, you should see a message similar to

13.5. Feature Showcase 173

Bayware Documentation

Workloads [`gcp1-w02-protof1] stopped successfully

Return to the orchestrator Resource Graph page where you should see that one of the workload nodes has
turned red, as shown in Fig. 13.31.

Fig. 13.31: gcp1-w02 Stopped

Back in the Getaway application running in your browser, note that places-gw is now serviced from Azure
because the corresponding node in GCP went off-line.

13.5.5 Selecting Target

Let’s recap where we are at with Getaway. Recall that you started with all back-end microservice data
coming from Azure, but after you bumped up the cost of the link between aws2 and azr1, all data started
coming from gcp1.

You then revoked the token authorizing weather-gw in gcp1 so weather data started coming from azr1.

Then you simulated node failure by stopping the policy agent running places-gw in gcp1 so places data
started coming from azr1.

174 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.32: Places Service From Azure

13.5. Feature Showcase 175

Bayware Documentation

With only news-gw supplying data from gcp1, suppose the application developer decides he or she wants to
prioritize all data coming from Azure without regard to the cost. To do this, the client microservice calls a
URL with a more specific FQDN.

Right now, the getaway-service microservice uses

http://responder.news-api.getaway-app.ib.loc:8080/

You will run a script that changes this to

http://azr1.responder.news-api.getaway-app.ib.loc:8080/

The more-specific URL tells the DNS resolver to give priority to servers running in Azure when they act as
responders in the news-api contract.

Back in your terminal window on the fabric manager, ensure you are in the ~ubuntu home directory by
typing

]$ cd

Now go back into the Ansible application directory by typing

]$ cd application

Your command-line prompt should now look similar to

ubuntu@jsmith-c0:~/application$

Execute the playbook that adds the azr1 prefix to the URL for news-api on aws2-w02-protof (the VM
that runs the getaway-service microservice) by typing

]$ ansible-playbook update-app.yml

After the playbook completes, refresh Getaway in your browser. You should see that News is now running
in azr1 as show in Fig. 13.33.

13.5.6 Summary

If you find your service graph again by clicking on Domains and then Show Graph for getaway-app and
then enable the Show Service Endpoints box in the upper-left corner, you’ll see how the picture has changed.
weather-gw and places-gw have a single service endpoint each: the GCP endpoints are gone and only the
Azure endpoints remain. The news-gw service, however, still has two endpoints since Azure was simply
given user preference over GCP, rather than revoking authorization or shutting down the node as in the
other cases.

13.6 Telemetry

This section provides an overview of some of the telemetry features available using the policy orchestrator.
A small description accompanies each of the following figures. After reading through this section, you are
encouraged to view the telemetry application in your own sandbox.

From the orchestrator GUI open in your browser, click on Telemetry in the sidebar navigation menu. A new
window will open in your browser similar to Fig. 13.35.

You can see from the figure that there are four VPCs running in this sandbox:

176 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.33: News Service From Azure

13.6. Telemetry 177

Bayware Documentation

Fig. 13.34: Service Graph Endpoints

178 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

• AWS1: the orchestrator nodes operate in an AWS VPC in Northern California

• AWS2: a processor node and two workload nodes operate in a VPC in Northern Virginia

• GCP1: a processor node and three workload nodes operate in a VPC in Northern Virginia

• AZR1: a processor node and three workload nodes operate in a VPC in Texas

Fig. 13.35: VPC Locations

To navigate between dashboards on the telemetry page, click on World Map in the top-left corner. A list of
available dashboards appears. Clicking on Orchestrator Telemetry brings up a window similar to the one in
Fig. 13.36.

You may also find the following telemetry features useful when viewing your dashboards:

• Server - view statistics for a given server by clicking on this drop-down menu near the top

• Last 1 hour - change the displayed time interval

• panels - most panels are initially collapsed and can be expanded by clicking on the panel title

Fig. 13.36 show Orchestrator Telemetry for server aws1-c01-protof. This server, c01, runs the policy
controller software. There are two additional servers in the orchestrator. c02 runs the Telegraf, InfluxDB,

13.6. Telemetry 179

Bayware Documentation

Fig. 13.36: Orchestrator Telemetry

180 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

and Grafana stack for telemetry (what you are currently viewing); and c03 runs the Elasticsearch, Logstash,
Kibana (ELK) stack for logging. Both are available as open source.

Now switch to the Processor Telemetry dashboard. Do this by clicking on the down arrow next to Orchestrator
Telemetry located in the upper left corner of the window.

Fig. 13.37: Processor Telemetry - Packet Loss

Fig. 13.37 shows packet-loss statistics for server aws2-p01-protof. (Recall that one uses the Server drop-
down menu in the upper part of the window to select the current server.) It shows brief packet loss within
the aws2 VPC itself, but no packet loss between this server (running in aws2) and the ones running in gcp1
and azr1.

Fig. 13.38 shows average response time and response time deviation between aws2-p01-protof and each
workload in aws2 as well as between this processor and the processors in each of the other two cloud provider
VPCs.

On the right, note that average response time within aws2 and with gcp1 is very low. All are < 1.5ms.
Response time to Azure is a bit higher at 34.76ms, although, still quite acceptable.

Further, response time deviation values are low enough that this configuration could be used to carry real-
time traffic.

Fig. 13.39 shifts to the Workload Telemetry dashboard showing server aws2-w01-protof. This server

13.6. Telemetry 181

Bayware Documentation

Fig. 13.38: Processor Telemetry - Response Time

182 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.39: Workload Telemetry - Response Time

13.6. Telemetry 183

Bayware Documentation

runs the getaway-proxy microservice and shows packet loss statistics with getaway-service, which runs on
aws2-w02-protof. Statistics measured are end-to-end i.e., from application microservice to application
microservice.

Having end-to-end statistics between microservices becomes even more powerful if you consider Fig. 13.40
below. Average response time and response time deviation are shown between getaway-proxy microservice
and getaway-service microservice. Both are operating in aws2 VPC at less than 1ms delay: this delay
includes transiting through the policy engine (aws2-p01-protof) as well as encryption/decryption and the
policy agent.

Fig. 13.40: Workload Telemetry - Packet Loss

Finally, Fig. 13.41 shows the Flow Telemetry dashboard. The sFlow agent drop-down menu is set to
azr1-p01-protof, which serves the azr1 VPC with three microservices.

The main panel lists all SIF flows that leave and enter this VPC. The three microservices that communicate
with getaway-service are getaway-news, getaway-places, and getaway-weather. Each direction appears in the
panel.

184 Chapter 13. Deploying a Geo-Redundant App

Bayware Documentation

Fig. 13.41: Flow Telemetry

13.6. Telemetry 185

Bayware Documentation

13.6.1 Summary

This section demonstarted how to use the Telemetry tools from the policy orchestrator. Statistics were
shown for orchestrator, processor, and workload nodes as well as end-to-end telemetry for each flow from
client to server.

Next up: now that you have completed the Deploying a Geo-Redundant App tutorial, contact Bayware
(contact@bayware.io) if you would like to see how a Service Interconnection Fabric can simplify policy setup
when deploying your own application.

13.7 What You Need

13.7.1 Contact Us

To work through this tutorial, you will need a personalized set of infrastructure nodes supplied by Bayware.
If you haven’t already done so, please contact us at info@bayware.io or through the form on our website at
the bottom of the Company page: https://www.bayware.io/company/.

Once we have created your personalized infrastructure, you will receive a welcome email with the subject
Tutorial Sandbox 2 that has your credentials.

13.7.2 Requirements

You will need a computer with internet access, a web browser, and a terminal window with an SSH client.
Regarding the latter:

• on MacOS: use Terminal application with built-in SSH client

• on Linux: use your favorite terminal window with built-in SSH client

• on Windows 10: we recommend installing PuTTY to use as both terminal and SSH client; look here
for a good installation & usage video.

13.7.3 Documentation

You will need access to this documentation. Since you are reading this, it means you have already received
authorization via a link in the welcome email you received from Bayware. Keep in mind that the link in the
email has an embedded token. If your authorization ever times out, you may be asked for a user name and
password by our documentation site. When this happens, simply return to your welcome email and click
the documentation link with the embedded token.

13.8 What To Expect

In this tutorial, you will be installing an example application called Getaway. We want this tutorial to be
educational for you. To that end, we have included details of how to use the Service Interconnection Fabric
and general concepts about the Service Interconnection Fabric that can be applied to other applications. We
will have succeeded when you are able to envision how to run your app with the benefits of this technology.

As you follow through the tutorial, you will be working at the command line on your Fabric Manager and
in a browser on your Orchestrator GUI. Command-line text boxes are shown both in light green, which
indicates you need to type, and light gray, which displays output you should see on your terminal.

186 Chapter 13. Deploying a Geo-Redundant App

mailto:contact@bayware.io
mailto:info@bayware.io
https://www.bayware.io/company/
https://youtu.be/umFEuHWJW3w

Bayware Documentation

Keep in mind that tutorial screen shots, command-line text boxes, and URLs are shown customized for user
Jane Smith using an interconnection fabric called protof. Your own infrastructure components will vary
according to your welcome email.

13.9 Tutorial Outline

1. Introduction (10 minutes to complete)

a. The Scenario

b. Personalized Installation

c. Fabric Manager

d. Orchestrator

2. Application Infrastructure (20 minutes to complete)

a. Requirements

b. Service Interconnection Fabric

c. Fabric Manager Tool: bwctl

3. Application Policy (15 minutes to complete)

a. Requirements

b. Service Graph

c. Fabric Manager Tool: bwctl-api

4. Application Services (10 minutest to complete)

a. Requirements

b. Authorized Microservices

c. Workload Orchestration

13.9. Tutorial Outline 187

Bayware Documentation

188 Chapter 13. Deploying a Geo-Redundant App

CHAPTER 14

Fabric

14.1 Bayware Solution

14.1.1 Application Centricity

Accelerating digital transformation and rapidly changing customer requirements compel enterprises to con-
tinuously add and enhance applications. Enterprises are transforming how they develop and deploy applica-
tions; leveraging cloud-native principles and microservice architectures to enhance agility, improve time to
market, and get lean.

As they modernize, enterprises want to exploit the benefits of multicloud deployments, control communication
flows wherever an application runs, and maintain private-cloud levels of security. Doing this is limited by
today’s complex networking solutions. Enterprises need an application-centric communication environment
that delivers programmability, observability and security; while underlying infrastructure remains general
purpose.

14.1.2 Intent Based Networking

Bayware is a connectivity-as-code architecture that gives every application its own secure, overlay network, all
in software. This fit-for-purpose solution introduces the programmable service graph where each application
service initiates and controls its own programmable communication flows; enabling the long-promised intent-
based networking.

Bayware radically simplifies the interface between an application and underlying networks. This accelerates
continuous deployment of application services by eliminating constraints imposed by managing network
configurations, and securely serves each application’s data communications needs as they change and move
across any cloud.

189

Bayware Documentation

14.1.3 Service Interconnection Fabric

Bayware’s connectivity-as-code approach uniquely enables direct programming of application data flows in
software. This service interconnection fabric (SIF) is the first secure, programmable application service
graph.

A service graph represents application services as nodes and network connectivities as edges. While the
nodes are software by definition, Bayware extends that to the edges with programmable connectivities. As
secure, simple-to-program, lightweight communication contracts, these programmable connectivities deploy
with application workloads and provides an unprecedented level of control and agility in heterogeneous hybrid
and multi-clouds.

Bayware service interconnection fabric is a suite of distributed software components that run on standard
x86 Linux machines and operate securely on top of any virtual or physical infrastructure.

Fig. 14.1: SIF: Programmability, Observability and Security

190 Chapter 14. Fabric

Bayware Documentation

14.2 How Bayware Works

14.2.1 Basic Principles

Bayware created and patented connectivity-as-code architecture with microcode communication contracts.
Each is programmable and can be designed and approved by networking and security professionals. Mi-
crocode is carried from the workloads in the packet headers, using standard IPv6 header extensions. The
execution of the contract by software processors then creates the desired steering of packets through the
overlay network.

With Bayware, provisioning of service-to-service communication is easy:

1. Based on the service graph, program application intent and network policy as microcode communication
contracts; simply by adding application labels to the desired flow pattern from a library of contract
types.

2. Deploy lightweight Linux daemons (agents) on workload hosts that retrieve authorized contract roles
to insert as highly compact microcode into IPv6 packet extension headers in response to applications.

3. Provision a fabric of processor software (on Linux x86 machines) in target public and private clouds
to securely execute service-to-service connectivity only as authorized by received microcode.

14.2.2 Three-Part Solution

Bayware’s service interconnection fabric is a three-part solution:

• Bayware introduces new technology that captures connectivity policy based only on data available
from an application and produces executable microcode.

• This executable code is utilized within a new service discovery framework to create network mi-
crosegments in accordance with connectivity policy.

• Bayware implements datapath where packet forwarding decisions are based on the authentication
and authorization of application flows over network microsegments.

Bayware’s solution, in a nutshell, works in the following steps:

1. Connectivity Policy. Bayware’s patented technology converts application connectivity policy (step
1a in diagram) into short, executable programs that carry application names, their roles, and rules.
The Policy Controller stores these programs and allows service instances to request them (step 1b). As
such, connectivity policy is inherently infrastructure-agnostic, multicloud ready, portable, and easily
implemented from within application deployment code.

2. Service Discovery. The Policy Agent, installed on compute resources, requests application connec-
tivity policy from the Policy Controller on behalf of application services (step 2a). The Policy Agent
sends the connectivity policy, in the form of executable microcode marked with a policy identifier,
into the network in special packets used by the Policy Engines to create packet processing rules (step
2b). In this way, while traditional service discovery simply returns IP addresses to application services,
Bayware’s solution additionally establishes end-to-end network microsegments between communicating
application services.

3. Policy-Based Forwarding. When the application service sends data packets, the Policy Agent marks
the packets with policy identifiers (step 3a). So as packets arrive, the Policy Engine authenticates and
authorizes them over a set of installed processing rules dropping packets that fail and forwarding the
others (step 3b). By doing this, Bayware’s solution ensures no connectivity exists between application
services that was neither specified in step 1 nor requested in step 2.

14.2. How Bayware Works 191

Bayware Documentation

Fig. 14.2: Connectivity Policy, Service Discovery, Policy-Based Forwarding

14.2.3 Deployment Options

Bayware breaks from Software Defined Networking (SDN) models that push complex reconfigurations into
underlying networks, which were not built for continuous change.

Enterprises can run Bayware standalone using the underlying infrastructure of cloud providers’ VPCs. Bay-
ware also runs in concert with application service orchestration systems and SDNs that provision lower layer
data center and branch networking.

Bayware reduces acquisition and operation costs by running over the top of brownfield underlay networks,
eliminating the need to install and configure any additional specialized networking appliances or controllers.
Bayware provides an all-in-one solution for service-to-service communications.

14.3 Why Bayware

Bayware brings NetOps and SecOps into the DevOps model of continuous, application-centric deployment.
It is all code: enterprises get the same development and deployment agility and the same cloud-scaling
benefits for networking functions as they are getting from cloud-native applications.

Bayware has a unique solution for enabling application service to communicate across the diverse hybrid-
cloud and multi-cloud infrastructures: (1) enables the network to respond to frequent additions, updates and
changes in scale and location; (2) ensures that security and network policy meet compliance and corporate
standards.

Today’s solutions do one, or the other well, but not both. Bayware’s pervasive security automatically encrypts
flows and is hyper-micro-segmented by default. This improves on security, observability and accountability
for network usage rather than requiring compromises as the newest service mesh solutions do.

192 Chapter 14. Fabric

Bayware Documentation

Fig. 14.3: DevOps Self-Sufficiency

14.3. Why Bayware 193

Bayware Documentation

194 Chapter 14. Fabric

CHAPTER 15

Orchestrator

15.1 Architecture

The SIF Orchestrator makes application service connectivity policy available to VMs and containers for im-
mediate download anytime and anywhere they request it. Simple software programming gives the user the
ability to create custom connectivity policies, allowing application services to instantiate network microseg-
ments in strict accordance with security rules. The SIF Orchestrator enforces these policies with flow-level
granularity and provides full observability for real-time policy auditing across the fabric.

The diagram below shows the architecture of the SIF Orchestrator in default deployment mode.

The SIF Orchestrator is implemented as a container cluster and typically, consists of three nodes:

• Controller – connectivity policy management

• Telemetry – compute and network statistics

• Events – log processing

The Orchestrator RESTful northbound interface (NBI) allows third-party automation systems to manage all
resource and service connectivity policies in the fabric. The Fabric Manager itself utilizes this same interface
for policy management. The NBI also facilitates communication with the orchestrator when using a web
browser to control policy or access telemetry and log data. The northbound interface is secured with a Let’s
Encrypt certificate, OAuth2.0 authorization, and OpenID Connect authentication.

The Orchestrator’s southbound interface (SBI) enforces the resource and service connectivity policies on
all workload and processor nodes in the fabric. The SBI supplies workload Policy Agents with service
connectivity policy and processor Policy Engines with resource connectivity policy. Additionally, telemetry
and log agents ship data to the Orchestrator from fabric nodes using this interface. All SBI operations are
fully automated and secured with mTLS.

195

Bayware Documentation

Fig. 15.1: SIF Orchestrator Architecture

196 Chapter 15. Orchestrator

Bayware Documentation

15.2 Controller

The controller services are the only mandatory components of the orchestrator. They comprise four functional
sets:

• Proxy services – ingress, OAuth, and high-availability proxies

• NBI services – northbound interface support

• SBI services – southbound interface support

• Connectivity Policy services – resource and service policy management

As shown in the diagram below, connectivity policy management logically consists of the following functional
blocks: administration, service configuration, resource configuration, and operation.

Fig. 15.2: SIF Connectivity Policy Entities

The Administration block allows the user to manage administrators and namespaces for application de-
ployment (i.e., domains). Service and Resource Configuration blocks provide service and resource graph
management, respectively. The Operation block automatically enforces connectivity policies on service and
network endpoints.

A service graph depicts service policy configuration on the controller. The screenshot below shows an
example.

The small circles on the graph represent an application service, while the large circles on the graph represent
an application contract. The latter defines the relationship between application services. A contract inherits
all essential communication rules from a template but allows for customization. A service acquires a contract
role and can communicate with opposite-role services within the same contract. To set up a service endpoint,
each service must possess a service token. The service applies the service token to a network endpoint on a VM
or Kubernetes worker node (i.e., workload node) during service instance deployment. During initialization,
the service endpoint automatically retrieves settings from the corresponding contract role specification on
the controller and activates a dedicated service discovery process in the fabric.

A resource graph depicts resource policy configuration on the controller. The screenshot below shows an
example.

The small circles on the graph represent workload nodes, while the large circles show processor nodes.
Workloads and processors are called resources in the SIF Policy Entities data model. Workloads provide
application services with network endpoints. Processors work as secure transit gateways for workloads. A
security zone abstraction allows the user to assign a processor to serve a set of workloads in a given location.

15.2. Controller 197

Bayware Documentation

Fig. 15.3: Service Graph

198 Chapter 15. Orchestrator

Bayware Documentation

Fig. 15.4: Resource Graph

15.2. Controller 199

Bayware Documentation

When a workload in a given location comes up, a logical link automatically attaches the workload to a
zone processor. Link and processor labels allow the user to mark pathways for application service discovery
packets in the fabric. By processing labels, these packets may instantly change routes in order to lower
infrastructure cost, balance compute load, and facilitate application scaling.

15.3 Telemetry

Telemetry services are optional components of the orchestrator. When installed, they automatically collect
and process the following statistics:

• Orchestrator telemetry

– System: CPU, memory, disk, network interface

• Processor telemetry

– System: CPU, memory, disk, network interface

– Link: packet loss, response time, encryption, link utilization

• Workload telemetry

– System: CPU, memory, disk, and network interface

– Service: packet loss, response time, endpoint utilization

• Flow telemetry

– Packets: contract, source, destination, transit points, protocol, port, total size

The screenshot below illustrates a processor telemetry dashboard (more examples are in the Telemetry
section of the Deploying a Geo-Redundant App tutorial).

A telemetry agent on each node collects statistics from all local sources and sends them to the orchestrator
in an encrypted mTLS channel. Tightly integrated with the processor and workload software, the agent
is able to automatically discover new links, service endpoints, and flows and process them as telemetry
sources. Near-real-time background telemetry enrichment makes the statistics, provided by the agent, easy
to interpret and correlate on the orchestrator.

In summary, the orchestrator telemetry services are available out-of-the-box. They provide the user with
unique data on application connectivity health from multiple perspectives. The service setup and opera-
tion require neither manual provisioning nor configuration. Moreover, automatic authentication and total
encryption allow telemetry data to be securely routed in a multicloud environment.

15.4 Events

Events services are also optional components of the orchestrator. When installed, they automatically collect
and process the following logs:

• System;

• Encryption (IPsec);

• Datapath (eBPF, OVS);

• Policy Agent and Engine;

• Policy Controller.

200 Chapter 15. Orchestrator

https://docs.bayware.io/en/latest/sb2/sb2_telemetry.html
https://docs.bayware.io/en/latest/sb2/sb2_telemetry.html

Bayware Documentation

Fig. 15.5: Processor Telemetry – Packet Loss

15.4. Events 201

Bayware Documentation

Fig. 15.6: Events – Workload Analytics

202 Chapter 15. Orchestrator

Bayware Documentation

The screenshot below illustrates a default workload analytics dashboard.

A log shipper on each workload and processor node sends all local log data to the orchestrator in an
encrypted mTLS channel. As shown on the SIF Orchestrator Architecture diagram at the beginning of
this chapter, the log shipper is part of the fabric logging pipeline that includes Logstash, ElasticSearch,
and Kibana. While deploying a new node, the Fabric Manager automatically sets up all stages in this
pipeline to collect, transform, store, and visualize events. Also, by default, the Policy Controller pushes all
connectivity policy changes to the Events node. As such, every action made either by a fabric administrator
or a workload/processor node is documented and available for auditing on the Events node.

Again, the orchestrator events services are available out-of-the-box. Their zero-touch configuration doesn’t
require any fabric administrator involvement. Automatic authentication and encryption make the orches-
trator events services immediately multicloud-ready. The seamless integration of the orchestrator events
services with other fabric components greatly simplifies log data consumption and provides additional level
of visibility in application policy, security, and operations.

15.4. Events 203

Bayware Documentation

204 Chapter 15. Orchestrator

CHAPTER 16

Processor

16.1 Introduction

In the service interconnection fabric (SIF), each processor node, or simply processor, is a security checkpoint
for application control and data flows. Processors facilitate secure application service discovery, enact service
connectivity policies with flow-level granularity, and forward encrypted application data between clouds,
clusters, and other trusted domains.

The SIF processor is a virtual network appliance available both as an image in Azure, AWS, and GCP and
as a package for installation on a Linux machine. As shown in the diagram below, processors are deployed
as gateways to trusted domains. Each processor secures a set of workload nodes–physical servers, VMs,
Kubernetes worker nodes–in application control (i.e., service discovery) and data planes.

The SIF resource connectivity policy defines processor reachability by workloads and other processors.
Each processor enforces resource policy that the fabric orchestrator requests. Policy enforcement starts with
automatic processor registration after its installation. The orchestrator checks the processor identity and adds
the processor as a new fabric resource. The processor receives link configuration from the orchestrator and
automatically sets up secure connections with workloads and other processors. Additionally, the orchestrator
assigns labels to the processor and its links to mark the pathways in the fabric for application service discovery
requests.

The SIF service connectivity policy defines end-to-end application service reachability. A workload node,
hosting an application service instance, sends a service discovery request to an adjacent processor node in
order to establish a secure network microsegment in the fabric. After validation, the processor executes
the request, configures the microsegment in its datapath using the execution outcome, and forwards the
request to other processors or workloads when required. Once the microsegment is established by all the
processors en route between the originator and one or multiple responder workloads, service instances on
these workloads can immediately start data exchange.

Processors make the SIF a zero-trust communication environment with zero-touch configuration.

205

Bayware Documentation

Fig. 16.1: Processors in SIF

16.2 Capabilities

16.2.1 Overview

One or more processors can be assigned to secure a trusted domain, called zone in the SIF policy model. When
an SIF administrator adds a workload location to a zone, all the workloads in this location automatically
connect with one or several processors serving the zone. If one processor has higher priority than the others,
all workloads connect to this processor. Otherwise, connections will be evenly distributed among processors
with the same priority.

Note: A processor can be assigned to more than one zone, and in each zone the administrator can select
a different priority for the processor.

As shown in the diagram below, each processor plays the following roles:

• SSH jump host,

• IPsec gateway,

• Application policy engine,

• Policy defined datapath.

16.2.2 SSH Jumphost

The fabric manager utilizes each processor as a single point of entry into a given security zone. To reach
workloads in a given zone, the fabric manager uses one of the zone processors as a Secure Shell (SSH)

206 Chapter 16. Processor

Bayware Documentation

Fig. 16.2: Processor Capabilities

intermediate hop. This allows the fabric manager to transparently manage workloads in multiple trusted
domains without exposing those workloads to public networks, even though they might be in overlapping
private IP address spaces.

Using processors as SSH jump hosts enables additional security measurements in the multicloud infrastruc-
ture. At the network level, only SSH connections from the fabric manager to zone processors and from
zone processors to workloads are permitted. At the SSH level, processors, in this case, perform additional
authorization on fabric manager-workload connections.

16.2.3 IPsec Gateway

When application data leave the trusted domain, processors automatically encrypt all packets. All processors
in a given fabric form a site-to-cloud or cloud-to-cloud VPN, walled off from other fabrics and the outside
world. Resource connectivity policy defines a desired VPN topology abstractly as a resource graph with
processors playing transit node roles.

As part of resource policy enforcement, the fabric orchestrator imposes link configuration on each proces-
sor. Processors use certificate-based mutual authorization to set up secure connections with the prescribed
nodes. Then, a standard Linux kernel subsystem performs packet encryption and decryption using hardware
acceleration whenever available. Additionally, the fabric manager sets up packet filters to ensure that only
IPsec traffic originated or terminated on processors can leave and enter security zones.

16.2.4 Application Policy Engine

To be able to communicate with other workloads in the fabric, a workload requests that processors establish
one or more secure network microsegments. Processors always work in a default-deny mode. A packet cannot

16.2. Capabilities 207

Bayware Documentation

traverse a processor until that processor executes an application connectivity request for the data flow to
which the packet belongs.

The connectivity request arrives at the processor as executable code assigned to the flow originator end-
point by the orchestrator. The processor validates the code signature and executes the instructions. The
result of code execution may request that the processor: (1) connect the flow endpoint to a given network
microsegment and (2) accept data coming to the flow endpoint from a given network microsegment. Using
this outcome, the processor sets up local forwarding rules for a period of time specified in the request. Ad-
ditionally, the application connectivity request may subscribe to requests from other workloads and publish
itself to already subscribed workloads.

With this new approach, various connectivity policies can be easily developed or customized. For example,
one policy can restrict a microsegment to a subset of trusted domains or even a single domain. Another policy
can establish a microsegment with cost-based or load-sharing target selection. Because all these policies are
just code, processors will immediately enact them upon workload request across the fabric.

16.2.5 Policy Defined Datapath

Each processor includes a standard Linux datapath, running in a default-deny mode. As described above,
only workloads can change datapath forwarding behavior. A local policy engine installs rules in the datapath
after execution of workload instructions.

Each rule in the datapath processes application data packets in two steps. Firstly, the rule checks whether
the packet comes from a flow endpoint already attached to a given microsegment. Secondly, it ensures that
the destination node accepts packets from this microsegment. If both true, the datapath forwards the packet
to the next hop associated with the destination node.

Such an application-defined datapath enables unprecedented workload mobility plus security with flow-level
granularity. The fabric forwarding behavior instantly adapts to new deployments of application service
instances as well as application connectivity policy changes.

16.3 Internals

The processor consists of an application policy engine and a datapath. The policy engine executes applica-
tion instructions delivered in discovery packets and uses execution outcome to change datapath forwarding
behavior.

16.3.1 Policy Engine

From a high level, the policy engine functionality breaks down into five modules as presented in the following
diagram.

Ingress Parsing and Authorization

Discovery packets are parsed, classified, rate limited, and processed by security blocks to ensure that only
authorized packets proceed to instruction execution.

All discovery-specific information is contained in the IPv6 header. The parser sanity checks the IPv6 header
and calls out relevant fields and extensions. An orchestrator ECDSA signature in an IPv6 header extension
covers packet authorization information, control data, instructions, and program data. So, security blocks
ensure packet legitimacy before instruction execution. In the next step, the classifier performs the necessary
lookups in flow and contract tables to initialize an isolated execution environment for the packet instructions.
The rate limiter protects security blocks and execution environment from overloading.

208 Chapter 16. Processor

Bayware Documentation

Fig. 16.3: Policy Engine

16.3. Internals 209

Bayware Documentation

Application Instruction Execution

A virtual processing unit executes the instructions in the discovery packet using packet program data, stored
program data and other shared, processor-level information. Following instruction execution, special logic
filters generate control commands for the datapath through a set of allowed actions determined by the
security model.

To process instructions, each discovery packet receives a virtual processing unit (PU) fully isolated from the
outside world. The PU and instruction set are based on the RISC-V open source ISA. The RV32IAC variant
with vector extensions offers support for the base integer instructions, atomic instructions, compressed 16-bit
instructions, and vector-processing instructions. A PU uses a virtual 16-bit address space broken into pages.
Each page contains address space for a particular control data.

The packet instructions ultimately communicate the result of execution to indicate on which connection(s)
the discovery packet should be published and whether to subscribe to incoming discovery packets, connect
flow originator to a given network micoregment, or accept data packets coming to the flow endpoint from a
given network microsegment.

Central Memory and Tables

Each processor contains a set of tables with control data that are central to instruction processing. During
execution, the instructions can read and/or write in these tables using the memory pages. The tables contain
isolated flow data and shared processor-level information.

Egress Traffic Management

The discovery packet content can be modified upon instruction request and sent to workloads or other
processors after execution. Egress discovery packets may contain modified program packet data and path
pointers in addition to standard IPv6 tweaks, such as hop count.

Support and Management

Using Southbound API (SB-API) and Secure Neighbor Discovery (SeND), the policy engine communicates
with the fabric orchestrator, workloads, and other processors to support all processor functions including
label, certificate and link management.

16.3.2 Datapath

The processor uses the standard Open vSwitch (OVS) as a datapath. Only discovery packets can establish
packet processing rules for application flows in this datapath. Each rule is ephemeral and its expiry time
is derived from an ECDSA signature TTL of the associated discovery packet. A unique authorization and
forwarding logic employs two opposite-role rules to process each application packet in the datapath. The
datapath executes the logic in a regular, superfast way–by matching packet headers and defining actions for
them.

Policy Tables

From a high-level, the datapath comprises three types of tables with packet processing rules: Input, Output,
and Group. Two global tables, Input and Output, process all unicast data packets. A set of Group tables
serves discovery packets and is used instead of the Output table for multicast data packets (not shown on
the diagram).

