
JupiterOne Documentation

JupiterOne

Jul 09, 2019

Get Started

1 Configure Managed Integrations 1
1.1 Other Data . 1

2 Get started with search 3
2.1 Ask Questions . 3
2.2 Full Text Search . 4
2.3 JupiterOne Query Language (J1QL) . 4
2.4 Combining full text search with J1QL . 4

3 Navigating the JupiterOne Graphs 5

4 JupiterOne Query Language Tutorial 7
4.1 Part 1 - Simple Root query . 7
4.2 Part 2 - Infrastructure Analysis . 9
4.3 Part 3 - User and Access Analysis . 14
4.4 Part 4 - Cross Account Analysis . 16
4.5 Part 5 - Endpoint Compliance . 16

5 How to use filters in the Asset Inventory app 19
5.1 Quick Filters by Class and/or Type . 19
5.2 Granular Filters by Properties . 20

6 Alerts 25
6.1 Import Alert Rules from Rule Pack . 25
6.2 Create Custom Alert Rules . 26
6.3 Managing Alerts . 27
6.4 Configure Daily Notification Email . 27

7 Findings 29
7.1 Managing Findings . 29
7.2 Create Alerts for Findings . 31
7.3 Visualizing Findings with J1 Query and Graph . 31

8 Frequently Asked Questions 33
8.1 How do I get my custom / on-premise data into JupiterOne? . 33
8.2 Where do these Person entities come from? Why are they not tagged with an integration? 33
8.3 How do I add custom properties to my AWS entities from the source? 33

i

8.4 Some AWS resources seem to be missing from the Asset Inventory / Graph. What is going on? . . . 34
8.5 I have a Network marked as “public”, what does that mean? . 34
8.6 How is it determined if an AWS VPC or Subnet is public? . 34
8.7 How are Person entities (i.e. employees) created? . 34
8.8 How can I avoid creating a Person entity for a generic/system user account? 34
8.9 I see a user named “Callisto” on my account. Who is that? . 35
8.10 Endpoint compliance data isn’t appearing as expected. How can I troubleshoot this? 35
8.11 How do I search/filter on all AWS entities without enumerating all types? 36

9 J1 Queries for AWS Config 37
9.1 ACM Rules . 37
9.2 EC2 Rules . 37
9.3 IAM Rules . 38
9.4 Lambda Rules . 39
9.5 RDS Rules . 39
9.6 DynamoDB Rules . 40
9.7 S3 Rules . 40
9.8 Other Rules . 41

10 Using JupiterOne for Active Vulnerability and Threat Monitoring in AWS 43
10.1 Accessing the Findings in the Alerts app . 43
10.2 Correlation and Alerting . 45

11 How to configure SAML SSO integration with JupiterOne 47
11.1 Supported Features . 47
11.2 Configuration Steps . 47
11.3 Attribute Mappings . 50
11.4 Removing Users . 52
11.5 Current Limitations . 53

12 Detect Suspicious Code Commits in Pull Requests 55
12.1 Enable Detection . 55
12.2 How does it work? . 56
12.3 Combine suspicious commits checking and vulnerability checking for CI/CD 57

13 JupiterOne Node.js Client and CLI 59

14 Using JupiterOne as a central repository for SecOps and compliance artifacts 61
14.1 TL;DR . 61
14.2 Security artifacts as code . 61
14.3 Uploading to JupiterOne . 66

15 JupiterOne Endpoint Compliance Agent “Power Up” 69
15.1 The Agent . 69
15.2 Installation . 69
15.3 Policies . 70
15.4 Advanced Use Cases . 70

16 JupiterOne Data Model 71
16.1 Entity . 71
16.2 Relationships . 72
16.3 What does this look like? . 75

17 JupiterOne Data Security 77
17.1 Data Protection . 77

ii

17.2 External Data Ingestion/Import . 78
17.3 Data Ownership and Access . 78
17.4 Application Access . 79

18 JupiterOne Query Language (J1QL) 81
18.1 Language Features . 81
18.2 Basic Keywords . 81
18.3 Sorting and Pagination via ORDER BY, SKIP, and LIMIT . 84
18.4 Aggregation Functions: COUNT, MIN, MAX, AVG and SUM . 84
18.5 Examples . 85
18.6 Advanced Notes and Use Cases . 87

19 JupiterOne API 91
19.1 Querying Entities and Relationships . 91
19.2 Entity Mutations . 98
19.3 Relationship Mutations . 100
19.4 Building CSV Report . 103
19.5 Alert and Rules Operations . 103
19.6 Question Operations . 107

20 General 111
20.1 Are my assets tracked? How many entities are there? . 111
20.2 What are my production information assets and their owners and classification? 111
20.3 What are my production information assets? . 112
20.4 What are my production systems and servers? . 112
20.5 What are my production data stores and databases? . 113
20.6 What are my production resources? . 113
20.7 What applications and operating systems are in use? . 113
20.8 What are my production applications? . 114
20.9 Do I have proper vendor support for my software applications? . 114
20.10 Who are the new hires within the last 12 months? . 115
20.11 What business applications are we using? . 115
20.12 What changed in my environment in the last 24 hours? . 115
20.13 What was added to my environment in the last 24 hours? . 116

21 Access 117
21.1 Find anything that allows public access to everyone. 117
21.2 Show me the current password policy and compliance status. 117
21.3 Are there external users with access to our systems? . 118
21.4 Who has been assigned permissions with administrator/privileged access? 118
21.5 Who has access to what systems/resources? . 119
21.6 Who owns which user accounts? . 119
21.7 What are the shared/generic/service accounts or access roles? (Including user accounts that are not

individually owned) . 120
21.8 Did we remove all access from employees who left? . 120
21.9 Which user accounts do not have multi-factor authentication enabled? 120

22 Application Development 123
22.1 What are the code repos for a particular application or project? . 123
22.2 Were there any Code Repos added in the last 24 hours? . 123
22.3 Who are the most recent contributors to this repo? . 123
22.4 Which PRs did this developer open in the last 5 days? . 124

23 Data 125
23.1 Are there any non-public data stores incorrectly configured with public access to everyone? 125

iii

23.2 Which data stores do not have proper classification tags? . 125
23.3 What is the inventory of my sensitive data stores? . 126
23.4 Which production data stores do not have proper classification tags? 126
23.5 Is there any known confidential or critical data outside of production? 126
23.6 Evidence of data-at-rest encryption for production servers . 127
23.7 Is my production or PHI/PII data stores encrypted? . 127
23.8 Is my critical data in production encrypted? . 128
23.9 Is there unencrypted ePHI or PII? . 128

24 Endpoints 129
24.1 Whose endpoint is out of compliance? . 129
24.2 Is there anybody who does not have a user endpoint device (e.g. a laptop or workstation)? 129
24.3 What is the configuration and compliance status of my endpoint devices? 130
24.4 Is there malware protection for all endpoints? . 130
24.5 Is there protection for all user endpoints/devices? . 131
24.6 Is operating system patching and auto update enabled on endpoint hosts? 131
24.7 Is application patching and auto update enabled on endpoint hosts? 132
24.8 Are my servers and systems protected by hosted-based firewall? . 132
24.9 Are there security agents monitoring and protecting my endpoint hosts/devices? 133
24.10 Is operating system patching and auto update enabled on endpoint hosts? 133
24.11 Is application patching and auto update enabled on endpoint hosts? 134
24.12 Are my servers and systems protected by hosted-based firewall? . 134
24.13 What are the approved server/system images? . 135
24.14 Are all system images updated in the past six months? . 135
24.15 Which hosts are (or are not) using approved standard images? . 136
24.16 Which devices have been disposed in the last 12 months? . 136

25 Governance 137
25.1 What are the corporate security policies and procedures? . 137
25.2 When was security policies and procedures last updated or reviewed? 137
25.3 Who is the appointed security officer? . 138
25.4 Which are my documented risks? . 138
25.5 Was there at least one risk assessment performed within the past year? 139
25.6 Who are my vendors? Do I have a BAA/DPA/NDA/MSA and SLA/Support Agreement with them? . 139

26 Infrastructure 141
26.1 What are directly connected to the Internet? . 141
26.2 What production resources are directly connected/exposed to the Internet/everyone? 141
26.3 Are there potential IP collisions among the networks/subnets in my environment? 142
26.4 What hosts or devices are connected to my internal networks? . 142
26.5 Show all inbound SSH firewall rules across my network environments. 142
26.6 Is inbound SSH allowed directly from an external host or network? 143
26.7 What network traffic is allowed between internal and external (i.e. between trusted and untrusted)

networks? . 143
26.8 Is there proper segmentation/segregation of internal networks? . 143
26.9 Are wireless networks segmented and protected by firewalls? . 144
26.10 Show listing of network layer firewall protection across all my environments. 144
26.11 Are there VPN configured for remote access? . 145

27 Vulnerability Management 147
27.1 What open vulnerabilities do I have? . 147
27.2 Which applications are vulnerable? . 147

28 AWS 149
28.1 Overview . 149

iv

28.2 Integration Instance Configuration . 149
28.3 Permissions . 149
28.4 Entities . 150
28.5 Relationships . 150

29 JupiterOne Managed Integration for Microsoft Azure 151
29.1 Overview . 151
29.2 Integration Instance Configuration . 151
29.3 Entities . 152
29.4 Relationships . 152

30 Bitbucket 153
30.1 Overview . 153
30.2 Integration Instance Configuration . 153
30.3 Entities . 153
30.4 Relationships . 154

31 Carbon Black PSC 155
31.1 Overview . 155
31.2 Integration Instance Configuration . 155
31.3 Entities . 155
31.4 Relationships . 156

32 GitHub 157
32.1 Overview . 157
32.2 Integration Instance Configuration . 157
32.3 Permissions . 157
32.4 Entities . 158
32.5 Relationships . 158

33 Google 159
33.1 Overview . 159
33.2 Integration Instance Configuration . 159
33.3 Entities . 160
33.4 Relationships . 160

34 HackerOne 161
34.1 Overview . 161
34.2 Integration Instance Configuration . 161
34.3 Entities . 161
34.4 Relationships . 161

35 jamf 163
35.1 Overview . 163
35.2 Integration Instance Configuration . 163
35.3 Entities . 163
35.4 Relationships . 163

36 Jira 165
36.1 Overview . 165
36.2 Integration Instance Configuration . 165
36.3 Entities . 165
36.4 Relationships . 165

37 KnowBe4 167

v

37.1 Overview . 167
37.2 Integration Instance Configuration . 167
37.3 Entities . 167
37.4 Relationships . 167

38 Okta 169
38.1 Overview . 169
38.2 Integration Instance Configuration . 169
38.3 Entities . 169
38.4 Relationships . 169
38.5 Tips . 170

39 OneLogin 171
39.1 Overview . 171
39.2 Integration Instance Configuration . 171
39.3 Entities . 171
39.4 Relationships . 171

40 Openshift 173
40.1 Overview . 173
40.2 Integration Instance Configuration . 173
40.3 Entities . 173
40.4 Relationships . 174

41 SentinelOne 175
41.1 Overview . 175
41.2 Integration Instance Configuration . 175
41.3 Entities . 175
41.4 Relationships . 176

42 Snyk 177
42.1 Overview . 177
42.2 Integration Instance Configuration . 177
42.3 Entities . 177
42.4 Relationships . 177

43 Tenable Cloud 179
43.1 Overview . 179
43.2 Integration Instance Configuration . 179
43.3 Entities . 179
43.4 Relationships . 179

44 Threat Stack 181
44.1 Overview . 181
44.2 Integration Instance Configuration . 181
44.3 Entities . 181
44.4 Relationships . 182

45 Veracode 183
45.1 Overview . 183
45.2 Integration Instance Configuration . 183
45.3 Entities . 183
45.4 Relationships . 183

46 Wazuh 185

vi

46.1 Overview . 185
46.2 Integration Instance Configuration . 185
46.3 Entities . 185
46.4 Relationships . 185

47 Whitehat 187
47.1 Overview . 187
47.2 Integration Instance Configuration . 187
47.3 Entities . 187
47.4 Relationships . 187

48 AccessKey 189

49 AccessPolicy 191
49.1 admin (boolean) - Optional . 191
49.2 rules (array of string) - Optional . 191
49.3 content (string) - Optional . 191

50 AccessRelationship 193
50.1 _class (string) - Optional . 193
50.2 permissions (array of string) - Optional . 193
50.3 accessLevel (array) - Optional . 194
50.4 protocol (string) - Optional . 194
50.5 portRange (string) - Optional . 194
50.6 type (string) - Optional . 194

51 AccessRole 195

52 Account 197
52.1 production (boolean) - Required . 197
52.2 accessURL (string) - Optional . 197
52.3 mfaEnabled (boolean) - Optional . 197

53 Application 199
53.1 COTS (boolean) - Optional . 199
53.2 FOSS (boolean) - Optional . 199
53.3 SaaS (boolean) - Optional . 199
53.4 external (boolean) - Optional . 199
53.5 mobile (boolean) - Optional . 200
53.6 license (string) - Optional . 200
53.7 licenseURL (string) - Optional . 200
53.8 productionURL (string) - Optional . 200
53.9 stagingURL (string) - Optional . 200
53.10 devURL (string) - Optional . 201
53.11 testURL (string) - Optional . 201
53.12 alternateURLs (array of string) - Optional . 201

54 Assessment 203
54.1 category (string) - Required . 203
54.2 summary (string) - Required . 204
54.3 internal (boolean) - Required . 204
54.4 startedOn (number) - Optional . 204
54.5 completedOn (number) - Optional . 204
54.6 reportURL (string) - Optional . 204
54.7 assessor (string) - Optional . 204

vii

54.8 assessors (array of string) - Optional . 204

55 Attacker 205

56 Certificate 207

57 Cluster 209

58 CodeCommit 211
58.1 branch (string) - Required . 211
58.2 message (string) - Required . 211
58.3 merge (boolean) - Required . 211
58.4 versionBump (boolean) - Required . 211

59 CodeDeploy 213
59.1 jobName (string) - Optional . 213
59.2 jobNumber (integer) - Optional . 213
59.3 summary (string) - Optional . 213
59.4 action (string) - Optional . 213
59.5 target (string) - Optional . 214
59.6 production (boolean) - Optional . 214

60 CodeModule 215
60.1 public (boolean) - Optional . 215

61 CodeRepo 217
61.1 application (string) - Optional . 217
61.2 project (string) - Optional . 217
61.3 public (boolean) - Optional . 217

62 CodeReview 219
62.1 title (string) - Required . 219
62.2 summary (string) - Optional . 219
62.3 state (string) - Optional . 219

63 Configuration 221

64 Control 223

65 ControlPolicy 225
65.1 category (string) - Optional . 225
65.2 rules (array of string) - Optional . 225
65.3 content (string) - Optional . 226

66 CryptoKey 227

67 DataObject 229
67.1 category (string) - Optional . 229
67.2 format (string) - Optional . 229
67.3 classification (string) - Required . 229
67.4 location (string) - Optional . 230
67.5 PII (boolean) - Optional . 230
67.6 PHI (boolean) - Optional . 230
67.7 PCI (boolean) - Optional . 230
67.8 encryptionRequired (boolean) - Optional . 230
67.9 encrypted (boolean) - Optional . 230

viii

67.10 public (boolean) - Optional . 230

68 DataStore 231
68.1 location (string) - Optional . 231
68.2 encryptionRequired (boolean) - Optional . 231
68.3 encryptionAlgorithm (string) - Optional . 231
68.4 encryptionKeyRef (string) - Optional . 231
68.5 encrypted (boolean) - Optional . 232
68.6 public (boolean) - Optional . 232
68.7 hasBackup (boolean) - Optional . 232

69 Database 233
69.1 location (string) - Optional . 233
69.2 encryptionRequired (boolean) - Optional . 233
69.3 encrypted (boolean) - Optional . 233
69.4 classification (string) - Required . 233

70 Deployment 235
70.1 desiredSize (number) - Optional . 235
70.2 currentSize (number) - Optional . 235
70.3 maxSize (number) - Optional . 235

71 Device 237
71.1 category (string) - Required . 237
71.2 hardwareVendor (string) - Required . 237
71.3 hardwareModel (string) - Required . 237
71.4 hardwareVersion (string) - Optional . 238
71.5 hardwareSerial (string) - Required . 238
71.6 assetTag (string) - Optional . 238
71.7 platform (string) - Optional . 238
71.8 osDetails (string) - Optional . 238
71.9 osName (string) - Optional . 238
71.10 osVersion (string) - Optional . 238
71.11 userEmails (array of string) - Optional . 239
71.12 location (string) - Optional . 239
71.13 cost (number) - Optional . 239
71.14 value (number) - Optional . 239
71.15 BYOD (boolean) - Required . 239
71.16 status (string) - Optional . 239

72 Document 241

73 Domain 243

74 Entity 245
74.1 name (string) - Required . 245
74.2 displayName (string) - Required . 245
74.3 summary (string) - Optional . 245
74.4 description (string) - Optional . 245
74.5 classification (string) - Optional . 246
74.6 criticality (integer) - Optional . 246
74.7 risk (integer) - Optional . 246
74.8 trust (integer) - Optional . 246
74.9 complianceStatus (number) - Optional . 246
74.10 status (string) - Optional . 246

ix

74.11 active (boolean) - Optional . 247
74.12 public (boolean) - Optional . 247
74.13 validated (boolean) - Optional . 247
74.14 temporary (boolean) - Optional . 247
74.15 createdOn (number) - Optional . 247
74.16 updatedOn (number) - Optional . 247
74.17 expiresOn (number) - Optional . 247
74.18 webLink (string) - Optional . 247
74.19 owner (string) - Optional . 248
74.20 tag.* (string) - Optional . 248
74.21 tags (array of string) - Optional . 248
74.22 notes (array of string) - Optional . 248

75 Finding 249
75.1 assessment (string) - Optional . 249
75.2 status (string) - Optional . 249
75.3 severity (string) - Required . 249
75.4 priority (string) - Optional . 250
75.5 score (number) - Optional . 250
75.6 impact (string) - Optional . 250
75.7 exploitability (number) - Optional . 250
75.8 vector (string) - Optional . 250
75.9 stepsToReproduce (array of string) - Optional . 250
75.10 recommendation (string) - Optional . 250
75.11 targets (array of string) - Optional . 250
75.12 targetDetails (array of string) - Optional . 250
75.13 remediationSLA (integer) - Optional . 251
75.14 blocksProduction (boolean) - Optional . 251
75.15 open (boolean) - Required . 251
75.16 production (boolean) - Required . 251
75.17 public (boolean) - Required . 251
75.18 validated (boolean) - Optional . 251
75.19 references (array of string) - Optional . 251

76 Firewall 253
76.1 category (array of string) - Required . 253
76.2 isStateful (boolean) - Optional . 253

77 Framework 255
77.1 name (string) - Required . 255
77.2 displayName (string) - Required . 255
77.3 summary (string) - Optional . 255
77.4 description (string) - Optional . 255
77.5 standard (string) - Required . 256
77.6 version (string) - Required . 256

78 Function 257
78.1 image (string) - Optional . 257
78.2 version (string) - Optional . 257
78.3 runtime (string) - Optional . 257
78.4 memorySize (string) - Optional . 257
78.5 codeSize (string) - Optional . 258
78.6 codeHash (string) - Optional . 258
78.7 trigger (string) - Optional . 258
78.8 handler (string) - Optional . 258

x

79 Gateway 259
79.1 category (array of string) - Required . 259
79.2 function (array of string) - Required . 259
79.3 public (boolean) - Required . 260

80 Group 261

81 Host 263
81.1 hostname (string) - Required . 263
81.2 ipAddress (string) - Optional . 263
81.3 publicDnsName (string) - Optional . 263
81.4 privateDnsName (string) - Optional . 264
81.5 publicIpAddress (string) - Optional . 264
81.6 privateIpAddress (string) - Optional . 264
81.7 ipAddresses (array of string) - Optional . 264
81.8 ipv6Addresses (array of string) - Optional . 264
81.9 macAddress (string) - Optional . 264
81.10 platform (string) - Optional . 264
81.11 osDetails (string) - Optional . 265
81.12 osName (string) - Optional . 265
81.13 osVersion (string) - Optional . 265
81.14 macAddresses (array of string) - Optional . 265
81.15 isPhysical (boolean) - Optional . 265

82 HostAgent 267
82.1 function (array of string) - Required . 267

83 Image 269

84 Incident 271
84.1 category (string) - Required . 271
84.2 severity (string) - Required . 271
84.3 impacts (array of string) - Optional . 272
84.4 reportable (boolean) - Required . 272
84.5 reporter (string) - Optional . 272
84.6 postmortem (string) - Optional . 272

85 Internet 273
85.1 displayName (string) - Optional . 273
85.2 CIDR (string) - Optional . 273
85.3 CIDRv6 (string) - Optional . 273
85.4 public (boolean) - Optional . 273

86 IpAddress 275
86.1 dnsName (string) - Optional . 275
86.2 publicIpAddress (string) - Optional . 275
86.3 privateIpAddress (string) - Optional . 275
86.4 ipVersion (integer) - Optional . 276

87 Key 277
87.1 fingerprint (string) - Optional . 277
87.2 material (string) - Optional . 277
87.3 usage (string) - Optional . 277

88 Metadata 279

xi

88.1 _accountId (string) - Required . 279
88.2 _id (string) - Required . 279
88.3 _key (string) - Required . 279
88.4 __iconPath (string) - Optional . 279
88.5 _class (string) - Required . 280
88.6 _type (string) - Required . 280
88.7 _integrationName (string) - Optional . 280
88.8 _integrationDefinitionId (string) - Optional . 280
88.9 _integrationInstanceId (string) - Optional . 280
88.10 _createdOn (number) - Required . 280
88.11 _createdBy (string) - Optional . 280
88.12 _beginOn (number) - Required . 280
88.13 _endOn (number) - Optional . 281
88.14 _updatedBy (string) - Optional . 281
88.15 _lastSeenOn (number) - Required . 281
88.16 _version (integer) - Required . 281
88.17 _latest (boolean) - Optional . 281
88.18 _deleted (boolean) - Optional . 281
88.19 vendorManaged (boolean) - Optional . 281
88.20 inUse (boolean) - Optional . 281
88.21 ignore (boolean) - Optional . 281

89 Module 283
89.1 public (boolean) - Optional . 283

90 Network 285
90.1 environment (string) - Required . 285
90.2 CIDR (string) - Required . 286
90.3 CIDRv6 (string) - Optional . 286
90.4 public (boolean) - Required . 286
90.5 internal (boolean) - Required . 286
90.6 wireless (boolean) - Optional . 286

91 NetworkInterface 287
91.1 macAddress (string) - Optional . 287
91.2 dnsName (string) - Optional . 287
91.3 publicIpAddress (string) - Optional . 287
91.4 privateIpAddress (string) - Optional . 288
91.5 ipVersion (integer) - Optional . 288

92 Organization 289
92.1 _type (string) - Optional . 289
92.2 website (string) - Optional . 289
92.3 emailDomain (string) - Optional . 290
92.4 external (boolean) - Optional . 290

93 PR 291
93.1 title (string) - Required . 291
93.2 summary (string) - Optional . 291
93.3 state (string) - Required . 291
93.4 source (string) - Required . 292
93.5 target (string) - Required . 292
93.6 repository (string) - Required . 292
93.7 approved (boolean) - Optional . 292
93.8 validated (boolean) - Optional . 292

xii

94 PasswordPolicy 293
94.1 minLength (integer) - Optional . 293
94.2 requireSymbols (boolean) - Optional . 293
94.3 requireNumbers (boolean) - Optional . 293
94.4 requireUppercase (boolean) - Optional . 293
94.5 requireLowercase (boolean) - Optional . 294
94.6 maxAgeDays (integer) - Optional . 294
94.7 minAgeMins (integer) - Optional . 294
94.8 historyCount (integer) - Optional . 294
94.9 preventReset (boolean) - Optional . 294
94.10 expiryWarningDays (integer) - Optional . 294
94.11 hardExpiry (boolean) - Optional . 294
94.12 excludeUsername (boolean) - Optional . 294
94.13 excludeAttributes (array of string) - Optional . 294
94.14 excludeCommonPasswords (boolean) - Optional . 295
94.15 lockoutAttempts (integer) - Optional . 295
94.16 autoUnlockMins (integer) - Optional . 295
94.17 requireMFA (boolean) - Optional . 295

95 Person 297
95.1 firstName (string) - Required . 297
95.2 lastName (string) - Required . 297
95.3 middleName (string) - Optional . 297
95.4 email (array of string) - Required . 297
95.5 title (string) - Optional . 298
95.6 phone (array of string) - Optional . 298
95.7 address (string) - Optional . 298
95.8 employeeId (string) - Optional . 298
95.9 employeeType (string) - Optional . 298
95.10 userIds (array of string) - Optional . 298
95.11 manager (string) - Optional . 298
95.12 managerId (string) - Optional . 298
95.13 managerEmail (string) - Optional . 299

96 Policy 301
96.1 title (string) - Required . 301
96.2 summary (string) - Required . 301
96.3 author (string) - Optional . 301
96.4 content (string) - Required . 301
96.5 applicable (boolean) - Optional . 302
96.6 adopted (boolean) - Optional . 302

97 Procedure 303
97.1 title (string) - Required . 303
97.2 summary (string) - Required . 303
97.3 author (string) - Optional . 303
97.4 content (string) - Required . 303
97.5 control (string) - Optional . 304
97.6 applicable (boolean) - Optional . 304
97.7 adopted (boolean) - Optional . 304

98 Process 305
98.1 state (string) - Optional . 305

99 Project 307

xiii

99.1 key (string) - Optional . 307
99.2 productionURL (string) - Optional . 307
99.3 stagingURL (string) - Optional . 307
99.4 devURL (string) - Optional . 308
99.5 testURL (string) - Optional . 308
99.6 alternateURLs (array of string) - Optional . 308

100Record 309

101RecordEntity 311
101.1 name (string) - Required . 311
101.2 displayName (string) - Required . 311
101.3 summary (string) - Optional . 311
101.4 description (string) - Optional . 311
101.5 classification (string) - Optional . 312
101.6 category (string) - Optional . 312
101.7 webLink (string) - Optional . 312
101.8 content (string) - Optional . 312
101.9 open (boolean) - Optional . 313
101.10public (boolean) - Optional . 313
101.11production (boolean) - Optional . 313
101.12approved (boolean) - Optional . 313
101.13approvedOn (number) - Optional . 313
101.14approvers (array of string) - Optional . 313
101.15reporter (string) - Optional . 313
101.16reportedOn (number) - Optional . 313
101.17createdOn (number) - Optional . 314
101.18updatedOn (number) - Optional . 314

102Relationship 315
102.1 _class (string) - Optional . 315
102.2 displayName (string) - Optional . 316
102.3 webLink (string) - Optional . 316
102.4 isValidated (boolean) - Optional . 316
102.5 isTemporary (boolean) - Optional . 316
102.6 isGroupLayout (boolean) - Optional . 317
102.7 tag.* (string) - Optional . 317
102.8 tags (array of string) - Optional . 317

103Requirement 319
103.1 title (string) - Required . 319
103.2 summary (string) - Optional . 319
103.3 state (string) - Optional . 319

104Resource 321

105Review 323
105.1 title (string) - Required . 323
105.2 summary (string) - Optional . 323
105.3 state (string) - Optional . 323

106Risk 325
106.1 assessment (string) - Optional . 325
106.2 category (string) - Optional . 325
106.3 probability (integer) - Required . 325

xiv

106.4 impact (integer) - Required . 326
106.5 score (integer) - Required . 326
106.6 details (string) - Optional . 326
106.7 mitigation (string) - Optional . 326
106.8 status (string) - Required . 326

107Root 327
107.1 displayName (string) - Optional . 327

108Rule 329
108.1 category (string) - Optional . 329
108.2 content (string) - Optional . 329