210 Chapter 16. Processor

Bayware Documentation

Fig. 16.4: Processor Datapath

Note: Each network microsegment has always two corresponding Group tables in the datapath.

A discovery packet can instruct the datapath to add records to any or all three tables. The Input table
always receives an authorization record. The Group table associated with the discovery packet and the
Output table may each conditionally receive a forwarding record.

Required Actions

Discovery packet requests are agnostic to the datapath implementation. The instruction execution outcome
calls out actions in a highly abstract manner:

• connect the flow originator to a given network microsegment,

• accept data packets destined to the flow originator from a given network microsegment,

• subscribe to discovery packets in a given network microsegment,

• publish the discovery packet on a particular group of ports.

Note: A discovery packet can’t pass any argument while requesting actions connect, accept, and subscribe.
Only the action publish() allows the packet to specify egress ports. Upon packet request, special logic filters
securely generate rules for the datapath using only controller-signed information from the discovery packet
and a vector with egress ports if requested.

The action connect creates an authorization record in the Input table, accept sets up a forwarding record in
the Output table, and subscribe installs a forwarding record in the Group table.

16.3. Internals 211

Bayware Documentation

Authorized to Forward

As data packets arrive, the datapath authorizes them over a set of installed processing rules dropping packets
that fail and forwarding the others.

The Input table matches the packet source address and flow label against a set of authorization records in
order to associate the packet with a flow endpoint role in a given microsegment. The packet is dropped if
the association not found.

In the next step, the Output table matches the packet originator role and destination address against a set
of forwarding records. The packet is dropped if the destination is neither found nor accepting data packets
with the given role.

Note: In case of a multicast data packet, the datapath sends the packet from the Input table to the Group
table associated with the packet originator role. The packet is dropped if the association is not found.

This unique authorize-to-forward approach ensures that the datapath responds to application policy changes
in real time and forwards application data packets at line-rate speed.

212 Chapter 16. Processor

CHAPTER 17

Workload

17.1 Overview

From a host operating system’s point of view, the Bayware Agent works on the layer 3 of OSI Model. The
Agent receives IP packets on one IP interface, processes them and sends to another. Those all happen on
data level. On control level, the Agent accesses controller’s RESTful interface to the applications located on
the host.

The Bayware Agent is responsible for:

• node initialization

• node and link registration

• service endpoint registration

• service endpoint operation

The Bayware Agent comprises of:

• control plane module

• data plane module

Control Plane Module carries out such the functions: node initialization, node and link registration, service
endpoint registration. Data Plane Module performs the service endpoint operation function.

17.2 Control Plane Module

17.2.1 Module Structure

Control Plane Module comprises of:

• RSA Key Generator

• CGA Address Generator and Validator

213

Bayware Documentation

Fig. 17.1: Figure. Bayware Agent

214 Chapter 17. Workload

Bayware Documentation

• Neighbor Discovery block

• Control Bayware Traffic Sender/Receiver

• In/Out ACL Management block

• Host and Link Registration/Keep-alive block

• HTTP RESTful Service block

• Service Endpoint Registration block

• Host Control Data

• Service Control Data

Control Plane Module implements such the interfaces:

• two-directional Bayware Data Plane interface

• client-side Controller SB interface

• server-side Agent RESTful interface

17.2.2 Module Logic

On its start the Bayware Agent loads its configuration and sets up the logging of its activity. As configuration
parameters, the Agent accepts:

• host name (Full Qualified Domain Name)

• user name

• user password

• user domain

• controller name

At this stage the Agent verifies the self-signed certificate with the local host name in the certificate subject
field. If needed, the Agent generates new keys and certificate as described later.

Next, the Agent starts REST server threads. From this point the agent is ready to process application
requests.

In parallel, the agent requests a controller API gateway to provide initial configuration. The API gateway
responses by redirecting the agent to the controller identity service for authentication. The Agent provides
the identity service with the user name, password, and domain. As a result of successful authentication
the agent obtains the token that enables agent access to the controller services. Using the token, the agent
requests its own user profile with the scope description.

As a part of the scope the agent receives the netprefix. The Agent uses the netprefix to check or generate
the host identifier–Cryptographically Generated Address (CGA)–as described later.

When the host identifier is ready, Control Plane module checks App and Net interfaces on operating system
level. Thereafter, the Control Plane module starts Data Plane module. Now, Control Plane module is able
to process SeND messages in its data plane thread, as well as Type I/II packets.

After start of Data Plane module, Control Plane module requests the controller to register this host.

Upon successful host registration, Control Plane module begin dispatching, via Data Plane module, the
SeND advertisement packets using the previously generated RSA keys and CGA. At the same time, Control
Module receives SeND advertisement packets from neighbors, via Data Plane module as well. When a new
neighbor is discovered, Control Module initiates the connection establishment algorithm execution involving
SeND exchange and controller’s API calls.

17.2. Control Plane Module 215

Bayware Documentation

In parallel, Control Module monitors the host status and serves the application service requests. The module
synchronizes its operational data with the controller, sending keep-alive messages periodically.

17.2.3 RSA and CGA Management

Control Plane Module is responsible for management of both RSA keys and CGA node identifier.

The RSA/CGA Management algorithm executions begins with hostname validation. The agent matches the
actual host name against the name stored in the agent’s configuration file. If the names don’t match, the
agent wipes out both RSA keys and CGA from its configuration file and generates a new RSA pair. The
agent also generates a new RSA pair when the names match but RSA keys are not present in the agent
configuration file.

When the pair of RSA keys are ready for use, the agent checks whether a CGA for this pair exists. If it
doesn’t exist or CGA verification fails (i.e. CGA is not a derivative of public key and auxiliary parameters),
the agent generates a new CGA. The CGA generation is performed as per RFC3972.

17.3 Data Plane Module

Data Plane Module can be logically divided into the following functional blocks:

• policy control block

• ingress and egress packet processing blocks

• control plane send and receive blocks

• application and network interface blocks

17.3.1 Policy Control Functions

Policy Control block allows to add or remove rules of packet processing. The block includes:

• Policy Control methods

• Egress Policy database

• Ingress Policy database

• Control Data database

17.3.2 Ingress and Egress Packet Processing Functions

Ingress and Egress Packet Processing blocks process packets in accordance with the policy. The blocks
receive and transmit packets on the interfaces such as:

• application interface

• network interface

• interface with control module

Packets arriving from both local applications and the control module undergo the following processing steps:

1. Egress policy is applied to the packet

2. The packet payload is encrypted

216 Chapter 17. Workload

Bayware Documentation

3. Optionally, IPv6 header is created or edited

4. Optionally, TCP/UDP checksum is recalculated

5. Ethernet header is created or edited

Packets arriving from both network and control module undergo the following processing steps:

1. Ethernet header is removed

2. Ingress policy is applied to the packet

3. The packet payload is decrypted

4. Optionally, IPv6 header is replaced or edited

5. TCP/UDP checksum is recalculated

IPv6 ICMP packets proceed between control module and network interfaces without being processed inside
data plane module.

17.3.3 �ontrol Plane send and receive functions

Data Plane module forwards packets between Control Plane module and network interface.

The packets from Control Module are sent to:

• Egress Policy applicator, if IPv6 SSM

• Net Egress Queue, if IPv6 ICMP

The packets to Control Module are received by Control Egress Queue from:

• Net Interface Listener, if IPv6 ICMP

• Ingress Policy applicator, if IPv6 SSM

17.3.4 Application and network interface functions

Data Plane module connects to Virtual TUN Interface for receiving and sending packets from/to local
applications.

Data Plane module connects to Virtual GRE-TAP Interface for receiving and sending packets from/to
network.

17.3. Data Plane Module 217

Bayware Documentation

218 Chapter 17. Workload

CHAPTER 18

System Requirements

With the service interconnection fabric, you can easily stretch your compute environment from a private
data center to a public cloud, over different public clouds, or across application clusters in the same cloud.
This approach doesn’t require changes to your application code nor a long learning curve of public cloud
APIs. Once you have deployed a fabric, you can easily move application services from one workload node to
another, scale workload nodes in and out, or redirect traffic between clouds for failover and cost optimization.

To make the cloud migration process agile, secure and flexible, the service interconnection fabric deployment
itself is designed to be highly automated and simple. You can deploy all service interconnection fabric
components–VPCs and nodes (i.e., orchestrators, processors, and workloads)–either using the fabric manager
software or your own automation tools.

It is common to use the fabric manager for the deployment of all fabric components in the public clouds.
In this case, you utilize public cloud automation in full and significantly simplify your deployment. All
integration with cloud services and between fabric components is done automatically by the fabric manager.

In private data centers, the installation of processor and workload software components on already existing
VMs or physical servers–without access from fabric manager–might be the only available option. The good
news is that the installation and configuration of each component takes about a minute and can be easily
added to your existing provisioning pipeline. However with this approach, the certificate, telemetry, events,
and software management of the components–covered by the fabric manager in public clouds–should be
added to your private data center automation tools.

Alternatively, you can get the best of both worlds with a deployment approach that combines the fabric
manager automation power with the flexibility of your own VM management tools. If you are interested in
bringing your own VMs to the fabric manager, we can do that also.

The following guides will discuss currently available options and lead you through all the steps of deploying:

• fabric manager in a public cloud,

• orchestrator in a public cloud,

• processor in a public cloud or a private data center,

• workload in a public cloud or a private data center.

219

Bayware Documentation

Fig. 18.1: Fabric Deployment Diagram

220 Chapter 18. System Requirements

Bayware Documentation

18.1 Server Requirements

The fabric manager is supplied with default resource templates which specify types of virtual machines for
each cloud based on their roles in the service interconnection fabric.

The following table lists minimum requirements for installing and operating service interconnection fabric
components on virtual machines or physical servers.

Component OS Proc Cores RAM Storage
Fabric Manager Ubuntu 18.04 LTS or later 2 4GB 10GB
Orchestrator Ubuntu 18.04 LTS or later1 4 16GB 1TB
Processor Ubuntu 18.04 LTS or later

RHEL 8 or later2
2 4GB 60GB

Workload Ubuntu 18.04 LTS or later
RHEL 8 or later3

2 4GB 10GB

18.2 Firewall Settings

When you create a VPC and a VM in it with the fabric manager, all security groups set up automatically
based on the VM role. In case you install service interconnection fabric components using your own automa-
tion tool, the tool must provision particular security rules to allow the components communicate within the
service interconnection fabric.

There are five distinctive sets of security rules in the service interconnection fabric:

• fabric manager,

• orchestrator ingress proxy,

• orchestrator nodes,

• processor nodes,

• workload nodes.

The purpose of fabric manager and node groups is obvious. The ingress proxy security group contains the
subset of ports open to the internet that are associated with the orchestrator. Today, ingress proxy is part of
orchestrator’s controller node, in which case the ingress proxy security group and the orchestrator security
group can both be applied to the controller node. The ingress proxy security group opens tcp/80, tcp/443,
and tcp/5044 to the internet (as well as ICMP and tcp/22 from the fabric manager). The orchestrator
security group should only open ports to the local subnet as required for Docker, telemetry, events, etc. (as
well as icmp and tcp/22 from the fabric manager). In the future, you may deploy the ingress proxy on a
separate VM within the orchestrator VPC/subnet, in which case the ingress proxy security would apply only
to the ingress proxy node only.

The security group rules are summarized in table below.

Security Group Rules
1 Please note that the orchestrator is deployed in Docker containers and may run across one or more nodes.
2 Deploying the processor on RHEL 8 is supported starting with the fabric family version 1.4.
3 Deploying the processor on RHEL 8 is supported starting with the fabric family version 1.3.

18.1. Server Requirements 221

Bayware Documentation

Protocol Fabric
Man-
ager

Orchestra-
tor Ingress
Proxy

Orches-
trator
Nodes

Processor Nodes Workload Nodes

SSH from
Inter-
net

YES - from
FM only

YES -
from FM
only

YES - from FM only YES - from pro-
cessors in the same
VPC

ICMP from
Inter-
net

YES - from
FM only

YES -
from FM
only

YES - from FM only YES - from pro-
cessors in the same
VPC

IPsec
(udp/500;
udp/4500)

NO NO NO YES - from workloads in the
same VPC and all processors

YES - from pro-
cessors in the same
VPC

HTTPS NO YES - from
Internet

NO NO NO

HTTP NO YES - from
Internet4

NO NO NO

Logs
(tcp/5044)

NO YES - from
Internet

NO NO NO

Note: When you deploy service interconnection fabric components in your private data center, use the
same security rules to provision your data center firewalls.

18.3 Public Cloud VM Setup

While the fabric manager sets up VMs fully automatically, there are a few details to keep in mind when
configuring a VM in a public cloud for hosting processor and workload software components with your own
automation tools. This next section comments on those points generally and subsequent sections reference
public cloud providers more specifically.

This guide does not replace public cloud provider documentation. You should follow the steps provided
by your cloud provider when spinning up a VM while ensuring VMs meet service interconnection fabric
requirements.

18.3.1 Engine Installation Requirements

Policy engine, or simply engine, is a software component that makes your VM a processor node. The
processor node secures one or multiple sets of workload nodes. All communication between workloads
in different clouds happen through the processor nodes using IPsec with NAT traversal by default. The
processor node communicates with the fabric orchestrator using HTTPS with mTLS to enforce resource
policy. As such, the VM hosting the policy engine software must satisfy particular requirements.

Public IP Address

The orchestrator must be reachable by the policy engine via IP. If this is possible with a private IP address,
a public IP address is not required.

4 Required for the Let’s Encrypt certificate setup only.

222 Chapter 18. System Requirements

Bayware Documentation

Also, other policy engines must be reachable by the policy engine via IP. If this is possible with a private IP
address, a public IP address is not required.

A policy engine VM’s public IP address must be static.

Private IP Address

The policy engine must be reachable by policy agents located in its security zones via IP. If this is possible
with a private IP address, use it as a preferable method.

A policy engine VM’s private IP address must be static.

IP Forwarding

IP Forwarding must be enabled on all policy engine VMs.

Protocol Filtering

Ingress ports udp/4500 and udp/500 must be opened up on firewalls for all VMs hosting policy engines.

VM Name and Certificate

All VMs in the service interconnection fabric are identified by VM names specified in x509 node certificates
(see Certificate Requirements). Modifying a cloud VM name–whenever it’s possible–requires processor node
certificate to be regenerated and the node to be re-registered in the fabric.

Tips for Engine Installation

Amazon Web Services

Follow AWS instructions for using public and private IP addresses and opening firewall ports.

To enable IP Forwarding, select the VM instance then navigate to Actions->Networking->Change Source/
Dst. Check. Disable source/destination Check.

Microsoft Azure

Follow Azure instructions for using public and private IP addresses and opening firewall ports.

Enable IP Forwarding after instance creation by selecting the interface and going to its IP Configuration
menu. Turn IP Forwarding ON.

Google Cloud Platform

GCP requires all recommended settings to be configured during instance creation.

18.3. Public Cloud VM Setup 223

Bayware Documentation

18.3.2 Agent Installation Requirements

Policy agent, or simply agent, is a software component that makes your VM a workload node. The
workload node secures communication for hosted application services. The workload node communicates
with other workload nodes through processor nodes using IPsec with NAT traversal by default. Also, the
workload node communicates with the fabric orchestrator using HTTPS with mTLS to enforce resource and
application policy. As such, the VM hosting the policy agent software must satisfy particular requirements.

Public IP Address

The orchestrator must be reachable by the policy agent via IP. If this is possible with a private IP address,
a public IP address is not required.

Any required public IP address may be dynamic.

Private IP Address

At least one policy engine must be reachable by the policy agent via IP. If this is possible with a private IP
address, use it as a preferable method.

A policy agent VM’s private IP address must be static.

IP Forwarding

IP Forwarding is generally disabled by default on new images. VMs with policy agents do not require IP
Forwarding so it should be disabled.

Protocol Filtering

Ingress ports udp/4500 and udp/500 must be opened up on firewalls for all VMs hosting policy agents.

VM Name

All VMs in the service interconnection fabric are identified by VM names specified in x509 node certificates
(see Certificate Requirements). Modifying a cloud VM name–whenever it’s possible–requires workload node
certificate to be regenerated and the node to be re-registered in the fabric.

Tips for Agent Installation

Amazon Web Services

Follow AWS instructions for using public and private IP addresses and opening firewall ports.

Microsoft Azure

Follow Azure instructions for using public and private IP addresses and opening firewall ports.

224 Chapter 18. System Requirements

Bayware Documentation

Google Cloud Platform

GCP requires all recommended settings to be configured during instance creation.

18.4 Private Datacenter VM Setup

You can install processor and workload software in your private data center on any machine that meets
minimum requirements. The VM setup in a private data center is identical to the public VM setup for both
processor and workload nodes.

A VM in private data center that hosts either policy engine or agent requires:

• a valid x509 node certificate (see Certificate Requirements);

• a static public IP if the machine communicates with service interconnection fabric nodes–processors or
workloads–reachable via public IPs only;

• a static private IP if the machine communicates with service interconnection fabric nodes–processors
or workloads–reachable via private IPs;

• ingress ports udp/4500 and udp/500 opened on VM and network firewalls;

• egress port tcp/443 opened on VM and network firewalls.

18.5 Certificate Requirements

All communication in the service interconnection fabric is based on service identity and resource identity.
While service authorization tokens provide application-level security, x509 certificates secure communications
at resource level.

By default, the fabric manager plays Root CA role. When you deploy the fabric interconnection components
with the fabric manager, all required certificates are generated and provisioned automatically, including a
Let’s Encrypt certificate for the orchestrator northbound interface.

If you want to use your own PKI system or to deploy policy engine or agent on a VM without access from
the fabric manager, you can generate certificates by following these instructions.

18.5.1 Using Certificates

The service interconnection fabric relies on the certificates as follows:

• orchestrator NB-API certificate,

• orchestrator SB-API certificate,

• orchestrator Flow-Sign certificate,

• node certificate.

The orchestrator in the service interconnection fabric terminates TLS and mTLS sessions for the northbound
and southbound interface respectively. Each interface requires a certificate associated with its FQDN:

• NBI – orchestrator-<fabric>.<fm-name>.<company-domain>

• SBI – controller-<fabric>.<fm-name>.<company-domain>

18.4. Private Datacenter VM Setup 225

Bayware Documentation

In order to authorize data flows between application services, the orchestrator requires a Flow-Sign certificate.
All processor and workload nodes use this Flow-Sign certificate to validate flow signature.

Each processor and workload node must possess a node certificate to operate in the service interconnection
fabric. The node certificate is used to:

• identify node name and type,

• set up mTLS channel with orchestrator,

• set up IPsec link between nodes,

• discover adjacent nodes using Secure Neighbor Discovery (SeND),

• create node Cryptographically Generated Address (CGA).

The certificates can be provisioned using an existing PKI system or the fabric manager.

Note: When used as Root CA, the fabric manager generates an RSA key and an associated certificate
signing request (CSR) on each node. Next, the fabric manager retrieves the CSR and returns a signed
certificate back to the node. Private keys never leave the nodes, on which they have been generated.

18.5.2 Generating Node Certificate

Generating Key and CSR

Go to your processor or workload node and ensure you are in the certificate directory as specified in your
agent or engine configuration. By default, it’s ~/opt/bayware/certs/:

]$ cd ~/opt/bayware/certs/

To generate an RSA key, run this command on your processor or workload node:

]$ openssl genrsa -out node.key 2048

To generate a certificate signing request, run this command on your processor or workload node with the
company name, fabric name, node role, and hostname as a subject, in this example - '/O=myorg2/DC=myfab2/
DC=processor/CN=aws-p01-myfab2':

]$ openssl req -new -key node.key -out node.csr -subj '/O=myorg2/DC=myfab2/DC=processor/
↪→CN=aws1-p01-myfab2'

Warning: As a reminder, be sure to cross-check the input values for each subject field.

• O = company name from your fabric manager configuration;

• DC appears twice -

– DC = fabric name,

– DC = processor | workload | orchestrator;

• CN = hostname of the VM that issues the CSR.

Copy the CSR you have just generated–in this example node.csr –to your fabric manager.

226 Chapter 18. System Requirements

Bayware Documentation

Note: On the fabric manager, place the CSR in the fabric directory, in this example: ~/.bwctl/myfab2

Issuing Certificate

Go to your fabric manager and ensure you are in the correct fabric directory, in this example ~/.bwctl/
myfab2:

]$ cd ~/.bwctl/myfab2

Note: The current working directory–in this example ~/.bwctl/myfab2 –should now contain node.csr
file among others.

Run the following openssl command on your fabric manager node to generate the x509 certificate from the
CSR:

]$ openssl x509 -req -in node.csr -sha256 -days 3650 -out node.crt -CAkey rootca.key -CA␣
↪→rootca.crt -CAcreateserial -CAserial node.srl -extfile usr_crt_extensions.ext

Example of expected output after running the command:

Signature ok
subject=O = myorg2, DC = myfab2, DC = processor, CN = aws-p01-myfab2
Getting CA Private Key

Deploying Key and Certificates

In the last step, copy the node and root CA certificates (in this example, node.crt and rootca.crt) to
the node–from which you received the CSR–in the folder you have specified in the policy engine or agent
configuration. Also, move into this folder the RSA ke file (in this example, node.key) if you happened to
create it elsewhere.

Note: By default, the policy engine and agent works with the certificate and the private key located at
~/opt/bayware/certs/

This is the content of the folder on your processor or workload node you should see at this step:

-r-------- 1 ubuntu ubuntu 1956 Oct 4 15:28 rootca.crt
-rw-rw-r-- 1 ubuntu ubuntu 1696 Oct 4 15:28 node.crt
-rw------- 1 ubuntu ubuntu 1675 Oct 4 15:28 node.key

18.5.3 node.crt (example)

Here is an example of a processor node certificate:

18.5. Certificate Requirements 227

Bayware Documentation

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

a7:13:91:c4:dc:ec:e7:86
Signature Algorithm: sha256WithRSAEncryption

Issuer: O = "myorg2", DC = myfab2, CN = green-c0
Validity

Not Before: Mar 15 22:56:53 2019 GMT
Not After : Mar 12 22:56:53 2029 GMT

Subject: O = "myorg2", DC = myfab2, DC = processor, CN = aws1-p01-fab2
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

00:de:fd:58:db:8b:4e:7e:fa:59:e3:0e:b1:21:1a:
a6:3f:f9:73:12:df:e4:46:e9:d7:f0:d4:88:f5:ad:
f2:81:16:18:98:53:87:b9:ae:37:e9:70:75:f2:24:
94:46:cd:56:db:29:4d:c4:a8:d8:93:77:d0:ac:2e:
fa:e1:43:11:c1:73:d6:1e:56:50:4e:15:03:ae:9e:
2f:fe:df:40:1e:da:aa:5e:e4:25:a0:29:1b:3f:87:
2c:81:48:cd:0b:40:78:9a:d4:f0:a5:4a:45:b8:50:
b2:7b:a5:43:a7:b9:10:40:d7:94:cd:fa:15:43:d2:
dd:54:bf:29:f3:a4:bf:9d:6d:56:2e:ca:3b:c3:82:
d3:c8:90:5a:4d:51:52:86:97:d9:85:51:44:62:55:
5b:06:dc:5c:2b:54:e3:a9:64:00:65:71:3d:8e:c3:
75:2a:9d:f0:94:47:7b:7b:e6:83:4a:6b:e5:09:59:
d2:8d:3f:46:32:cc:91:28:35:c5:4f:ae:bc:54:fb:
fe:7e:63:c7:d9:69:a6:ff:5b:d9:3a:32:9c:51:25:
15:61:a1:5c:95:bf:57:3a:62:f4:03:c1:f3:fc:bd:
ad:79:cd:e9:d9:62:ea:dd:c6:ad:65:d8:d8:73:46:
3e:38:e0:3e:23:62:b8:19:b2:44:e8:c4:ae:39:3c:
46:4d

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Digital Signature, Key Encipherment

X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Subject Key Identifier:
DB:A2:5E:C8:32:4B:53:5B:D1:A0:49:78:18:B9:E7:71:FB:9D:6F:0B

X509v3 Authority Key Identifier:
keyid:50:C9:A4:B9:8E:8A:68:98:D6:AD:AB:6C:99:AB:72:29:C4:3B:98:CC

Signature Algorithm: sha256WithRSAEncryption
29:fc:07:b2:00:14:05:ea:22:22:c5:e7:6d:8e:8a:5e:8c:59:
a7:c4:5d:54:94:a6:24:9e:02:1a:d9:58:25:c9:fa:69:77:bd:
db:91:17:93:49:70:08:ae:af:c2:c1:9c:8a:35:b4:ce:ca:65:
91:77:22:cf:89:42:17:ce:f3:f0:29:7a:38:3c:b6:f1:06:a0:
b4:ae:5c:de:60:08:2a:e9:84:dd:5e:84:70:bf:5c:9e:1f:f7:
5d:62:85:17:ba:10:2e:6d:34:75:3f:9f:70:e4:10:46:59:60:

(continues on next page)

228 Chapter 18. System Requirements

Bayware Documentation

(continued from previous page)

ff:93:b7:c7:22:6e:d2:3c:58:68:75:68:b7:fe:9b:7c:f2:69:
64:83:af:15:80:80:04:35:c1:05:80:f9:a2:bd:1c:67:93:5d:
3d:fc:1d:cd:86:fd:ae:6e:9b:3a:22:7a:ad:1d:c6:dc:b4:ee:
ae:5c:69:0b:1a:1f:5b:e3:58:20:b8:bd:bf:ab:a7:bd:cb:e6:
38:ee:12:ad:96:83:96:c8:2a:e7:55:47:68:b6:25:7a:be:1b:
36:48:0d:da:4c:8f:79:7e:ef:4f:bf:fc:05:f7:01:7f:9c:e7:
b1:13:f2:6e:c9:d1:6f:6a:85:16:f8:d1:5c:83:ff:f1:ba:70:
89:9d:02:e6:54:e1:7f:5c:0e:a4:ef:7e:3d:9d:03:c3:6a:80:
34:5c:6a:f6:52:0c:19:ba:98:08:b6:47:b5:91:7e:fd:98:d5:
8e:9a:ba:b7:bf:39:11:52:4a:26:cb:26:56:65:a3:e0:ca:05:
04:29:24:e4:86:88:3a:15:e6:d1:dd:48:e7:f1:f6:31:68:3e:
2d:81:8a:05:a1:1f:31:12:a8:6d:a0:38:ed:af:9e:d2:a4:c0:
40:bf:49:d1:e5:d5:ee:28:c7:8d:4d:23:27:ee:74:d5:ca:4b:
ae:ff:61:22:21:07:75:6d:db:de:b3:6c:46:f3:fb:11:6f:28:
e4:98:fa:f7:b0:6e:64:a1:be:0d:ee:e6:64:73:90:e9:bc:b6:
4d:3b:94:e6:c7:71:5c:9c:1b:67:c2:d0:19:89:1d:f1:76:16:
ca:f0:b9:39:81:e2:96:7d:fa:7a:cd:9f:90:7a:1b:f7:3e:7d:
db:43:bb:c4:79:d0:d9:0c:0c:f5:39:93:63:46:ba:5b:af:8e:
5d:32:f4:1d:b1:84:cc:bc:45:5c:57:4c:c9:15:e0:fa:f2:37:
23:fb:f8:3a:de:83:1c:c9:0b:8f:80:b0:10:b3:fc:03:e4:e6:
f3:e1:8a:77:73:44:c2:71:7f:52:d9:c1:a6:b2:a6:63:f6:97:
f2:c1:de:c1:06:d8:ae:de:1f:2b:4d:c1:c0:2f:88:2d:c4:1b:
37:bd:c2:2f:2e:2e:9a:2f

18.5. Certificate Requirements 229

Bayware Documentation

230 Chapter 18. System Requirements

CHAPTER 19

Deploying Fabric Manager

19.1 Spin up Fabric Manager

The fabric manager software allows you to manage resources in three public clouds:

• Microsoft Azure,

• Amazon Web Services (AWS),

• Google Cloud.

You can spin up a virtual machine with the fabric manager software in either Azure or AWS. By default,
the fabric manager uses AWS S3 service to store its backup files and AWS Route 53 service for the hosting
of orchestrator domain names.

Note: Setting up the fabric manager in either Azure or AWS provides you with the same set of capabilities
for resource management in three clouds.

19.1.1 Microsoft Azure

To spin up the fabric manager from Azure Marketplace, simply search for Bayware and click on the “Get
It Now” button to begin the process. As you fill out the required Azure forms, keep in mind that Bayware
recommends using B2s machine type.

19.1.2 Amazon Web Services (AWS)

To spin up the fabric manager in AWS, sign into the AWS Console, select Services > EC2 on the left side
of the page and ensure you are in your desired AWS region shown in the upper right.

Now click the Launch Instance button. On the subsequent page, select Community AMIs and type the
search box bayware-c0 to find the latest fabric manager image.

231

Bayware Documentation

Fig. 19.1: Azure Fabric Manager marketplace offering

232 Chapter 19. Deploying Fabric Manager

Bayware Documentation

Note: The fabric manager image has always the name built as follows: bayware-c0-<version>,where
the version comprises three parts – two with a family number and one image version within the family, for
example bayware-c0-v1-2-8.

Select the image and continue through the rest of the AWS launch process. We recommend using t2.medium
as machine type.

Fig. 19.2: AWS Fabric Manager Community AMI offering

19.2 Update BWCTL CLI Tool

Upon successfully completing the creation of the new VM image, it is time to update all necessary packages
and dependencies for BWCTL. To do this, you will need to SSH into your newly created VM and switch to
root level access to update all packages as such:

]$ sudo su -

Next, to update BWCTL, run the command:

19.2. Update BWCTL CLI Tool 233

Bayware Documentation

]# pip3 install --upgrade bwctl

To update the BWCTL-resources package, run the command:

]# pip3 install --upgrade bwctl-resources

To exit from the current command prompt once you have completed updating, run the command:

]# exit

19.3 Configure BWCTL

Next, it’s time to create the BWCTL environment in the home directory of the current user (ubuntu).

First, start BWCTL running the command:

]$ bwctl init

You should see this output:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required):

In interactive mode, provide all required values when prompted.

Note: Press <Enter> to accept the default values.