109Ruleset 331
109.1 category (string) - Optional . 331
109.2 rules (array of string) - Optional . 331
109.3 content (string) - Optional . 331

110Scanner 333
110.1 category (array of string) - Required . 333

111Service 335
111.1 category (array of string) - Required . 335
111.2 endpoints (array of string) - Required . 335

112Site 337
112.1 category (array of string) - Optional . 337
112.2 location (string) - Optional . 337
112.3 hours (string) - Optional . 338
112.4 secured (boolean) - Optional . 338
112.5 restricted (boolean) - Optional . 338

113Task 339

114Team 341
114.1 email (string) - Optional . 341

115Training 343

116User 345
116.1 username (string) - Required . 345
116.2 email (string) - Optional . 345
116.3 shortLoginId (string) - Optional . 345
116.4 mfaEnabled (boolean) - Optional . 345

117UserGroup 347
117.1 email (string) - Optional . 347

118Vendor 349
118.1 category (string) - Required . 349
118.2 website (string) - Optional . 350
118.3 departments (array of string) - Optional . 350
118.4 emailDomain (string) - Optional . 350
118.5 mainContactName (string) - Optional . 350
118.6 mainContactEmail (string) - Optional . 350
118.7 mainContactPhone (string) - Optional . 350

xv

118.8 mainContactAddress (string) - Optional . 351
118.9 admins (array of string) - Optional . 351
118.10breachResponseDays (integer) - Optional . 351
118.11linkToNDA (string) - Optional . 351
118.12linkToMSA (string) - Optional . 351
118.13linkToSLA (string) - Optional . 351
118.14linkToBAA (string) - Optional . 351
118.15linkToDPA (string) - Optional . 351
118.16linkToVTR (string) - Optional . 352
118.17linkToISA (string) - Optional . 352
118.18statusPage (string) - Optional . 352

119Vulnerability 353
119.1 category (string) - Required . 353
119.2 status (string) - Optional . 353
119.3 severity (string) - Required . 354
119.4 priority (string) - Optional . 354
119.5 score (number) - Optional . 354
119.6 impact (number) - Optional . 354
119.7 exploitability (number) - Optional . 354
119.8 vector (string) - Optional . 354
119.9 impacts (array of string) - Optional . 354
119.10remediationSLA (integer) - Optional . 354
119.11blocking (boolean) - Required . 355
119.12open (boolean) - Required . 355
119.13production (boolean) - Required . 355
119.14public (boolean) - Required . 355
119.15validated (boolean) - Optional . 355
119.16references (array of string) - Optional . 355

120Weakness 357
120.1 category (string) - Optional . 357
120.2 exploitability (string) - Optional . 357
120.3 references (array of string) - Optional . 357

121Workload 359
121.1 image (string) - Optional . 359
121.2 fqdn (string) - Optional . 359

122JupiterOne 2018.10 Release 361
122.1 New Features . 361
122.2 Improvements . 361
122.3 Bug Fixes . 361

123JupiterOne 2018.11 Release 363
123.1 New Features . 363
123.2 Improvements . 363

124JupiterOne 2018.12 Release 365
124.1 New Features . 365
124.2 Improvements . 365

125JupiterOne 2018.13 Release 367
125.1 New Features . 367
125.2 Improvements . 367

xvi

126JupiterOne 2018.14 Release 369
126.1 New Features . 369
126.2 Improvements and Bug Fixes . 371

127JupiterOne 2019.15 Release 373
127.1 New Features . 373
127.2 Improvements and Bug Fixes . 375

128JupiterOne 2019.16 Release 377
128.1 New Features . 377
128.2 Improvements and Bug Fixes . 378

129JupiterOne 2019.17 Release 379
129.1 New Features . 379
129.2 Improvements and Bug Fixes . 379

130JupiterOne 2019.18 Release 381
130.1 New Features . 381
130.2 Improvements and Bug Fixes . 382

131JupiterOne 2019.19 Release 383
131.1 New Features . 383
131.2 Improvements and Bug Fixes . 384

132JupiterOne 2019.20 Release 387
132.1 New Features . 387
132.2 Improvements and Bug Fixes . 389

133JupiterOne 2019.21 Release 391
133.1 New Features . 391
133.2 Improvements and Bug Fixes . 392

134JupiterOne 2019.22 Release 393
134.1 New Features . 393
134.2 Improvements and Bug Fixes . 393
134.3 Additional Notes . 394

135JupiterOne 2019.23 Release 395
135.1 New Features . 395
135.2 Improvements and Bug Fixes . 395

136JupiterOne 2019.24 Release 397
136.1 New Features . 397
136.2 Improvements and Bug Fixes . 399

137JupiterOne 2019.25 Release 401
137.1 New Features . 401
137.2 Early Access / Beta Features . 401
137.3 Improvements and Bug Fixes . 403

xvii

xviii

CHAPTER 1

Configure Managed Integrations

You will need to have data in the JupiterOne platform to take advantage of its capabilities. The more data, the more
powerful these capabilities become.

There are over a dozen managed integrations available out-of-the-box for turnkey configuration. More are added
regularly.

Each integration may have a slightly different mechanism for authentication and configuration, as required by the
provider. For example, the AWS integration uses an IAM Role and Assume Role Trust policies for access. Other
integrations may use an API key/token, OAuth, or Basic Auth.

This recording below shows an example of how to configure an AWS integration.

configure-aws-integration

For details on other integrations, please see their corresponding documentation page under the Managed Integrations
section.

1.1 Other Data

Additionally, you can upload data outside of these managed integrations using the JupiterOne API Client or CLI.
This allows you to centrally track, monitor and visualize any of your data such as on-premise systems and security /
compliance artifacts.

1

JupiterOne Documentation

2 Chapter 1. Configure Managed Integrations

CHAPTER 2

Get started with search

You can quickly search and get insight across your entire digital environment integrated with JupiterOne, right here
from the Landing Zone. There are three modes of search:

1. Ask questions by typing in any keywords to search across all packaged/saved questions

2. Full text search across all entities based on their property values

3. JupiterOne query language (J1QL) for precise querying of entities and relationships

Results can be toggled in four different display modes: Table, Graph, Raw JSON, or Pretty JSON.

Note that for performance reasons, search results are limited to return up to 250 items. If you believe something is
missing from a large result set, try tuning the query to generate more precise results.

2.1 Ask Questions

Just start typing any keyword (or combination of keywords) such as these (without quotes):

• compliance

• access

• traffic

• ssh

• data encrypted

• production

Or ask a question like:

• Who are my vendors?

• What lambda functions do I have in AWS?

• What is connected to the Internet?

• Who has access to . . . ?

3

JupiterOne Documentation

2.2 Full Text Search

Put your keywords in quotes (e.g. “keyword”) to start a full text search. For example,

• “0123456789012” will likely find an AWS Account entity with that account ID

• “sg-123ab45c” will find an AWS EC2 Security Group with that group ID

• “Charlie” will find a Person and/or User with that first name

2.3 JupiterOne Query Language (J1QL)

The JupiterOne Query Language (J1QL) is used here for searching for anything across all of your entities and rela-
tionships.

To start, understand the basic query structure:

FIND {class or type of Entity1} AS {alias1}
WITH {property}={value} AND|OR {property}={value}
THAT {relationship_verb} {class or type of Entity2} AS {alias2}
WHERE {alias1}.{property} = {alias2}.{property}

For example:

• Find User that IS Person

• Find Firewall that ALLOWS as rule (Network|Host) where rule.ingress=truee
and rule.fromPort=22

• Find * with tag.Production='true' (note the wildcard * here)

The query language is case insensitive except for the following:

• TitleCase Entity keyword after Find and the {relationship verb} will search for entities of that
Class. (e.g. CodeRepo)

• lowercase Entity keyword after Find and the {relationship verb} will search for entities of that
Type. An entity type with more than one word is generally in snake_case. (e.g. github_repo)

• Entity property names and values, and alias names defined as part of the query, are case sensitive.

Checkout the J1QL query tutorial and the complete J1QL documentation with more advanced examples.

2.4 Combining full text search with J1QL

You can also start with a full text search and then use J1QL to further filter the results from the initial search. For
example:

"Administrator" with _class='AccessPolicy' that ASSIGNED (User|AccessRole)

4 Chapter 2. Get started with search

CHAPTER 3

Navigating the JupiterOne Graphs

JupiterOne is built on a data-driven graph platform. For the story that inspired us to build it, check out this blog.

JupiterOne query language (J1QL) is designed to traverse this graph and return a sub-graph – or data from the nodes
(i.e. entities) and edges (i.e. relationships) of a sub-graph. You can view and interact with the sub-graph from any
J1QL query result.

This guide focuses on interacting with the graph component. For more details on J1QL, check out the J1QL tutorial
and technical doc.

This screenshot below shows an example result graph from a query in the Landing app:

The first set of controls on the upper right corner does the following:

5

https://jupiterone.com/blog/three-dimensional-security/

JupiterOne Documentation

Selecting any node (i.e. entity) on the graph will bring up a set of controls right on top of it that allows you to interact
with the node. They serve the following functions:

The last set of controls are at the bottom left corner of the graph, and they do the following:

Here’s a screenshot of a graph with the property panel and filter panel open:

Zoom and Move

The stand-alone Galaxy / Graph Viewer app uses the same sets of controls.

That’s it! Now go explore! Check out the J1QL tutorial if you haven’t yet.

6 Chapter 3. Navigating the JupiterOne Graphs

CHAPTER 4

JupiterOne Query Language Tutorial

Querying can be the most challenging, yet the most fun and rewarding part of the JupiterOne experience. Once you
become familiar with the query language, we are certain that you will find yourself uncovering all sorts of previously
undiscovered insight from your data.

The JupiterOne Query Language (aka “J1QL”) is a query language for finding the entities and relationships within
your digital environment. J1QL blends together the capabilities of asking questions, performing full text search, or
querying the complex entity-relationship graph.

There are plenty of pre-packaged queries you can easily use in the Landing app or browse in Query Library. This
tutorial focuses instead on helping you construct custom queries yourself.

This tutorial builds on the full J1QL documentation using some common use cases.

4.1 Part 1 - Simple Root query

First, let’s try this query:

Find Account that relates to Root return tree

Please note the noun that immediately follows the verb is case sensitive:

• A TitleCase word tells the query to search for entities of that class (e.g. Account, Firewall, Gateway,
Host, User, Root, Internet, etc.);

• A snake_case word tells the query to search for entities of that type (e.g. aws_account,
aws_security_group, aws_internet_gateway, aws_instance, aws_iam_user,
okta_user, user_endpoint, etc.)

You should get a result that looks like this (the return tree part of the query tells it to show the graph view by
default):

7

JupiterOne Documentation

The selected node in the above example is the special Root node, which represents your organization. Depending on
the number of integration configurations you have, you’ll see different number of accounts connected, showing that
the Root entity OWNS these Account entities.

See the three sets of controls in the result panel. Starting from top right to bottom left –

The first set of controls (next to the query) allows you to:

• Switch views between Table, Graph, Raw JSON, and Pretty JSON.

• Share the query – shows a popup box with the weblink to copy and share.

• Save the query – give it a title, description, and optionally some tags to save it to your own query library.

• Close / remove this result panel from the page.

The second set of controls (above the selected entity node) allows you to:

• Show the detailed properties, tags and metadata of the selected entity.

• Expand the entity to see more of its connected neighbors - this will bring in additional data that may not have
been returned by the original query, allowing you to further the search and analysis.

• Hide the selected entity node from the graph view - once you’ve hidden an entity, an unhide button will show up
in the third set of controls at the bottom left of the graph, allowing you to unhide all currently hidden entities.

The last set of controls (at the bottom left corner) allows you to:

• Toggle the full screen mode.

• Opens up the filter panel to show/hide entities in the graph by account or entity type.

• Unhide all currently hidden entities (not shown in the above screenshot – it only shows up when there is at least
one hidden entity).

See more details on the graph controls in this doc.

8 Chapter 4. JupiterOne Query Language Tutorial

JupiterOne Documentation

4.2 Part 2 - Infrastructure Analysis

Examples in this section require at least one AWS integration configuration.

If you’ve configured an AWS integration, you are now ready to try something a lot more interesting. Type in, or
copy/paste the following query:

4.2.1 2a - SSH Key Usage Examples

Find AccessKey with usage='ssh'

This should find a set of aws_access_key entities used for SSH access into your EC2 instances,
assuming you have some of those and they are configured to allow SSH access.

You can also query by the entity type instead of its class. The following query will get you the same result - unless
you also have SSH Keys you’ve added from other integrations (non-AWS) or from the UI / API.

Find aws_key_pair

Now expand the search a little bit with the following:

Find Host as h
that uses AccessKey with usage='ssh' as k
return
h.tag.AccountName,
h._type,
h.displayName,
h.instanceId,
h.region,
h.availabilityZone,
h.publicIpAddress,
h.privateIpAddress,
h.platform,
h.instanceType,
h.state,
k._type,
k.displayName

This finds the Host entities that USES each AccessKey and returns a set of specific properties. You
can add or remove properties returned as desired.

Note the keyword that is what tells the query to traverse the graph to find connections/relationships
between entities, followed by a verb that represents :) the relationship class.

Also keep in mind you can switch to the Graph view to get a more visual result, and continue to drill
down interactively.

Again, you can query using the more specific entity types. For example:

Find aws_instance that uses aws_key_pair

Or mix and match them:

Find Host that uses aws_key_pair

Note that the relationship keyword/verb is not case sensitive.

4.2. Part 2 - Infrastructure Analysis 9

JupiterOne Documentation

4.2.2 2b - EBS Volume Examples

First, let’s see if there are any unencrypted EBS volumes:

Find aws_ebs_volume with encrypted != true

Note in the above query, the with keyword binds to the entity noun immediately to its left, and allows
you to filter results on that entity’s property values.

If the above query finds some unencrypted EBS volumes, it’ll be interested to see what’s using them:

Find Host that uses aws_ebs_volume with encrypted != true

You can view the aws_ebs_volume entities and their relationships in the Graph mode, and further
inspect the properties on each entity node or relationship edge. You can also expand to see more connected
entities and relationships.