After the initialization you should have a configuration similar to:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required): myorg3
[2019-09-25 17:30:30.113] Global
[2019-09-25 17:30:30.113] Cloud providers credentials file [~/.bwctl/credentials.yml]:
[2019-09-25 17:30:34.004] DNS hosted zone (value is required): poc.bayware.io
[2019-09-25 17:30:37.325] Debug enabled [true]:
[2019-09-25 17:30:42.062] Production mode enabled [true]:
[2019-09-25 17:30:44.548] Marketplace images to be used [false]:
[2019-09-25 17:30:48.624] Components
[2019-09-25 17:30:48.624] Family version [1.2]:
[2019-09-25 17:30:51.959] Cloud storage
[2019-09-25 17:30:51.959] Store bwctl state on AWS S3 [false]:
[2019-09-25 17:30:58.786] Store terraform state on AWS S3 [true]:
[2019-09-25 17:31:05.633] AWS S3 bucket name [terraform-states-sandboxes]:
[2019-09-25 17:31:12.933] AWS region [us-west-1]:
[2019-09-25 17:31:15.876] SSH keys
[2019-09-25 17:31:15.876] SSH Private key file []:
[2019-09-25 17:31:21.268] Configuration is done

234 Chapter 19. Deploying Fabric Manager

Bayware Documentation

To view the file with your cloud provider credentials, cat to where the cloud credentials.yml file was
specified during the initialization by running the command with the path to the file–in this example /home/
ubuntu/.bwctl/credentials.yml –as argument:

]$ cd /home/ubuntu/.bwctl/credentials.yml

You should see this output:

Add cloud-provider credentials that will be used when creating
infrastructure and accessing repositories.

aws:
In the AWS console, select the IAM service for managing users and keys.
Select Users, and then Add User. Type in a user name and check
programmatic access. Users require access to EC2, S3, and Route53.
Copy and paste the secret access key and key ID here.
aws_secret_access_key:
aws_access_key_id:

azr:
Azure provides detailed steps for generating required credentials
on the command line, which you can find at this URL:
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-

↪→configure#set-up-terraform-access-to-azure
azr_client_id:
azr_client_secret:
azr_resource_group_name:
azr_subscription_id:
azr_tennant_id:

gcp:
Google uses a GCP Service Account that is granted a limited set of
IAM permissions for generating infrastructure. From the IAM & Admin
page, select the service account to use and then click "create key"
in the drop-down menu on the right. The JSON file will be downloaded
to your computer. Put the path to that file here.
google_cloud_keyfile_json:

Use your editor of choice (ex: vim, nano) to add your public cloud credentials to credentials.yml.

19.4 Create Fabric

The next step is to create a fabric. The fabric acts as a namespace into which your infrastructure components
will be deployed.

Note: The fabric manager allows you to create multiple fabrics to isolate various applications or different
environments.

To get started, SSH into your Fabric Manager VM and enter the BWCTL command prompt:

]$ bwctl

19.4. Create Fabric 235

Bayware Documentation

You should be at the bwctl prompt:

(None) bwctl>

Now, to create a new fabric, run the command with your fabric name–in this example myfab2 –as the
argument:

(None) bwctl> create fabric myfab2

You should see output similar to:

[2019-09-25 17:33:24.563] Creating fabric: myfab2...
...
[2019-09-25 17:33:29.901] Fabric 'myfab21' created successfully

To configure the fabric, run the command with your organization name–in this example myorg2 –as the
argument:

(None) bwctl> configure fabric myfab2

You should see output similar to:

[2019-09-25 17:34:29.730] Install CA for fabric 'myfab2'
...
[2019-09-25 17:34:36.859 Fabric 'myfab2' configured successfully

To verify the new fabric has been created with the argument provided, run the command:

(None) bwctl> show fabric

You should see output similar to:

[2019-09-25 17:35:50.356] Available fabrics listed. Use “bwctl set fabric FABRIC_NAME”␣
↪→to select fabric.

FABRIC
myfab2

Now, set BWCTL to the new fabric by running this command:

(None) bwctl> set fabric myfab2

You should see output similar to:

[2019-09-25 17:36:22.476] Active fabric: 'myfab2'

Notice that your bwctl prompt has changed, now showing the active fabric:

(myfab2) bwctl>

236 Chapter 19. Deploying Fabric Manager

CHAPTER 20

Deploying Orchestrator

You can deploy the orchestrator in any cloud using your fabric manager. From the same fabric manager you
can set up multiple fabrics–e.g. one for test environment and another for production–and place each fabric
orchestrator in a different cloud or cloud region.

Note: Each service interconnection fabric requires its own orchestrator due to security and availability
reasons.

The orchestrator is a microservice-based application itself that runs in Docker containers on one or multiple
VMs. When set up in a three node configuration, each orchestrator node plays a role as follows:

• controller node (NB-API, SB-API, resource and application policy);

• telemetry node (InfluxDB and Grafana);

• events node (ElasticSearch, Logstash, and Kibana).

The controller node is the only mandatory component of the orchestrator deployment.

To begin, SSH to your fabric manager.

Set BWCTL to the fabric, in which you need to deploy the orchestrator, by running this command with the
fabric name–in this example myfab2 –as argument:

]$ bwctl set fabric myfab2

20.1 Create VPC

After the fabric set, you can create a VPC for hosting of your orchestrator nodes in this fabric.

Note: It is recommended to use a dedicated VPC for the orchestrator deployment only.

237

Bayware Documentation

Once you are in the BWCTL command prompt, show a list of available VPC regions by running this
command:

(myfab2) bwctl> show vpc --regions

You should see the list of the regions, in which you can create your VPC, similar to:

aws:
ap-east-1
ap-northeast-1
ap-northeast-2
ap-south-1
ap-southeast-1
ap-southeast-2
ca-central-1
eu-central-1
eu-north-1
eu-west-1
eu-west-2
eu-west-3
sa-east-1
us-east-1
us-east-2
us-west-1
us-west-2

azr:
australiaeast
australiasoutheast
brazilsouth
canadacentral
centralindia
centralus
eastasia
eastus
eastus2
japaneast
northcentralus
northeurope
southcentralus
southeastasia
southindia
westcentralus
westeurope
westus
westus2

gcp:
asia-east1
asia-east2
asia-northeast1
asia-northeast2
asia-south1
asia-southeast1
australia-southeast1
europe-north1

(continues on next page)

238 Chapter 20. Deploying Orchestrator

Bayware Documentation

(continued from previous page)

europe-west1
europe-west2
europe-west3
europe-west4
europe-west6
northamerica-northeast1
southamerica-east1
us-central1
us-east1
us-east4
us-west1
us-west2

Now, to create a new VPC for orchestrator nodes, run the command with the cloud and region names–in
this example azr and westus, respectively, as an argument:

]$ bwctl> create vpc azr westus

You should see output similar to:

[2019-09-25 17:36:58.649] Creating VPC: azr1-vpc-myfab2...
...
[2019-09-25 17:38:26.089] VPCs ['azr1-vpc-myfab2'] created successfully

Note: The VPC name has been autogenerated. Use this name from the command output at the next step.

20.2 Create Controller Node

To create a controller node for the orchestrator, run this command with the orchestrator VPC name–in this
example azr1-vpc-myfab2 –as argument:

]$ bwctl> create orchestrator controller azr1-vpc-myfab2

You should see output similar to:

[2019-09-25 17:39:48.091] Creating new orchestrator 'azr1-c01-myfab2'...
...
[2019-09-25 17:43:56.811] ['azr1-c01-myfab2'] created successfully
[2019-09-25 17:43:56.840] Generating SSH config...

Note: The orchestrator node name has been autogenerated. Use this name at the next step.

Next, configure the orchestrator node by running this command with the orchestrator node name–in this
example azr1-c01-myfab2 –as argument:

]$ bwctl> configure orchestrator azr1-c01-myfab2

You should see output similar to:

20.2. Create Controller Node 239

Bayware Documentation

[2019-09-25 17:44:38.177] Setup/check swarm manager on orchestrator 'azr1-c01-myfab2'
...
[2019-09-25 17:50:14.166] Orchestrators: ['azr1-c01-myfab2'] configured successfully
[2019-09-25 17:50:14.166] IMPORTANT: Here is administrator's password that was used to␣
↪→initialize controller. Please change it after first login
[2019-09-25 17:50:14.166] Password: RWpoi5RkMDBi

Warning: Be sure to write down the PASSWORD as it appears on your screen, it will be needed
later.

To login to the orchestrator, you will use the FQDN of orchestrator northbound interface (NBI).

The FQDN of orchestrator NBI has been auto-generated on the prior step and in this example has the
structure as follows:

orchestrator-myfab2.myorg2.poc.bayware.io

Note: The FQDN of orchestrator NBI is always defined in the following manner: orchestrator-<fabric>.
<company>.<DNS hosted zone> wherein company and DNS hosted zone are from the fabric management
configuration and same for all fabrics.

Authenticate into the orchestrator via a web browser and use the following information:

• Orchestrator URL - FQDN of orchestrator NBI,

• Domain - default,

• Username - admin,

• Password - PASSWORD from the prior step.

20.3 Create Telemetry Node

To create a telemetry node for the orchestrator, run this command with the orchestrator VPC name–in this
example azr1-vpc-myfab2 –as argument:

]$ bwctl> create orchestrator telemetry azr1-vpc-myfab2

You should see output similar to:

[2019-09-25 22:01:58.323] Creating new orchestrator 'azr1-c02-myfab2'...
...
[2019-09-25 22:03:55.862] ['azr1-c02-myfab2'] created successfully
[2019-09-25 22:03:55.905] Generating SSH config...

Note: The orchestrator node name has been autogenerated. Use this name at the next step.

Next, configure the orchestrator node by running this command with the orchestrator node name–in this
example azr1-c02-myfab2 –as argument:

240 Chapter 20. Deploying Orchestrator

Bayware Documentation

Fig. 20.1: Fig. Orchestrator Login Page

20.3. Create Telemetry Node 241

Bayware Documentation

]$ bwctl> configure orchestrator azr1-c02-myfab2

You should see output similar to:

[2019-09-25 22:04:55.433] Setup/check swarm manager on orchestrator 'azr1-c01-myfab2'
...
[2019-09-25 22:07:48.390] Orchestrators: ['azr1-c02-myfab2'] configured successfully

Use your browser to verify the telemetry node is up and running. From the orchestrator GUI open in your
browser, click on Telemetry in the sidebar navigation menu. A new window will open in your browser
similar to the one shown below.

Fig. 20.2: Telemetry Home Page

20.4 Create Events Node

To create an events node for the orchestrator, run this command with the orchestrator VPC name–in this
example azr1-vpc-myfab2 –as argument:

242 Chapter 20. Deploying Orchestrator

Bayware Documentation

]$ bwctl> create orchestrator events azr1-vpc-myfab2

You should see output similar to:

[2019-09-25 22:50:35.536] Creating new orchestrator 'aws1-c03-myfab2'...
...
[2019-09-25 22:52:34.133] ['aws1-c03-myfab2'] created successfully
[2019-09-25 22:52:34.178] Generating SSH config...

Note: The orchestrator node name has been autogenerated. Use this name at the next step.

Next, configure the orchestrator node by running this command with the orchestrator node name–in this
example azr1-c03-myfab2–as argument:

]$ bwctl> configure orchestrator azr1-c03-myfab2

You should see output similar to:

[2019-09-25 23:00:04.972] Setup/check swarm manager on orchestrator 'aws1-c01-myfab2'
...
[2019-09-25 23:02:51.605] Orchestrators: ['azr1-c03-myfab2'] configured successfully

Use your browser to verify the events node is up and running. From the orchestrator GUI open in your
browser, click on Events in the sidebar navigation menu. A new window will open in your browser similar
to the one shown below.

20.5 Delete Orchestrator Node

You can delete Telemetry or Events node at any time, without interruption of your application functionality.

To delete the orchestrator node, run this command with the orchestrator node name–in this example
azr1-c03-myfab2 –as the argument:

]$ bwctl> delete orchestrator events azr1-c03-myfab2

You should see output similar to:

[2019-09-26 22:39:00.134] Deleting orchestrator 'aws1-c03-manil7109'...
...
[2019-09-26 22:41:31.939] Orchestrator 'aws1-c03-manil7109' deleted successfully
[2019-09-26 22:41:31.963] Generating SSH config...

20.5. Delete Orchestrator Node 243

Bayware Documentation

Fig. 20.3: Events Home Page

244 Chapter 20. Deploying Orchestrator

CHAPTER 21

Deploying Processor

21.1 Public Cloud Deployment

You can add a processor node with policy engine to an existing application VPC or create a new VPC.

Note: Deploying several processors in the same VPC allows you to improve application availability and
share the load among the processor nodes.

21.1.1 Create VPC

To create a new VPC for application deployment, with the cloud and region names in this example azr and
westus –as an argument:

(myfab2) bwctl> create vpc azr westus

You should see output similar to:

[2019-09-25 17:51:51.688] Creating VPC: azr2-vpc-myfab2...
...
[2019-09-25 17:52:50.803] VPCs ['azr2-vpc-myfab2'] created successfully

21.1.2 Create Processor Node

Next, to create a processor, run the command with the target VPC name as an argument:

(myfab2) bwctl> create processor azr2-vpc-myfab2

You should see output similar to:

245

Bayware Documentation

[2019-09-25 17:53:22.613] Creating new processor 'azr2-p01-myfab2'...
...
[2019-09-25 17:57:27.735] ['azr2-p01-myfab2'] created successfully
[2019-09-25 17:57:27.763] Generating SSH config...

To configure the processor, you will use the FQDN of orchestrator southbound interface (SBI).

The FQDN of orchestrator SBI has been auto-generated on the prior step and in this example has the
structure as follows:

controller-myfab2.myorg2.poc.bayware.io

Note: The FQDN of orchestrator SBI is always defined in the following manner: controller-<fabric>.
<company>.<DNS hosted zone>

To configure the processor, run the command with the FQDN of orchestrator SBI–in this example
controller-myfab2.myorg2.poc.bayware.io –as an argument:

(myfab2) bwctl> configure processor azr2-p01-myfab2 --orchestrator-fqdn controller-
↪→myfab2.mayorg2.poc.bayware.io

You should see output similar to:

[2019-09-25 17:58:58.573] Generate ansible inventory...
...
[2019-09-25 18:00:18.506] Processors ['azr2-p01-myfab2'] configured successfully

To start the processor, run the command:

(myfab2) bwctl> start processor azr2-p01-myfab2

You should see output similar to:

[2019-09-25 18:00:44.719] Processors to be started: ['azr2-p01-myfab2']
...
[2019-09-25 18:00:47.537] Processors ['azr2-p01-myfab2'] started successfully

21.2 Private Datacenter Deployment

You can install the policy engine on a Linux machine in your private data center. The policy engine has
been fully integrated and tested with the operating systems as follows:

• Ubuntu 18.04 LTS,

• RHEL 8 (available starting with the fabric family version 1.4).

You need root access to the Linux machine–thereafter called processor node –in order to install the policy
engine.

21.2.1 Ubuntu

246 Chapter 21. Deploying Processor

Bayware Documentation

Add Repository

First, switch to root level access by running this command:

]$ sudo su -

To add the Bayware repository key to the processor node, run this command:

]# wget -qO - https://s3-us-west-1.amazonaws.com/bayware-repo/public/ubuntu/Bayware-
↪→public.key | sudo apt-key add -

Now, add the Bayware repository to the processor node by running this command:

]# echo "deb https://s3-us-west-1.amazonaws.com/bayware-repo/public/1.2/ubuntu bionic␣
↪→main" > /etc/apt/sources.list.d/bayware-s3-pub.list

Update the package cache on the processor node by running this command:

]# apt update

Install Engine

To install the policy engine on the processor node, run this command:

]# apt install -y ib-engine

Note: The policy engine package depends on: strongswan (>=5), openvswitch-common (>=2.9),
openvswitch-switch (>=2.9). All dependencies are installed automatically if not found on processor node.

Configure Engine

The policy engine requires for its operations the following configuration:

• paths to root CA certificate, processor certificate, processor private key;

• FQDN of orchestrator southbound API;

• processor location name (optional).

By default, the policy engine works with the certificates and the private key located at ~/opt/bayware/
certs/

To view folder content, run this command:

]# ll /opt/bayware/certs/

If you have the certificates and the key already installed on the processor node, you should see output similar
to this:

total 32
drwxr-xr-x 2 root root 4096 Oct 4 23:54 ./
drwxr-xr-x 4 root root 4096 Oct 4 23:56 ../
-rw-r--r-- 1 root root 1956 Oct 4 23:54 ca.crt

(continues on next page)

21.2. Private Datacenter Deployment 247

Bayware Documentation

(continued from previous page)

-rw-r--r-- 1 root root 1696 Oct 4 23:54 node.crt
-rw-r--r-- 1 root root 1005 Oct 4 23:54 node.csr
-r-------- 1 ubuntu root 1675 Oct 4 23:54 node.key
-r-------- 1 ubuntu root 1704 Oct 4 23:54 node.p8
-r-------- 1 ubuntu root 3371 Oct 4 23:54 node.pem

Note: You can find requirements to the processor node certificate in a separate guide under the section
Certificate Requirements.

If you want to change the path to the certificates and the key, use options offered by the policy engine
configuration script. To find the available options, run this command:

]# /opt/bayware/ib-engine/bin/ib-configure -h

To configure orchestrator and location names, run the command with FQDN of orchestrator southbound
API and location name as its arguments. Use the option -s if you want to set up IPsec configuration for
this engine:

]# /opt/bayware/ib-engine/bin/ib-configure -s -c <FQDN of Orchestrator SBI> -l <location>

You should see this output:

engine configuration completed successfully

Note: All configuration settings can be changed directly in the config file located at ~/opt/conf/sys.
config

Start Engine

To add the policy engine to processor node autostart, run this command:

]# systemctl enable ib-engine

To start the policy engine, run this command:

]# systemctl start ib-engine

Uninstall Engine

To uninstall the policy engine, run this command:

]# apt remove -y ib-engine

21.2.2 RHEL

In progress…

248 Chapter 21. Deploying Processor

CHAPTER 22

Deploying Workload

22.1 Public Cloud Deployment

You can create a workload node in the VPC with a processor node already installed.

Note: The processor node secures workload data and control communication including the fabric manager
and workload interaction. So, it is mandatory to have a processor node installed in the VPC before the
workload deployment.

22.1.1 Create Workload Node

To create a new workload in the VPC, run the command:

(myfab2) bwctl> create workload azr2-vpc-myfab2

You should see output similar to:

[2019-09-25 18:03:26.462] Creating new workload 'azr2-w01-myfab2'...
...
[2019-09-25 18:06:24.269] ['azr2-w01-myfab2'] created successfully
[2019-09-25 18:06:24.297] Generating SSH config...

To configure the workload, run the command with the FQDN of orchestrator SBI–in this example
controller-myfab2.myorg2.poc.bayware.io –as an argument:

(myfab2) bwctl> configure workload azr2-w01-myfab2 --orchestrator-fqdn controller-myfab2.
↪→myorg2.poc.bayware.io

You should see output similar to:

249

Bayware Documentation

[2019-09-25 18:07:17.658] Generate ansible inventory...
...
[2019-09-25 18:08:25.858] Workloads ['azr2-w01-myfab2'] configured successfully

To start the workload, run the command:

(myfab2) bwctl> start workload azr2-w01-myfab2

You should see output similar to:

[2019-09-25 18:09:18.375] Workloads to be started: ['azr2-w01-myfab2']
...
[2019-09-25 18:09:21.495] Workloads ['azr2-w01-myfab2'] started successfully

22.2 Private Datacenter Deployment

You can install the policy agent in your private data center on a Linux machine with kernel version 4.15 and
up. The policy agent has been fully integrated and tested with the operating systems as follows:

• Ubuntu 18.04 LTS,

• RHEL 8 (available starting with the fabric family version 1.3).

You need root access to the Linux machine–thereafter called workload node –in order to install the policy
agent.

22.2.1 Ubuntu

Add Repository

First, switch to root level access by running this command:

]$ sudo su -

To add the Bayware repository key to the workload node, run this command:

]# wget -qO - https://s3-us-west-1.amazonaws.com/bayware-repo/public/ubuntu/Bayware-
↪→public.key | sudo apt-key add -

Now, add the Bayware repository to the workload node by running this command:

]# echo "deb https://s3-us-west-1.amazonaws.com/bayware-repo/public/1.2/ubuntu bionic␣
↪→main" > /etc/apt/sources.list.d/bayware-s3-pub.list

Update the package cache on the workload node by running this command:

]# apt update

Install Agent

To install the policy agent on the workload node, run this command:

250 Chapter 22. Deploying Workload

Bayware Documentation

]# apt install -y ib-agent

Note: The policy agent package depends on: strongswan (>=5), python3 (>=3.6), python3-iniparse,
python3-openssl, haveged, libjansson4, libini-config5. All dependencies are installed automatically
if not found on workload node.

Configure Agent

The policy agent requires for its operations the following configuration:

• paths to root CA certificate, workload certificate, workload private key;

• FQDN of orchestrator southbound API;

• workload location name.

By default, the policy agent works with the certificates and the private key located at ~/opt/bayware/certs/

To view folder content, run this command:

]# ll /opt/bayware/certs/

If you have the certificates and the key already installed on the workload node, you should see output similar
to this:

total 32
drwxr-xr-x 2 root root 4096 Oct 4 15:28 ./
drwxr-xr-x 4 root root 4096 Oct 4 15:38 ../
-rw-r--r-- 1 root root 1956 Oct 4 15:28 ca.crt
-rw-r--r-- 1 root root 1696 Oct 4 15:28 node.crt
-rw-r--r-- 1 root root 1001 Oct 4 15:28 node.csr
-r-------- 1 ubuntu root 1675 Oct 4 15:28 node.key
-r-------- 1 ubuntu root 1704 Oct 4 15:28 node.p8
-r-------- 1 ubuntu root 3371 Oct 4 15:28 node.pem

Note: You can find requirements to the workload node certificate in a separate guide under the section
Certificate Requirements.

If you want to change the path to the certificates and the key, use options offered by the policy agent
configuration script. To find the available options, run this command:

]# /opt/bayware/ib-agent/bin/ib-configure -h

To configure orchestrator and location names, run the command with FQDN of orchestrator southbound
API and location name as its arguments. Use the option -s if you want to set up IPsec configuration for
this agent:

]# /opt/bayware/ib-agent/bin/ib-configure -s -c <FQDN of Orchestrator SBI> -l <location>

You should see this output:

agent configuration completed successfully

22.2. Private Datacenter Deployment 251

Bayware Documentation

Note: All configuration settings can be changed directly in the config file located at ~/etc/ib-agent.conf

To check the current policy agent configuration, run this command:

]# cat /etc/ib-agent.conf

You should see output similar to this:

[agent]
controller = <FQDN of Orchestrator SBI>
location = <location>
local_domain = ib.loc
token_file = /opt/bayware/ib-agent/conf/tokens.dat
log_file = /var/log/ib-agent/ib-agent.log
log_level = INFO
log_count = 5

[net_iface]
name = ib-fab0
address = 192.168.250.0/24

[ctl_iface]
name = ib-ctl0

[mirror_iface]
name = ib-mon0

[cert]
ca_cert = /opt/bayware/certs/ca.crt
node_cert = /opt/bayware/certs/node.crt
node_key = /opt/bayware/certs/node.key

[rest]
rest_ip = 127.0.0.1
rest_port = 5500
log_file = /var/log/ib-agent/ib-agent-rest.log
log_level = WARNING

[resolver]
log_file = /var/log/ib-agent/ib-agent-resolver.log
log_level = WARNING
file_size = 100000
backup_count = 5
dns_port = 5053

Start Agent

To add the policy agent to workload node autostart, run this command:

]# systemctl enable ib-agent

To start the policy agent, run this command:

252 Chapter 22. Deploying Workload

Bayware Documentation

]# systemctl start ib-agent

Uninstall Agent

To uninstall the policy agent, run this command:

]# apt remove -y ib-agent

22.2.2 RHEL

In progress…

22.2. Private Datacenter Deployment 253

Bayware Documentation

254 Chapter 22. Deploying Workload

CHAPTER 23

Working with Batches

While you can deploy service interconnection fabric components one by one, using the batch deployments
accelerates your migration to clouds even more.

With batch deployments, you can easily extend your existing fabric or automatically create a new fabric.
The easiest and error-proven way to do that is to perform three steps as follows:

• export your existing fabric to a yml-file with one bwctl command,

• edit and save the yml-file,

• run the batch deployment from the yml-file with another bwctl command.

23.1 Extend Existing Fabric

23.1.1 Create Batch File Template

First, set bwctl to an existing fabric by running this command with the fabric name–in this example myfab5
–as the argument:

(None) bwctl> set fabric myfab5

You should see output similar to:

[2019-10-14 16:03:56.255] Active fabric: 'myfab5'

Notice that your bwctl prompt has changed, now showing the active fabric:

(myfab5) bwctl>

Now, export the current fabric state by running this command with the file name–in this example myfab5.yml
–as the argument:

255

Bayware Documentation

(myfab5) bwctl> export fabric myfab5.yml

You should see output similar to:

[2019-10-14 16:08:44.299] Exporting to 'myfab5.yml'
[2019-10-14 16:08:44.403] Fabric configuration exported successfully

In this example, the fabric comprises:

• two VPCs in Azure,

• orchestrator node in one VPC,

• one processor and one workload in another VPC.

The fabric resource graph is shown below.

Fig. 23.1: Initial Resource Graph (Azure)

The file with the current fabric state contains:

256 Chapter 23. Working with Batches

Bayware Documentation

apiVersion: fabric.bayware.io/v2
kind: Batch
metadata:

name: 'myfab5'
description: 'Fabric "myfab5" export at Mon Oct 14 16:50:38 2019'

spec:
- kind: Fabric

metadata:
description: 'optional description'
name: 'myfab5'

spec:
companyName: myorg4
credentialsFile: {}
sshKeys:

privateKey: {}
- kind: Orchestrator

metadata:
description: 'optional description>'
fabric: 'myfab5'
name: 'azr1-c01-myfab5'

spec:
role: 'manager'
type: 'controller'
properties:

marketplace: False
vpc: 'azr1-vpc-myfab5'

state: 'configured'
- kind: Processor

metadata:
description: 'optional description'
fabric: 'myfab5'
name: 'azr2-p01-myfab5'

spec:
config:

orchestrator: 'controller-myfab5.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'azr2-vpc-myfab5'

state: 'started'
- kind: Vpc

metadata:
description: 'optional description'
fabric: 'myfab5'
name: 'azr1-vpc-myfab5'

spec:
cloud: 'azr'
properties:
region: 'westus'

- kind: Vpc
metadata:

description: 'optional description'

(continues on next page)

23.1. Extend Existing Fabric 257

Bayware Documentation

(continued from previous page)

fabric: 'myfab5'
name: 'azr2-vpc-myfab5'

spec:
cloud: 'azr'
properties:
region: 'eastus'

- kind: Workload
metadata:

description: 'optional description'
fabric: 'myfab5'
name: 'azr2-w01-myfab5'

spec:
config:

orchestrator: 'controller-myfab5.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'azr2-vpc-myfab5'

state: 'started'

23.1.2 Edit Batch File

To amend the current fabric state with a desired amount of new VPCs, processors and workloads, use your
favorite text editor, e.g. vim or nano, to describe a desired state:

]$ nano myfab5.yml

For example, to add more workloads to the existing VPC, duplicate the existing workload specifica-
tion as many times as needed while providing a unique name for each new workload–in this example
azr2-w02-myfab5 and azr2-w03-myfab5.

Note: You can either keep or remove the existing components from the batch file. While running the batch
deployment, bwctl will apply only a difference between the current and desired state.

After editing, the batch file–in this example myfab5.yml –contains:

apiVersion: fabric.bayware.io/v2
kind: Batch
metadata:

name: 'myfab5'
description: 'Fabric "myfab5" export at Mon Oct 14 16:50:38 2019'

spec:
- kind: Workload

metadata:
description: 'optional description'
fabric: 'myfab5'
name: 'azr2-w02-myfab5'

spec:
config:

orchestrator: 'controller-myfab5.myorg4.poc.bayware.io'
(continues on next page)

258 Chapter 23. Working with Batches

Bayware Documentation

(continued from previous page)

properties:
marketplace: False

vpc: 'azr2-vpc-myfab5'
state: 'started'

- kind: Workload
metadata:

description: 'optional description'
fabric: 'myfab5'
name: 'azr2-w03-myfab5'

spec:
config:

orchestrator: 'controller-myfab5.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'azr2-vpc-myfab5'

state: 'started'

23.1.3 Run Batch Deployment

To deploy new fabric components from the batch file, run this command with the batch file name–in this
example myfab5.yml –as the argument:

(myfab5) bwctl> create batch myfab5.yml

You will see output similar to:

[2019-10-14 18:25:42.565] Create batch: file='myfab5.yml', input=format='yaml', dry-
↪→run=False
...
[2019-10-14 18:33:29.640] Batch is finished

Check your resource graph at this point to see that the fabric has two more workload nodes now.

23.2 Create New Fabric

23.2.1 Create Batch File Template

You can use the state of your existing fabric, to create a new fabric. The new fabric might be completely
identical to the existing one or have the same set of components but deployed in a different cloud.

First, export the current fabric configuration by running this command with the file name–in this example
myfab6.yml –as the argument:

(myfab5) bwctl> export fabric myfab6.yml

You should see output similar to:

[2019-10-14 18:41:47.936] Exporting to 'myfab6.yml'
[2019-10-14 18:41:47.955] Fabric configuration exported successfully

23.2. Create New Fabric 259

Bayware Documentation

Fig. 23.2: Resource Graph after the Batch Deployment (Azure)

260 Chapter 23. Working with Batches

Bayware Documentation

Note: In this example, the state of the fabric, extended in the prior step, is exported. So, the file
myfab6.yml now describes two Azure VPCs, one orchestrator node, one processor node and three workload
nodes.

23.2.2 Edit Batch File

To create a desired state for the new fabric, edit the file created in the prior step.

In this example, the new fabric will fully replicate in AWS the fabric existing in Azure. So, use find-
and-replace option in your favorite text editor to make these changes to the batch file–in this example
myfab6.yml:

Specification Before After
Fabric Manager myfab5 myfab6
Cloud azr aws
Control VPC Region westus us-west-1

Workload VPC Region eastus us-east-1

Save the file after editing.

23.2.3 Run Batch Deployment

To deploy the new fabric from the batch file you have created in the prior step, run this command with the
batch file name–in this example myfab6.yml –as the argument:

]$ bwctl create batch myfab6.yml

You will see output similar to:

[2019-10-14 18:53:56.377] Create batch: file='myfab6.yml', input=format='yaml', dry-
↪→run=False
...
[2019-10-14 19:08:57.007] Batch is finished
[2019-10-14 19:08:57.007] IMPORTANT: Here is administrator's password that was used to␣
↪→initialize controller. Please change it after first login
[2019-10-14 19:08:57.007] Password: 0Y417IqAMa6h

The new fabric with two VPCs, orchestrator, processor and three workload nodes have been created in AWS.

Warning: When a controller node of orchestrator is created during a batch deployment, a password is
always shown in the last line of the command output. Write down the PASSWORD as it appears on
your screen, as it will be needed later.