Are these actively in use? And in production?

Find Host with active = true and tag.Production = true
that uses aws_ebs_volume with encrypted != true

What subnets are these instances in? Let’s also just return a few key properties from type of entities related in this
search:

Find Network as n
that has Host as h
that uses aws_ebs_volume with encrypted != true and tag.Production = true as e

→˓return
n.displayName, h._type, h.displayName, e.displayName, e.encrypted

OK. How about any EBS Volumes not actively in use? Perhaps some of them can be removed. . .

Find aws_ebs_volume that !uses Host

You may notice the above query feels backwards. That’s okay. The query will work the same way
regardless of the direction of relationship. Because the query by default returns all properties from the
initial set of entities, it is sometimes easier to reverse the query direction so that you get the data you’re
looking for more easily.

Technically, Find Host that !uses aws_ebs_volume as v return v.* may feel more
correct, but it is definitely a bit more to type out.

4.2.3 2c - Unencrypted Data

There are many types of data stores you may have in AWS. For example, EBS Volumes, S3 Buckets, RDS Clusters
and Instances, DynamoDB Tables, Redshift Clusters, to name a few. You likely want them to be encrypted if they
store confidential data.

How do you find out if that’s the case?

Find (aws_s3_bucket|aws_rds_cluster|aws_db_instance|aws_dynamodb_table|aws_redshift_
→˓cluster) with encrypted!=true

The above query will certainly do the job, but it’s quite complicated. This is where the abstract class labeling auto-
matically assigned by JupiterOne serves its purpose. Querying by class makes it a whole lot simpler:

10 Chapter 4. JupiterOne Query Language Tutorial

JupiterOne Documentation

Find DataStore with encrypted != true

Now, you can start adding a few property filters to make the results much more focused, to help cut down the noise or
to prioritize remediation. For example:

Find DataStore with
encrypted != true and
tag.Production = true and
(classification = 'confidential' or classification = 'restricted')

4.2.4 2d - Tagging Resources

As you can see from some of the earlier examples, tagging resources can be very useful operationally. That’s why we
highly recommend tagging your resources at the source. These tags will be ingested by JupiterOne and you can use
them in your custom queries.

By default, the packaged queries provided by JupiterOne, as seen in the Query Library from the Landing app and
used in the Compliance app, rely on the following tags:

• Classification

• Owner

• PII or PHI or PCI (boolean tags to indicate data type)

• AccountName

• Production

All custom tags ingested by JupiterOne integrations are prefixed with tag.<TagName>. They need to be used as
such in the query.

The Classification and Owner tags are automatically captured as properties so they can be used directly in the
query without the tag. prefix - in all lower case: classification = '...' or owner= '...'.

The tag.AccountName (string) and tag.Production (boolean) tags can be added by JupiterOne as part
of the Advanced Options in each integration configuration.

4.2.5 2e - Network Resources and Configurations

You may have a number of questions to ask or confirm about your network resources and their configurations. Here
are a few examples.

Let’s start with finding a few network resources and their connections:

Find (Gateway|Firewall) with category='network'
that relates to *
return tree

Keep in mind you can toggle the result back to Table view if you’d like.

How about networks and subnets?

Find Network that contains Network return tree

Or resources in a VPC:

4.2. Part 2 - Infrastructure Analysis 11

JupiterOne Documentation

Find Network that has (Host|Cluster|Database) return tree

The result looks like this (you may have a lot more going on than what’s shown here from the demo
environment):

Note that the properties panel for the selected aws_subnet has a webLink that will allow you to
quickly get to the source directly in the AWS web console.

In AWS, you most likely have set up CloudFront distributions to distribute traffic to your API Gateways or static
websites hosted in S3. What does that look like?

Find aws_cloudfront_distribution that relates to * return tree

Here, the result looks a little busier, from a J1 account with multiple AWS integration configurations and
quite a few aws_cloudfront_distribution entities and relationships.

This graph shows you the origins connected to the distributions: both S3 buckets (for static web-
site/contents) and API Gateways. Additionally, the graph shows you the ACM Certificate being used by
them and the WAF ACL, if any, configured to protect them.

Keep in mind you can select any entity node in the graph to inspect its detailed properties, or find a web
link to quick get to the source in AWS web console.

12 Chapter 4. JupiterOne Query Language Tutorial

JupiterOne Documentation

If you use AWS Transfer for SFTP, you can find the Transfer Servers, Users, which IAM Roles are assigned to
them, and which S3 Buckets the users have access to.

Find aws_account
that HAS aws_transfer
that HAS Host
that HAS User
that RELATES TO *
return tree

You’ll get a visual that looks like this:

4.2.6 2f - Serverless Functions

Are you using serverless (lambda functions)? If you are, here are a few things that may help you see how they are set
up.

Let’s start with a listing of your lambda functions:

Find aws_lambda_function

Simple. Now, what triggers each function?

find aws_lambda_function as function
that TRIGGERS * as trigger
return
trigger._type, trigger.displayName, trigger.arn, trigger.webLink, function.

→˓functionName, function.arn, function.webLink

Are there lambda functions with access to resources in a VPC?

Find aws_lambda_function that has aws_vpc return tree

The above query will give you a visual graph of the lambda functions and the VPC they are configured to
run inside.

It is actually a best practice to not run lambda functions without access to a VPC unless they need
direct access to resources within one – for example, EC2 instances, RDS databases, or Elastic-
Search/ElastiCache.

Is inbound SSH allowed directly from an external host or network?

4.2. Part 2 - Infrastructure Analysis 13

JupiterOne Documentation

Find Firewall as fw
that ALLOWS as rule (Host|Network)
with internal=false or internal=undefined as src

where rule.ingress=true and (rule.fromPort<=22 and rule.toPort>=22)
return
fw._type,
fw.displayName,
rule.fromPort,
rule.toPort,
src.displayName,
src.ipAddress,
src.CIDR

Notice the above query uses where to filter the property values of the relationship. You can use both
with and where to filter property values of entities. See the full J1QL documentation for more details.

Also keep in mind you can toggle to Graph View to see the above results more visually and interactively.

What production resources are directly connected/exposed to the Internet/everyone?

Find (Internet|Everyone)
that relates to *
with tag.Production=true and _class!='Firewall' and _class!='Gateway'

return tree

What are my network layer resources?

Find (Firewall | Gateway) with category='network'

What about Security Group protection?

Find aws_security_group that PROTECTS aws_instance return tree

Pro Tip: selecting an edge in the graph to see the security group rule details (i.e. properties on the edge)

4.3 Part 3 - User and Access Analysis

Once you have an Okta or OneLogin integration configured, try some of these example queries yourself.

4.3.1 3a - IdP users and access

Examples in this section require an identity provider integration (Okta or OneLogin)

Are there system accounts do not belong to an individual employee/user?

Find User that !is Person

User entities in JupiterOne are automatically mapped to a corresponding Person (_type:
'employee') entity, when there is at least one Identity Provider (IdP) integration configuration - such
as Okta or OneLogin.

Pro Tip 1: Set the userType property of the user profile in your IdP account to 'system' or
'generic' or 'bot' will prevent JupiterOne from creating a Person entity for that user.

14 Chapter 4. JupiterOne Query Language Tutorial

JupiterOne Documentation

Pro Tip 2: Set the username of your aws_iam_user or other non-IdP users to be the email address
of a Person / employee will allow JupiterOne to automatically map that User to its corresponding Person.
Alternatively, you can add an email tag to your aws_iam_user for the mapping to work.

Which active user accounts do not have multi-factor authentication enabled?

Find User with active = true and mfaEnabled != true
that !(ASSIGNED|USES|HAS) mfa_device

Depending on the specific IdP integration, a User entity may have a relationship mapping to an
mfa_device instead of the mfaEnabled flag directly as a property.

Therefore, the above query finds all User entities with the active flag but not the mfaEnabled flag
set to true on its properties, and additionally, checks for the existence of an relationship between that
User and any mfa_device assigned or in use.

Are there users accessing my ‘AWS’ application without using MFA?

Find User with active = true and mfaEnabled != true
that ASSIGNED Application with displayName = 'Amazon Web Services'

Replace the string value of the displayName to check for another application.

You can also use shortName = 'aws', which will check for all AWS application instances, if you
have more than one AWS SAML app configured with your IdP.

Find all contractors and external users in the environment.

Find User that IS Person that !EMPLOYS Root

The above query finds user accounts belong to any individual not directly employed by your organization
(Root entity).

Find User as u that IS Person as p
where u.userType='contractor' or p.employeeType='contractor'

The above query finds contractor users.

4.3.2 3b - Cloud users and access

Examples in this section require at least one AWS integration configuration.

Who has been assigned full Administrator access in AWS?

find (aws_iam_role|aws_iam_user|aws_iam_group)
that ASSIGNED AccessPolicy with policyName='AdministratorAccess'

Which IAM roles are assigned which IAM policies?

find aws_iam_role as role
that ASSIGNED AccessPolicy as policy
return
role._type as RoleType,
role.roleName as RoleName,
policy._type as PolicyType,
policy.policyName as PolicyName

4.3. Part 3 - User and Access Analysis 15

JupiterOne Documentation

4.3.3 3c - Combined users and access across all environments

Examples in this section work best when there are both IdP and AWS integration configurations enabled in JupiterOne.

Who has access to what systems/resources?

Find (User|Person) as u
that (ASSIGNED|TRUSTS|HAS|OWNS)
(Application|AccessPolicy|AccessRole|Account|Device|Host) as a

return
u.displayName, u._type, u.username, u.email,
a._type, a.displayName, a.tag.AccountName

order by u.displayName

4.4 Part 4 - Cross Account Analysis

Many examples in this section requires both Okta and AWS integration configurations in JupiterOne, as well as an
AWS SAML app configured in your Okta account. Some queries work best when you have multiple AWS configurations.

Who has access to my AWS accounts via single sign on (SSO)?

Find User as U
that ASSIGNED Application as App
that CONNECTS aws_account as AWS
return
U.displayName as User,
App.tag.AccountName as IdP,
App.displayName as ssoApplication,
App.signOnMode as signOnMode,
AWS.name as awsAccount

Are there assume role trusts from one AWS account to other external entities?

Find aws_account
that HAS aws_iam
that HAS aws_iam_role
that TRUSTS (Account|AccessRole|User|UserGroup) with _source='system-mapper'
return tree

Note from the above query, _source='system-mapper' is an indicator that the trusted entity is
not one ingested by an integration configuration, rather, mapped and created by JupiterOne during the
analysis of Assume Role policies of the IAM roles in your account(s). Therefore, these entities are most
likely external.

For example, you will most definitely see the JupiterOne integration IAM role with a TRUSTS relationship
to the JupiterOne AWS account.

4.5 Part 5 - Endpoint Compliance

Examples in this section require the activation of at least one JupiterOne Endpoint Compliance Agent - powered by
Stethoscope app.

Do I have local firewall enabled on end-user devices?

16 Chapter 4. JupiterOne Query Language Tutorial

JupiterOne Documentation

Find HostAgent as agent
that MONITORS user_endpoint as device
return
device.displayName,
device.platform,
device.osVersion,
device.hardwareModel,
device.owner,
agent.firewall,
agent.compliant,
agent._type,
agent.displayName

Whose endpoints are non-compliant?

Find Person as person
that OWNS (Host|Device) as device
that MONITORS HostAgent with compliant!=true as agent
return
person.displayName,
person.email,
device.displayName,
device.platform,
device.osVersion,
device.hardwareModel,
device.owner,
agent.compliant,
agent._type,
agent.displayName

What applications do those users have access to?

Find HostAgent with compliant!=true
that MONITORS (Host|Device)
that OWNS Person
that IS User
that Assigned Application
return tree

Out of those above, any of them have access to AWS?

Find HostAgent with compliant!=true
that MONITORS (Host|Device)
that OWNS Person
that IS User
that (ASSIGNED|HAS) (aws_iam_role|aws_iam_policy|aws_iam_user_policy|aws_iam_group)
return tree

The resulting graph may look like this:

4.5. Part 5 - Endpoint Compliance 17

JupiterOne Documentation

noncompliance-
device-aws-access

18 Chapter 4. JupiterOne Query Language Tutorial

CHAPTER 5

How to use filters in the Asset Inventory app

There are two ways to filter the thousands of digital assets (i.e. Entities) you may have from the Asset Inventory app:

• Quick Filters by Class and/or Type

• Granular Filters by Properties

5.1 Quick Filters by Class and/or Type

You can quickly filter the entities/assets by Class, by selecting one or multiple of the icons that represent each class.
The tooltip displays the class label when you move over it:

The Class of an entity is an abstract label that defines what the entity is within the concept of security operations. For
more details, see the JupiterOne Data Model documentation.

Once you select one or more class, you can further filter the entities/assets by Type:

The Type of an entity represents the specific type of entity as defined by its source. For more details, see the JupiterOne
Data Model documentation.

You can also expand the Class filter to get a more detailed, dashboard-like view of the entites/assets with a count for
each class.

19

JupiterOne Documentation

The data will respond correspondingly to the selection in the table below the quick filters. Note the pagination control
at the bottom of the table:

Selecting an entity in the table will bring up its detailed properties in a side panel on the right.

5.2 Granular Filters by Properties

You can apply granular filters by selecting specific property values.

Open up the Filter Panel using the control icon near the top right corner:

20 Chapter 5. How to use filters in the Asset Inventory app

JupiterOne Documentation

Look for the property or properties you’d like to filter on to select one or multiple values to apply the filter. Clicking
on a previously selected value from the property dropdown box will unselect it.

5.2. Granular Filters by Properties 21

JupiterOne Documentation

22 Chapter 5. How to use filters in the Asset Inventory app

JupiterOne Documentation

Tips: We recommend selecting Class/Type using the quick filter first, before apply more granular property filters. This
will reduce the number of properties/values and make it a lot easier for selection.

5.2. Granular Filters by Properties 23

JupiterOne Documentation

24 Chapter 5. How to use filters in the Asset Inventory app

CHAPTER 6

Alerts

JupiterOne allows you to configure alert rules using any J1QL query for continuous auditing and threat monitoring.
This is done in the Alerts app.

6.1 Import Alert Rules from Rule Pack

You will need to have at least one active alert rule to trigger any alert. The easiest way to add some rules is to import
rule packs, following these steps:

1. Go to Manage Rules from the Alerts app

2. Click Import Rule Pack action button

3. This will bring up the Import Rules from Rule Pack modal window, where you can select the rule packs or
individual rules within a rule pack. Click Save to import the selected rules.

25

JupiterOne Documentation

6.2 Create Custom Alert Rules

Creating your own custom alert rule is easy:

1. Go to Manage Rules from the Alerts app

2. Click Create Rule action button to bring up the modal window

3. Enter the following details for the custom rule and hit SAVE:

• Name

• Description

• Severity (select from drop down list)

• Query (any J1QL query)

26 Chapter 6. Alerts

JupiterOne Documentation

The custom rule will be added and be evaluated daily. If the query you have specified in the rule returns at least one
match, it will trigger an alert.

6.3 Managing Alerts

The alert rules are evaluated daily by default, or at the custom interval – hourly or every 30 minutes – you have
specified for a specific rule.

Active alerts that matched the evaluation criteria of the alert rules will show up in the Alerts app in a data grid that
looks like this:

• Click on an individual alert row will expand it to show the alert details.

• Click on the DISMISS button to dismiss an alert.

6.4 Configure Daily Notification Email

To receive daily notification of new/active alerts, select:

• Manage Rules

• Daily Emails

6.3. Managing Alerts 27

JupiterOne Documentation

• Enter the email addresses of the users or teams in the Recipients field

Your JupiterOne Daily Alert Report will look like this:

To ensure delivery of these reports, please whitelist @jupiterone.io and @us.jupiterone.io in your email
configuration.

28 Chapter 6. Alerts

CHAPTER 7

Findings

JupiterOne provides a centralized repository and dashboard to let you easily manage security findings from different
sources, including:

• AWS Inspector findings

• AWS GuardDuty findings

• Veracode static and dynamic analysis findings

• WhiteHat application security findings

• Tenable Cloud scanning findings

• HackerOne report findings

• CVEs and other vulnerability findings

• Manual penetration testing findings (imported via API - see this guide)

More vulnerability scanner integrations are being added. Current roadmap includes: Rapid7, Qualys, Bugcrowd,
White Source, Source Clear, and Snyk.

7.1 Managing Findings

Consolidated findings can be accessed in the Alerts app, under the Findings tab. The header tab shows a total count
of currently open findings. Selecting it will bring you to the detailed findings view:

29

JupiterOne Documentation

JupiterOne will automatically map resources impacted by or related to each finding based on the available attributes
from the finding source.

Selecting a finding from the list will show you a graph of those relationships. This allows you to visualize the context
to further analyze the finding’s impact and to determine a course of action for remediation.

30 Chapter 7. Findings

JupiterOne Documentation

7.2 Create Alerts for Findings

You can create custom alert rules to notify you on certain findings, using J1QL to filter and correlate.

7.2.1 Examples:

The following three rules are included in the J1 Common Alerts Rule Pack:

• high-severity-finding

Alerts on Findings with a severity of High or a numeric severity rating higher than 7 that were new within the
last 24 hours.

Find Finding with
(severity='High' or severity='high' or numericSeverity>7) and
_createdOn > date.now-24hours

• prod-resources-with-high-severity-finding

Alerts when Production resources are impacted by high severity findings.

Find (Host|DataStore|Application|CodeRepo|Account|Service|Network)
with tag.Production=true
that has Finding with severity=('High' or 'high') or numericSeverity=(7 or 8)

• prod-resources-with-critical-finding

Alerts when Production resources are impacted by critical findings.

Find (Host|DataStore|Application|CodeRepo|Account|Service|Network)
with tag.Production=true
that has Finding with severity=('Critical' or 'critical') or numericSeverity=(9

→˓or 10)

The following rule is included in the J1 AWS Threat Rule Pack:

• aws-guardduty-inspector-finding-instance-correlation

Identifies vulnerable EC2 instances (i.e. with medium or higher rated open Inspector finding) that are also
targets of suspicious activities (i.e. with medium or higher rated open GuardDuty finding).

Find aws_guardduty_finding with numericSeverity>5 and open=true as guardduty
that relates to aws_instance as i
that has aws_inspector_finding with numericSeverity>5 and open=true as inspector
return i.*, guardduty.*, inspector.*

7.3 Visualizing Findings with J1 Query and Graph

You can execute J1QL queries to generate graph visualizations that help you analyze the relationships among findings,
the agents/scanners/services that identified them, and the resources they impact.

Here’s an example:

Find cve that relates to (Host|HostAgent) with active=true return tree

This will give you a visual like this (you may need to move the nodes around to adjust their positioning):

7.2. Create Alerts for Findings 31

JupiterOne Documentation

graph-
cve

32 Chapter 7. Findings

CHAPTER 8

Frequently Asked Questions

8.1 How do I get my custom / on-premise data into JupiterOne?

JupiterOne’s asset inventory, search and visualization supports any data imported that follows the reference data model,
not limited to data ingested by managed integrations.

This is easily done via the API or CLI. Each entity object can be represented in a few lines of JSON or YAML code.
The J1 API Client or CLI can create/update them to your JupiterOne account. You can also develop a script to run on
a schedule (e.g. via a cron job) or integrate into your DevOps automation.

8.2 Where do these Person entities come from? Why are they not
tagged with an integration?

The Person entities are “mapped” from User entities. They are considered “shared” entities that multiple integrations
can map to and contribute properties to. For example, a Person can be created by a Google integration (from a
google_user). Or from a Github User, AWS IAM User, etc.

The Person entities represent actual individuals in the organizations, whereas the User entities are the logical user
accounts within each digital environment/account (i.e. from an integration).

8.3 How do I add custom properties to my AWS entities from the
source?

You can add custom properties by tagging your AWS resources. AWS supports tags for most resources. All tags will
be ingested as entity properties. Each tag will have a prefix tag. followed by the tag name as the entity property
name.

You can then build queries using these tag properties. For example:

33

JupiterOne Documentation

Find aws_instance with tag.Environment='staging'

8.4 Some AWS resources seem to be missing from the Asset Inven-
tory / Graph. What is going on?

This is most commonly caused by incorrect or insufficient permissions. Check the IAM policy assigned to the IAM
role used by JupiterOne in your AWS account. You can find details on the required permissions by going to

Integrations Configuration > Add AWS Configuration > and clicking on the Setup Instructions button.

Or they can be found on the jupiterone-aws-integration project on Github.

8.5 I have a Network marked as “public”, what does that mean?

The public property on a Network entity means the network is publicly accessible. A publicly accessible network
could be either internal or external. There is an internal property to indicate whether that is the case.

A network that is not an entity ingested from an integration is determined to be potentially an external network,
with internal=undefined. When such a network (or host) has a public IP address or CIDR, it is set to be
public=true.

An internal network - that is, a Network entity ingested from an integration, such as an aws_subnet or aws_vpc -
is set to internal=true. An internal network may be determined to be publicly accessible by the integration with
certain conditions that are specific to each type of integration.

8.6 How is it determined if an AWS VPC or Subnet is public?

An aws_vpc or aws_subnet is determined to be publicly accessible – i.e. public=true – only when the
following conditions are met:

• The VPC has an Internet Gateway that connects it to the Internet

• The VPC or subnet has a Route in the Route Table to external networks

• The VPC or subnet has a Network ACL that allows traffic to/from external networks

8.7 How are Person entities (i.e. employees) created?

A Person entity is created by the “mapper” process – when a User entity is ingested/updated from an identity
provider integration (e.g. Okta, OneLogin, Google), a Person entity is “mapped” with the user’s information (first
and last name, email address, etc.).

8.8 How can I avoid creating a Person entity for a generic/system
user account?

Certain properties are used to determine if the user is a system user or an actual individual. This depends on the
integration.

34 Chapter 8. Frequently Asked Questions

https://github.com/jupiterone/jupiterone-aws-integration

JupiterOne Documentation

For Okta, you can set the userType property for the user to one of the following to avoid it being mapped to a
Person:

• bot

• generic

• service

• system

8.9 I see a user named “Callisto” on my account. Who is that?

“Callisto callisto@jupiterone.io” is the account for JupiterOne Support. The Support User is by default added to a new
account during free trial, proof-of-concept evaluation, or initial account onboarding. This is to facilitate better support
and training on using the platform.

• The support user can be removed by an account administrator at any time, should you determine that ongoing
regular support is no longer needed.

• You have the option and administrative privilege to add the support user back at any time, when support is
needed in the future.

8.10 Endpoint compliance data isn’t appearing as expected. How can
I troubleshoot this?

For the Stethoscope-powered compliance data to report successfully:

• Endpoint devices must be running Stethoscope-app.

• Endpoint devices must be running the powerup agent.

• The powerup agent must be sucessfully activated.

Stethoscope-app and the powerup agent are both installed via the same powerup installation bundle. You should check
to see that the Stethoscope giraffe icon is present in the device’s system tray. If it is not, you will need to launch
Stethoscope-app. You can verify that the powerup agent is running as a system service by checking for its process.
On MacOS or Linux, issue a command like ps -ef | grep j1-endpoint-agen[t] to verify that there is
indeed an agent service running.

To verify that the powerup agent is successfully activated, you can perform a manual scan from within a shell terminal:

/opt/j1endpointagent/bin/j1-endpoint-agent scan --verbose

The output of this scan will indicate success if your agent has been successfully activated and can communicate se-
curely with JupiterOne. If this is unsuccessful, you should resend an activation email to this device from the JupiterOne
Powerup administration UI for Endpoint Compliance, and perform the activation step as indicated in the email. If you
suspect there may have been a problem with installation, or if other errors persist, please try re-downloading and
executing the installation script, and performing the activation step.

Additional diagnostic information may be available in the device’s system log. You can search this for “jupiterone” or
“ECA:” to quickly filter the results.

8.9. I see a user named “Callisto” on my account. Who is that? 35

mailto:callisto@jupiterone.io

JupiterOne Documentation

8.11 How do I search/filter on all AWS entities without enumerating
all types?

For example, you may want to identify if a certain tag is present across all entities from AWS. You can do this by using
the special metadata _integrationName, like this:

Find * with _integrationName="AWS" and tag.ABC=undefined

You may also want to limit this query to filter out irrelevant entities by class. For example:

Find * with
_integrationName="AWS" and
tag.ABC=undefined and
_class!='Finding'

36 Chapter 8. Frequently Asked Questions

CHAPTER 9

J1 Queries for AWS Config

AWS Config is a service provided by AWS that can be used to evaluate the configuration settings of your AWS
resources. This is typically done by enabling AWS Config rules in one or multiple of your AWS accounts to represent
your ideal configuration settings.

There are a few downsides of AWS Config:

• It can easily cost $500 to $1000+ per account per month depending on the number of resources in the account
and number of rules you have configured.

• It is hard to fine tune AWS Config rules with the tags and other contextual data to reduce false positives.

• Setting up alerts and notifications requires additional configuration using SNS or CloudWatch.

Fortunately, almost all of evaluation of AWS Config rules can be done by a simple J1QL query/alert in JupiterOne.
Additionally, each query can easily be modified to include tags or even relationship context.

Here are some examples.

9.1 ACM Rules

acm-certificate-expiration-check

Ensures ACM Certificates in your account are marked for expiration within the specified number of days.

Find aws_acm_certificate with expiresOn < date.now + 30days

OR

Find Certificate with expiresOn < date.now + 30days

9.2 EC2 Rules

ec2-instances-in-vpc

37

JupiterOne Documentation

Ensure all EC2 instances run in a VPC.

Find aws_instance with vpcId=undefined

ec2-volume-inuse-check

Checks whether EBS volumes are attached to EC2 instances.

Find aws_ebs_volume that !USES aws_instance

encrypted-volumes

Checks whether the EBS volumes that are in an attached state are encrypted.

Find aws_instance as i that USES aws_ebs_volume with encrypted!=true as v
return
i.tag.AccountName, i.name, i.instanceId, i.state, i.region, i.webLink,
v.volumeId, v.encrypted, v.webLink

restricted-ssh

Checks whether the incoming SSH traffic for the security groups is accessible.

With AWS Config, this rule is compliant when the IP addresses of the incoming SSH traffic in the security groups are
restricted. This rule applies only to IPv4.

Find aws_security_group as sg that ALLOWS as rule * as src
where
rule.ingress=true and rule.ipProtocol='tcp' and
(rule.fromPort<=22 and rule.toPort>=22)

return
sg.displayName,
rule.ipProtocol, rule.fromPort, rule.toPort,
src.displayName, src.ipAddress, src.CIDR

9.3 IAM Rules

iam-root-access-key-check

Ensure root AWS account has MFA enabled.

Find aws_account with _source!='system-mapper' and AccountMFAEnabled!=1

iam-password-policy

Ensure the account password policy for IAM users meets the specified requirements.

Find aws_iam_account_password_policy with
requireUppercase != true or
requireLowercase != true or
requireSymbols != true or
requireNumbers != true or
minLength < 8 or
maxAgeDays > 90 or
historyCount < 12

Adjust the above values to match your organization policy. You can also separate each into its own query.

38 Chapter 9. J1 Queries for AWS Config

JupiterOne Documentation

iam-user-no-policies-check

Ensure that none of your IAM users have policies attached.

IAM users should inherit permissions from IAM groups or roles.

Find aws_iam_user that assigned (aws_iam_user_policy|aws_iam_policy)

The aws_iam_user_policy in the above query specifies an inline policy whereas the aws_iam_policy is a
managed policy.

9.4 Lambda Rules

lambda-function-public-access-prohibited

Checks whether the AWS Lambda function policy attached to the Lambda resource prohibits public access.

lambda-function-settings-check

Find aws_lambda_function with runtime='nodejs6.10'

Find aws_lambda_function with timeout < 5 or timeout > 300

Find aws_lambda_function with memorySize <= 128 or memorySize >= 1024

Find aws_lambda_function with role = '<role_arn>'

You can of course adjust any of the values in the above example queries.