To check the current state of the new fabric, set bwctl to the new fabric by running this command with the
fabric name-in this example myfab6 -as the argument:

23.2. Create New Fabric 261

Bayware Documentation

]$ bwctl set fabric myfab6

You should see output similar to:

[2019-10-14 20:29:47.921] Active fabric: 'myfab6'

Now, export the current fabric state by running this command with the file name–in this example
myfab6-current.yml –as the argument:

]$ bwctl export fabric myfab6-current.yml

You should see output similar to:

[2019-10-14 20:30:09.084] Exporting to 'myfab6-current.yml'
[2019-10-14 20:30:09.188] Fabric configuration exported successfully

The file with the current fabric state contains:

apiVersion: fabric.bayware.io/v2
kind: Batch
metadata:

name: 'myfab6'
description: 'Fabric "myfab6" export at Tue Oct 15 15:30:09 2019'

spec:
- kind: Fabric

metadata:
description: 'optional description'
name: 'myfab6'

spec:
companyName: myorg4
credentialsFile: {}
sshKeys:

privateKey: {}
- kind: Orchestrator

metadata:
description: 'optional description>'
fabric: 'myfab6'
name: 'aws1-c01-myfab6'

spec:
role: 'manager'
type: 'controller'
properties:

marketplace: False
vpc: 'aws1-vpc-myfab6'

state: 'configured'
- kind: Processor

metadata:
description: 'optional description'
fabric: 'myfab6'
name: 'aws2-p01-myfab6'

spec:
config:

(continues on next page)

262 Chapter 23. Working with Batches

Bayware Documentation

(continued from previous page)

orchestrator: 'controller-myfab6.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'aws2-vpc-myfab6'

state: 'started'
- kind: Vpc

metadata:
description: 'optional description'
fabric: 'myfab6'
name: 'aws1-vpc-myfab6'

spec:
cloud: 'aws'
properties:
region: 'us-west-1'

- kind: Vpc
metadata:

description: 'optional description'
fabric: 'myfab6'
name: 'aws2-vpc-myfab6'

spec:
cloud: 'aws'
properties:
region: 'us-east-1'

- kind: Workload
metadata:

description: 'optional description'
fabric: 'myfab6'
name: 'aws2-w01-myfab6'

spec:
config:

orchestrator: 'controller-myfab6.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'aws2-vpc-myfab6'

state: 'started'
- kind: Workload

metadata:
description: 'optional description'
fabric: 'myfab6'
name: 'aws2-w02-myfab6'

spec:
config:

orchestrator: 'controller-myfab6.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'aws2-vpc-myfab6'

state: 'started'
- kind: Workload

metadata:
description: 'optional description'
fabric: 'myfab6'
name: 'aws2-w03-myfab6'

(continues on next page)

23.2. Create New Fabric 263

Bayware Documentation

(continued from previous page)

spec:
config:

orchestrator: 'controller-myfab6.myorg4.poc.bayware.io'
properties:

marketplace: False
vpc: 'aws2-vpc-myfab6'

state: 'started'

Login to the new orchestrator and check the resource graph of your new fabric.

At this point, you will see that the new fabric in AWS completely replicates the Azure fabric.

Fig. 23.3: Resource Graph of New Fabric (AWS)

23.3 Summary

Batch deployment is a powerful tool when you need to:

• add new VPCs or scale out processors and workloads in your existing VPCs;

264 Chapter 23. Working with Batches

Bayware Documentation

• copy your existing environment, e.g. test, and automatically create a new identical environment, e.g.
production;

• copy your entire infrastructure in one cloud and paste it in another.

23.3. Summary 265

Bayware Documentation

266 Chapter 23. Working with Batches

CHAPTER 24

BWCTL CLI Manual

24.1 About BWCTL

BWCTL is a command line interface (CLI) tool that enables you to interact with public clouds using
commands from your shell. The tool offers all the functionality required for SIF component management.
With BWCTL you can build your fabric from scratch by setting up VPCs, orchestrator nodes, processor
nodes, and workload nodes.

BWCTL tool comes preinstalled on your fabric manager node. To use BWCTL tool, access your fabric
manager node from any Linux, macOS, or Windows machine.

To run the commands, you will need a terminal window with an SSH client:

• MacOS – Use Terminal application with built-in SSH client.

• Linux – Use your favorite terminal window with built-in SSH client.

• Windows 10 – If you haven’t already enabled an SSH client to use with PowerShell, PuTTY is an easy
alternative. PuTTY can act as both your terminal window and your SSH client.

When creating the fabric manager in a public cloud, you are able to specify how you would like to access the
virtual machine using SSH. That is, you may specify a username and password or a public key. Use these
credentials to log into your VM.

However, BWCTL tools run under the username ubuntu. If you have created a different username during
VM creation, simply su into ubuntu before proceeding:

jsmith@my-fabric-manager:~$ sudo su - ubuntu

BWCTL enables you to install fabric components and configure them. You can show, create, update,
start, stop, and delete components of the service interconnection fabric: fabric, vpc, orchestrator,
processor, workload. Also, the tool allows you to perform the same operations in batch mode i.e., on a
grouping of fabric components.

267

Bayware Documentation

Fig. 24.1: BWCTL CLI for SIF component management

268 Chapter 24. BWCTL CLI Manual

Bayware Documentation

24.2 Upgrading BWCTL

BWCTL tool comprises two packages: one with business logic, called bwctl, and another with resource
templates, called bwctl-resources.

You can upgrade the bwctl package already installed on your fabric manager to the latest version in the
family by running the command:

]$ pip3 install --upgrade bwctl

Verify that the bwctl package installed correctly by running the command:

]$ bwctl --version
bwctl/0.7.1

To upgrade the bwctl-resources package, run the command:

]$ pip3 install --upgrade bwctl-resources

Verify that the bwctl-resources package installed correctly by running the command:

]$ bwctl-resources --version
bwctl-resources/0.7.1

24.3 Configuring BWCTL

24.3.1 Configuring BWCTL after installation

Before you can start using BWCTL for fabric deployment, you must configure the tool with your cloud
credentials.

First, start the BWXTL initalization process by running the command:

]$ bwctl init

You should see this output:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required):

In interactive mode, provide all required values when prompted.

Note: Press <Enter> to accept the default values.

After the initialization you should have a configuration similar to:

[2019-09-25 17:30:12.156] Welcome to bwctl initialization
[2019-09-25 17:30:12.156] Fabric manager
[2019-09-25 17:30:12.156] Company name (value is required): myorg3
[2019-09-25 17:30:30.113] Global

(continues on next page)

24.2. Upgrading BWCTL 269

Bayware Documentation

(continued from previous page)

[2019-09-25 17:30:30.113] Cloud providers credentials file [~/.bwctl/credentials.yml]:
[2019-09-25 17:30:34.004] DNS hosted zone (value is required): poc.bayware.io
[2019-09-25 17:30:37.325] Debug enabled [true]:
[2019-09-25 17:30:42.062] Production mode enabled [true]:
[2019-09-25 17:30:44.548] Marketplace images to be used [false]:
[2019-09-25 17:30:48.624] Components
[2019-09-25 17:30:48.624] Family version [1.2]:
[2019-09-25 17:30:51.959] Cloud storage
[2019-09-25 17:30:51.959] Store bwctl state on AWS S3 [false]:
[2019-09-25 17:30:58.786] Store terraform state on AWS S3 [true]:
[2019-09-25 17:31:05.633] AWS S3 bucket name [terraform-states-sandboxes]:
[2019-09-25 17:31:12.933] AWS region [us-west-1]:
[2019-09-25 17:31:15.876] SSH keys
[2019-09-25 17:31:15.876] SSH Private key file []:
[2019-09-25 17:31:21.268] Configuration is done

To view the file with your cloud provider credentials, cat to where the cloud credentials.yml file was
specified during the initialization by running the command with the path to the file–in this example /home/
ubuntu/.bwctl/credentials.yml –as argument:

]$ cd /home/ubuntu/.bwctl/credentials.yml

You should see this output:

Add cloud-provider credentials that will be used when creating
infrastructure and accessing repositories.

aws:
In the AWS console, select the IAM service for managing users and keys.
Select Users, and then Add User. Type in a user name and check
programmatic access. Users require access to EC2, S3, and Route53.
Copy and paste the secret access key and key ID here.
aws_secret_access_key:
aws_access_key_id:

azr:
Azure provides detailed steps for generating required credentials
on the command line, which you can find at this URL:
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/terraform-install-

↪→configure#set-up-terraform-access-to-azure
azr_client_id:
azr_client_secret:
azr_resource_group_name:
azr_subscription_id:
azr_tennant_id:

gcp:
Google uses a GCP Service Account that is granted a limited set of
IAM permissions for generating infrastructure. From the IAM & Admin
page, select the service account to use and then click "create key"
in the drop-down menu on the right. The JSON file will be downloaded
to your computer. Put the path to that file here.
google_cloud_keyfile_json:

270 Chapter 24. BWCTL CLI Manual

Bayware Documentation

Use your editor of choice (ex: vim, nano) to add your public cloud credentials to credentials.yml.

24.3.2 Changing BWCTL configuration

If you need to change BWCTL configuration, run bwctl init again or update its configuration file stored
locally at /home/ubuntu/.bwctl/config.

To check your current configuration, run this command:

$ cat .bwctl/config
cloud_storage:

state:
bucket: terraform-states-sandboxes
enabled: false
region: us-west-1

terraform:
bucket: terraform-states-sandboxes
enabled: true
region: us-west-1

components:
branch: release
family: '1.2'

credentials_file: ~/.bwctl/credentials.yml
current_fabric: myfab6
debug: true
fabric_manager:

company_name: myorg4
id: bangkok-c0_54.200.219.211_ubuntu
ip: 54.200.219.211
production: bangkokinc

hosted_zone: poc.bayware.io
marketplace: false
production: true
ssh_keys:

private_key: ''

24.4 Getting started with BWCTL

24.4.1 Typing the first command

Using Linux command line

To give a command in BWCTL using the Linux command line, you will type bwctl along with the required
input and press the <return> key.

To start using BWCTL tool, run the command:

]$ bwctl --help
Usage: bwctl-api [OPTIONS] COMMAND [ARGS]...

Bayware CLI
(continues on next page)

24.4. Getting started with BWCTL 271

Bayware Documentation

(continued from previous page)

Options:
-v, --version Print version and exit.
-h, --help Show this message and exit.

Commands:
configure Configure commands
create Create commands
delete Delete commands
export Export fabric specification to file
leave Leave commands
restart Restart commands
set Set commands
show Show commands
start Start commands
stop Stop commands
update Update commands

Using BWCTL command line

To switch from the Linux command line to the BWCTL command line, you will type bwctl and press the
<return> key:

]$ bwctl
(None) bwctl>

The BWCTL command line begins with the fabric name in parentheses. If no fabric is set, the parentheses
contain the word None.

To get help in the BWCTL command line, run the command:

(None) bwctl> help

To quit the BWCTL command line, run the command:

(None) bwctl> quit

24.4.2 Command structure

The BWCTL command line is comprised of several components:

• bwctl

• any options required by bwctl to execute the command

• the command and, in most cases, subcommand

• any arguments required by the command

]$ bwctl --help
Usage: bwctl [OPTIONS] COMMAND [ARGS]...

272 Chapter 24. BWCTL CLI Manual

Bayware Documentation

24.4.3 Command line options

You can use the following command line options by typing them on the command line immediately after
bwctl:

–version, -v A boolean switch that displays the current version of BWCTL-API tool.

–help, -h A boolean switch that displays the commands available for execution.

You can finish the command line with the --help option following either command or subcommand. The
output will always give you a hint about what else you need to type.

To see the help for the command, type the command only followed by --help and press <return>:

]$ bwctl show --help
Usage: bwctl show [OPTIONS] COMMAND [ARGS]...

Show commands

Options:
-h, --help Show this message and exit.

Commands:
fabric Show fabric information
orchestrator Show orchestrator information
processor Show processor information
vpc Show VPC information
workload Show workload information

To see the help for the subcommand, type the command followed by the subcommand and --help and press
<return>:

]$ bwctl show workload --help
Usage: bwctl show workload [OPTIONS]

Show workload information

Options:
--name TEXT Show full information on a given workload.
--cloud [azr|aws|gcp|all] List workloads or show full information on them.
--full Show full information on workloads.
-h, --help Show this message and exit.

Different commands support different options. Detailed information on the available options can be found
in the documentation section Using commands.

24.4.4 Commands

With BWCTL you can manage all fabric components in your service interconnection fabric. Each command
includes the entity kind as a subcommand and the entity name as an argument. Some commands have an
entity specification file as a mandatory argument.

BWCTL supports the following commands:

configure KIND NAME [OPTIONS] The command configures one or multiple entities. The specifica-
tion file is optional for this command.

24.4. Getting started with BWCTL 273

Bayware Documentation

create KIND NAME [OPTIONS] The command creates one or multiple entities. The specification file
is mandatory for the batch kind only.

delete KIND NAME [OPTIONS] The command deletes one or multiple entities. The specification file
is mandatory for the batch kind only.

export KIND FILE [OPTIONS] The command exports the fabric specification to a file.

leave KIND The command causes the tool to exit from the current fabric (namespace).

restart KIND NAME [OPTIONS] The command restarts one or multiple entities. You can use options
instead of the name to specify entities in the command.

set KIND NAME The command causes the tool to enter the specified fabric (namespace).

show KIND NAME [OPTIONS] The command shows one or multiple entities. You can use options
instead of the name to specify entities in the command.

start KIND NAME [OPTIONS] The command starts one or multiple entities. You can use options
instead of the name to specify entities in the command.

stop KIND NAME [OPTIONS] The command updates one or multiple entities. You can use options
instead of the name to specify entities in the command.

update KIND NAME [OPTIONS] The command updates one or multiple entities. You can use options
instead of the name to specify entities in the command.

24.4.5 Kinds

The diagram below depicts the service interconnection fabric components and relationships between them.

Fig. 24.2: Fabric components

To see the entity types, you can run the show command without a subcommand:

]$ bwctl show
Usage: bwctl show [OPTIONS] COMMAND [ARGS]...

Show commands
(continues on next page)

274 Chapter 24. BWCTL CLI Manual

Bayware Documentation

(continued from previous page)

Options:
-h, --help Show this message and exit.

Commands:
fabric Show fabric information
orchestrator Show orchestrator information
processor Show processor information
vpc Show VPC information
workload Show workload information

BWCTL manages the following entity types:

fabric NAME The fabric entity represents a fabric itself.

orchestrator NAME The orchestrator entity represents a VM playing orchestrator node role.

processor NAME The processor entity represents a VM playing processor node role.

vpc NAME The vpc entity represents a cloud VPC.

workload NAME The workload entity represents a VM playing workload node role.

24.4.6 Batch

With BWCTL CLI, you can use a single batch command to manage a set of entities of the same or different
types. Below is an example of the command.

]$ bwctl create batch azr-infra-batch.yml

24.5 Using commands

24.5.1 Supported commands for each entity type

There are five groups of entities, each of which has its own set of commands.

configure, create, delete, export, leave, set, show This set of commands is applicable to the following
types of entities:

• FABRIC

create, delete, show This set of commands is applicable to the following types of entities:

• VPC

configure, create, delete, show, update This set of commands is applicable to the following types of
entities:

• ORCHESTRATOR

configure, create, delete, show, start, stop, update This set of commands is applicable to the follow-
ing types of entities:

• PROCESSOR

• WORKLOAD

24.5. Using commands 275

Bayware Documentation

create, delete This set of commands is applicable to the following types of entities:

• BATCH

24.5.2 Managing fabrics

You can manage fabrics using the following commands:

configure fabric NAME [OPTIONS] The command configures the fabric. You can use the options in
this command as follows:

--credentials-file <ceredentials-file> path to file with credentials for public clouds.

--ssh-private-key <ssh-private-key> fabric manager’s SSH private key. The SSH private key is
optional. If not specified, the tool will create an SSH key dedicated to the fabric.

create fabric NAME The command creates the fabric.

delete fabric NAME The command deletes the fabric.

leave fabric The command leaves the current fabric.

set fabric NAME The command sets the fabric as current.

show fabric [OPTIONS] The command shows the current fabric components if the fabric is set. If not
set, the command outputs the list of all available fabrics. Also, you can always use this option:

--list-all to show the list of all available fabrics.

export fabric FILE The command exports all fabric components and their specifications into a file.

An example of the fabric specification file is shown below.

]$ cat fabric-spec.yml

apiVersion: fabric.bayware.io/v2
kind: Fabric
metadata:

description: 'Fabric ohio5784'
name: 'ohio5784'

spec:
companyName: ohioinc
credentialsFile: /home/ubuntu/credentials/credentials.yml
sshKeys:

privateKey: {}

24.5.3 Managing VPCs

You can manage VPCs using the following commands:

create vpc aws|azr|gcp REGION [OPTIONS] The command creates a VPC in the current fabric. The
VPC is created in the specified region of the selected public cloud provider. You can use the options
in this command as follows:

--file <filename> file with VPC configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

276 Chapter 24. BWCTL CLI Manual

Bayware Documentation

Note: You can see a list of regions by running the command bwctl show vpc --regions.

delete vpc NAME The command deletes the vpc in the current fabric. You can use the options in this
command as follows:

--dry-run

running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

show vpc [OPTIONS] The command shows the list of all VPCs in the current fabric if run without any
option. You can use the options in this command as follows:

--name <vpc-name> shows information on a given VPC.

--cloud <aws|azr|gcp|all> lists all VPCs in a given cloud.

--full instead of list, provides full information on vpc.

--zones outputs the list of zones in which VPC can be created.

An example of the VPC specification file is shown below.

]$ cat vpc-spec.yml

apiVersion: fabric.bayware.io/v2
kind: Vpc
metadata:

description: 'Azure VPC'
fabric: 'ohio5784'
name: 'azr1-vpc-ohio5784'

spec:
cloud: 'azr'
properties:

region: 'southcentralus'

24.5.4 Managing orchestrators

You can manage orchestrators using the following commands:

configure orchestrator NAME [OPTIONS] The command configures the orchestrator node in the cur-
rent fabric. You can use the options in this command as follows:

--all configures all orchestrator nodes.

--file <filename> file with orchestrator configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

create orchestrator controller|telemetry|events VPC [OPTIONS] The command creates the vpc in
the current fabric. You can use the options in this command as follows:

--file <filename> file with vpc configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

24.5. Using commands 277

Bayware Documentation

delete orchestrator NAME The command deletes the orchestrator node in the current fabric. You can
use the options in this command as follows:

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

show orchestrator [OPTIONS] The command shows the list of all orchestrators in the current fabric if
run without any option. You can use the options in this command as follows:

--name <node-name> shows information on a given orchestrator node.

--cloud <aws|azr|gcp|all> lists all VPCs in a given cloud.

--full instead of list, provides full information on orchestrator nodes.

update orchestrator NAME The command updates the orchestrator node in the current fabric. You
can use the options in this command as follows:

--all updates all orchestrator nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

An example of the orchestrator specification file is shown below.

]$ cat orchestrator-spec.yml

apiVersion: fabric.bayware.io/v2
kind: Orchestrator
metadata:

description: 'Policy controller'
fabric: 'ohio5784'
name: 'aws1-c01-ohio5784'

spec:
role: 'manager'
type: 'controller'
properties:

vpc: 'aws1-vpc-ohio5784'
state: 'configured'

24.5.5 Managing processors

You can manage processors using the following commands:

configure processor NAME [OPTIONS] The command configures the processor node in the current
fabric. You can use the options in this command as follows:

--all configures all processor nodes.

--orchestrator <FQDN> orchestrator FQDN.

--location <name> location name.

--file <filename> file with processor configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

create processor VPC [OPTIONS] The command creates the processor node in the current fabric. You
can use the options in this command as follows:

278 Chapter 24. BWCTL CLI Manual

Bayware Documentation

--file <filename> file with processor configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

delete processor NAME The command deletes the processor node in the current fabric. You can use the
options in this command as follows:

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

show processor [OPTIONS] The command shows the list of all processors in the current fabric if run
without any option. You can use the options in this command as follows:

--name <node-name> shows information on a given processor node.

--cloud <aws|azr|gcp|all> lists all processors in a given cloud.

--full instead of list, provides full information on processor nodes.

start processor [NAME] [OPTIONS] The command starts the given processor node in the current
fabric if the node’s name is specified. You can use the options in this command as follows:

--all starts all processor nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

stops processor [NAME] [OPTIONS] The command stops the given processor node in the current fab-
ric if the node’s name is specified. You can use the options in this command as follows:

--all stops all processor nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

update processor [NAME] [OPTIONS] The command updates the given processor node in the current
fabric if the node’s name is specified. You can use the options in this command as follows:

--all updates all processor nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

An example of the processor specification file is shown below.

]$ cat processor-spec.yml

apiVersion: fabric.bayware.io/v2
kind: Processor
metadata:

description: 'Azure processor'
fabric: 'ohio5784'
name: 'azr1-p01-ohio5784'

spec:
config:

orchestrator: 'controller-ohio5784.ohioinc.poc.bayware.io'
properties:

vpc: 'azr1-vpc-ohio5784'
state: 'started'

24.5. Using commands 279

Bayware Documentation

24.5.6 Managing workloads

You can manage workloads using the following commands:

configure workload NAME [OPTIONS] The command configures the workload node in the current
fabric. You can use the options in this command as follows:

--all configures all workload nodes.

--orchestrator <FQDN> orchestrator FQDN.

--location <name> location name.

--file <filename> file with workload configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

create workload VPC [OPTIONS] The command creates the workload node in the current fabric. You
can use the options in this command as follows:

--file <filename> file with processor configuration.

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

delete workload NAME The command deletes the workload node in the current fabric. You can use the
options in this command as follows:

--dry-run running the command with this option doesn’t make any changes but shows which changes will
be made if you run the command without the --dry-run option.

show workload [OPTIONS] The command shows the list of all workloads in the current fabric if run
without any option. You can use the options in this command as follows:

--name <node-name> shows information on a given workload node.

--cloud <aws|azr|gcp|all> lists all workloads in a given cloud.

--full instead of list, provides full information on workload nodes.

start workload [NAME] [OPTIONS] The command starts the given workload node in the current fabric
if the node’s name is specified. You can use the options in this command as follows:

--all starts all workload nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

stops workload [NAME] [OPTIONS] The command stops the given workload node in the current fabric
if the node’s name is specified. You can use the options in this command as follows:

--all stops all workload nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

update workload [NAME] [OPTIONS] The command updates the given workload node in the current
fabric if the node’s name is specified. You can use the options in this command as follows:

--all updates all workload nodes.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

An example of the workload specification file is shown below.

280 Chapter 24. BWCTL CLI Manual

Bayware Documentation

]$ cat workload-spec.yml

apiVersion: fabric.bayware.io/v2
kind: Workload
metadata:

description: 'Azure workload'
fabric: 'ohio5784'
name: 'azr1-w01-ohio5784'

spec:
config:

orchestrator: 'controller-ohio5784.ohioinc.poc.bayware.io'
properties:

vpc: 'azr1-vpc-ohio5784'
state: 'started'

24.5.7 Working with batches

You can manage batch file execution using the following commands:

create batch FILE [OPTIONS] The command creates the batch. The specification file is mandatory for
this command.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

delete batch FILE [OPTIONS] The command deletes the batch. The specification file is mandatory for
this command.

--dry-run running the command with this option doesn’t make any changes but shows which changes
will be made if you run the command without the --dry-run option.

An example of the batch specification file is shown below.

apiVersion: fabric.bayware.io/v2
kind: Batch
metadata:

name: backend-infra-and-config-template
description: 'Creates VPC, processor, and three workloads'

spec:
- kind: Workload

metadata:
description: 'optional description'
fabric: 'texas2270'
name: 'azr1-w01-texas2270'

spec:
config:

domain: 'cloud-net'
orchestrator: 'controller-texas2270.texasinc.poc.bayware.io'
password: 'messycard58'
username: 'wkld-azr'

properties:
vpc: 'azr1-vpc-texas2270'

state: 'started'
(continues on next page)

24.5. Using commands 281

Bayware Documentation

(continued from previous page)

- kind: Workload
metadata:

description: 'optional description'
fabric: 'texas2270'
name: 'azr1-w02-texas2270'

spec:
config:

orchestrator: 'controller-texas2270.texasinc.poc.bayware.io'
properties:
vpc: 'azr1-vpc-texas2270'

state: 'started'
- kind: Processor

metadata:
description: 'optional description'
fabric: 'texas2270'
name: 'azr1-p01-texas2270'

spec:
config:

orchestrator: 'controller-texas2270.texasinc.poc.bayware.io'
properties:
vpc: 'azr1-vpc-texas2270'

state: 'started'
- kind: Vpc

metadata:
description: 'optional description'
fabric: 'texas2270'
name: 'azr1-vpc-texas2270'

spec:
cloud: 'azr'
properties:
zone: 'southcentralus'

24.6 BWCTL cheat sheet

282 Chapter 24. BWCTL CLI Manual

Bayware Documentation

Fig. 24.3: BWCTL-CLI Cheat Sheet

24.6. BWCTL cheat sheet 283

Bayware Documentation

284 Chapter 24. BWCTL CLI Manual

CHAPTER 25

System Administration

This document describes the system administration functions necessary for configuring SIF policy with the
bwctl-api command-line tool or via a web interface. The steps below will guide you through the creation
of domains and administrators.

Note: Both the bwctl-api command-line tool and the web interface utilize the same orchestrator north-
bound interface (NBI).

25.1 Login to Orchestrator

25.1.1 Default Credentials

As part of orchestrator configuration process performed with the fabric manager, a FQDN of orchestrator
NBI and default administrator credentials were automatically generated.

Note: The FQDN of orchestrator NBI is always defined in the following manner: orchestrator-<fabric>.
<company>.<DNS hosted zone> wherein company and DNS hosted zone are from the fabric management
configuration and same for all fabrics.

The default administrator credentials are always as follows:

• Orchestrator URL - FQDN of orchestrator NBI

• Domain - default

• Username - admin

• Password - PASSWORD from the configuration step.

285

Bayware Documentation

25.1.2 Using Web Interface

Go to the orchestrator Login page using the FQDN of orchestrator northbound interface–in this example
orchestrator- myfab5.myorg4.poc.bayware.io.

Fig. 25.1: Orchestrator Login Page

Authenticate into the orchestrator and you will be redirected to the Resource Graph page.

Note: Use the default administrator credentials when login to the orchestrator for the first time.

25.1.3 Using BWCTL-API

You can install the BWCTL-API CLI tool on your workstation and work with the orchestrator using a
command-line interface.

Note: The BWCTL-API CLI tool comes preinstalled on all fabric manager nodes.

286 Chapter 25. System Administration

Bayware Documentation

Fig. 25.2: Example of Resource Graph Page

25.1. Login to Orchestrator 287

Bayware Documentation

Configure the tool with the administrator credentials.

Note: Again, Use the default administrator credentials when login to the orchestrator for the first time.

To set up the credentials using the BWCTL-API default configuration file, run this command:

]$ nano .bwctl-api/config.yml

After editing, your credential file will look similar to:

hostname: 'orchestrator-myfab5.myorg4.poc.bayware.io'
domain: 'default'
login: 'admin'
password: 'aEPbj6AMa2Yz'

To check whether you are able to authenticate into the orchestrator, run this command:

]$ bwctl-api show domain

You should see the default domain specification:

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: List of Domains
spec:
- kind: Domain

metadata:
domain: default
domain_description: System default administrative domain

spec:
auth_method:
- LocalAuth
- LDAP
domain_type: Administrative

25.2 Create Administrative Domain

25.2.1 Default Domain

After the orchestrator installation, only the default domain exists for administrative purposes.

Note: You can keep using this domain for resource and application policy management only if you don’t
need to reduce administrative scope.

25.2.2 Using Web Interface

To add a new domain, in the Admin > Domains section, click Add Domain.

288 Chapter 25. System Administration

Bayware Documentation

Fig. 25.3: New Domain Page

25.2. Create Administrative Domain 289

Bayware Documentation

Fill out the fields on the New Domain page:

domain name desired domain name;

type Administrative and Application – an administrative domain is used to manage application and/or
resource policy, while an application domain is used to manage application policy only;

description add description for domain;

authorization method LocalAuth in local orchestrator database or LDAPAuth at directory server.

Submit the new domain configuration and you should see the domain appears in the list on the Admin >
Domains page.

Fig. 25.4: List of Domains

25.2.3 Using BWCTL-API

To create a new domain from bwctl-api, run this command with the desired domain name and type–in this
example resources and Administrative respectively–as the arguments:

290 Chapter 25. System Administration

Bayware Documentation

]$ bwctl-api create domain resources -type Administrative

You should see output similar to this:

[2019-10-15 18:28:49.711] Domain 'resources' created successfully

Now, check again the list of existing domains by running this command:

]$ bwctl-api show domain

You should see the new domain specification among others:

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: List of Domains
spec:
- kind: Domain

metadata:
domain: default
domain_description: System default administrative domain

spec:
auth_method:
- LocalAuth
- LDAP
domain_type: Administrative

- kind: Domain
metadata:

domain: resources
domain_description: resources

spec:
auth_method:
- LocalAuth
domain_type: Administrative

Note: When options are not specified, the bwctl-api tool applies default configuration settings. See
BWCTL-API CLI Manual for specific details.

25.3 Create Administrator

25.3.1 Default Administrator

The new orchestrator is always set up with a default administrator admin placed in the administrative
domain default.

25.3. Create Administrator 291

Bayware Documentation

25.3.2 Using Web Interface

If needed, to create a named administrator account click Add Admin on the All Domains > Administrators
page.

Fig. 25.5: New Administrator Page

Fill out the fields on the New Administrator page:

User Name desired administrator name;

User Description administrator description;

User status choose between Enabled and Disabled;

Domain select domain where administrator will operate;

Auth Method LocalAuth in local database or LDAPAuth at directory server (available options are inherited
from domain authentication type);

Roles administrator permissions– systemAdmin or domainAdmin;

Password, Repeat password administrator password.

292 Chapter 25. System Administration

Bayware Documentation

Submit the new administrator configuration and you should see the new administrator appears in the list
on the All Domains > Administrators page.

Fig. 25.6: List of Administrators

25.3.3 Using BWCTL-API

To create a new administrator from bwctl-api, run this command with the desired administrator name in
given domain and role–in this example admin@resources and systemAdmin respectively–as the arguments:

]$ bwctl-api create administrator admin@resources --roles systemAdmin

You will be prompted to enter and repeat password:

Password:
Repeat for confirmation:
[2019-10-15 20:57:55.891] Administrator 'admin' created successfully

Now, check the list of existing administrators by running this command:

25.3. Create Administrator 293

Bayware Documentation

]$ bwctl-api show domain

You should see output similar to:

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: List of Administrators
spec:
- kind: Administrator

metadata:
user_domain: resources
username: admin

spec:
is_active: true
roles:
- systemAdmin
user_auth_method: LocalAuth

- kind: Administrator
metadata:

user_domain: default
username: admin

spec:
is_active: true
roles:
- systemAdmin
user_auth_method: LocalAuth

Note: When options are not specified, the bwctl-api tool applies default configuration settings. See
BWCTL-API CLI Manual for specific details.

294 Chapter 25. System Administration

CHAPTER 26

Resource Connectivity Management

This document describes the management functions necessary for configuring resource connectivity policy
with the BWCTL-API command-line tool or via a web interface.

To set up a connectivity policy for the processor and workload nodes, all you need to do is put nodes in
security zones and connect zones when needed.

The steps below will guide you through the creation of zones and links between them.

26.1 Declare Location

A group of workloads is assigned to a security zone via a workload location. It allows the workloads to
automatically build links with the processors assigned to the same zone.

The fabric manager automatically assigns a workload to a location at the workload configuration step.

Note: By default, the fabric manager uses the prefix of the workload VPC name as its location name, for
example: vpc-name: azr2-vpc-myfab5 ==> location-name: azr2

After configuration, the workload registers with the orchestrator. A workload always provides its location to
the orchestrator during the registration step. The orchestrator automatically adds a newly received location
name to its resource database.

To set up a zone policy before your workloads are registered, you need to declare a location.

26.1.1 Using Web Interface

To declare a location, click Add Location in the Admin > Locations section.

Fill out the fields on the New Location page:

location name desired location name;

295

Bayware Documentation

Fig. 26.1: Add New Location

296 Chapter 26. Resource Connectivity Management

Bayware Documentation

description add description for location;

zone select zone for location–leave None to make decision later.

Submit the new location configuration. You should see the location appear in the list on the Admin >
Locations page.

Fig. 26.2: List of Locations

26.1.2 Using BWCTL-API

To declare a location, run this command with the desired location name–in this example azr3 –as an
argument:

]$ bwctl-api create location azr3

You should see output similar to this:

[2019-10-17 22:48:34.362] Location 'azr3' created successfully

26.1. Declare Location 297

Bayware Documentation

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

To check the location configuration, run this command with the location name–in this example azr3 –as an
argument:

]$ bwctl-api show location azr3

You should see a new location specification:

apiVersion: policy.bayware.io/v1
kind: Location
metadata:

description: azr3
name: azr3

spec: {}

26.2 Create Zone

Once you have deployed resources–in this example a VPC with one processor and three workload nodes–open
the resource graph page and verify that the workload nodes are not connected to the processor node.

You need to set up a resource policy that permits the workload nodes to connect to the processor.

Note: To set up a resource policy for workloads, you need to create a zone and assign the location with
workload nodes and at least one processor to this zone.

26.2.1 Set Up Zone

Using Web Interface

To add a new zone, click Add Zone in the Admin > Zones section.

Fill out the fields on the New Zone page:

zone name desired zone name;

description add description for zone.

Submit the new zone configuration. You should see the zone appear in the list on the Admin > Zones page.

Using BWCTL-API

To create a new zone, run this command with a desired zone name (any string without spaces)–in this
example azure-eastus –as an argument:

]$ bwctl-api create zone azure-eastus

You should see output similar to this:

298 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.3: Resource Graph before Policy Setup

26.2. Create Zone 299

Bayware Documentation

Fig. 26.4: Add New Zone

300 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.5: List of Zones

26.2. Create Zone 301

Bayware Documentation

[2019-10-17 22:58:33.609] Zone 'azure-eastus' created successfully

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

Check a new zone configuration by running this command with the zone name–in this example azure-eastus
–as an argument:

]$ bwctl-api show zone azure-eastus

You should see a new zone specification:

apiVersion: policy.bayware.io/v1
kind: Zone
metadata:

description: azure-eastus
name: azure-eastus

spec:
locations: []
processors: []

26.2.2 Add Processor to Zone

Using Web Interface

To add a processor to the zone, click on the zone name in the Admin > Zones section–in this example
azure-eastus. On the zone page, click Add Processor.

Fill out the fields on the New Processor page:

processor name name of the processor that will secure workloads in the zone;

tunnel IPs type of IP addresses– Private or Public –the processor will use to communicate with workloads
in the zone;

IPse� to encrypt communication– yes or no –between the processor and workloads in the zone;

priority processor usage priority– High or Low –for workloads in the zone.

Submit the configuration. You should see the processor appear in the list of zone processors on the Admin
> Zones > azure-eastus page.

Using BWCTL-API

To assign a processor to the zone, run this command with the processor name–in this example
azr2-p01-myfab5 –as an argument:

]$ bwctl-api update zone azure-eastus -a azr2-p01-myfab5

You should see output similar to this:

302 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.6: Add Processor to Zone

26.2. Create Zone 303

Bayware Documentation

Fig. 26.7: List of Zone Processors

304 Chapter 26. Resource Connectivity Management

Bayware Documentation

[2019-10-17 23:05:25.307] Processor 'azr2-p01-myfab5' assigned to zone 'azure-eastus'
[2019-10-17 23:05:25.307] Zone 'azure-eastus' updated successfully

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

Check a new zone configuration by running this command with the zone name–in this example azure-eastus
–as an argument:

]$ bwctl-api show zone azure-eastus

You should see that the zone specification now includes the processor:

apiVersion: policy.bayware.io/v1
kind: Zone
metadata:

description: azure-eastus
name: azure-eastus

spec:
locations: []
processors:
- ipsec_enable: true

name: azr2-p01-myfab5
tunnel_ip_type: private

26.2.3 Add Workload to Zone

Using Web Interface

You will use a location to add a workload to a zone.

To add a location with your workload nodes to the zone, click on the location name in the Admin > Locations
section–in this example azr2. On the location page, click on the dropdown menu titled Zone.

Select the zone–in this example azure-eastus –and submit the configuration.

To verify, go to the Admin > Zones > azure-eastus page and find the location name in the list of zone
locations.

Using BWCTL-API

To assign a location with your workload nodes to the zone, run this command with the location name–in
this example azr2 –as an argument:

]$ bwctl-api update location azr2 -z azure-eastus

You should see output similar to this:

[2019-10-17 23:32:54.982] Location 'azr2' updated successfully

Check the zone configuration by running this command:

26.2. Create Zone 305

Bayware Documentation

Fig. 26.8: Add Location to Zone

306 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.9: List of Zone Locations

26.2. Create Zone 307

Bayware Documentation

]$ bwctl-api show zone azure-eastus

You should see that the zone specification now includes the location:

apiVersion: policy.bayware.io/v1
kind: Zone
metadata:

description: azure-eastus
name: azure-eastus

spec:
locations:
- name: azr2
processors:
- ipsec_enable: true

name: azr2-p01-myfab5
tunnel_ip_type: private

At this point, you can open the resource graph page and see that the workloads now are connected to the
processor.

26.3 Connect Zones

26.3.1 Declare Processor

To connect two zones, you need to set up a link between the processors serving these zones.

You can describe a link between existing processors or processors you are planning to spin up, but haven’t
yet created. If a processor doesn’t exist yet, you need to declare it before configuring the link.

Using Web Interface

To declare a processor, click Add Resource in the Admin > Resources section.

Fill out the fields on the New Resource page:

node name desired name of node;

node type type of node– processor or workload;

location expected node location.

Submit the configuration. You should see the processor appear on the Admin > Resources page with the
status Init.

Using BWCTL-API

To declare a processor, run this command with the expected node name and its location–in this example
gcp1-p01-myfab2 and azr3 respectively–as arguments:

]$ bwctl-api create resource azr3-p01-myfab5 -type processor -l azr3

You should see output similar to this:

308 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.10: Resource Graph after Zone Configured

26.3. Connect Zones 309

Bayware Documentation

Fig. 26.11: Add New Resource

310 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.12: List of Resources

26.3. Connect Zones 311

Bayware Documentation

[2019-10-18 17:03:00.261] Resource 'gcp1-p01-myfab2' created successfully

Check the resource configuration by running this command:

]$ bwctl-api show resource azr3-p01-myfab5

You should see that the zone specification now includes the location:

apiVersion: policy.bayware.io/v1
kind: Resource
metadata:

name: azr3-p01-myfab5
spec:

location: azr3
type: processor
status: Init

26.3.2 Specify Link

Using Web Interface

To specify a link between processors, click Add Link in the Admin > Resources > azr2-p01-myfab5 sec-
tion.

Fill out the fields on the New Link page:

link name will be auto generated after you click Submit;

link description add description to link;

link status administrative status of link– Enabled or Disabled;

remote node name name of remote processor;

tunnel IPs type of IP addresses– Private or Public –the processor will use to communicate with another
processor;

IPse� to encrypt communication– yes or no –between the processors;

cost link cost from 1 to 10.

Submit the configuration. You should see the link appear on the Admin > Resources > azr2-p01-myfab5
page.

Using BWCTL-API

To specify a link between processors, run this command with the source and target processor node names–in
this example azr2-p01-myfab5 and azr3-p01-myfab5 –as arguments:

]$ bwctl-api create link -s azr2-p01-myfab5 -t azr3-p01-myfab5

You should see output similar to this:

[2019-09-26 19:30:52.559] Link 'azr2-p01-myfab5_azr3-p01-myfab5' created successfully

312 Chapter 26. Resource Connectivity Management

Bayware Documentation

Fig. 26.13: Add New Link

26.3. Connect Zones 313

Bayware Documentation

Fig. 26.14: List of Links

314 Chapter 26. Resource Connectivity Management

Bayware Documentation

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

Note: The auto-generated link name is always built as follows: node-name1_node-name2, wherein
node names in the string are placed in alphabetical order.

Check the link configuration by running this command with the link auto-generated name–in this example
azr2-p01-myfab5_azr3-p01-myfab5 –as an argument:

]$ bwctl-api show link azr2-p01-myfab5_azr3-p01-myfab5

You should see a new link specification:

apiVersion: policy.bayware.io/v1
kind: Link
metadata:

name: azr2-p01-myfab5_azr3-p01-myfab5
spec:

admin_status: true
cost: 1
ipsec_enable: true
source_node: azr2-p01-myfab5
status: active
target_node: azr3-p01-myfab5
tunnel_ip_type: public

26.4 Working with Batches

To set up a resource policy, you can also use batch files.

Export the resource policy from an existing zone and replace the existing entity names with the names
allocated for the new zone.

Export the existing zone policy by running this command with the zone and output file names–in this
example azr2 and new-resource-policy respectively–as arguments:

]$ bwctl-api show zone azure-eastus > new-resource-policy.yml

Open the file in your favorite editor, e.g. nano:

]$ nano new-resource-policy.yml

Add location, resource, and link specifications to the new zone specification.

Note: While editing, you need to provide new zone, location, and processor names.

After editing, your file should have content similar to:

26.4. Working with Batches 315

Bayware Documentation

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: New Resource Policy
spec:
- kind: Location

metadata:
description: azr3
name: azr3

spec:
count_resources: 0

- kind: Resource
metadata:

name: azr3-p01-myfab5
spec:

location: azr3
type: processor
status: Init

- kind: Zone
metadata:

description: azure-westus
name: azure-westus

spec:
locations:
- name: azr3
processors:
- ipsec_enable: true

name: azr3-p01-myfab5
tunnel_ip_type: private

- kind: Link
metadata:

name: azr2-p01-myfab5_azr3-p01-myfab5
spec:

admin_status: true
cost: 1
ipsec_enable: true
source_node: azr2-p01-myfab5
status: active
target_node: azr3-p01-myfab5
tunnel_ip_type: public

Now, run the policy deployment using the batch file name–in this example new-resource-policy.yml –as
an argument:

]$ bwctl-api create batch new-resource-policy.yml

You should see output similar to:

[2019-10-18 19:18:13.212] Location 'azr3' created successfully
[2019-10-18 19:18:13.405] Resource 'azr3-p01-myfab5' created successfully
[2019-10-18 19:18:13.745] Zone 'azure-westus' created successfully
[2019-10-18 19:18:13.745] Location 'azr3' updated in zone 'azure-westus'

(continues on next page)

316 Chapter 26. Resource Connectivity Management

Bayware Documentation

(continued from previous page)

[2019-10-18 19:18:13.745] Processor 'azr3-p01-myfab5' assigned to zone 'azure-westus'
[2019-10-18 19:18:14.076] Link from 'azr2-p01-myfab5' to 'azr3-p01-myfab5' created␣
↪→successfully

Note: At this point, you can deploy resources in the new zone. Each workload will automatically connect
to a zone processor. Also, the new processor will automatically build a link with the existing processor.

26.4. Working with Batches 317

Bayware Documentation

318 Chapter 26. Resource Connectivity Management

CHAPTER 27

Service Connectivity Management

This document describes the management functions necessary for configuring service connectivity policy
with the BWCTL-API command-line tool or via a web interface.

To set up an application policy, all you need to do is upload a communication rule template and describe an
application service graph.

The steps below will guide you through the uploading of a template and the creation of a service graph.

27.1 Upload Template

27.1.1 Using Web-interface

To create a new template, �lick Add Template in the Admin > Templates section.

Fill out the fields on the New Template page:

template name desired template name;

description add description for template;

status select template administrative status– Enabled or Disabled;

orientation select orientation– Directed or Undirected –to describe the relationships between two tem-
plate roles, Directed will be represented as an arrow on a service graph;

multicast is multicast– False or True.

Submit the new template. You should see the template appear in the list on the Admin > Templates page.

Note: At this point, you would need to configure two template roles. Click on the template name and set
up each role. See the SDK documentation for specific details.

319

Bayware Documentation

Fig. 27.1: Add New Template

320 Chapter 27. Service Connectivity Management

Bayware Documentation

Fig. 27.2: List of Templates

27.1. Upload Template 321

Bayware Documentation

27.1.2 Using BWCTL-API

To upload a default template that comes with BWCTL-API, run this command:

]$ bwctl-api create template default

You should see this output:

[2019-10-18 22:01:02.939] Template 'default' created successfully

Note: To find more templates available for upload, go to the SDK section of the orchestrator.

Check the template specification by running this command with the template name–in this example default
–as an argument:

]$ bwctl-api show template default

You should see the default template specification:

apiVersion: policy.bayware.io/v1
kind: Template
metadata:

description: Exchange data between originators and responders from any VPCs
name: default

spec:
domains: []
enabled: true
is_multicast: false
orientation: 1
roles:
- code_binary:␣

↪→409C470100E7846300E000EF0A700793C11C004000EF409C470500E7846300C000EF579DC11C004000EF409C00178713C0989002
code_map:

originator: 0
description: null
id: 3
ingress_rules_default:
- {}
name: originator
path_binary: '000000000001'
path_params_default: {}
program_data_default:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval_default: 5
role_index: 0

- code_binary:␣
↪→409C470100E7846300E000EF0A700793C11C004000EF409C470500E7846300C000EF579DC11C004000EF409C00178713C0989002

code_map:
(continues on next page)

322 Chapter 27. Service Connectivity Management

Bayware Documentation

(continued from previous page)

responder: 0
description: null
id: 4
ingress_rules_default:
- {}
name: responder
path_binary: '000000000001'
path_params_default: {}
program_data_default:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval_default: 5
role_index: 1

27.2 Create Service Graph

27.2.1 Create Domain

Using Web-interface

To create a namespace for your application policy, �lick Add Domain in the Admin > Domains section.

Fill out the fields on the New Domain page:

domain name desired domain name;

domain description add description for domain;

type select domain type– Application or Administrative;

auth method select authentication method for domain administrators– LocalAuth or LDAP.

Submit the new domain configuration. You should see the domain appear in the list on the Admin > Domains
page.

Using BWCTL-API

To create a namespace for your application policy, run this command with the desired domain name (any
string without spaces)–in this example myapp –as an argument:

]$ bwctl-api create domain myapp

You should see output similar to this:

[2019-10-19 00:34:45.616] Domain 'myapp' created successfully

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

27.2. Create Service Graph 323

Bayware Documentation

Fig. 27.3: Add New Domain

324 Chapter 27. Service Connectivity Management

Bayware Documentation

Fig. 27.4: List of Domains

27.2. Create Service Graph 325

Bayware Documentation

To check the domain configuration, run this command with the domain name–in this example myapp –as an
argument:

]$ bwctl-api show domain myapp

You should see a new domain specification:

apiVersion: policy.bayware.io/v1
kind: Domain
metadata:

domain: myapp
domain_description: myapp

spec:
auth_method:
- LocalAuth
domain_type: Application

27.2.2 Specify Contract

Using Web-interface

To specify a security segment for your application, �lick Add Contract in the myApp > Contracts section.

Fill out the fields on the New Contract page:

contract name desired contract name;

contract description add description for contract;

contract status in which status contract to be created– Enabled or Disabled;

domain select domain for contract;

template select template for contract.

Submit the new contract configuration. You should see the contract appear in the list on the myApp >
Contracts page.

Using BWCTL-API

To specify a security segment for your application, run this command with a desired contract name (any
string without spaces) preceding the domain name–in this example frontend@myapp –as an argument:

]$ bwctl-api create contract frontend@myapp

You should see output similar to this:

[2019-10-19 00:36:51.590] Contract 'frontend@myapp' created successfully

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

To check the contract configuration, run this command with the contract@domain –in this example
frontend@myapp –as an argument:

326 Chapter 27. Service Connectivity Management

Bayware Documentation

Fig. 27.5: Add New Contract

27.2. Create Service Graph 327

Bayware Documentation

Fig. 27.6: List of Contracts

328 Chapter 27. Service Connectivity Management

Bayware Documentation

]$ bwctl-api show contract frontend@myapp

You should see a new contract specification:

apiVersion: policy.bayware.io/v1
kind: Contract
metadata:

description: frontend
domain: myapp
name: frontend

spec:
contract_roles:
- cfg_hash: 69141fa83039b5ee8d18adf364dd2835

description: null
id: 1
ingress_rules:
- {}
name: originator
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 0
service_rdn: originator.frontend.myapp
stat_enabled: false

- cfg_hash: ff5f3105716821fdbdfb2a6260d6d274
description: null
id: 2
ingress_rules:
- {}
name: responder
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 1
service_rdn: responder.frontend.myapp
stat_enabled: false

enabled: true
template: default

27.2.3 Name Service

27.2. Create Service Graph 329

Bayware Documentation

Using Web-interface

To specify a new application service, �lick Add Service in the myApp > Services section.

Fig. 27.7: Add New Service

Fill out the fields on the New Service page:

service name desired service name;

service description add description for service;

service status in which status service to be created– Enabled or Disabled;

domain select domain for service.

Submit the new service configuration. You should see the service appear in the list on the myApp > Services
page.

Using BWCTL-API

To specify a new application service, run this command with a desired service name (any string without
spaces) preceding the domain name–in this example http-proxy@myapp –as an argument:

330 Chapter 27. Service Connectivity Management

Bayware Documentation

Fig. 27.8: List of Services

27.2. Create Service Graph 331

Bayware Documentation

]$ bwctl-api create service http-proxy@myapp

You should see this output:

[2019-10-19 00:37:19.873] Service 'http-proxy@myapp' created successfully

Note: When options are not specified on the command line, BWCTL-API applies default configuration
settings. See BWCTL-API CLI Manual for specific details.

To check the service configuration, run this command with the service@domain–in this example
http-proxy@myapp –as an argument:

]$ bwctl-api show service http-proxy@myapp

You should see a new service specification:

apiVersion: policy.bayware.io/v1
kind: Service
metadata:

description: http-proxy
domain: myapp
name: http-proxy

spec:
contract_roles: []
enabled: true

27.2.4 Authorize Service

Using Web-interface

To authorize an application service to access the security segment, �lick on the service name in the myApp
> Services section–in this example http-proxy. Now, click Add Role on the myApp > Services >
http-proxy page.

Fill out the fields in the Add Contract Role pop-up window:

contract select contract for an application service;

contract role select contract role for an application service.

Submit the new role configuration. You should see the role appear in the list of Roles on the myApp >
Services > http-proxy page.

Using BWCTL-API

To authorize an application service to access the security segment, you have to assign the service a role in
the contract.

To check available roles, run this command with the contract name–in this example frontend@myapp –as an
argument:

332 Chapter 27. Service Connectivity Management

mailto:service@domain

Bayware Documentation

Fig. 27.9: Add New Role

27.2. Create Service Graph 333

Bayware Documentation

Fig. 27.10: List of Roles

334 Chapter 27. Service Connectivity Management

Bayware Documentation

]$ bwctl-api show contract frontend@myapp

You should see output similar to this:

apiVersion: policy.bayware.io/v1
kind: Contract
metadata:

description: frontend
domain: myapp
name: frontend

spec:
contract_roles:
- cfg_hash: c40f2ddc0843e983a4ea4088e2ea0f8e

description: null
id: 1
ingress_rules:
- {}
name: originator
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 0
service_rdn: originator.frontend.myapp
stat_enabled: false

- cfg_hash: 84dcec61d02bb315a50354e38b1e6a0a
description: null
id: 2
ingress_rules:
- {}
name: responder
path_params: {}
port_mirror_enabled: false
program_data:

params:
- name: hopsCount

value: 0
ppl: 0

propagation_interval: 5
role_index: 1
service_rdn: responder.frontend.myapp
stat_enabled: false

enabled: true
template: default

Note: The contract specification always includes two roles. A unique role identifier is built using this
notation – <role_name>:<contract_name>.

27.2. Create Service Graph 335

Bayware Documentation

To assign a contract role to the service, run this command with the service name and the contract role–in
this example originator:frontend –as an argument:

]$ bwctl-api update service http-proxy@myapp -a originator:frontend

You should see output similar to this:

[2019-10-19 00:38:36.246] Service 'http-proxy@myapp' updated successfully

27.3 Working with Batches

To set up an application policy, you can also use batch files.

Create a new application policy file in your favorite editor, e.g. nano:

]$ nano new-app-policy.yml

Add template, domain, contract and service specifications to the file.

After editing, your file should have content similar to:

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: New App Policy
spec:
- kind: Template

metadata:
name: default

spec:
is_multicast: false
orientation: directed
roles:
- name: originator

code_binary:␣
↪→409C470100E7846300E000EF0A700793C11C004000EF409C470500E7846300C000EF579DC11C004000EF409C00178713C0989002

propagation_interval_default: 5
program_data_default:

ppl: 0
params:
- name: hopsCount

value: 0
code_map:

originator: 0
path_binary: 000000000001

- name: responder
code_binary:␣

↪→409C470100E7846300E000EF0A700793C11C004000EF409C470500E7846300C000EF579DC11C004000EF409C00178713C0989002
propagation_interval_default: 5
program_data_default:

ppl: 0
params:

(continues on next page)

336 Chapter 27. Service Connectivity Management

Bayware Documentation

(continued from previous page)

- name: hopsCount
value: 0

code_map:
responder: 0

path_binary: 000000000001
- kind: Domain

metadata:
domain: myapp

spec:
auth_method:
- LocalAuth
domain_type: Application

- kind: Contract
metadata:

domain: myapp
name: frontend

spec:
template: default
contract_roles:
- template_role: originator
- template_role: responder

- kind: Service
metadata:

name: http-proxy
domain: myapp

spec:
contract_roles:
- contract: frontend

contract_role: originator

Now, run the policy deployment using the batch file name–in this example new-app-policy.yml –as an
argument:

]$ bwctl-api create batch new-app-policy.yml

You should see output similar to:

[2019-10-19 23:36:15.317] Template 'default' created successfully
[2019-10-19 23:36:15.376] Domain 'myapp' created successfully
[2019-10-19 23:36:15.840] Contract 'frontend@myapp' created successfully
[2019-10-19 23:36:16.201] Service 'http-proxy@myapp' created successfully

To verify that your application policy is now in place, go to orchestrator, select your application domain–in
this example myapp –and click Service Graph.

Note: At this point, you can start deploying application services in the fabric. See the next section for
service authorization and deployment details.

27.3. Working with Batches 337

Bayware Documentation

Fig. 27.11: Application Service Graph

338 Chapter 27. Service Connectivity Management

CHAPTER 28

Application Deployment

This document describes the management functions necessary for deploying of application services with the
BWCTL-API command-line tool or via a web interface.

To deploy application services, all you need to do is generate one or multiple tokens for each application
service and place these tokens on workload nodes. The token will automatically enable secure communication
for the application service hosted by the node, in strict accordance with the service roles (see the Create
Service Graph > Authorize Service section for details).

The steps below will guide you through the token generation and deployment process.

28.1 Generate Token

An application service requires at least one token to communicate with other services. You can generate a
number of tokens to provide each service instance with its own token.

28.1.1 Using Web Interface

To generate a new token for an application service, click Add Token on the service page in the myApp >
Services section–in this example http-proxy.

Fill out the fields in the Token pop-up window:

token expire period in days token validity duration.

Note: Starting with family version 1.4, the token scope can be restricted to a given workload or workload
location.

Submit the new token configuration. You should see the token identifier and value appear in the next pop-up
window.

339

Bayware Documentation

Fig. 28.1: Add New Token

340 Chapter 28. Application Deployment

Bayware Documentation

Fig. 28.2: Token ID and Value

28.1. Generate Token 341

Bayware Documentation

Warning: Token comprises two parts–token identity and token secret–separated by a colon. This is
the only time you can see the token secret. Be sure to copy the entire TOKEN as it appears on your
screen, it will be needed later.

After you copied your new token, close the pop-up window. You should see the token identifier and expiry
time appear in the Tokens list on the application service page–in this example http-proxy@myApp.

Fig. 28.3: List of Tokens

28.1.2 Using BWCTL-API

To generate a new authorization token for your application service, run this command using
service_name@contract_name –in this example http-proxy@myapp –as an argument:

]$ bwctl-api create service_token http-proxy@myapp

You should see output similar to this:

342 Chapter 28. Application Deployment

Bayware Documentation

apiVersion: policy.bayware.io/v1
kind: ServiceToken
metadata:

token_ident: 76686212-f14e-4919-aabc-bcd6b09e28dc:ee0760eb054ffd95e290e6ef2bbf7739
spec:

domain: myapp
expiry_time: 22 Oct 2020 19:40:49 GMT
service: http-proxy
status: Active

Warning: Again, the Token comprises two parts–token identity and token secret–separated by a colon.
This is the only time you can see the token secret. Be sure to copy the entire TOKEN as it appears on
your screen, it will be needed later.

28.2 Deploy Service

To deploy an application service on a workload node, you need to provide the node policy agent with a
service authorization token.

Note: To discover a remote service, your application service must use the remote service FQDN from the
contract.

The steps below will guide you how to pass a token to the policy agent and set up a remote service FQDN
for the application service.

28.2.1 SSH to Workload Node

To start deploying a service on a workload, first ssh to the workload from your fabric manager using the
workload name–in this example azr2-w01-myfab5:

]$ ssh azr2-w01-myfab5

Note: The fabric manager SSH service is set up automatically for easy and secure access to any node in
your service interconnection fabric.

When you are on the workload node, switch to root level access:

[ubuntu@azr2-w01-myfab5]$ sudo su -

28.2.2 Add Token

Next, edit the policy agent token file by running this command:

[ubuntu@azr2-w01-myfab5]# nano /opt/bayware/ib-agent/conf/tokens.dat

28.2. Deploy Service 343

Bayware Documentation

Add the token to the tokens.dat file and save the file, which in this example will contain after editing:

76686212-f14e-4919-aabc-bcd6b09e28dc:ee0760eb054ffd95e290e6ef2bbf7739

To apply the token, reload the policy agent by running this command:

[ubuntu@azr2-w01-myfab5]# systemctl reload ib-agent

At this point, you can visit the policy orchestrator and find a registered endpoint on the Service Graph
page of your application.

Fig. 28.4: Service Graph with Registered Service Endpoint

28.2.3 Install Service

Now, you can install your application service on the workload node. In this example, a package called
getaway-proxy installs by running this command:

[ubuntu@azr2-w01-myfab5]# apt-get install getaway-proxy

344 Chapter 28. Application Deployment

Bayware Documentation

The service automatically discovers all remote services sharing the same contract. To enable it, update the
application service configuration file with the remote service FQDN by running this command:

[ubuntu@azr2-w01-myfab5]# nano /opt/getaway-proxy/conf/app.conf

After editing, the service configuration file in this example contains:

WS_APP = 'http://responder.frontend.myapp.ib.loc:8080/'

Note: The remote service FQDN is automatically built using this notation:
<role>.<contract>.<domain>.<hosted_zone>, wherein the default hosted zone is ib.loc

Note: You can always change the FQDN parts: hosted_zone in the policy agent configuration and
role.contract.domain in contract settings.

To start the application service, run this command:

[ubuntu@azr2-w01-myfab5]# systemctl start getaway-proxy

Note: As soon as an instance of the remote service responder.frontend.myapp. is deployed in the fabric,
it will be automatically discovered, and getaway-proxy will be able to reach it.

28.3 Working with Batches

You can generate tokens in batches and use the batch command output in your application CI/CD pipeline
to deploy a number of new services or their instances or to rotate tokens.

Create a token request file on the fabric manager node–for example myapp-tokens.yml:

]$ nano myapp-tokens.yml

After editing, this example of the batch file contains:

apiVersion: policy.bayware.io/v1
kind: Batch
metadata:

name: batch file for generating 6 tokens
spec:
- kind: Token

metadata:
name: aws-proxy

spec:
service: http-proxy
domain: myapp

- kind: Token
metadata:

name: aws-svc
(continues on next page)

28.3. Working with Batches 345

Bayware Documentation

(continued from previous page)

spec:
service: getaway-svc
domain: myapp

- kind: Token
metadata:

name: gcp-news
spec:

service: news-gw
domain: myapp

- kind: Token
metadata:

name: gcp-places
spec:

service: places-gw
domain: myapp

- kind: Token
metadata:

name: gcp-weather
spec:

service: weather-gw
domain: myapp

- kind: Token
metadata:

name: azr-weather
spec:

service: weather-gw
domain: myapp

Notice that the batch requests multiple tokens for the five services. One of the services– weather-gw –runs
both in GCP and in Azure. So the request contains two tokens for each instance of weather-gw, totaling in
six tokens for the five services.

Note: By creating a unique token for each running service instance, you can control service authorization
independently in each cloud or VPC. This will come in handy later on when you need to rotate or revoke
service authorization in one cloud independently from others.

Now, execute the command to get the tokens from the orchestrator. Here you will redirect Linux stdout to
a file where the tokens will be saved.

]$ bwctl-api create batch myapp-tokens.yml > tokens.yml

Once it has completed, use cat to explore the file containing the service tokens returned by the orchestrator.

]$ cat tokens.yml

The orchestrator has returned a YAML sequence of six tokens, each associated with a particular service
within a given domain in a given cloud, as prescribed by the requesting YAML file.

- domain: myapp

expiry_time: 23 Oct 2020 22:38:04 GMT
(continues on next page)

346 Chapter 28. Application Deployment

Bayware Documentation

(continued from previous page)

name: aws-proxy
service: http-proxy
status: Active
token: 84d93958-5ce3-4a03-97f8-b2783d62a3ca:83f2fcf74684d9bd88c952c4854ba9bf

- domain: myapp
expiry_time: 23 Oct 2020 22:38:04 GMT
name: aws-svc
service: getaway-svc
status: Active
token: 4e29b3f0-7592-423f-bbcd-0a745af36cf7:e34122af6ab00c26e839796211b0f249

- domain: myapp
expiry_time: 23 Oct 2020 22:38:04 GMT
name: azr-news
service: news-gw
status: Active
token: d5a4d58a-fddc-4e49-b48c-233a8dbc26bc:bf55693b5edf55061bf8637e7d65c3d2

- domain: myapp
expiry_time: 23 Oct 2020 22:38:04 GMT
name: azr-places
service: places-gw
status: Active
token: 1ef1b997-144e-49a8-9985-4d04d06953e1:892864e7531c1cd0bcc8cf78232a0851

- domain: myapp
expiry_time: 23 Oct 2020 22:38:05 GMT
name: azr-weather
service: weather-gw
status: Active
token: 204e36f4-4cdb-4d7a-b69b-529723d446d6:74427571e07536e43c6e59a650538675

- domain: myapp
expiry_time: 23 Oct 2020 22:38:05 GMT
name: gcp-weather
service: weather-gw
status: Active
token: 720f45bf-b4d6-4664-b844-9f9a6fc681ac:90646deaeaf93223e1963c5445fb6c1a

Now, you can use this file in your application deployment pipeline to create service endpoints that get your
application services up and running and communicating with each other.