Note that nodejs6.10 is End-of-Life (EOL) as of April 2019. The first query above is an excellent check to
ensure you have migrated all of your lambda functions to nodejs8.10.

9.5 RDS Rules

db-instance-backup-enabled

Checks whether RDS DB instances have backups enabled.

Find (aws_db_instance|aws_rds_cluster) with BackupRetentionPeriod=undefined

Optionally, the rule checks the backup retention period and the backup window.

Find (aws_db_instance|aws_rds_cluster) with
BackupRetentionPeriod=undefined or
BackupRetentionPeriod<30

rds-snapshots-public-prohibited

Checks if Amazon Relational Database Service (Amazon RDS) snapshots are public. The rule is non-compliant if any
existing and new Amazon RDS snapshots are public.

rds-storage-encrypted

Checks whether storage encryption is enabled for your RDS DB instances.

Find (aws_db_instance|aws_rds_cluster) with encrypted!=true

9.4. Lambda Rules 39

JupiterOne Documentation

See a visual graph of which RDS cluster/instance is using which KMS key with the following query:

Find (aws_db_instance|aws_rds_cluster) that uses aws_kms_key return tree

You can easily extend the query to cover other data stores and check for their encryption status across the board:

Find DataStore with encrypted!=true

The above query covers RDS instances/clusters, S3 buckets, EBS volumes, DynamoDB tables, Redshift clusters
all at once.

This is often combined with some tagging to reduce false positives. For example:

Find DataStore with encrypted!=true and
(classification='critical' or classification='confidential')

9.6 DynamoDB Rules

dynamodb-throughput-limit-check

Checks whether provisioned DynamoDB throughput is approaching the maximum limit for your account. By default,
the rule checks if provisioned throughput exceeds a threshold of 80% of your account limits.

n/a

9.7 S3 Rules

s3-bucket-public-read-prohibited

Checks that your Amazon S3 buckets do not allow public read access.

Find aws_s3_bucket that ALLOWS as grant Everyone where grant.permission='READ'

Or, to return certain specific properties about the bucket and the rule:

Find aws_s3_bucket as bucket that ALLOWS as grant everyone
where grant.permission='READ'
return
bucket.displayName, bucket.tag.AccountName,
grant.permission, grant.granteeType, grant.granteeURI

s3-bucket-public-write-prohibited

Checks that your Amazon S3 buckets do not allow public write access.

Find aws_s3_bucket that ALLOWS as grant Everyone where grant.permission='WRITE'

s3-bucket-replication-enabled

Checks whether S3 buckets have cross-region replication enabled.

Find aws_s3_bucket with replicationEnabled != true or destinationBuckets = undefined

s3-bucket-server-side-encryption-enabled

Checks whether server side encryption is enabled for your S3 buckets.

40 Chapter 9. J1 Queries for AWS Config

JupiterOne Documentation

Find aws_s3_bucket with encrypted=false and defaultEncryptionEnabled=false

s3-bucket-ssl-requests-only

Checks whether S3 buckets have policies that require requests to use Secure Socket Layer (SSL/TLS).

n/a

s3-bucket-logging-enabled

Checks whether logging is enabled for your S3 buckets.

Find aws_s3_bucket with loggingEnabled != true

s3-bucket-versioning-enabled

Checks whether versioning is enabled for your S3 buckets. Optionally, the rule checks if MFA delete is enabled for
your S3 buckets.

Find aws_s3_bucket with versioningEnabled != true or mfaDelete != true

9.8 Other Rules

cloudtrail-enabled

Ensure CloudTrail is enabled.

Find aws_account that !HAS aws_cloudtrail

9.8. Other Rules 41

JupiterOne Documentation

42 Chapter 9. J1 Queries for AWS Config

CHAPTER 10

Using JupiterOne for Active Vulnerability and Threat Monitoring in AWS

Active threats within an organization’s AWS environments typically arise from these two main sources:

1. System and application vulnerabilities on EC2 instances.

2. Malicious network activities, API activities and resource operations.

AWS provides two native services – AWS Inspector and AWS GuardDuty – to address the above, respectively.

Inspector performs automated scans of active EC2 instances to identify exposure and vulnerabilities.

GuardDuty continuously analyzes network events (VPC Flow Logs and DNS logs) and API events (CloudTrail logs)
to identify malicious/unauthorized activity and behavior.

JupiterOne integrates with both AWS Inspector and GuardDuty out-of-the-box to provide a consolidated UI to manage,
visualize and correlate the findings from these services.

10.1 Accessing the Findings in the Alerts app

You can see all open findings in the Alerts app.

43

https://docs.aws.amazon.com/inspector/latest/userguide/index.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

JupiterOne Documentation

alerts-
findings

Expanding a finding will give you a visual graph showing the resources the selected finding is related to. You can
interact with the graph and drill down to see additional relationships and context to perform further analysis.

alerts-
findings

Note that JupiterOne also integrates with several other security scanners, including Tenable, Veracode,
and WhiteHat. All security findings are aggregated in the above centralized dashboard for easy man-
agement, filtering and reporting. You can also import manual pen test findings. See this doc for more

44 Chapter 10. Using JupiterOne for Active Vulnerability and Threat Monitoring in AWS

JupiterOne Documentation

details.

10.2 Correlation and Alerting

Using J1QL, you can easily perform correlation of Inspector and GuardDuty findings and the resources they impact.
For example, the following query identifies suspicious activities against any EC2 instance that also has high severity
vulnerability findings.

Find aws_guardduty_finding that relates to aws_instance
that has aws_inspector_finding with numericSeverity > 7 return tree

Here is an example graph returned by the above query:

guardduty-
inspector-finding-correlation

You can correlate Inspector and GuardDuty findings with other security scanner findings as well, if you have those
integrations configured.

You can also set up alerts and receive notification on certain findings. For example, the following query can be used
to set up an alert rule for high risk findings that impact production resources:

Find (Host|DataStore|Application|CodeRepo|Account|Service|Network)
with tag.Production=true
that has Finding with severity='High' or numericSeverity>7

See this alert rule in the JupiterOne common-alerts rule pack on Github.

10.2. Correlation and Alerting 45

https://github.com/JupiterOne/jupiterone-alert-rules/blob/master/rule-packs/common-alerts.json

JupiterOne Documentation

46 Chapter 10. Using JupiterOne for Active Vulnerability and Threat Monitoring in AWS

CHAPTER 11

How to configure SAML SSO integration with JupiterOne

Single Sign On is supported via a custom authentication client configured within a JupiterOne account. This feature is
available to all enterprise customers upon request. To request SSO integration to be enabled for your account, please
open a support ticket or contact your technical account manager.

11.1 Supported Features

• SP-initiated SSO

Service Provider Initiated (SP-initiated) SSO means when SAML authentication is initiated by the Service
Provider (SP). This is triggered when the end user tries to access a resource in JupiterOne or login directly to
the JupiterOne account.

• JIT (Just In Time) Provisioning

Users are created/updated on the fly using the SAML attributes sent as part of the SAML response coming from
the Identity Provider (IdP). The user is created during initial login to JupiterOne and updated during subsequent
logins.

IdP-initiated SSO is currently unsupported due to a limitation of Amazon Cognito.

11.2 Configuration Steps

1. Log in to your JupiterOne account – your user must be a member of the Administrators group.

2. Go to the Single Sign On setup from the configurations menu.

47

JupiterOne Documentation

sso-menu

3. Click on Configure.

configure-
sso

4. In the client configuration screen, copy the following two variables to be used when adding JupiterOne as an
application in your SAML IdP account:

• Single Sign On URL

• Audience URI (SP Entity ID)

5. In your IdP Account, add a new SAML Application and name it “JupiterOne”.

• Copy/paste the previous two variable values in the SAML settings.

• Use the same Single Sign On URL string value for Recipient URL and Destination URL.

• Leave the Default Relay State blank.

• Select EmailAddress for Name ID Format.

• Select Email or Username for Application Username.

48 Chapter 11. How to configure SAML SSO integration with JupiterOne

JupiterOne Documentation

• See next section for details on Attribute Mappings.

6. Complete setup of the SAML application within your IdP account, and copy the Identity Provider Metadata
link.

In Okta, this link can be found on the Sign On tab of the application, under View Setup Instructions, as shown
below:

okta-
idp-metadata

7. Go back to JupiterOne Auth Client Settings screen, paste the above link to the SAML Metadata Document
URL field.

8. Enter a Client Name, such as “Okta”.

9. Check Authorization code grant and Implicit Grant under “Allowed OAuth Flows”.

11.2. Configuration Steps 49

JupiterOne Documentation

allowed-
oauth-flows

Save and you are all set. Next time you access your JupiterOne account via the vanity URL (e.g.
https://your_company.apps.us.jupiterone.io), you should be redirected to your SAML IdP for authentication.

11.3 Attribute Mappings

The following attribute mappings are supported:

• email: User’s email address

• family_name: User’s last name

• given_name: User’s first name

• name: User’s display name

• group_names: Dynamically assigns user to specified groups within JupiterOne. Use a comma to separate
multiple group names (without spaces). Users without group_names mapping are assigned to the Users
group within your JupiterOne account by default.

Here’s an example of attribute mapping configuration in Okta:

okta-
attribute-mappings

50 Chapter 11. How to configure SAML SSO integration with JupiterOne

JupiterOne Documentation

We highly recommend adding a custom group attribute to the JupiterOne app profile in your IdP account (e.g.
Okta). This is typically added using the Profile Editor for the app. You can name the attribute something like
jupiterone_groups.

Below is an example within Okta:

okta-
app-profile-editor

You can then use this custom app attribute to assign group memberships to your users based on their IdP group
assignments. The actual value for the attribute is typically configured on the group(s) assigned to the app.

Below is an example within Okta:

11.3. Attribute Mappings 51

JupiterOne Documentation

okta-
app-group-assignment

Note that provisioning users with group_names attribute mapping is OPTIONAL. Users without group_names
mapping are assigned to the Users group within your JupiterOne account by default.

11.4 Removing Users

When you unassign / remove a user from the JupiterOne app within your IdP, the user will no longer be able to log
in to your JupiterOne account because the authentication happens with your IdP. However, the user memberships will
remain in the Groups. You can manually remove them from the groups within JupiterOne.

52 Chapter 11. How to configure SAML SSO integration with JupiterOne

JupiterOne Documentation

remove-
user

11.5 Current Limitations

11.5.1 IdP-initiated sign on flow is not supported

JupiterOne uses Amazon Cognito service to manage authentication including SSO. Cognito currently does not support
IdP-initiated sign on. That is, you will not be able to click on the app icon on your IdP account (e.g. JumpCloud, Okta,
OneLogin). Instead, you will need to initiate single sign on by going to your JupiterOne account URL:

https://<your_j1_account_id>.apps.us.jupiterone.io

This will redirect to your configured SSO provider for authentication.

11.5. Current Limitations 53

JupiterOne Documentation

You can find your J1 account id by running the following query:

Find jupiterone_account as a return a.accountId

Workaround

If your SSO provider supports configuring a “Bookmark” app, you can workaround this limitation by doing the fol-
lowing:

• Hide the app icon to users for the configured JupiterOne SAML SSO app

• Configure a Bookmark app with your JupiterOne account URL and assigned it to the same users/groups that
have been assigned the JupiterOne SAML app

54 Chapter 11. How to configure SAML SSO integration with JupiterOne

CHAPTER 12

Detect Suspicious Code Commits in Pull Requests

Security of software development and code is more important than ever. JupiterOne is capable of detecting suspicious
code commits in a git pull request (PR) in two ways:

• Commits self-approved by the code author

• Commits made by a user unknown to the organization

12.1 Enable Detection

For the detection to work, you will need to:

• Enable Pull Request (PR) and commit analysis in the integration configuration in JupiterOne.

This feature is currently supported on Bitbucket integration. Github support is coming soon.

• Configure branch permissions in your git source control system to prohibit directly committing to the main
branch (e.g. master) and to require pull request reviews before merging.

This option is typically found under the repo settings. This allows PR analysis to catch the suspicious activities.

When enabled, JupiterOne sets the approved and validated flags on each merged PR entity.

You can run a J1QL query to detect “PRs with suspicious activities”:

Find PR with approved = false or validated = false

55

JupiterOne Documentation

You can also set up an alert with the above query. You can also integrate this analysis into your DevOps pipeline to
check for suspicious commits in PRs before deploying code to production.

12.2 How does it work?

12.2.1 Detecting self-approved commits

At the time of integration execution, or when requested via the API, JupiterOne will analyze the activities on a merged
PR to determine if there is any code commit on the PR that was not approved by someone other than the code author.

Isn’t this already configured via branch protection/permissions?

Consider the following scenario:

• Bob writes some code and commits them to a feature branch

• Bob opens a PR with those changes and requests review from Alice

• Alice makes another commit to the same branch and updates the PR

• Alice approves the PR

The PR is considered approved by a reviewer because Bob opened the PR and Alice reviewed it. However, Alice
technically approved her own code associated with the commit she made to the branch after Bob opened the PR.

JupiterOne will detect this condition a sets the approved flag on the PR entity to false.

The commit hash of the detected suspicious commit is added to the commitsNotApproved list property.

56 Chapter 12. Detect Suspicious Code Commits in Pull Requests

JupiterOne Documentation

12.2.2 Detecting commits by unknown/external authors

Additionally, JupiterOne checks the commit author against known bitbucket users that are part of your organization. If
a commit was made by an unknown/external author, JupiterOne sets the validated flag on the PR entity to false.

The commit hash of the detected suspicious commit is added to the commitsByUnknownAuthor list property.

12.3 Combine suspicious commits checking and vulnerability check-
ing for CI/CD

You can use the following J1QL query to detect open vulnerability findings that are associated with certain code
repos, and use this in conjunction with the PR analysis query previously discussed to make automated decisions for
promoting code to production in your CI/CD pipeline.

For example, you can query JupiterOne via API for:

Find Finding with open=true and severity=('Critical' or 'High')
that relates to CodeRepo with name='my-new-project'

Find PR with id=55 as PR that relates to CodeRepo with name='my-new-project'
return PR.approved, PR.validated

And block production deploy if the first query above returns a finding or if the second query returns false for
approved or validated status.

12.3. Combine suspicious commits checking and vulnerability checking for CI/CD 57

JupiterOne Documentation

58 Chapter 12. Detect Suspicious Code Commits in Pull Requests

CHAPTER 13

JupiterOne Node.js Client and CLI

JupiterOne is a data driven platform. It is easy to add your own data that is not covered by out-of-the-box managed
integrations.

We provide a node.js API client wrapper and a CLI utility on Github.

The CLI supports uploading entities in either JSON or YAML format. This guide - Using JupiterOne as a central
repository for SecOps and compliance artifacts provides an example use case.

59

https://github.com/JupiterOne/jupiterone-client-nodejs

JupiterOne Documentation

60 Chapter 13. JupiterOne Node.js Client and CLI

CHAPTER 14

Using JupiterOne as a central repository for SecOps and compliance
artifacts

JupiterOne integrates with and consolidates data from several security and compliance solutions right out of the box
(for example, ingesting security assessments and findings from AWS Inspector, GuardDuty, Veracode, WhiteHat, and
more).

However, there will inevitably be operational and compliance artifacts produced outside of automated tools, such as
Assessments performed manually (E.G. risk assessments or penetration tests) and the Findings and Risks identified
by those assessments.

These efforts are typically documented in unstructured formats (Word or PDF) or are maintained in a separate reposi-
tory such as a governance, risk and compliance (GRC), or vulnerability management system/software/service (VMS).

JupiterOne serves as a lightweight GRC and VMS so that no separate, siloed tools are needed, allowing teams to
manage security and compliance artifacts as code.

14.1 TL;DR

Ok. Here’s some example code. Dive in!

https://github.com/JupiterOne/secops-automation-examples

14.2 Security artifacts as code

Instead of writing security documents in Word, which are difficult to track and maintain, you should create and store
artifacts and records as code. You can then easily upload these artifacts to JupiterOne for querying and reporting.
Check out the examples below!

Note that the following properties are common across all entity types:

• entityId

61

https://github.com/JupiterOne/secops-automation-examples

JupiterOne Documentation

The JupiterOne API does not require this property. If it is not provided, JupiterOne will create a new entity for
the document. If it is provided, JupiterOne will update the existing entity for that id.

• entityKey

This property is required and must be unique. The JupiterOne entity creation API will update any existing entity
with an identical key.

• entityType, entityClass, name, displayName

These properties are required.

All other properties listed in the examples are recommended but not required.

You can create documents to upload to JupiterOne in either JSON or YAML format. We use YAML in the examples
below because it makes dealing with long, multi-line text much easier.

14.2.1 Assessment Entity Example

- entityId:
entityKey: assessment:hipaa:2018
entityType: risk_assessment
entityClass: Assessment
properties:

name: HIPAA Risk Assessment 2018
displayName: company-hipaa-risk-assessment-2018
summary: 2018 Annual HIPAA Risk Assessment
description:
(sample text)
Organization's security and compliance team assessed policies, controls
and procedures to ensure they meet and exceed
the requirements specified by HIPAA privacy rule and security rule.

details:
additional report details

category: risk-assessment
status: complete
assessors:

- security.staff@yourcompany.com
- internal.audit@yourcompany.com

open: false
classification: confidential
completedOn: 2018-07-23
reportURL: <link to full report>
webLink: <link to full report>

- entityId:
entityKey: assessment:pentest:2019q1
entityType: penetration_test
entityClass: Assessment
properties:

name: internal-pen-test-2019q1
displayName: Company Internal Penetration Test 2019Q1
summary: Company Internal Penetration Test Q1 2019 conducted between Mar 18th -

→˓Mar 29th
description:

(sample text)
Performed a thorough security assessment of the company product line.

(continues on next page)

62 Chapter 14. Using JupiterOne as a central repository for SecOps and compliance artifacts

JupiterOne Documentation

(continued from previous page)

Scope includes product A, B and C.
details:

additional report details
category: penetration-testing
status: complete
assessors:

- pen.tester1@yourcompany.com
- pen.tester2@yourcompany.com

open: false
classification: confidential
completedOn: 2019-04-05

The above example contains an array of two assessment objects - one HIPAA Risk Assessment and one Internal
Penetration Test. If there is a more detailed report stored elsewhere, such as on your company’s SharePoint or Google
Docs account, you can link to it using the reportURL and webLink properties. The webLink property is known
by the JupiterOne UI and will render a hyperlink.

We recommend also writing a full report in Markdown and storing that in source code control. The reportURL /
webLink in that case will be something like this:

https://bitbucket.org/yourorg/security-assessments/src/master/2018/hipaa-risk-
→˓assessment-report.md

When you specify the email address(es) of the assessor(s), JupiterOne looks up those individuals (the Person entities)
and creates the following mapped relationship:

Person (with matching email address) - PERFORMED -> Assessment

14.2.2 Risk Entity Example

- entityId:
entityKey: risk:endpoint-management-gaps
entityType: technical_risk
entityClass: Risk
properties:

name: Endpoint management gaps
displayName: Endpoint management gaps
summary: Lack of visibility on how user endpoint systems/devices are configured
description:
(sample text)
Endpoint systems should be configured according to the company's IT and
security standards. Because currently all enduser systems (e.g. laptops)
are self managed, there is a lack of centralized visibility into how
each system is configured and if they meet the compliance requirements

details:
'Systems should be configured with at least the following:'

1. Disk encryption enabled
2. Screensaver protection/screen lock on
3. Local firewall enabled
4. Remote login disabled
5. Auto install OS security patches enabled

(continues on next page)

14.2. Security artifacts as code 63

JupiterOne Documentation

(continued from previous page)

6. (if it is Windows) Has Windows Defender or equivalent malware protection
→˓running

category: technical
threats: malware
targets: enduser devices
probability: 2
impact: 2
score: 4
status: open
reporter: security@yourcompany.com
open: true
mitigation:
jiraKey: SEC-112
webLink: https://yourcompany.atlassian.net/browse/SEC-112

Notes:

• The Risk score = probability times impact

– Both probability and impact are numeric values, between 0-3. (you may choose to use a different
scale)

– Probability rating:

* 3: high/certain

* 2: medium/likely

* 1: low/unlikely

* 0: none/negligible

– Impact rating:

* 3: high/severe

* 2: medium/moderate

* 1: low/minor

* 0: none/insignificant

• Example valid Risk status:

– accepted

– mitigated

– transferred

– reported

– planned

– acknowledged

– prioritized

• The Risk is considered open unless it is accepted, mitigated or transferred status.

• When uploaded to JupiterOne, Risks will automatically map to an employee/Person using the email address
specified in the reporter property:

64 Chapter 14. Using JupiterOne as a central repository for SecOps and compliance artifacts

JupiterOne Documentation

Person (with matching email address) - REPORTED -> Risk

• Similarly, specify the assessment name in the assessment property to create the following mapping:

Assessment (with matching name) - IDENTIFIED -> Risk

• The webLink property is optional.

• Note the jiraKey property and the webLink URL in the example point to a Jira issue since Jira is used to
track the workflow of this Risk item.

14.2.3 Finding Entity Example

A vulnerability finding is similar to a risk item:

- entityId:
entityKey: finding:pentest:2019q1:appcode-1
entityType: pentest_finding
entityClass: Finding
properties:

name: XSS in application {appname}
displayName: XSS in application {appname}
summary: Stored cross side scripting identified in application {appname}
targets:
- appname

description:
description of the finding

stepsToReproduce:
- '1 - Sign in to application... navigate to page...'
- '2 - Enter <script>alert(1)</script> in textbox...'
- '3 - Hit save...'

impact:
Attacker may store malicious javascript...

recommendation:
Perform input validation in the code...

severity: high
priority: 2
remediationSLA: 30
status: open
assessment: internal-pen-test-2019q1
open: true
classification: confidential
jiraKey: SEC-99
webLink: https://yourcompany.atlassian.net/browse/SEC-99

Again, the assessment property here is used to connect the finding to the assessment that identified it.

Additionally, if the targets property contains one or more entries that match the name of an
Application/CodeRepo/Project entity, this finding will be linked to that matching entity, so that you can
easily run a query like:

Find (Application|CodeRepo|Project) that has Finding with severity='high'

Also note the remediationSLA property. This specifies the number of days your team has left to address this
finding per your company policy.

14.2. Security artifacts as code 65

JupiterOne Documentation

14.3 Uploading to JupiterOne

Once you have created your artifacts, you can easily upload them to JupiterOne using the CLI. Just follow these three
simple steps:

1. Obtain an API Key from your JupiterOne account

2. Install JupiterOne client/CLI:

npm install @jupiterone/jupiterone-client-nodejs -g

1. Upload the artifacts (entities) to your account on JupiterOne:

export J1_API_TOKEN={api_key}
j1 -o create --entity -a {accountId} -f ./risks.yml
j1 -o create --entity -a {accountId} -f ./assessments.yml
j1 -o create --entity -a {accountId} -f ./findings.yml

If you have several YAML files to upload, you might use a command like:

export J1_API_TOKEN={api_key}
find . -name *.yml | while read yml; do j1 -o create --entity -a <j1_account_id> -f
→˓$yml; done

We highly recommended you use a source code control system such as Github or Bitbucket to maintain these arti-
facts. This way, you can easily set up your CI system (e.g. Travis CI or Jenkins) to run the above commands and
automatically keep the entities up to date in JupiterOne with every approved code change (i.e. when a PR is merged
into master).

14.3.1 Reporting and Visualization

You can see and export these Assessments, Risks, and Findings from the Asset Inventory app in JupiterOne or query
and visualize them on the Landing page.

Query:

Find Person that performed Assessment that identified (Risk|Finding) return tree

Graph:

66 Chapter 14. Using JupiterOne as a central repository for SecOps and compliance artifacts

JupiterOne Documentation

pentest-
findings

Lastly, these artifacts are automatically tracked and mapped to the supported compliance requirements as evidences
for conducting the necessary assessments.

risk-
assessments

PDF:

You can use a simple utility to query J1 for an assessment, its related findings, and generate a PDF report. An example
can be found in the secops-automation-examples Github repo:

https://github.com/JupiterOne/secops-automation-examples

14.3. Uploading to JupiterOne 67

https://github.com/JupiterOne/secops-automation-examples

JupiterOne Documentation

68 Chapter 14. Using JupiterOne as a central repository for SecOps and compliance artifacts

CHAPTER 15

JupiterOne Endpoint Compliance Agent “Power Up”

JupiterOne is not an endpoint security solution. Rather, it is a graph platform designed for security operations and
compliance. So, why are we even talking about an endpoint agent?

The JupiterOne team’s internal security operations is a highly distributed and self-managed. We needed a lightweight
approach to ensure that users have correctly configured their own endpoint devices (i.e. laptops) and prompt them to
remediate if a non-compliant configuration is detected.

Read this blog for more on our journey in solving endpoint compliance in a cloud-first landscape.

We are offering this endpoint agent as a “Power Up” to all JupiterOne customers.

15.1 The Agent

The endpoint agent has two components:

1. Stethoscope-app - an open-source solution by Netflix. This is a community project and it is not officially
supported by the JupiterOne team. See the Github project for more details.

2. J1 integration agent - a native agent binary to connect Stethoscope-app with JupiterOne as the management
backend for policy and configuration status reporting.

15.2 Installation

Installing and activating the JupiterOne endpoint compliance agent follows a self-service approach.

1. A JupiterOne administrator needs to send an activation email to users:

• From the JupiterOne web UI, go to Settings (the gear icon near the top right), and then Power Ups for the
Settings menu.

• Select JupiterOne Endpoint Compliance Agent from the Power Ups menu.

• Select one of three options to Send Activations to:

69

https://jupiterone.com/blog/solving-for-endpoint-compliance-in-a-cloud-first-landscape/
https://github.com/Netflix-Skunkworks/stethoscope-app/

JupiterOne Documentation

– All users

– User devices without Endpoint Agent

– Specify emails individually

Note the first two options requires you to have an identity provider (IdP) integration configured in
JupiterOne so that the platform knows about the users of your organization. Example IdP integrations
include Okta, OneLogin, Google G Suite, JumpCloud.

2. Users should then follow the simple instructions in the activation email to download, install and activate the
endpoint agent.

15.3 Policies

For details on how to customize your endpoint compliance policy, see the documentation here:

Supported Practices

15.4 Advanced Use Cases

For organizations using an automated package deployment tool such as SaltStack or Jamf, we are often asked if the
JupiterOne power up agent can be included in the auto-rollout from the deployment tool. This is technically doable
(see below for more details below), but not officially supported at the moment.

Technically the Stethoscope agent installation and JupiterOne integration process has three moving parts:

1. Stethoscope-app: You would likely need to build this yourself from the code in this repo. It supports an optional
“publish”/distribution URL for distributing updates. The Stethoscope-app build that we ship with our installer is
configured to pull updates from our S3 bucket location. Since you intend to roll-out updates via your deployment
tool, you would likely not use this mech- anism. Once built without a publishing configuration, and installed at
a certain version of Stethoscope, that version would remain until you replace it.

2. Our native agent binary for JupiterOne integration: This is bundled into the installer (.pkg for macOS, .msi
for Windows, or a .sh script for Linux), which can be downloaded from the download link within an JupiterOne
endpoint activation email (see above). We could provide this to you for distribution with your own Stethoscope
builds, or you could run the packaged installer and pull the binary agent from that. It is a data-driven GraphQL
client that doesn’t change often.