28.3. Working with Batches 347

Bayware Documentation

348 Chapter 28. Application Deployment

CHAPTER 29

BWCTL-API Command Line Interface

29.1 About BWCTL-API

BWCTL-API is a command line interface (CLI) tool that enables you to interact with the SIF Orchestrator
using commands in your command-line shell. The tool offers all the functionality provided by the Orches-
trator Graphical User Interface (GUI) as they both utilize the same Orchestrator’s RESTful Northbound
Interface (NBI).

In general, you can manage all policy entities in your service interconnection fabric using interchangeably
one of the three tools:

• Browser-based GUI,

• BWCTL-API CLI,

• RESTful NBI.

To use BWCTL-API tool, you can install it on your local Linux machine or access remotely the tool already
installed on your fabric manager node from any Linux, macOS, or Windows machine.

When the tool installed locally, use a common shell program, e.g. bash, to run BWCTL-API commands. To
run the commands remotely, you will need a terminal window with an SSH client:

• MacOS – Use Terminal application with built-in SSH client.

• Linux – Use your favorite terminal window with built-in SSH client.

• Windows 10 – If you haven’t already enabled an SSH client to use with PowerShell, PuTTY is an easy
alternative. PuTTY can act as both your terminal window and your SSH client.

BWCTL-API enables you to monitor policy entities and configure them. You can show, create,
update, enable, disable, and delete policy entities of the service interconnection fabric: domains,
administrators, contracts, templates, services, service-tokens, resources, zones, locations,
links, label-class-link, label-class-node. Also, the tool allows you to perform the same operation on
a batch of different policy entities.

349

Bayware Documentation

Fig. 29.1: BWCTL-API CLI for SIF policy management

350 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

29.2 Installing BWCTL-API

29.2.1 Ways to install

BWCTL-API tool comes already preinstalled on the fabric manager image available in AWS, Azure and
GCP clouds.

To install BWCTL-API on your own Linux machine, you have first to install the Bayware repository on the
machine and after that you can deploy the most recent version of the tool from the repository.

To add the repo, run the command (the command shown assumes you install the repo on a Debian machine):

]$ add-apt-repository 'deb https://s3-us-west-1.amazonaws.com/bayware-repo-devel/public/
↪→<specify_family_here>/ubuntu bionic main'

Note: BWCTL-API version must be from the same family as the other Bayware components in your
service interconnection fabric, so use the right family version when installing repo. If BWCTL-API version
is incompatible with the orchestrator, the tool will fail to establish a connection to orchestrator with an error
message specifying the required family. The family is specified in the form of platform version and might
look like 2.x or 3.x.

29.2.2 Installing BWCTL-API with apt on Debian/Ubuntu

Installing BWCTL-API on Debian/Ubuntu with apt provides isolation for the tool and its dependencies.
Also, it’s easy to upgrade when a new version of BWCTL-API tool is released.

First, switch to root level access to install all packages as such:

]$ sudo su -

To install BWCTL-API on the machine with the Bayware repository already installed, run the command:

]# apt-get install bwctl-api

Verify that BWCTL-API installed correctly by running the command:

]# bwctl-api --version
bwctl-api/1.3.0

29.2.3 Upgrading BWCTL-API to the latest version

You can upgrade BWCTL-API tool already installed on your machine to the latest version in the family by
running the command:

]# apt-get update
]# apt-get --only-upgrade install bwctl-api

29.2.4 Uninstalling BWCTL-API

If you need to uninstall BWCTL-API tool, run the command:

29.2. Installing BWCTL-API 351

Bayware Documentation

]# apt-get --purge remove bwctl-api

To exit from the current command prompt once you have completed installing, updating, or deleting
BWCTL_API, run the command:

]# exit

29.3 Configuring BWCTL-API

29.3.1 Configuring BWCTL-API after installation

Before you can run BWCTL-API, you must configure the tool with your orchestrator credentials. You store
configuration locally in the file called config.yaml located at:

~/.bwctl-api/config.yml

The file contains BWCTL-API credential details. To verify information in the configuration file, run the
commands:

]$ cd .bwctl-api
~/.bwctl-api$ more config.yml

hostname: orchestrator-fab1.example.com
Domain: EXAMPLEDOMAIN
login: EXAMPLELOGIN
password: EXAMPLEPASSWORD

The hostname is an FQDN of the fabric orchestrator which you access with BWCTL-API tool. The domain,
login, and password are your credentials at the orchestrator that determine what permissions you have for
managing the service interconnection fabric.

To run BWCTL-API commands you must have an account on the orchestrator with one of the two administra-
tive roles: systemAdmin or domainAdmin. See how to create an administrator account in the documentation
on orchestrator GUI.

Note: If you are configuring BWCTL-API on the fabric manager node, the credentials can be automat-
ically retrieved when the orchestrator’s controller node created. For more information, see BWCTL CLI
documentation.

29.3.2 Changing BWCTL-API configuration

If you need to change BWCTL-API configuration, update its configuration file stored locally at ~/.
bwctl-api/config.yml.

352 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

29.4 Getting started with BWCTL-API

29.4.1 Typing the first command

To give a command in BWCTL-API, you will type bwctl-api along with the required input and press the
<return> key.

To start using BWCTL-API tool, run the command:

]$ bwctl-api
Usage: bwctl-api [OPTIONS] COMMAND [ARGS]...

Bayware CLI (Policy management)

Options:
-v, --version Print version and exit.
-h, --help Show this message and exit.

Commands:
create Create policy entity
delete Delete policy entity
disable Disable policy entity
enable Enable policy entity
show Show policy entity
update Update policy entity

The output above is the same as from running the command:

$ bwctl-api --help

29.4.2 Command Structure

The command line is comprised of several components:

• bwctl-api,

• any options required by bwctl-api to execute the command,

• the command and, in most cases, subcommand,

• any arguments required by the command.

]$ bwctl-api --help
Usage: bwctl-api [OPTIONS] COMMAND [ARGS]...

29.4.3 Command Line Options

You can use the following command line options typing them on the command line immediately after
bwctl-api:

—version, -v A boolean switch that displays the current version of BWCTL-API tool.

—help, -h A boolean switch that displays the commands available for execution.

29.4. Getting started with BWCTL-API 353

Bayware Documentation

You can finish the command line with the --help option following either command or subcommand. The
output will always give you a hint about what else you need to type.

To see the help for the command, type the command only followed by --help and press <return>:

]$ bwctl-api show --help
Usage: bwctl-api show COMMAND [ARGS] [OPTIONS]

To show policy entity, enter <command>.

Options:
-h, --help Show this message and exit.

Commands:
administrator Show administrator
contract Show contract
domain Show domain
label-class-link Show label class link
label-class-node Show label class node
link Show links
location Show location
resource Show resource
service Show service
service-token Show service token
template Show template
zone Show zone

To see the help for the subcommand, type the command followed by the subcommand and the --help and
press <return>:

]$ bwctl-api show contract --help
Usage: bwctl-api show contract [OPTIONS] [CONTRACT@DOMAIN]

To show contract, enter <contract>@<domain>. To show all contracts within
a domain, use --domain <domain>.

Options:
-d, --domain Domain name.
-c, --config-file Path to configuration file.
-o, --output-format Output format: json or yaml.
-h, --help Show this message and exit.

Different commands support different options. Detail information on options find in the documentation
section Using commands.

29.4.4 Commands

With BWCTL-API you can manage all policy entities in your service interconnection fabric. Each command
includes the entity kind, as subcommand, and entity name, as argument. Some commands have the entity
specification file as a mandatory argument.

BWCTL-API supports the following commands:

create KIND NAME [OPTIONS]

354 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

The command creates one or multiple entities. The specification file is mandatory for this com-
mand.

delete KIND NAME [OPTIONS]

The command deletes one or multiple entities. The specification file is mandatory for the batch
kind.

disable KIND NAME

The command disables a single entity.

enable KIND NAME

The command enables a single entity.

show KIND NAME [OPTIONS]

The command shows one or multiple entities. For some entity types, the entity name is optional
in this command.

update KIND NAME [OPTIONS]

The command updates one or multiple entities. The specification file is mandatory for this
command.

29.4.5 Kinds

The diagram below depicts the policy entities and relationships between them.

Fig. 29.2: Policy entity

To see the entity types you can run any command without subcommand:

]$ bwctl-api show
Usage: bwctl-api show [OPTIONS] COMMAND [ARGS]...

Show policy entity commands

Options:
-h, --help Show this message and exit.

(continues on next page)

29.4. Getting started with BWCTL-API 355

Bayware Documentation

(continued from previous page)

Commands:
administrator Show administrator
contract Show contract
domain Show domain
label-class-link Show label class link
label-class-node Show label class node
link Show link
location Show location
resource Show resource
service Show service
service-token Show service token
template Show template
zone Show zone

BWCTL-API manages the following entity types:

administrator NAME@DOMAIN

The administrator entity is an account of the service interconnection fabric administrator.

contract NAME@DOMAIN

The contract entity represents a communication microsegment for application services.

domain NAME

The domain entity serves as an administrative boundary between different portions of the service
interconnection fabric.

link NAME

The link entity represents a connection between the service interconnection fabric resources:
workload node and processor node or between two processor nodes.

location NAME

The location entity is an abstraction of the site where the workload nodes are deployed, e.g.
cloud VPC or private datacenter.

resource NAME

The resource entity represents compute and network resources in the service interconnection
fabric: a workload node with policy agent or a processor node with policy engine.

service NAME@DOMAIN

A set of applications, an individual application or an application microservice is represented in
the policy model as the service entity.

service-token NAME@DOMAIN

The service-token entity is a service credential that defines the service access permissions to
the communication microsegments.

template NAME

The template entity represents a predefined set of communication rules that can be used in
contracts.

zone NAME

The zone entity is a service zone for processors, which bounds the processors to the workload
nodes in one or multiple locations.

356 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

29.4.6 Batch

With BWCTL-API CLI, you can use a single batch command to manage a set of entities of the same or
different types. Below is an example of the command.

]$ bwctl-api create batch getaway-app.yml

29.5 Using Commands

29.5.1 Supported commands for each entity type

There are three groups of entities, each of which has its own set of commands.

show, create, update, delete, enable, disable This set of commands is applicable to the following types
of entities:

- ADMINISTRATOR

- CONTRACT

- LINK

- SERVICE

- TEMPLATE

show, create, update, delete This set of commands is applicable to the following types of entities:

- DOMAIN

- LABEL-CLASS-LINK

- LABEL-CLASS-NODE

- LOCATION

- RESOURCE

- ZONE

show, create, delete This set of commands is applicable to the following types of entities:

- SERVICE-TOKEN

create, update, delete This set of commands is applicable to the following types of entities:

- BATCH

29.5.2 Managing Administrators

You can manage administrators using the following commands:

show administrator [OPTIONS] The command shows all administrators. You can use the options in
this command as follows: -d, --domain

domain name to show administrators within a domain only.

-o, --output-format

output format, either json or yaml.

-c, --config-file

29.5. Using Commands 357

Bayware Documentation

path to configuration file.

show administrator NAME@DOMAIN [OPTIONS] The command shows the administrator. You
can use the options in this command as follows: -d, --domain

domain name to show administrators within a domain only.

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create administrator NAME@DOMAIN [OPTIONS] The command creates the administrator. The
specification file is mandatory for this command. -f, --file

path to the specification file.

update administrator NAME@DOMAIN [OPTIONS] The command updates the administrator.
You can use the specification file or the options in this command as follows:

-f, --file

path to the specification file.

--description

description.

-auth

administrator authentication method, either local or ldap (if both are allowed in the do-
main).

-p, --password

administrator password.

--role

administrator role: systemAdmin or domainAdmin.

--enabled

administrator account status: true or false.

-c, --config-file

path to configuration file.

delete administrator NAME@DOMAIN -c, --config-file

path to configuration file.

enable administrator NAME@DOMAIN -c, --config-file

path to configuration file.

disable administrator NAME@DOMAIN -c, --config-file

path to configuration file.

An example of the administrator specification file is shown below.

358 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

]$ cat administrator-spec.yml

apiVersion: policy.bayware.io/v2
kind: Administrator
metadata:

username: admin
user_domain: default

spec:
is_active: true
roles:
- systemAdmin
user_auth_method: LDAP

29.5.3 Managing Contracts

You can manage contracts using the following commands:

show contract [OPTIONS] The command shows all contracts. You can use the options in this command
as follows: -d, --domain

domain name to show contracts within a domain only.

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show contract NAME@DOMAIN [OPTIONS] The command shows the contract. You can use the
options in this command as follows: -o, --output-format

output format for this command, either json or yaml.

-c, --config-file

path to configuration file.

-d, --domain

domain name to show contracts within a domain only.

create contract NAME@DOMAIN [OPTIONS] The command creates the contract. The specifica-
tion file is mandatory for this command. -f, --file

path to the specification file.

--description

description.

--template

template name.

update contract NAME@DOMAIN [OPTIONS] The command updates the contract. You can use
the specification file or the options in this command as follows:

-f, --file

path to the specification file.

29.5. Using Commands 359

Bayware Documentation

--description

description.

delete contract NAME@DOMAIN

-c, --config-file

path to configuration file.

enable contract NAME@DOMAIN

-c, --config-file

path to configuration file.

disable contract NAME@DOMAIN

-c, --config-file

path to configuration file.

An example of the contract specification file is shown below.

]$ cat contract-spec.yml

apiVersion: policy.bayware.io/v1
kind: Contract
metadata:

name: frontend
domain: getaway-app

spec:
template: anycast-cross-all-vpcs
contract_roles:
- template_role: Originator
- template_role: Responder

ingress_rules:
- protocol: icmp
- protocol: tcp

ports:
- 8080
- 5201

29.5.4 Managing Domains

You can manage domains using the following commands:

show domain [OPTIONS] The command shows all domains. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show domain NAME [OPTIONS] The command shows the domain. You can use the options in this
command as follows:

-o, --output-format

360 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

output format, either json or yaml.

-c, --config-file

path to configuration file.

create domain NAME [OPTIONS] The command creates the domain. The specification file is manda-
tory for this command.

-f, --file

path to the specification file.

--description

description.

--auth

domain authentication method, local or ldap (both can be allowed in the domain).

-c, --config-file

path to configuration file.

update domain NAME [OPTIONS] The command updates the domain. You can use the specification
file or the options in this command as follows:

-f, --file

path to the specification file.

--description

description.

--auth

domain authentication method, local or ldap (both can be allowed in the domain).

delete domain NAME

-c, --config-file

path to configuration file.

An example of the domain specification file is shown below.

]$ cat domain-spec.yml

apiVersion: policy.bayware.io/v2
kind: Domain
metadata:

domain: getaway-app
spec:

auth_method:
- LocalAuth
domain_type: Application

29.5.5 Managing Labels

Two class types of managing labels.

29.5. Using Commands 361

Bayware Documentation

Link Labels

You can manage Link labels using the following commands:

show label-class-link [OPTIONS] The command shows all label links. You can use the options in this
command as follows:

-o, --output-format

output format, either json or yaml.

create label-class-link NAME [OPTIONS] The command creates the link label. The specification file
is mandatory for this command.

-f, --file

path to the specification file.

--description

label class description.

--class-id <class_identifier>

label class identifier.

--label-value-min <min_value>

minimum value of link label.

--label-value-max <max_value>

maximum value of link label.

update label-class-link NAME [OPTIONS] The command creates the label class link. The specifica-
tion file is mandatory for this command.

-f, --file

path to the specification file.

--description

label class description.

--class-id <class_identifier>

label class identifier.

--label-value-min <min_value>

minimum value of link label.

--label-value-max <max_value>

maximum value of link label.

-a, --append <label_name>

update an existing link label.

-d, --delete <label_name>

delete an existing link label.

--label-value <value>

label value.

--label-description <description>

362 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

label description.

delete label-class-link NAME [OPTIONS]

-c, --config-file

path to configuration file.

Node Labels

show label-class-node [OPTIONS] The command shows all label class nodes. You can use the options
in this command as follows:

-o, --output-format

output format, either json or yaml.

create label-class-node [OPTIONS] The command creates the label class node.

-f, --file

path to specification file.

--description

description.

--class-id

label class identifier.

--label-value-min

minimum value of node.

--label-value-max

maximum value of node.

update label-class-node NAME [OPTIONS] The command creates the label class node.

-f, --file

path to specification file.

--description

description.

--class-id

label class identifier.

--label-value-min

minimum value of node.

--label-value-max

maximum value of node.

-a, --append

update an existing node label.

--label-value

label value.

29.5. Using Commands 363

Bayware Documentation

--label-description

label description.

delete label-class-node NAME [OPTIONS]

-c, --config-file

path to configuration file.

29.5.6 Managing Links

You can manage links using the following commands:

show link [OPTIONS] The command shows all links. You can use the options in this command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show link NAME [OPTIONS] The command shows the link. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create link NAME [OPTIONS] The command creates the link. The specification file is mandatory for
this command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

--enabled

link administrative status: true or false.

update link NAME [OPTIONS] The command updates the link. You can use the specification file or
the options in this command as follows:

-f, --file

path to the specification file.

--description

description.

-c, --config-file

path to configuration file.

--enabled

link administrative status: true or false.

364 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

delete link NAME

-c, --config-file

path to configuration file.

enable link NAME

-c, --config-file

path to configuration file.

disable link NAME

-c, --config-file

path to configuration file.

An example of the link specification file is shown below.

]$ cat link-spec.yml

apiVersion: policy.bayware.io/v2
kind: Link
metadata:

name: <autogenerated>
spec:

source_node: aws2-p01-fab1
target_node: azr1-p01-fab1
cost: 1
admin_status: true
ipsec_enable: true
tunnel_ip_type: public

29.5.7 Managing Locations

You can manage locations using the following commands:

show location [OPTIONS] The command shows all locations. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show location NAME [OPTIONS] The command shows the location. You can use the options in this
command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create location NAME [OPTIONS] The command creates the location. The specification file is manda-
tory for this command.

29.5. Using Commands 365

Bayware Documentation

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

update location NAME [OPTIONS] The command updates the location. You can use the specification
file or the options in this command as follows:

-f, --file

path to the specification file.

-desc, --description

description.

-c, --config-file

path to configuration file.

delete location NAME

-c, --config-file

path to configuration file.

An example of the location specification file is shown below.

]$ cat location-spec.yml

apiVersion: policy.bayware.io/v2
kind: Location
metadata:

name: aws2
spec:

29.5.8 Managing Resources

You can manage resources using the following commands:

show resource [OPTIONS] The command shows all resources. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show resource NAME [OPTIONS] The command shows the resource. You can use the options in this
command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

366 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

create resource NAME [OPTIONS] The command creates the resource. The specification file is
mandatory for this command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

update resource NAME [OPTIONS] The command updates the resource. You can use the specifica-
tion file or the options in this command as follows:

-f, --file

path to the specification file.

-desc, --description

description.

delete resource NAME

-c, --config-file

path to configuration file.

An example of the resource specification file is shown below.

]$ cat resource-spec.yml

kind: Resource
metadata:

name: aws2-p01-fab1
spec:

location: aws2
node_type: processor

29.5.9 Managing Services

You can manage services using the following commands:

show service [OPTIONS] The command shows all services. You can use the options in this command as
follows:

-d, --domain

domain name to show services within a domain only.

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show service NAME@DOMAIN [OPTIONS] The command shows the service. You can use the op-
tions in this command as follows:

-o, --output-format

output format, either json or yaml.

29.5. Using Commands 367

Bayware Documentation

-c, --config-file

path to configuration file.

-d, --domain

domain name to show services within a domain only.

create service NAME@DOMAIN [OPTIONS] The command creates the service. The specification
file is mandatory for this command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

--description

description.

update service NAME@DOMAIN [OPTIONS] The command updates the service. You can use the
specification file or the options in this command as follows:

-f, --file

path to the specification file.

-desc, --description

description.

-a, --append

add contract role: <role_name:contract_name>.

-d, --delete

delete contract role: <role_name:contract_name>.

-c, --config-file

path to configuration file.

delete service NAME@DOMAIN

-c, --config-file

path to configuration file.

enable service NAME@DOMAIN

-c, --config-file

path to configuration file.

disable service NAME@DOMAIN

-c, --config-file

path to configuration file.

An example of the service specification file is shown below.

368 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

]$ cat service-spec.yml

apiVersion: policy.bayware.io/v2
kind: Service
metadata:

name: http-proxy
domain: getaway-app

spec:
contract_roles:
- contract: frontend

contract_role: Originator

29.5.10 Managing Service Tokens

show service-token SERVICE@DOMAIN [OPTIONS] The command shows the service token. You
can use the options in this command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create service-token SERVICE@DOMAIN [OPTIONS] The command creates the service token.
You can use the options in this command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

delete service-token SERVICE@DOMAIN [OPTIONS] The command deletes the service token.
The following option is mandatory for this command:

--token-id

token identifier.

-c, --config-file

path to configuration file.

An example of the service token specification file is shown below.

]$ cat serviceToken-spec.yml

apiVersion: policy.bayware.io/v2
kind: Token
metadata:

name: aws-proxy
spec:

service: http-proxy
domain: getaway-app

29.5. Using Commands 369

Bayware Documentation

29.5.11 Managing Templates

You can manage templates using the following commands:

show template [OPTIONS] The command shows all templates. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

show template NAME [OPTIONS] The command shows the template. You can use the options in this
command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create template NAME [OPTIONS] The command creates the template. The specification file is
mandatory for this command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

--description

description.

update template NAME [OPTIONS] The command updates the template. You can use the specifica-
tion file or the options in this command as follows:

-f, --file

path to the specification file.

-desc, --description

description.

-c, --config-file

path to configuration file.

delete template NAME

-c, --config-file

path to configuration file.

enable template NAME

-c, --config-file

path to configuration file.

disable template NAME

370 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

-c, --config-file

path to configuration file.

An example of the template specification file is shown below.

]$ cat template-spec.yml

apiVersion: policy.bayware.io/v2
kind: Template
metadata:

name: multicast-cross-all-vpcs
spec:

is_multicast: true
orientation: directed
roles:
- name: Publisher

code_binary:
↪→"409C470100E7846300E000EF0A500793C11C004000EF409C470500E7846300C000EF5795C11C004000EF409C00178713C0989002
↪→"

propagation_interval_default: 5
program_data_default:

ppl: 0
params:
- name: hopCount

value: 0
code_map:

Publisher: 0
path_binary: "000000000001"

- name: Subscriber
code_binary:

↪→"409C470100E7846300C000EF5791C11C004000EF409C470500E7846300C000EF5791C11C004000EF409C00178713C0989002
↪→"

propagation_interval_default: 5
program_data_default:

ppl: 0
params:
- name: hopCount

value: 0
code_map:

Subscriber: 0
path_binary: "000000000001"

29.5.12 Managing Zones

You can manage zones using the following commands:

show zone [OPTIONS] The command shows all zones in the fabric. You can use the options in this
command as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

29.5. Using Commands 371

Bayware Documentation

path to configuration file.

show zone NAME [OPTIONS] The command shows the zone. You can use the options in this command
as follows:

-o, --output-format

output format, either json or yaml.

-c, --config-file

path to configuration file.

create zone NAME [OPTIONS] The command creates the zone. The specification file is mandatory for
this command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

--description

description.

update zone NAME [OPTIONS] The command updates the zone. You can use the specification file or
the options in this command as follows:

-f, --file

path to the specification file.

-desc, --description

description.

--tunnel-ip

processor tunnel IP address: private or public.

--ipsec

processor IPsec status: true or false.

--priority

processor priority: high or low.

-a, --append

add processor to zone: true or false.

-d, --delete

delete processors from zone: processor name.

-c, --config-file

path to configuration file.

delete zone NAME

-c, --config-file

path to configuration file.

An example of the zone specification file is shown below.

372 Chapter 29. BWCTL-API Command Line Interface

Bayware Documentation

]$ cat zone-spec.yml

apiVersion: policy.bayware.io/v2
kind: Zone
metadata:

name: AWS Zone
spec:

locations:
- name: aws2

tunnel_ip_type: private
ipsec_enable: true

29.5.13 Working with Batches

You can manage batches using the following commands:

create batch [OPTIONS] The command creates the batch. The specification file is mandatory for this
command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

update batch [OPTIONS] The command updates the batch. The specification file is mandatory for this
command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

delete batch [OPTIONS] The command deletes the batch. The specification file is mandatory for this
command.

-f, --file

path to the specification file.

-c, --config-file

path to configuration file.

An example of the batch specification file is shown below.

]$ cat batch-spec.yml

apiVersion: policy.bayware.io/v2
kind: Batch
metadata:

name: getaway-app
spec:
- kind: Domain

(continues on next page)

29.5. Using Commands 373

Bayware Documentation

(continued from previous page)

metadata:
domain: getaway-app

spec:
auth_method:

- LocalAuth
domain_type: Application

- kind: Contract
metadata:

name: frontend
domain: getaway-app

spec:
template: anycast-cross-all-vpcs
contract_roles:
- template_role: Originator

endpoint_rules:
ingress:

- protocol: icmp
- template_role: Responder

endpoint_rules:
ingress:

- protocol: icmp
- protocol: tcp

ports:
- 8080
- 5201

- kind: Service
metadata:

name: http-proxy
domain: getaway-app

spec:
contract_roles:
- contract: frontend

contract_role: Originator
- kind: Service

metadata:
name: getaway-svc
domain: getaway-app

spec:
contract_roles:
- contract: frontend

contract_role: Responder

374 Chapter 29. BWCTL-API Command Line Interface

CHAPTER 30

Policy Agent REST API

30.1 About REST API

Policy agent REST API (“REST API”) enables you to interact with the policy agent instance using HTTP-
requests.

REST API offers a read-only access to the policy agent operational data. Via REST API you can retrieve
agent configuration, operational status of agent’s interfaces and connections, information on application’s
network and service endpoints, records stored in agent’s DNS resolver database. All responses are returned
in json.

Additionally, REST API allows you to add and delete network endpoints. This functionality is used by
Kubernetes CNI plugins to dynamically set up network endpoint for each pod. As such, it is highly recom-
mended to keep REST API bound to the localhost interface, to which it is attached by default.

Also, policy agent REST API works as an interface between Resolver and Policy Agent database with DNS
records.

REST API is set up automatically when the agent starts on the workload node. By default, REST API is
exposed on 127.0.0.1:5500. You can change the interface address and port number in the agent configu-
ration file using a text editor or agent’s ib-configure utility. To apply the new configuration you need to
reload the agent.

30.2 Configuring REST API

30.2.1 Configuration file

REST API configuration is stored in the ib-agent.conf file located on the workload node at:

~/etc/ib-agent.conf

375

Bayware Documentation

Fig. 30.1: FIG. Workload node with policy agent

376 Chapter 30. Policy Agent REST API

Bayware Documentation

The file contains REST API configuration details in the section titled [rest]. To verify information in the
configuration file, run the command:

]$ cat /etc/ib-agent.conf
[agent]
controller = controller-texas2270.texasinc.poc.bayware.io
location = azr1
local_domain = ib.loc
token_file = /opt/bayware/ib-agent/conf/tokens.dat
log_file = /var/log/ib-agent/ib-agent.log
log_level = INFO

[net_iface]
name = ib-fab0
address = 192.168.250.0/24

[ctl_iface]
name = ib-ctl0

[mirror_iface]
name = ib-mon0

[cert]
ca_cert = /opt/bayware/certs/ca.crt
node_cert = /opt/bayware/certs/node.crt
node_key = /opt/bayware/certs/node.key

[rest]
rest_ip = 127.0.0.1
rest_port = 5500
log_file = /var/log/ib-agent/ib-agent-rest.log
log_level = WARNING

[resolver]
log_file = /var/log/ib-agent/ib-agent-resolver.log
log_level = WARNING
file_size = 100000
backup_count = 5
dns_port = 5053

30.2.2 Configuration commands

To change REST API configuration, use the policy agent configuration tool called ib-configure and located
on the workload node at:

~/opt/bayware/ib-agent/bin/ib-configure

The tool enables you to change the IP address and/or TCP port on which Agent exposes its REST API.

The following commands require super-user privileges, so become root:

]$ sudo su -

Now, to bind the REST API to a different network interface on the node, run the command:

30.2. Configuring REST API 377

Bayware Documentation

]# /opt/bayware/ib-agent/bin/ib-configure -a <IPv4_address>

To bind the REST API to a different TCP port on the same interface, run the command:

]# /opt/bayware/ib-agent/bin/ib-configure -r <TCP_port>

On a successful command execution, the tool will return the response as shown below:

]# /opt/bayware/ib-agent/bin/ib-configure -r 5500
agent configuration completed successfully

To apply the configuration changes, you need to reload the agent using the command:

]# systemctl reload ib-agent

30.3 Getting started with REST API

30.3.1 Making the first request

Here is an example of the REST API request and response (jq in this and other examples is used only for
formatting):

]$ curl -s http://127.0.0.1:5500/api/v1/service/resolver | jq
{

"aws2-w02-texas2270.aws2.originator.weather-api.getaway-app.ib.loc": {
"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

},
"aws2.originator.weather-api.getaway-app.ib.loc": {

"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

},
"originator.weather-api.getaway-app.ib.loc": {

"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

}
}

30.3.2 Available resources

Policy agent REST API supports various categories of information, or various resources, that can be returned,
such as:

• CERT

378 Chapter 30. Policy Agent REST API

Bayware Documentation

• CONNECTION

• IFACE

• NETWORK_ENDPOINT

• SERVICE

• STATUS

/cert Certificate is used to verify a node certificate employed by the policy agent. You can only fetch data.

/connection Connection is used to verify a current operational status of the logical connection between
the workload and processor established by the policy agent. You can only fetch data.

/iface Iface is used to verify a current operational status of the network interfaces managed by the policy
agent. You can only fetch data.

/network_endpoint Network endpoint is used to verify a current operational status of the network end-
points managed by the policy agent. You can only fetch data.

/service Service is used to verify a current operational status of the service endpoints managed by the
policy agent. You can only fetch data.

/status Status is used to verify a current operational status of the policy agent. You can only fetch data.

30.4 Using REST API

30.4.1 Certificate object

Certificate object has only one endpoint.

GET /cert

Get the certificate.

HTTP request for this endpoint is shown below.

GET /api/v1/service/cert HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/cert | jq -R 'split("\\n")'
[

"{\"result\":{\"x509\":\"Certificate:",
" Data:",
" Version: 3 (0x2)",
" Serial Number:",
" 1e:f6:87:56:6d:7f:97:d7:27:d7:50:70:50:d7:b8:b5:dc:da:13:de",
" Signature Algorithm: sha256WithRSAEncryption",
" Issuer: O=texasinc, DC=texas2270, CN=texas-c0",
" Validity",
" Not Before: Aug 14 21:10:35 2019 GMT",
" Not After : Aug 11 21:10:35 2029 GMT",
" Subject: O=texasinc, DC=texas2270, DC=workload, CN=azr1-w01-texas2270",
" Subject Public Key Info:",
" Public Key Algorithm: rsaEncryption",

(continues on next page)

30.4. Using REST API 379

Bayware Documentation

(continued from previous page)

" RSA Public-Key: (2048 bit)",
" Modulus:",
" 00:be:01:be:35:18:b7:85:fc:8e:c8:9d:da:d2:27:",
" 57:13:6b:8c:ab:cb:cf:39:15:f9:cf:b3:5d:d4:3e:",
" b3:9d:82:aa:1d:86:f5:b0:98:58:7f:32:18:50:f8:",
" 61:ae:60:f6:43:2a:28:3f:99:83:cc:15:dd:ec:aa:",
" 84:ac:c0:00:df:4d:a8:84:14:0a:94:ba:a8:37:3d:",
" 84:c6:9c:ad:d5:ac:43:01:d0:86:07:36:c7:b6:5c:",
" c5:78:4b:de:ca:a5:d9:83:60:a9:bb:c1:1d:05:b0:",
" e8:71:5e:7f:45:98:77:3d:07:58:42:16:f1:0e:79:",
" 5b:a4:22:95:0e:6c:cb:98:20:b7:d8:75:f6:69:1f:",
" 88:c3:07:5c:56:96:12:d0:6f:00:60:14:3e:33:cc:",
" 67:22:26:bf:ba:2e:59:a8:a2:e9:25:97:bc:6c:35:",
" 54:ee:ef:e7:c3:fd:26:dd:5f:8b:40:71:9a:f0:63:",
" 61:ac:b1:be:d2:3f:1e:98:50:6f:49:58:c9:12:51:",
" 1f:48:61:5a:50:9a:45:51:4b:8a:fe:39:01:8e:df:",
" 33:b3:68:34:da:a5:96:94:c1:16:4f:ae:d4:75:91:",
" 0b:fc:ca:b6:69:97:a2:e8:ba:98:17:e7:ef:e6:5d:",
" 1f:96:0c:58:d9:91:13:51:f6:4e:f9:9f:80:1d:c3:",
" 43:c9",
" Exponent: 65537 (0x10001)",
" X509v3 extensions:",
" X509v3 Key Usage: critical",
" Digital Signature, Key Encipherment",
" X509v3 Extended Key Usage: ",
" TLS Web Server Authentication, TLS Web Client Authentication",
" X509v3 Basic Constraints: critical",
" CA:FALSE",
" X509v3 Subject Key Identifier: ",
" 55:E5:A6:58:32:83:D6:D6:64:3A:E8:87:BC:BE:63:71:BC:72:B4:A6",
" X509v3 Authority Key Identifier: ",
" keyid:C1:F6:2F:CD:CF:70:9F:99:8B:2E:F8:B1:54:1E:08:C4:46:73:AA:19",
"",
" Signature Algorithm: sha256WithRSAEncryption",
" a1:3e:76:a6:d1:62:a3:c2:73:e4:2a:9d:b6:12:2a:22:48:1f:",
" 63:f5:f1:c4:f6:5f:e7:66:63:51:e4:9e:bc:02:87:a6:90:cd:",
" e7:39:04:ec:ac:9d:58:42:95:ff:f0:34:72:a2:f1:4a:67:bf:",
" f7:da:6f:ee:b9:bc:f8:51:27:5d:6e:e7:e9:89:c1:88:e9:f8:",
" 73:fd:b4:1c:fd:f8:41:66:5a:a7:51:bf:c8:dc:92:27:6a:e5:",
" d4:59:60:70:6e:c2:2b:3d:e5:47:55:67:44:69:5f:0a:61:8a:",
" 4a:03:43:70:67:61:ec:bc:00:e1:80:35:b1:2d:32:bb:ba:0a:",
" 40:e3:b0:f4:c0:fe:fb:23:9d:c3:80:2a:df:23:9a:e5:81:ce:",
" ea:22:1e:15:78:7b:4e:ab:2c:cd:b9:5e:cd:1e:57:89:07:f6:",
" be:fd:a1:a0:e3:99:c5:0f:8f:1f:58:d2:e2:6f:e4:e6:1d:05:",
" d0:1a:98:6e:ba:b5:b7:6e:90:67:c8:85:33:cd:7a:34:31:f6:",
" e4:17:8f:cf:f4:3a:1b:48:95:56:5f:a0:da:31:23:9e:22:da:",
" c8:f1:b8:8e:06:c7:23:7b:34:cb:12:a2:ca:42:17:65:12:2c:",
" 9b:a9:d9:6b:1e:e6:86:48:ed:41:4f:07:d8:6c:b5:2f:6d:da:",
" b7:7d:ee:7a:4e:6f:b4:b4:6b:da:dd:71:cd:6b:90:52:61:d8:",
" b6:8a:42:43:5c:29:75:fe:b8:e6:ec:73:80:35:66:72:32:e0:",
" 3e:a3:c0:84:bb:71:7e:34:d5:df:b8:de:7d:30:cb:fb:c7:1b:",
" 4d:60:0a:ca:d6:eb:cb:82:0b:5e:53:db:ad:4a:bc:8e:a3:f9:",

(continues on next page)

380 Chapter 30. Policy Agent REST API

Bayware Documentation

(continued from previous page)

" b4:de:bb:72:78:8e:b2:ee:75:14:33:08:bf:f4:8d:ab:19:2c:",
" f9:a8:cf:1b:e0:79:05:e8:55:da:35:1b:c3:fe:c8:b6:ec:3a:",
" 37:e8:13:2b:15:90:c5:83:11:ae:38:a2:18:26:fb:50:8a:1c:",
" 2b:c4:83:54:10:8a:35:05:f9:18:f7:13:e3:a6:13:1d:10:b4:",
" ff:27:77:a8:f9:6e:81:f9:1d:d9:c5:b5:3f:78:82:ad:71:6f:",
" 82:74:89:76:ef:5e:91:8a:f7:fa:b4:ef:7f:a1:20:2f:15:bf:",
" 27:8a:85:1d:ae:f3:10:26:45:d1:fa:be:e6:69:94:e6:4d:3b:",
" 5c:53:76:32:8f:11:73:5b:2b:a4:82:45:74:4f:38:29:67:49:",
" f6:d2:6a:55:0f:c9:96:42:63:cb:75:3f:cf:93:60:26:96:76:",
" 59:10:d2:9d:3c:5a:39:3a:50:44:f3:e7:54:15:9b:9c:e2:e8:",
" 9e:ee:56:79:96:d6:e4:e8",
"\"}}"

]

30.4.2 Connection object

Connection object has only one endpoint.

GET /connection

Get information about the current connection status.

HTTP request for this endpoint is shown below.

GET /api/v1/connection HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/connection | jq
{

"result": {
"304": {

"keepalive_timestamp": "Fri, 23 Aug 2019 22:29:21 GMT",
"local_conn": 304,
"local_port": 1,
"nonce_timestamp": "Fri, 23 Aug 2019 22:29:19 GMT",
"remote_address": "fd3210d7b78fea9d20c9c41f59347aed",
"remote_conn": 258,
"remote_mac": "16c2b80359c1",
"remote_node_role": "processor",
"remote_port": 32,
"remote_portname": "ib_0a000206",
"status": "active"

}
}

}

30.4.3 Iface object

Iface object has three endpoints.

30.4. Using REST API 381

Bayware Documentation

Control interface

GET /iface/ctl_iface

Get information about the current control interface status.

HTTP request for this endpoint is shown below.

GET /api/v1/iface/ctl_iface HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/iface/ctl_iface | jq -R 'split("\\n")'
[

"{\"result\":{\"ctl_iface\":\"",
"",
"203: ib-ctl0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel
state DOWN group default qlen 1000",
" link/ether 06:55:44:13:ff:35 brd ff:ff:ff:ff:ff:ff",
" RX: bytes packets errors dropped overrun mcast ",
" 0 0 0 0 0 0 ",
" TX: bytes packets errors dropped carrier collsns ",
" 0 0 0 0 0 0\"}}"

]

Mirror interface

GET /iface/mirror_iface

Get information about the current mirror interface status.

Note: The Rx bytes and packets counters will show non-zero values only if you have the port mirroring
enabled in the specification of at least one contract role whose service endpoint(s) present on the node.

HTTP request for this endpoint is shown below.

GET /api/v1/iface/mirror_iface HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/iface/mirror_iface | jq -R 'split("\\n")'
[

"{\"result\":{\"mirror_iface\":\"",
"",
"204: ib-mon0: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN group default qlen 1000",
" link/ether 06:72:48:6c:8f:6d brd ff:ff:ff:ff:ff:ff",
" inet6 fe80::472:48ff:fe6c:8f6d/64 scope link ",
" valid_lft forever preferred_lft forever",
" RX: bytes packets errors dropped overrun mcast ",
" 0 0 0 0 0 0 ",

(continues on next page)

382 Chapter 30. Policy Agent REST API

Bayware Documentation

(continued from previous page)

" TX: bytes packets errors dropped carrier collsns ",
" 12460 178 0 0 0 0\"}}"

]

Network interface

GET /iface/net_iface

Get information about the current network interface status.

HTTP request for this endpoint is shown below.

GET /api/v1/iface/net_iface HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/iface/net_iface | jq -R 'split("\\n")'
[

"{\"result\":{\"net_iface\":\"",
"",
"207: ib-fab0@NONE: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1350 qdisc
fq_codel state UNKNOWN group default qlen 1000",
" link/ether 96:9e:eb:10:c7:31 brd ff:ff:ff:ff:ff:ff",
" inet 192.168.250.1/30 scope global ib-fab0",
" valid_lft forever preferred_lft forever",
" RX: bytes packets errors dropped overrun mcast ",
" 439537314 2251739 0 0 0 0 ",
" TX: bytes packets errors dropped carrier collsns ",
" 325448824 2091568 0 0 0 0\"}}"

]

30.4.4 Network endpoint object

Network endpoint object has multiple endpoints.

Network endpoint status

GET /network_endpoint

Get information about the current network endpoint status.

HTTP request for this endpoint is shown below.

GET /api/v1/network_endpoint HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

30.4. Using REST API 383

Bayware Documentation

]$ curl -s http://127.0.0.1:5500/api/v1/network_endpoint | jq
{

"result": [
{

"cga": "fd32:10d7:b78f:7699:242e:1b2e:0e61:d882",
"cga_params": {

"ccount": 0,
"ext": "",
"modifier": 2.850508822951617e+38,
"prefix": "fd32:10d7:b78f:7699::"

},
"ip": "192.168.250.1",
"mac": "96:9e:eb:10:c7:31",
"name": "azr1-w01-texas2270",
"ne_id": 1554,
"ne_instance": "azr1-w01-texas2270"

}
]

}

Create network endpoint

PUT /network_endpoint/{ne_instance}

Create network endpoint. API is used by CNI plugin.

HTTP request for this endpoint is shown below.

PUT /api/v1/network_endpoint/instance123 HTTP/1.1
Host: 127.0.0.1:5500

Additional parameters must be sent in the request body in JSON format as shown in the example below.

{
"name":"nginx-deployment-77f588df6b-jck2q",
"ip_address":"10.10.110.82",
"mac":"6a:49:c9:11:4c:60",
"tokens":[

"2646f16e-0dec-4577-9e43-076b7be1b0ab"
]

}

Delete network endpoint

DELETE /network_endpoint/{ne_instance}

Delete network endpoint. API is used by CNI plugin.

DELETE /api/v1/network_endpoint/instance123 HTTP/1.1
Host: 127.0.0.1:5500

384 Chapter 30. Policy Agent REST API

Bayware Documentation

30.4.5 Service object

Service object has multiple endpoints.

Available local service endpoints

GET /service/available

Get information about the available local service endpoints.

HTTP request for this endpoint is shown below.

GET /api/v1/service/available HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/service/available | jq
{

"azr1-w01-texas2270": {
"ne_cfg_hash": "0612947c582c4cf105ac3428c3f5b613a4a5",
"services": [

{
"contract": "weather-api",
"contract_id": 3221325477,
"contract_role": "Responder",
"domain": "getaway-app",
"endpoint_rules": [

{
"protocol": "icmp"

},
{

"ports": [
8080,
5201

],
"protocol": "tcp"

}
],
"is_multicast": false,
"port_mirror_enabled": false,
"propagation_interval": 5,
"remote_endpoint_rules": [

{
"protocol": "icmp"

},
{

"protocol": "tcp"
}

],
"role_index": 1,
"se_cfg_hash": "46eeb901fb5ad0a0027f4c2b9d351b85",
"service_rdn": "responder.weather-api.getaway-app",
"stat_enabled": false

(continues on next page)

30.4. Using REST API 385

Bayware Documentation

(continued from previous page)

}
],
"success": true,
"type": "serviceResponse"

}
}

Registered local service endpoints

GET /service/registered

Get information about the registered local service endpoints.

HTTP request for this endpoint is shown below.

GET /api/v1/service/registered HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/service/registered | jq
{

"azr1-w01-texas2270": [
{

"contract": "weather-api",
"contract_role": "Responder",
"domain": "getaway-app",
"filtration": {

"bpf_maps": {
"MAP_F_IN_PORT": [

{
"key": "612a8633-5114-06",
"val": "00"

},
{

"key": "612a8633-901f-06",
"val": "00"

}
],
"MAP_F_IN_PROTO": [

{
"key": "612a8633-3a",
"val": "00"

}
],
"MAP_F_OUT_PROTO": [

{
"key": "612a8633-06",
"val": "00"

},
{

"key": "612a8633-01",
(continues on next page)

386 Chapter 30. Policy Agent REST API

Bayware Documentation

(continued from previous page)

"val": "00"
}

],
"MAP_IN_UNI_SE": [

{
"key": "242e1b2e0e61d882-c00186a5",
"val": "612a8633-b0-c0a8fa01000000000000000000000000-969eeb10c731"

}
],
"MAP_OUT_V4_SE": [

{
"key": "c0a8fa01-400186a5",
"val": "612a8633-a0-fd3210d7b78f7699242e1b2e0e61d882-0a8633"

}
]

},
"endpoint_rules": {

"egress": [
{

"protocol": "icmp"
},
{

"protocol": "tcp"
}

],
"ingress": [

{
"protocol": "icmp"

},
{

"ports": [
8080,
5201

],
"protocol": "tcp"

}
]

}
},
"flow_label": 689715,
"flow_label_hex": "0xa8633",
"group_id": 3221325477,
"group_id_hex": "0xc00186a5",
"role_index": 1,
"service_resolve": "responder.weather-api.getaway-app"

}
]

}

30.4. Using REST API 387

Bayware Documentation

Remote service endpoints

GET /service/remote

Get information about the current remote service endpoints.

HTTP request for this endpoint is shown below.

GET /api/v1/service/remote HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/service/remote | jq
{

"remote_service_endpoints": [
{

"bpf_maps": {
"MAP_IN_UNI": [

{
"key": "fd3210d7b78fdb9530e6ae3ff3e72973-069e86",
"val": "c00186a5-c0a8fa07-00000000000000000000000000000000"

}
],
"MAP_OUT_V4_DST": [

{
"key": "c0a8fa07",
"val": "400186a5-fd3210d7b78fdb9530e6ae3ff3e72973-16c2b80359c1"

}
]

},
"hop_limit": 253,
"last_update": "2019-08-23 22:40:15.516714 GMT",
"local_group_id": 3221325477,
"remote_cga": "fd32:10d7:b78f:db95:30e6:ae3f:f3e7:2973",
"remote_flow_label": 433798,
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app

↪→",
"unicast_ip": "192.168.250.7"

}
]

}

Fetch all resolver database records

GET /service/resolver

Get all records from the resolver database.

HTTP request for this endpoint is shown below.

GET /api/v1/service/resolver HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

388 Chapter 30. Policy Agent REST API

Bayware Documentation

]$ curl -s http://127.0.0.1:5500/api/v1/service/resolver | jq
{

"aws2-w02-texas2270.aws2.originator.weather-api.getaway-app.ib.loc": {
"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

},
"aws2.originator.weather-api.getaway-app.ib.loc": {

"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

},
"originator.weather-api.getaway-app.ib.loc": {

"hop_limit": 253,
"last_update": "2019-08-23 22:42:48.665033 GMT",
"service_domain_name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"unicast_ip": "192.168.250.7"

}
}

Resolve name into IP address

GET /service/resolver/{service_RDN}.{local_domain}

Get IP address for the specified DNS name. API is used by the policy agent resolver.

HTTP request for this endpoint is shown below.

GET /api/v1/service/resolver/originator.weather-api.getaway-app.ib.loc HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/service/resolver/originator.weather-api.getaway-
↪→app.ib.loc | jq
{

"host": "192.168.250.7",
"success": true

}

Service endpoint statistics

GET /service/stat

Get the current service endpoint statistics.

Note: To see statistics on a particular service endpoint you need to enable it in the specification of the
contract role associated with the endpoint.

HTTP request for this endpoint is shown below.

30.4. Using REST API 389

Bayware Documentation

GET /api/v1/service/stat HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

{
"stat": [

{
"name": "aws2-w02-texas2270.aws2.originator.weather-api.getaway-app",
"bytes_in": 2300,
"bytes_out": 1200,
"pkts_in": 98,
"pkts_out": 123,
"drops_in": 0,
"drops_out": 8

}
]

}

eBPF Maps

GET /service/ebpfmaps

Get content of the eBPF maps.

HTTP request for this endpoint is shown below.

GET /api/v1/service/ebpfmaps HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/service/ebpfmaps | jq
{

"MAP_CONFIG": [
{

"key": "01",
"val": "fd3210d7b78f7699"

},
{

"key": "06",
"val": "cc00000000000000"

},
{

"key": "05",
"val": "969eeb10c7310000"

},
{

"key": "07",
"val": "38f122bb7af79677"

},
{

"key": "02",
(continues on next page)

390 Chapter 30. Policy Agent REST API

Bayware Documentation

(continued from previous page)

"val": "cb00000000000000"
},
{

"key": "04",
"val": "cf00000000000000"

},
{

"key": "03",
"val": "06554413ff350000"

}
],
"MAP_F_IN_PORT": [

{
"key": "612a8633-5114-06",
"val": "00"

},
{

"key": "612a8633-901f-06",
"val": "00"

}
],
"MAP_F_IN_PROTO": [

{
"key": "612a8633-3a",
"val": "00"

}
],
"MAP_F_OUT_PORT": [],
"MAP_F_OUT_PROTO": [

{
"key": "612a8633-01",
"val": "00"

},
{

"key": "612a8633-06",
"val": "00"

}
],
"MAP_IN_SSM": [],
"MAP_IN_SSM_SE": [],
"MAP_IN_SSM_T1": [],
"MAP_IN_UNI": [

{
"key": "fd3210d7b78fdb9530e6ae3ff3e72973-069e86",
"val": "c00186a5-c0a8fa07-00000000000000000000000000000000"

}
],
"MAP_IN_UNI_SE": [

{
"key": "242e1b2e0e61d882-c00186a5",
"val": "612a8633-b0-c0a8fa01000000000000000000000000-969eeb10c731"

}
(continues on next page)

30.4. Using REST API 391

Bayware Documentation

(continued from previous page)

],
"MAP_OUT_V4_DST": [

{
"key": "c0a8fa07",
"val": "400186a5-fd3210d7b78fdb9530e6ae3ff3e72973-16c2b80359c1"

}
],
"MAP_OUT_V4_SE": [

{
"key": "c0a8fa01-400186a5",
"val": "612a8633-a0-fd3210d7b78f7699242e1b2e0e61d882-0a8633"

}
],
"MAP_OUT_V6_DST": [],
"MAP_OUT_V6_SE": []

}

30.4.6 Status object

Status object has only one endpoint.

GET /status

Get information about the current policy agent status.

HTTP request for this endpoint is shown below.

GET /api/v1/status HTTP/1.1
Host: 127.0.0.1:5500

Here is an example of the REST API request and response:

]$ curl -s http://127.0.0.1:5500/api/v1/status | jq
{

"controller": "controller-texas2270.texasinc.poc.bayware.io",
"host_id": "fd3210d7b78f769938f122bb7af79677",
"hostname": "azr1-w01-texas2270",
"local_domain": "ib.loc",
"location": "azr1",
"ready": true,
"registered": true,
"version": "1.2.0"

}

30.5 Quick Reference

GET /cert

http://127.0.0.1:5500/api/v1/certificate

Get the certificate.

392 Chapter 30. Policy Agent REST API

Bayware Documentation

GET /connection

http://127.0.0.1:5500/api/v1/connection

Get information about the current connection status.

GET /iface/ctl_iface

http://127.0.0.1:5500/api/v1/iface/ctl_iface

Get information about the current control interface status.

GET /iface/mirror_iface

http://127.0.0.1:5500/api/v1/iface/mirror_iface

Get information about the current mirror interface status.

GET /iface/net_iface

http://127.0.0.1:5500/api/v1/iface/net_iface

Get information about the current network interface status.

GET /network_endpoint

http://127.0.0.1:5500/api/v1/network_endpoint

Get information about the current network endpoint status.

PUT /network_endpoint/{ne_instance}

http://127.0.0.1:5500/api/v1/network_endpoint/instance123

Create network endpoint.

DELETE /network_endpoint/{ne_instance}

http://127.0.0.1:5500/api/v1/network_endpoint/instance123

Delete network endpoint.

GET /service/available

http://127.0.0.1:5500/api/v1/service/available

Get information about the available local service endpoints.

GET /service/registered

http://127.0.0.1:5500/api/v1/service/registered

Get information about the registered local service endpoints.

GET /service/remote

http://127.0.0.1:5500/api/v1/service/remote

Get information about the current remote service endpoints.

GET /service/resolver

http://127.0.0.1:5500/api/v1/service/resolver

Get all records from the resolver database.

GET /service/resolver/{service_RDN}.{local_domain}

http://127.0.0.1:5500/api/v1/service/resolver/originator.weather-api.getaway-app.ib.loc

Get IP address for the specified DNS name.

30.5. Quick Reference 393

Bayware Documentation

GET /service/stat

http://127.0.0.1:5500/api/v1/service/stat

Get the current service endpoint statistics.

GET /service/ebpfmaps

http://127.0.0.1:5500/api/v1/service/ebpfmaps

Get content of the eBPF maps.

GET /status

http://127.0.0.1:5500/api/v1/status

Get information about the current policy agent status.

394 Chapter 30. Policy Agent REST API

CHAPTER 31

Network Microservice SDK

31.1 About document

This document describes the Network Microservice Software Development Kit (SDK).

31.2 Overview

31.2.1 What is a network microservice microprogram?

A microprogram is a collection of instructions that performs action set computation when executed by a
Network Microservice Processor.

Bayware’s approach to microprogram development satisfies the following requirements:

• extremely fast execution - microprogram executable code is a collection of RISC-V instructions
that are efficiently executed by the network microservice processor

• excellent expressive power - any forwarding logic can be described

• first-grade compactness - source-based routing implementation comprises three four- or two-byte
instructions

31.2.2 What is the network microservice SDK?

The SDK is a tool for microprogram development allowing the generation of a collection of RISC-V instruc-
tions executable by a network microservice processor.

395

Bayware Documentation

31.2.3 What can the network microservice SDK do?

The SDK allows developers to use a high-level language (Java) for microprogram development and automat-
ically generate executable code. This eliminates the necessity to program in RISC-V and dive deep into the
Network Microservice Execution Environment implementation.

31.2.4 Who can use the network microservice SDK?

Anyone who needs to introduce new packet forwarding logic and has basic knowledge of Java can use the
SDK.

31.3 Getting Started

31.3.1 Development Kit

A service template is generated using the development kit library. The service template is used to form the
IBFlow.

The library uses a Java-like syntax.

The development and execution life cycle consists of the following steps

Fig. 31.1: Figure. The ENF Lifecycle
• Develop - node execution rules formed (Java)
• Template Generation - service template (signed JSON document) formed for created class
• Deploy - generated service template deployed at controller
• IBStream Generation - application forms IB Flows

31.3.2 Create “Hello world!”

Simple Forward (Source-based Routing)

Step1. Write Source Code

To start microprogram development, create Java Class. The class must be an extension of IceBuilder.

1 package org.test;
2

3 import io.bayware.builder.*;
4 import io.bayware.builder.ExecMethod.ExecType;

(continues on next page)

396 Chapter 31. Network Microservice SDK

Bayware Documentation

(continued from previous page)

5 import io.bayware.type.anno.*;
6 import io.bayware.type.*;
7

8 public class SimpleForward extends IceBuilder {
9

10 }

Create a method to add a package forwarding logic.

@Method(name = "frwrd")
public ExecMethod mForward() {
}

The class can contain one or several methods. Executable code will be generated for each method with the
annotation @Method.

Add a collection of instructions to the method.

1 @Method(name = "frwrd")
2 public ExecMethod mForward() {
3 return new ExecMethod(
4 Op.forward(Path.egressRCI0),
5 Op.end()
6);
7 }

Wherein:

Op.forward – send packet

Path.egressRCI0 – use RCI0 received after path parsing

Op.end – terminate code execution

As a result, the class will be.

1 package org.test;
2

3 import io.bayware.builder.*;
4 import io.bayware.type.anno.*;
5 import io.bayware.type.*;
6

7 public class SimpleForward extends IceBuilder {
8

9 @Method(name = "frwrd")
10 public ExecMethod mForward() {
11 return new ExecMethod(
12 Op.forward(Path.egressRCI0),
13 Op.end()
14);
15 }
16 }

That’s it! The logic of source-based routing is implemented.

31.3. Getting Started 397

Bayware Documentation

Step 2. Generate Executable Code

To generate executable code, use the procedure ctx.makeHex().

Create a context using the class SimpleForward defined on the step 1.

1 package org.test;
2

3 import io.bayware.builder.*;
4

5 public class SimpleForwardTest {
6

7

8 public static void main(String[] args) {
9 Context ctx = Context.create(SimpleForward.class);

10 ctx.makeHex();
11 }
12 }

Run ctx.makeHex().

The resulting file SipmleForward.hex contains a hex-encoded executable code in the first line and a pointer
to the first instruction of method in the second line.

00859F0301EFA62300000073
frwrd:0

Step 3 (optional). Generate Assembly Code

Assembly Code

To generate assembly code, use the procedure ctx.makeAsm().

The resulting file SipmleForward.s contains a collection of RISC-V instructions.

lh x30, 0x8(x11)
sw x30, 0xc(x31)
ecall

This assembly code can be compiled into machine code using any RISC-V compiler.

Dump

To generate dump for assembly code analysis, use the procedure ctx.makeDump().

The resulting file SipmleForward.dump contains a collection of RISC-V instructions with additional infor-
mation.

1 -- Method:frwrd
2 ------- Op.forward
3 0x00859F03:lh x30, 0x8(x11)
4 0x01EFA623:sw x30, 0xc(x31)
5 ------- Op.end
6 0x00000073:ecall

398 Chapter 31. Network Microservice SDK

Bayware Documentation

31.3.3 Using Several Methods for Packet Forwarding

A class can hold several methods. Each method receives its own name defined in the annotation @Method.

An example is shown below.

1 package org.test;
2

3 import io.bayware.builder.*;
4 import io.bayware.type.anno.*;
5 import io.bayware.type.*;
6

7 public class SimpleForward extends IceBuilder {
8

9 @Method(name = "frwrd1")
10 public ExecMethod mForward1() {
11 return new ExecMethod(
12 Op.forward(Path.egressRCI0), Op.end()
13);
14 }
15

16 @Method(name = "frwrd2")
17 public ExecMethod mForward2() {
18 return new ExecMethod(
19 Op.forward(Path.egressRCI1), Op.end()
20);
21 }
22 }

Executing the procedure ctx.makeHex() provides the result shown below.

00859F0301EFA6230000007300A59F0301EFA62300000073
frwrd1:0
frwrd2:12

This code comprises the two methods. An offset for the first instruction of method `frwrd1 is 0. Whereas
an offset for the first instruction of method frwrd2 is 12.

31.4 Variables

31.4.1 Variable Types

A microprogram developer can use the following variable types:

• Word – 4 bytes

• HalfWord – 2 bytes

• Byte – 1 byte

• Bit – flags (from 0 to 31)

31.4.2 Class for Variables

31.4. Variables 399

Bayware Documentation

Record Definition

To declare variables, define the class for a record. The record holds a collection of variables with their types.

As an example, the class for the record SimpleVar<T> holds the variables var1, var2, var3.

1 package org.test;
2

3 import io.bayware.type.record.FieldRecord;
4 import io.bayware.type.fields.*;
5 import io.bayware.type.fields.Byte;
6

7 public class SimpleVar<T> extends FieldRecord {
8 public Field<Word> var1;
9 public Field<HalfWord> var2;

10 public Field<Byte> var3;
11 }

Declaration of a bit-type variable requires specifying the number of bits to read @Bit(read =). An example
is shown below.

1 package org.somebody.model;
2

3 import io.bayware.type.record.FieldRecord;
4 import io.bayware.type.fields.Field;
5 import io.bayware.type.fields.Byte;
6 import io.bayware.type.fields.Bit;
7

8 public class my_field_rec<T> extends FieldRecord {
9

10 @Bits(read = 4)
11 public Field<Bit> var3;
12

13 @Bits(read = 2)
14 public Field<Bit> var4;
15

16 @Bits(read = 2)
17 public Field<Bit> var5;
18 }

To holds the values of the variables var3, var4, var5, one byte is to be allocated.

If one more variable is to be declared, for example –

@Bits(read = 4)
public Field<Bit> var6;

an additional byte will be allocated wherein 4 bits to be assigned for the new variable.

Using Several Records

More than one record can be declared. For example, to implement an advanced trace-route logic the micro-
program has to collect en route: hop identifiers, timestamps, ingress and egress connections. To hold the
values of this variables, the structure shown below is to be defined.

400 Chapter 31. Network Microservice SDK

Bayware Documentation

1 package org.somebody.sample;
2

3 import io.bayware.type.record.FieldRecord;
4 import io.bayware.type.fields.*;
5 import io.bayware.type.anno.*;
6

7 @RecordCount(maxCount = 30)
8 public class TraceRecord<T> extends FieldRecord {
9 public Field<Word> hopIdLo;

10 public Field<Word> hopIdHi;
11 public Field<Word> timeStamp;
12 public Field<HalfWord> inRCI;
13 public Field<HalfWord> outRCI;
14 }

Note, that the class annotation defines the maximum number of records - @RecordCount(maxCount = 30).