3. A one-time activation step that is performed using the agent binary in a CLI mode. This is automatically done
via the installer wizard, but can certainly be done in the deployment using a command of the form:

macOS example:
j1-endpoint-agent-darwin activate --email <your.email> --account <your J1 account
→˓name> --code <one-time-use activation code>

Ordinarily, these account codes are generated at email-send time, using the send email feature of the administra-
tive Endpoint Compliance Power Up UI. Contact JupiterOne Support to pre-generate a CSV of activation codes
for a list of your email addresses. This activation step registers each particular endpoint device with JupiterOne,
sending along the device-specific UUID along with the activation information provided at the command line,
and generates an API token used to retrieve the Stethoscope policy and upload scan results to J1.

70 Chapter 15. JupiterOne Endpoint Compliance Agent “Power Up”

https://github.com/Netflix-Skunkworks/stethoscope-app/

CHAPTER 16

JupiterOne Data Model

The JupiterOne Data Model is a reference model used to describe digital resources and the complex interconnections
among all the resources in a technology organization as an entity-relationship graph.

The data model is defined by a set of Entities and their Relationships. It represents a reference model, not a strict or
rigid structure.

16.1 Entity

An Entity is a node/vertex in the graph that represents a resource within your digital infrastructure.

16.1.1 Class and Type of an Entity

Each Entity has a specific type that defines what that entity is, and is assigned one or more higher level class that
represents a more abstract categorization or labeling of the entity in the perspective of security and technical operations.

Type

The type property represents the specific type that entity is as defined by the source. For example, an AWS resource
may be of type aws_instance or aws_s3_bucket or aws_iam_user.

Class

The class of an entity is considered an abstract, super-type that defines what that entity is within the general framework
of IT and security operations. In the above example, an aws_instance entity has a class of Host, while an
aws_s3_bucket is a DataStore, and an aws_iam_user a User.

71

JupiterOne Documentation

16.1.2 Common Entity Properties

Most Entities will have the following common properties.

16.1.3 Class Specific Entity Properties

Each specific class of Entity also has its own defined properties. For example, a Person entity will have properties
including firstName and lastName, while a Device entity may have properties such as hardwareVendor,
hardwareModel, and hardwareSerial.

16.1.4 Custom Properties

Entities can also have custom properties that are specific to the type of that entity, defined by the source system where
the resource belongs to, or defined by the individual or team managing the resource.

16.1.5 Defined Entities

Here is a list of reference entities defined by the JupiterOne Data Model, each with its own defined set of properties in
addition to the shared common properties:

Special Entities

There are three special entities defined. These are singleton entities.

16.2 Relationships

A Relationship is the edge between two Entity nodes in the graph. The _class of the relationship should be, in
most cases, a generic descriptive verb, such as HAS or IMPLEMENTS.

Relationships can also carry their own properties.

For example, CodeRepo -- DEPLOYED_TO -> Hostmay have version as a property on the DEPLOYED_TO
relationship. This represents the mapping between a code repo to multiple deployment targets, while one deployment
may be of a different version of the code than another. Storing the version as a relationship property allows us to void
duplicate instances of the code repo entity to be created to represent different versions.

Relationships have the same metadata properties as entities, which are managed by the integration providers.

16.2.1 Example defined Relationships between abstract Entity Classes

HAS / CONTAINS

Account -- HAS -> User
Account -- HAS -> UserGroup
Account -- HAS -> AccessRole
Account -- HAS -> Resource
CodeRepo -- HAS -> Vulnerability
Host -- HAS -> Vulnerability
Organization -- HAS -> Site

(continues on next page)

72 Chapter 16. JupiterOne Data Model

JupiterOne Documentation

(continued from previous page)

Organization -- HAS -> Organization (e.g. a business unit)
Application -- HAS -> Vulnerability
CodeRepo -- HAS -> Vulnerability
Host -- HAS -> Vulnerability
Service -- HAS -> Vulnerability
Site -- HAS -> Network
Site -- HAS -> Site
UserGroup -- HAS -> User
Network -- CONTAINS -> Host
Network -- CONTAINS -> Database
Network -- CONTAINS -> Network (e.g. a subnet)

IS / OWNS

User -- IS -> Person
Vulnerability -- IS -> Vulnerability (e.g. a Snyk Vuln IS a CVE)
Person -- OWNS -> Device

EXPLOITS / IMPACTS

Vulnerability -- EXPLOITS -> Weakness
Vulnerability -- IMPACTS -> CodeRepo | Application

USES

Host -- USES -> Resource (e.g. aws_instance USES aws_ebs_volume)

CONNECTS / TRIGGERS / EXTENDS

Application -- CONNECTS -> Account
Gateway -- CONNECTS -> Network
Gateway -- TRIGGERS -> Function
HOST -- EXTENDS -> Resource

IMPLEMENTS / MITIGATES

Procedure -- IMPLEMENTS -> Policy
Control -- IMPLEMENTS -> Policy
Control -- MITIGATES -> Risk

MANAGES

Person -- MANAGES -> Person
Person -- MANAGES -> Organization
Person -- MANAGES -> Team

(continues on next page)

16.2. Relationships 73

JupiterOne Documentation

(continued from previous page)

User -- MANAGES -> Account
User -- MANAGES -> UserGroup
ControlPolicy -- MANAGES -> Control
AccessPolicy -- MANAGES -> AccessRole

EVALUATES / MONITORS / PROTECTS

ControlPolicy -- EVALUATES -> <any entity>
HostAgent -- MONITORS -> Host
HostAgent -- PROTECTS -> Host

TRUSTS

AccessRole -- TRUSTS -> AccessRole
AccessRole -- TRUSTS -> Service
AccessRole -- TRUSTS -> Account

ASSIGNED

User -- ASSIGNED -> Application
User -- ASSIGNED -> AccessRole
UserGroup -- ASSIGNED -> AccessRole

IDENTIFIED / PERFORMED / COMPLETED

Person -- PERFORMED -> Assessment
Person -- COMPLETED -> Training
Assessment -- IDENTIFIED -> Risk
Assessment -- IDENTIFIED -> Vulnerability

PROVIDES

Vendor -- PROVIDES -> Service

CONTRIBUTES_TO

User -- CONTRIBUTES_TO -> CodeRepo

OPENED

User -- OPENED -> CodeReview (i.e. PR)

74 Chapter 16. JupiterOne Data Model

JupiterOne Documentation

DEPLOYED_TO

CodeRepo -- DEPLOYED_TO -> Account
CodeRepo -- DEPLOYED_TO -> Host
CodeRepo -- DEPLOYED_TO -> Container
CodeRepo -- DEPLOYED_TO -> Function

16.3 What does this look like?

The diagram below is an abstract illustration of the entities and relationships defined by the data model.

data-
model

16.3. What does this look like? 75

JupiterOne Documentation

76 Chapter 16. JupiterOne Data Model

CHAPTER 17

JupiterOne Data Security

This document describes in detail the data JupiterOne ingests and how your data is protected on our platform.

17.1 Data Protection

17.1.1 Encryption

Data is fully encrypted both at rest and in transit. This includes all of your account and user data, as well as operational
data imported/ingested into the JupiterOne platform.

Data in Transit is encrypted via TLSv1.2 or later, using SHA-256 with 2048-bit RSA Encryption or equivalent
strength cypher.

Production Domains: *.apps.us.jupiterone.io is the associated production URL that the SSL/TLS certifi-
cate has been issued to.

Data at Rest is hosted in our production AWS environments, using the managed RDS/Neptune, DynamoDB, and S3
services. All database instances, tables, and S3 buckets with customer data have server-side encryption enabled, using
AWS KMS for key management. KMS encryption keys are scheduled to rotate annually.

In addition to encryption, managed backup is enabled for the database clusters. For S3 buckets, cross-account replica-
tion is enabled to back up data to a different region for disaster recovery. All backup data is fully encrypted the same
way as its source.

17.1.2 Multi-tenancy

JupiterOne is a multi-tenancy, software-as-a-service platform hosted in AWS. Customer data is logically parti-
tioned/segregated by software via a unique accountId associated with every piece of data. Access to data is re-
stricted to within each unique account for users granted proper access to that account. This is a standard pattern used
by cloud infrastructure and SaaS providers.

77

JupiterOne Documentation

17.2 External Data Ingestion/Import

JupiterOne ingests data from external sources and connected environments primarily via the APIs provided by the
target environment/service provider. Objects from these external environments and their corresponding metadata,
including configuration properties and tags but never the actual data content, are ingested as “entities”. The entity
properties and tags are used to perform analysis to build out “relationships” among ingested entities. These entities
and relationships are the JupiterOne CORE Data Model.

JupiterOne then uses this data model to inventory for and provide insight into your digital infrastructure across all of
your connected environments.

More information on the JupiterOne Data Model can be found here.

For more details on data ingested for each managed integration, see their corresponding documentation in the Inte-
grations section.

17.2.1 Access Permissions Needed to Integrated Environments

Access to your environments is needed in order to ingest data, or to enable workflow automation (future capability).

In general, JupiterOne only requires read-only, security-auditor-type access permissions to your environments. Addi-
tionally, this read-only access only applies to configurations and meta data, not the actual data content. For example,
we do NOT read S3 objects data from a connected AWS account, or the actual source code of a connected Bit-
bucket/Github account.

Additional level of access may be needed for workflow automation. For example, integration with Jira to automatically
create an issue when a new Vulnerability finding is added; or to post to a Slack channel/user to send a security alert
notification.

You are always in control of the actual permissions granted for each integration. More details of the access permissions
required for each managed integration can be found in its corresponding documentation listed above.

17.2.2 Custom Data Import

Additionally, JupiterOne supports the ability for you to add custom data by

• Manually adding entities via Web UI in the Asset Inventory app;

• Adding bulk number of entities via CSV import; or

• Adding custom entities via custom integrations using the public API.

17.3 Data Ownership and Access

You retain full ownership of all data that is ingested via integrations, API or manual importing/creation. Data is
stored in JupiterOne’s production environment in AWS, protected via encryption and replication as specified in the
first section.

17.3.1 Infrastructure and Operational Access

JupiterOne infrastructure is built on a Zero Trust security model, where access to production is highly restricted.

The production environment is virtually “air-gapped” such that there is no SSH, “bastion host”, or VPN connectivity
into the production systems to prevent unintended network access to databases and other production servers. We

78 Chapter 17. JupiterOne Data Security

https://support.jupiterone.io/hc/en-us/articles/360011556113-JupiterOne-Data-Model

JupiterOne Documentation

do not allow internal access to production data by any JupiterOne team member. All necessary operational support
and maintenance jobs are performed via automation where the automation code is fully documented, reviewed, and
approved, ensuring end-to-end traceability.

Our production environment incorporates multiple layers of security monitoring, using JupiterOne itself as well as
third party security solutions. Additionally, our software development includes rigorous code analysis and continuous
testing practices to ensure we proactively identify any security vulnerability. Our infrastructure-as-code operational
model and automated change management process allows us to deploy security patches within minutes of identification
and remediation of an issue.

You can review our published security model and corresponding policies and procedures for more details on our
operational, infrastructure, and software development security.

17.4 Application Access

Access to the JupiterOne application and your accounts/data on the platform is enabled over HTTPS, through either
the JupiterOne web apps or the public APIs.

Note: *.us.jupiterone.io is the current production domain.

17.4.1 User Logins

Each user has a unique user login to the JupiterOne platform and apps. Users may be invited to one or multiple
organizational accounts on JupiterOne.

Password Policy

Users are required to select a strong password meeting the following password policy requirements in order to create
a login and authenticate to the system:

• Minimum of 8 characters

• Must contain an uppercase letter

• Must contain a lowercase letter

• Must contain a number

• Must contain a special character

Single Sign On (SSO)

JupiterOne currently supports single sign on (SSO) via:

• Google

• SAML

Multi-Factor Authentication (MFA) / Two-Step Verification (2SV)

Multi-Factor Authentication (MFA) or Two-Step Verification (2SV) is strongly recommended for all users on the
JupiterOne platform. This needs to be enabled and configured via your SSO provider (Google or your SAML IdP such
as Okta or OneLogin).

17.4. Application Access 79

https://security.lifeomic.com/psp/model/
https://security.lifeomic.com/psp/

JupiterOne Documentation

17.4.2 Access Control

In order to support potential complex access control use cases, JupiterOne platform implements Attribute Based Access
Control (ABAC).

A good general overview of ABAC is sections 1 and 2 of NIST’s Guide to Attribute Based Access Control. The
absolute basics of ABAC are that you have a subject (e.g. a user) who wants to perform some operation (e.g. download)
on an object (e.g. a file) in some environment. The subject, object and environment all have attributes (i.e. key/value
pairs), and there are policies that control the privileges (i.e. what operations the subject can perform) given the
attributes.

Access policies defined in JupiterOne are associated with a User Group and Users are invited/added as members to
one or more groups.

• A Read-Only access policy is predefined and associated with the default Users group.

• A Full-Access policy is also predefined and associated with the default Administrators group.

• The ability to customize and add granular access control policies is to be released in 1Q2019.

17.4.3 API Access

JupiterOne API is available at: https://api.us.jupiterone.io/

We use OAuth 2.0 for authorization, which means in order to access data a user must authenticate and the requesting
app must be authorized. Implicit grant, authorization code, and client credentials flows are supported. Authorization
code is recommended for web apps, which involves utilizing both the authorize and token API resources. When using
the authorization code grant flow, it is also recommended to use Proof Key for Code Exchange (PCKE) to mitigate
authorization code intercept attacks. Contact us if building a native app which can securely perform client credentials
flow.

Additionally, each user on the platform can create an API key that can be passed along with request to act on behalf
of that user.

Note: the UI for self-service configuration of OAuth and user API key is targeted to be available in 1Q2019.

17.4.4 Support Access to Your JupiterOne Account(s)

A JupiterOne Support User is by default added to a new account during free trial, proof-of-concept evaluation, or
initial account onboarding. This is to facilitate better support and training on using the platform.

• The support user’s login can either be the individual Security Engineer/Architect designated to
your account (e.g. firstname.lastname@jupiterone.io) or the general support login (i.e.
callisto@jupiterone.io).

• The support user can be removed by an account administrator at any time, should you determine that ongoing
regular support is no longer needed.

• You have the option and administrative privilege to add the support user back at any time, when support is
needed in the future.

80 