Record-in-Record

Record can be a field of another record. In this case, Segment is specified as a field type.

As an example, TraceRecord is a filed of TraceInfo.

1 package org.somebody.sample;
2

3 import io.bayware.type.record.GeneralRecord;
4 import io.bayware.type.fields.Byte;
5 import io.bayware.type.fields.*;
6

7 public class TraceInfo extends GeneralRecord {
8 public Field<Word> passedHopCounter;
9 public TraceRecord<Segment> hopInfo;

10 public Field<Byte> test;
11 }

Fig. 31.2: Figure. An example of record-in-record

31.4.3 Using Variables in Microprogram

As a new record class is created, it can be used in a microprogram. An example is shown below.

31.4. Variables 401

Bayware Documentation

1 package org.test;
2

3 import io.bayware.builder.*;
4 import io.bayware.type.anno.*;
5 import io.bayware.type.*;
6

7 public class SimpleForward extends IceBuilder {
8

9 @Var(type = VarType.packet)
10 SimpleVar packVar;
11

12 @Method(name = "frwrd")
13 public ExecMethod method1() {
14 return new ExecMethod(Op.forward(Path.egressRCI0),
15 Op.assign(packVar.var1, 23),
16 Op.assign(packVar.var2, 34),
17 Op.assign(packVar.var3, packVar.var1),
18 Op.plus(packVar.var3, 3),
19 Op.end()
20);
21 }
22 }

The variable var1 receives the value of 23.

The variable var2 receives the value of 34.

The variable var3 receives the value of the variable var1.

Add the value of 3 to var3 and store the result in var3.

31.4.4 Pre-defined Variables

A few variables are already pre-defined. They can be used in every microprogram.

Record: Switch

The record Node holds the basic information about the node.

switchId This variable holds the Switch Identifier calculated as a 20-bit MD5 hash of switch’s CGA.

switchIPAddr0 This variable holds the most-significant word of the switch’s IPv6 CG address. It is the
upper four bytes of the netprefix.

switchIPAddr1 This variable holds the second word of the switch’s IPv6 CG address. It is the lower four
bytes of the netprefix.

switchIPAddr2 This variable holds the third word of the switch’s IPv6 CG address. It is the upper four
bytes of the cryptographically generated interface identifier.

switchIPAddr3 This variable holds the least-significant word of the switch’s IPv6 CG address. It is the
lower four bytes of the cryptographically generated interface identifier.

switchType Switch Type

timeStamp Current Time

402 Chapter 31. Network Microservice SDK

Bayware Documentation

Record: Path

The record Path holds the path parsing results.

pathCreationTime The Path Creation Time parsed from the Path Chunk.

topicSwitchTag The Topic Switch Tag extracted from the Topic Policy Table.

pktType 8’b0–Type II; 8’b1–Type III; 8’b2–Type I packet without optional PLD_DATA Chunk; 8’b3–
Type I packet with optional PLD_DATA Chunk; Else–undefined.

ingressRCI The Segment Identifier of the ingress link, on which the packet received.

egressRCI0 The potential egress RCI parsed from the Path Chunk.

egressRCI1 The potential egress RCI parsed from the Path Chunk.

egressRCI3 The potential egress RCI parsed from the Path Chunk.

egressRCI4 The potential egress RCI parsed from the Path Chunk.

egressRCI5 The potential egress RCI parsed from the Path Chunk.

egressRCI6 The potential egress RCI parsed from the Path Chunk.

egressRCI7 The potential egress RCI parsed from the Path Chunk.

Record: Connection

The record Connection holds descriptions for each egress connection.

connectionCreationTime The timestamp for the connection creation time.

connectionQualityCredits Connection aggregated quality credits. This variable characterizes connection
quality.

connectionStatus The connection is up or down.

connectionUtilizationCredits Connection aggregated utilization credits. This variable characterizes con-
nection utilization.

connId This variable contains a 12-bit RCI. Note that values between 0 and 0xF are not valid connection
IDs. A few examples: 0x0 – a “dummy” hop; 0x1 – a subnet in a dynamic path description; 0xF – a
broadcast request.

remoteNodeId This variable holds the 32-bit identifier of the remote node assigned to the node by the
controller.

remoteNodeIPAddr0 This variable holds the most-significant word of the remote node’s IPv6 CG address.
It is the upper four bytes of the netprefix.

remoteNodeIPAddr1 This variable holds the second word of the remote node’s IPv6 CG address. It is
the lower four bytes of the netprefix.

remoteNodeIPAddr2 This variable holds the third word of the remote node’s IPv6 CG address. It is the
upper four bytes of the cryptographically generated interface identifier.

remoteNodeIPAddr3 This variable holds the least-significant word of the remote node’s IPv6 CG address.
It is the lower four bytes of the cryptographically generated interface identifier.

remoteNodeNetRole The network role (switch or host) of the remote node.

31.4. Variables 403

Bayware Documentation

Record: Tag

The record Tag holds a set of connections with a given tag.

RCI0 A RCI associated with the tag used during lookup.

RCI1 A RCI associated with the tag used during lookup.

RCI2 A RCI associated with the tag used during lookup.

RCI3 A RCI associated with the tag used during lookup.

RCI4 A RCI associated with the tag used during lookup.

RCI5 A RCI associated with the tag used during lookup.

RCI6 A RCI associated with the tag used during lookup.

RCI7 A RCI associated with the tag used during lookup.

Record: ActionSet

The record ActionSet holds information on actions required by the microprogram.

executeActionSetType As defined in the Execution Environment document.

updateFlowDefaultActionSetType As defined in the Execution Environment document.

updatePacketPathPointer As defined in the Execution Environment document.

updatePacketProgramData As defined in the Execution Environment document.

newFlowActionSetConnectionFlags As defined in the Execution Environment document.

newFlowActionSetConnection As defined in the Execution Environment document.

newTopicActionSetConnection As defined in the Execution Environment document.

Record: *

The owner may pre-define its owner record or a plurality of records.

any Variable defined by the owner of Overlay.

31.4.5 Scope of Variables

Variables have the following scopes:

• local – the variable is initialized during microprogram execution; after execution the variable is to be
destroyed,

• packet – the variable is defined for a packet and passed with the packet from node to node,

• flow – the variable is defined for a given flow and visible for all packets of the flow,

• topic – the variable is defined for a given topic and visible for all packets of the topic.

The scope is specified at the time of defining the variable within a microprogram class.

For example:

404 Chapter 31. Network Microservice SDK

Bayware Documentation

1 public class SimpleForward extends IceBuilder {
2

3 @Var(type = VarType.packet)
4 SimpleVar packVar;
5

6 @Var(type = VarType.local)
7 SimpleVar localVar;
8

9 ...

31.5 Statements

From a developer point of view, the method of microprogram is a collection of operators: operator1,
operaror2, operator3.

The class ExecMethod holds a set of operators (i.e. statements) that are to be executed.

new ExecMethod(IStatement...)

Wherein IStatement… - a set of operators for execution.

For example:

1 new ExecMethod(
2 Op.plus(tracePacket.passedHopCounter,1),
3 Op.novel(tracePacket.hopInfo),
4 Op.assign(tracePacket.hopInfo.hopId, Node.switchIPAddr0),
5 Op.assign(tracePacket.hopInfo.timeStamp, Node.timeStamp),
6 Op.assign(tracePacket.hopInfo.inRCI,Path.ingressRCI),
7 Op.assign(tracePacket.hopInfo.outRCI,Path.egressRCI0),
8 Op.forward(Path.egressRCI0),
9 Op.end());

All the operators are defined in the class io.bayware.builder.Op.

31.5. Statements 405

Bayware Documentation

406 Chapter 31. Network Microservice SDK

CHAPTER 32

API Reference

32.1 About Document

These documents describes application programming interfaces (APIs) of the Network Microservice Overlay.

32.2 Overview

Three APIs are used for interaction between Bayware components and third-party systems. These APIs are:

• Controller Northbound RESTful API (NB API)

• Controller Southbound RESTful API (SB API)

• Agent RESTful API (Agent API)

NB API provides third-party software with the access to the service, user, and node management
functions. The controller GUI utilizes the NB API as well.

SB API is the interface between the controller and IceBreaker Nodes. It provides the nodes with the access
to the node, link, and service endpoint registration functions, including initial configuration and
subsequent configuration support of these entities. Besides, the SB API processes the node’s requests for
publishing statistics and alerts.

Agent API is used by Bayware-enabled applications to set up and manage the service endpoints.

The Engine Connection Request Trigger (CRT) is the special interface used by the controller to trigger the
switch to establish connection for immediate data update on either switch or controller side, e.g.
flow CRL update, topic policy update, re-tagging connections, tunnel endpoint provisioning, providing meter
values.

407

Bayware Documentation

Fig. 32.1: Figure. Network Microservice Protocols and APIs

32.2.1 Controller Northbound RESTful API

32.2.2 Controller Southbound RESTful API

Using API

User Authentication

To access the controller Southbound API, the user must already be authenticated and possess a valid access
token. Nodes pass this token to the controller in the HTTP headers of their requests. An example of such
a token placed in a HTTP-header is

Authentication: b438e13737144ca8a39cad03b8986dcb

Additional Parameter Format

Any additional parameters are passed to the controller in the JSON format. The format is specified in HTTP
headers of the requests.

Content-Type: application/json

Version

All requests use the format shown below. The base prefix is the same in all the requests.

408 Chapter 32. API Reference

Bayware Documentation

/api/<version>/<url>

The current implementation uses the value v1 in the Version field of the prefix. As such, all requests have
the prefix shown below.

/api/v1/

Node Identifier

The node CGA address is used as a node identifier in all requests. The CGA is passed to the controller as
a hexadecimal string 32 bytes long.

Southbound API for Agent

The Southbound API allows the agent to perform the operations shown in the table below.

Operation URL Description
Host Management
GET /host/0/init Get initial config from cntlr
PUT /host/<nodeid> Register host on cntlr
POST /host/<nodeid> Send keepalive msg to cntlr
DELETE /host/<nodeid> Unregister host on cntlr
Connection Management
PUT </host/<nodeid>/conn Register connection on cntlr
Endpoint Management
PUT /host/<nodeid>/service Register svc endpoint cntlr

GET /host/0/init

Method returns initial configuration for the node, for example

{
"auth_login_url": "https://1.2.3.4/identity/api/login/",
"auth_openid_url": "https://1.2.3.4/identity/openid/",
“auth_params” {

"nonce": "n-0S6_WzA2Mj",
"state": "af0ifjsldkj",
"redirect_uri": "https://1.2.3.4/login_callback/",
"response_type": "id_token token",
"client_id": "430213",
"scope": "openid profile domain roles provider_id"

}
}

After receiving this information, the node sends the registration request to auth_url (Identity Service)
providing the username, password and domain alongside with the auth_params.

PUT /host/<nodeid>

32.2. Overview 409

Bayware Documentation

Request Structure

An example of this request is shown below.

{
“cga_params”: “<hex_string>”,
“cga_sign”: “<hex_string>”,
“cfg”: {

"ip":"8.8.8.10",
"hostname": "testhostname",
“noderole”: 0,
“ports”: [

{“number”: 1, “name”: “eth0”, “hwaddr”: “aabbccddeeff”, “admin_status”: 1},
{“number”: 2, “name”: “eth1”, “hwaddr”: “ffeeddccbbaa”, “admin_status”: 2},

]
},
"cfg_hash": "abc123456789",
“net”: {},
"net_hash": "9876654321abc"

}

cga_params

Parameter cga_params is a hexadecimal string of concatenated octets as shown below.

Name Description Length (b)
Modifier used in CGA address gen 128
Collision Count used in CGA address gen 8
Public Key RSA public key in DER format variable

cga_sign

Controller must validate CGA Sign with Public Key. Signed string has the format

Name Description Length (b)
CGA Address 128
CGA Params includes Public Key 200+

cga_hash

Parameter cfg_hash is a MD5 hash calculated by the agent. It is calculated on the serialized string
comprising IP address, hostname, noderole, ports. For example

"ip":"8.8.8.10",
"hostname": "testhostname",
“noderole”: 0,
“ports”: [

{“number”: 1, “name”: “eth0”, “hwaddr”: “aabbccddeeff”, “admin_status”: 1},
(continues on next page)

410 Chapter 32. API Reference

Bayware Documentation

(continued from previous page)

{“number”: 2, “name”: “eth1”, “hwaddr”: “ffeeddccbbaa”, “admin_status”: 2}
]

net_hash

Parameter net_hash is a MD5 hash of the object net described later.

Response

The response HTTP codes to this request are the following:

• HTTP 200 - host registered successfully

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

• HTTP 404 - node not found (not registered)

An example of the response on a successful registration (HTTP 200) is shown below.

{
“host_id”: “123456789abc”,
“lldp_key”: “dfasadfadsf”,
“keepalive_period”: 600

}

POST /host/<nodeid>

Keep-alive Request

This request is used to send keep-alive message or update some parameters.

A request example is shown below.

{
"cfg_hash": "abc123456789",
"net_hash": "123456789abc"

}

Keep-alive Response

The response HTTP codes to this request are the following:

• HTTP 200 - processed successfully (no command present)

• HTTP 202 - accepted, but the processing has not been completed (a command present)

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

• HTTP 404 - node not found (not registered)

32.2. Overview 411

Bayware Documentation

An example of the response on a successful keep-alive update (HTTP 202) is shown below.

{
“host_id”: “123456789abc”,
“keepalive_period”: 600,
“cfg_refresh”: 1,
“net_refresh”: 1

}

Configuration Management Request

When the parameter cfg_refresh or net_refresh has the value of 1 in the response, the host repeats the
keep-alive request but, this time, sending the block of requested configuration. For example

{
“cfg”: {

"ip":"8.8.8.10",
"hostname": "testhostname",
“ports”: [

{“number”: 1, “name”: “eth0”, “hwaddr”: “aabbccddeeff”, “admin_status”: 1},
{“number”: 2, “name”: “eth1”, “hwaddr”: “ffeeddccbbaa”, “admin_status”: 2}

]
},
"cfg_hash": "abc123456789",
“net”: [

“conn”: [
{“local_conn”: 12, “local_port”: 8, “remote_cga”, “<hex_string>”, “status”:␣

↪→1},
{...}

]
],
"net_hash": "123456789abc"

}

Configuration Management Response

An example of the response on a successful keep-alive update (HTTP 200), that does not require any new
information from the host, is shown below.

{
“host_id”: “123456789abc”,
“keepalive_period”: 600,
“cfg_refresh”: 0,
“net_refresh”: 0

}

DELETE /host/<nodeid>

412 Chapter 32. API Reference

Bayware Documentation

Request

This request calls on for host unregistration. The request has no body.

Response

The response HTTP codes to this request are the following:

• HTTP 200 - processed successfully

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

• HTTP 404 - node not found (not registered)

PUT /host/<nodeid>/conn

This is a request for link registration.

Content of the request and response to it depends on link registration state: preauth or auth.

Preauth Request

An example of the request in the Preauth state is shown below.

{
“stage”: “preauth”,
“nonce”: “112233445566”,
“remote_cga”: “<hex_string>”,
“local_port” 8,
“local_conn”: 12

}

Where

• stage - link establishment phase (can be “preauth” or “auth”)

• nonce - Nonce value from the SeND packet (in hex string format)

• remote_cga - CGA IP Address of remote node (in hex string format)

• local_port - local port identifier (integer)

• local_conn - local connection identifier (integer)

Preauth Response

The response in a normal case is HTTP 200 with empty body.

All the possible responses to this request are:

• HTTP 200 - processed successfully

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

32.2. Overview 413

Bayware Documentation

• HTTP 404 - node not found (not registered)

• HTTP 406 - connection validation failed (e.g., invalid nonce, local port not found, remote_cga not
registered)

Auth Request

An example of the request in the Auth state is shown below.

{
“stage”: “auth”,
“nonce”: “112233445566”,
“remote_cga”: “<hex_string>”,
“local_port”: 15

}

Auth Response

An example of the response on a successful Auth request (HTTP 200) is shown below.

{
“success”: true,
“data”: {

“nonce”: “112233445566”,
“remote_port”: 33,
“remote_portname” “eth1”,
“remote_conn”: 122,
“remote_node_role”: “host”,
“remote_domain”: “domainA”

}
}

All the possible responses to this request are:

• HTTP 200 - processed successfully

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

• HTTP 404 - node not found (not registered)

• HTTP 406 - connection validation failed (e.g., invalid nonce, local port not found, remote_cga not
registered)

Southbound API for Engine

The Southbound API allows switches to perform the operations shown in the table below.

414 Chapter 32. API Reference

Bayware Documentation

Operation URL Description
Host Management
GET /switch/0/init Get initial config from cntlr
PUT /switch/<nodeid> Register node on cntlr
POST /switch/<nodeid> Send node keepalive msg to cntlr
DELETE /switch/<nodeid> Unregister node on cntlr
Connection Management
PUT /switch/<nodeid>/conn register connection on cntlr

GET /switch/0/init

TBD

PUT /switch/<nodeid>

Request

An example of switch registration request is shown below.

{
“cfg”: {

"ip":"8.8.8.10",
"hostname": "testhostname",
“noderole”: 0,
“ports”: [

{“dp”: “<datapath_id>”,
“ports”: [

{“number”: 1, “name”: “eth0”, “hwaddr”: “aabbccddeeff”, “admin_
↪→status”: 1},

{“number”: 2, “name”: “eth1”, “hwaddr”: “ffeeddccbbaa”, “admin_
↪→status”: 2}

]
}

]
},
"cfg_hash": "abc123456789",
“net”: {},
"net_hash": "9876654321abc"

}

cfg_hash

Parameter cfg_hash is a MD5 hash calculated by the supervisor. It is calculated on the serialized string
comprising IP address, hostname, noderole, ports. For example

"ip":"8.8.8.10",
"switchname": "testswitchname",
“noderole”: 0,

(continues on next page)

32.2. Overview 415

Bayware Documentation

(continued from previous page)

“ports”: [
{“dp”: “<datapath_id>”,
“ports”: [

{“number”: 1, “name”: “eth0”, “hwaddr”: “aabbccddeeff”, “admin_status”: 1},
{“number”: 2, “name”: “eth1”, “hwaddr”: “ffeeddccbbaa”, “admin_status”: 2}

]
}

]

net_hash

Parameter net_hash is a MD5 hash of the object net described later.

Response

The response HTTP codes to this request are the following:

• HTTP 200 - node registered successfully

• HTTP 401 - unauthorized (token is not valid)

• HTTP 403 - forbidden (user has no permissions on the requested node)

• HTTP 404 - node not found (not registered)

An example of the response on a successful registration (HTTP 200) is shown below.

416 Chapter 32. API Reference

CHAPTER 33

Release Notes

33.1 Platform Version 1.3 (Nov, 2019)

33.1.1 Fabric Manager

• Workload images on RHEL 8 added to GCP, AWS, Azure

• Telemetry node deployment simplified

• Statistics per each service endpoint displayed in Grafana

• Public git repository with fabric manager resource templates

33.1.2 Orchestrator

• New service graph management commands in BWCTL-API CLI

• Centralized management of link labels for advanced service connectivity policy

• Multiple processors per zone for redundancy and load distribution

• Contract templates are available for direct upload from SDK

• Web-SDK enhanced with resource graphs and automatic tests of contract templates

33.1.3 Processor

• Reduced network protocol overhead

33.1.4 Workload

• Policy agent resolver interface updated for better support of client-side load balancers

417

Bayware Documentation

• RHEL 8 support

• Libreswan support

• Policy agent deployed in pod on Kubernetes worker node

33.2 Platform Version 1.2 (Sep, 2019)

33.2.1 Fabric Manager

• Fabric manager access to workload nodes additionally secured by processor nodes

• Single sign-on required to access Grafana and Kibana

• All sflow telemetry enriched with service names

• All sflow data encrypted

• Fabric manager Terraform plans and Ansible playbooks open to the public

33.2.2 Orchestrator

• Egress protocol filtering rules generated automatically from opposite-role ingress rules

• Simplified policy data model for fully automatic resource management

• Certificate-based node authentication by orchestrator is mandatory

• CA-signed Flow-Sign certificate is mandatory

• Status of orchestrator certificates displayed on new info page

33.2.3 Processor

• Improved policy execution performance

33.2.4 Workload

• Stateful firewall functionality added to TCP/UDP protocol filtering in eBPF

• Improved performance of agent lib-nss and DNS resolver

33.3 Platform Version 1.1 (Jul, 2019)

33.3.1 Fabric Manager

• Orchestrator, processor and workload nodes automatically placed in three separate subnets

• New SG rules allowed inter-VPC IPsec traffic between processors only

• New SG rules allowed intra-VPC IPsec workload connection to processor only

• CA-signed certificate for orchestrator southbound interface automatically installed

• IPsec events from workloads and processors pushed to orchestrator

418 Chapter 33. Release Notes

Bayware Documentation

• Compatible versions of platform components isolated within a family

33.3.2 Orchestrator

• Multiple processors and locations per availability zone supported

• Location-based automatic workload attachment replaced address-based link configuration

• Southbound interface decoupled from northbound

• mTLS is mandatory for all agent and engine communication with controller

• CA-signed certificate for each node is mandatory

33.3.3 Processor

• Improved performance of engine-OVS control channel

• Improved IPsec establishment time

• Improved virtual interface management

33.3.4 Workload

• Service authorization tokens stored in Kubernetes secrets

• Bayware CNI-plugin interoperability with Kubernetes bridge, Calico and Cilium CNIs added

• Port mirroring option added to contract role settings

• Policy agent graceful restart introduced

33.4 Platform Version 1.0 (May, 2019)

33.4.1 Fabric Manager

• Fabric Manager introduced

• Basic Root CA functionality for automatic node certificate mgmt added

• The BWCTL command line tool for vpc, VM and component mgmt introduced

• The BWCTL-API command line tool for app’s communication policy mgmt introduced

• Images for FM, orchestrator, processor and workload published in AWS, Azure, GCP

33.4.2 Orchestrator

• Service type graph enhanced with service instance representation

• Service endpoint, network endpoint and service token added to the data model

• Unified RESTful API for third-party automation systems, BWCTL-API CLI and GUI introduced

• All orchestrator components containerized

33.4. Platform Version 1.0 (May, 2019) 419

Bayware Documentation

33.4.3 Processor

• Handshake between opposite-role instances required for creating network microsegment

• Packet path cost evaluation added

• sFlow telemetry uploaded

33.4.4 Workload

• Service authorization tokens supported

• Automatic discovery of the opposite-role instances introduced

• Instance affinity option added to name resolution

• Local DNS server for containers and resolver library for VMs supported

• Kubernetes support added

• All data packet processing moved from user space dataplane to eBPF

• Debian/Ubuntu 18.04 LTS required

420 Chapter 33. Release Notes

CHAPTER 34

Further Reading

1. RISC-V is a free and open ISA enabling a new era of processor innovation

2. BPF at Cilium - execute bytecode in the Linux kernel

3. Grafana - an open platform for analytics and monitoring

4. Open vSwitch - production quality, multilayer open virtual switch

5. strongSwan - an open source, IPsec-based VPN solution

6. Kibana - visualize your Elasticsearch data

7. Security Architcture for IP RFC4301

8. IP Encapsulating Security Payload RFC4303

9. Network Service Header (NSH) RFC8300

10. DevOps, meet NetOps and SecOps. Network computing. March 2017.

11. Cluster Networking. Kubernetes concepts. June 2018.

12. The Ideal Network for Containers and NFV Microservices. Mellanox blog. June 2017.

13. What is microsegmentation? How getting granular improves network security. Network World. Jan-
uary 2018.

14. Active networking: one view of the past, present, and future. Jonathan M. Smith, Scott M. Nettles.
University of Pennsylvania. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) (Volume: 34, Issue: 1), February 2004.

15. Segment routing, a source-routing architecture.

16. Network service header. IETF RFC 8300. January 2018.

17. NSH and Segment Routing Integration for Service Function Chaining. IETF draft. March 2018.

18. LISP Control plane integration with NSH. IETF draft. March 2018.

19. Apache Groovy: A multi-faceted language for the Java platform.

20. Erlang programming language: Build massively scalable soft real-time systems.

421

https://riscv.org
http://cilium.readthedocs.io/en/latest/bpf/
https://grafana.com
https://www.openvswitch.org/
https://www.strongswan.org/
https://www.elastic.co/products/kibana
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4303
https://tools.ietf.org/html/rfc8300
https://www.networkcomputing.com/network-security/devops-meet-netops-and-secops/1048909213
https://kubernetes.io/docs/concepts/cluster-administration/networking
http://www.mellanox.com/blog/2017/06/the-ideal-network-for-containers-and-nfv-microservices/
https://www.networkworld.com/article/3247672/virtualization/what-is-microsegmentation-how-getting-granular-improves-network-security.html
https://www2.cs.duke.edu/courses/spring14/compsci514/Papers/smith04.pdf
http://www.segment-routing.net
https://tools.ietf.org/html/rfc8300
https://tools.ietf.org/html/draft-guichard-sfc-nsh-sr-00
https://tools.ietf.org/html/draft-ermagan-lisp-nsh-05
http://groovy-lang.org
http://www.erlang.org

Bayware Documentation

21. Kubernetes blog. Using eBPF in Kubernetes.

422 Chapter 34. Further Reading

https://kubernetes.io/blog/2017/12/using-ebpf-in-kubernetes/

CHAPTER 35

Glossary

Network Datapath Orchestration Continuous adjustment of network forwarding behavior in unison
with upper layer flux

Ephemeral Network Function (ENF) Usually a short-lived network task that steers or modifies packets
thereby implementing a particular communication role. Both the preparation and the execution of the
datapath action set, which produces the network forwarding behavior, comprise the ENF.

Network Microservice The combined behavior of one or more ENFs realizing a communication pattern

Network Microservice Orchestrator (NMO) A vertically distributed, highly-available system that ar-
ranges and coordinates automated tasks resulting in network microservice establishment, maintenance,
and termination. May scale out as demand requires.

Network Microservice Processor (NMP) Functional block responsible for ENF action set preparation
at the switch; paired with switch datapath, which provides ENF action set execution

Network Microservice Agent (NMA) Functional block responsible for ENF endpoint management at
the host; controls host datapath in Linux kernel

Network Microservice SDK Toolset for creating microcode to implement network microservices in either
Java- or Python-like syntax

Domain Domain is a collection of Users, Resources, and Contracts. The visibility of a set of Users, Re-
sources, and Contracts are limited by the domain boundaries. Domain serves as a logical division
between different portions of the system.

User User is an entity that receives access to the resources that are isolated in the domain. There are
two types of users: admin users and resource users. Admin user is an Orchestrator’s northbound API
entity for administrator or external system. Resource user is an Orchestrator’s southbound API entity
for switch or host.

Template Generic implementation of a communication pattern comprised of ENFs; also, Network Microser-
vice Template

Resource Either switch datapath or host datapath; used interchangeably with node;

Contract Customized implementation of a communication pattern comprised of ENFs; also, Network Mi-
croservice Instance or topic

423

Bayware Documentation

Flow Series of packets with a common set of identifiers e.g., host, contract and flow label

Northbound API Orchestrator’s externally-facing API for management by service orchestrator

Southbound API Orchestrator’s internally-facing API for host and switch operation

Agent API Optional API to business logic running on host for more granular control over datapath

424 Chapter 35. Glossary

CHAPTER 36

Indices and tables

• genindex

• modindex

• search

425

	Overview
	Problem
	Solution
	Product Architecture

	Managing Cloud Resources
	Rethinking Resource Management
	Resource Deployment
	Maintenance Automation
	Summary

	Connectivity Policies
	Layered Security
	Service Connectivity Policy
	Resource Connectivity Policy
	Summary

	Service Discovery
	Overview
	Architecture
	Specification

	Security Model
	Isolation Levels
	Isolation Topology
	Security Entities
	Summary

	Introduction
	Overview
	Fabric Components
	Behind the Scene
	Summary

	Deploy Resources
	Set up Fabric
	Create Orchestrator
	Create Processor and Workload
	Summary

	Create Resource Connectivity Policy
	Preparation
	Set up Zone
	Interconnect Zones
	Summary

	Create Service Connectivity Policy
	Preparation
	Upload Communication Rules
	Create Service Graph
	Summary

	Deploy Application
	Preparation
	Generate Token
	Deploy Service
	Summary

	Clean up
	Deploying Service Interconnection Fabric
	Cloud Infrastructure
	SIF Deployment
	Application 1 - Getaway App
	Application 2 - Voting App
	SIS - Example
	Troubleshooting

	Deploying a Geo-Redundant App
	Introduction
	Application Infrastructure
	Application Policy
	Application Microservices
	Feature Showcase
	Telemetry
	What You Need
	What To Expect
	Tutorial Outline

	Fabric
	Bayware Solution
	How Bayware Works
	Why Bayware

	Orchestrator
	Architecture
	Controller
	Telemetry
	Events

	Processor
	Introduction
	Capabilities
	Internals

	Workload
	Overview
	Control Plane Module
	Data Plane Module

	System Requirements
	Server Requirements
	Firewall Settings
	Public Cloud VM Setup
	Private Datacenter VM Setup
	Certificate Requirements

	Deploying Fabric Manager
	Spin up Fabric Manager
	Update BWCTL CLI Tool
	Configure BWCTL
	Create Fabric

	Deploying Orchestrator
	Create VPC
	Create Controller Node
	Create Telemetry Node
	Create Events Node
	Delete Orchestrator Node

	Deploying Processor
	Public Cloud Deployment
	Private Datacenter Deployment

	Deploying Workload
	Public Cloud Deployment
	Private Datacenter Deployment

	Working with Batches
	Extend Existing Fabric
	Create New Fabric
	Summary

	BWCTL CLI Manual
	About BWCTL
	Upgrading BWCTL
	Configuring BWCTL
	Getting started with BWCTL
	Using commands
	BWCTL cheat sheet

	System Administration
	Login to Orchestrator
	Create Administrative Domain
	Create Administrator

	Resource Connectivity Management
	Declare Location
	Create Zone
	Connect Zones
	Working with Batches

	Service Connectivity Management
	Upload Template
	Create Service Graph
	Working with Batches

	Application Deployment
	Generate Token
	Deploy Service
	Working with Batches

	BWCTL-API Command Line Interface
	About BWCTL-API
	Installing BWCTL-API
	Configuring BWCTL-API
	Getting started with BWCTL-API
	Using Commands

	Policy Agent REST API
	About REST API
	Configuring REST API
	Getting started with REST API
	Using REST API
	Quick Reference

	Network Microservice SDK
	About document
	Overview
	Getting Started
	Variables
	Statements

	API Reference
	About Document
	Overview

	Release Notes
	Platform Version 1.3 (Nov, 2019)
	Platform Version 1.2 (Sep, 2019)
	Platform Version 1.1 (Jul, 2019)
	Platform Version 1.0 (May, 2019)

	Further Reading
	Glossary
	Indices and tables

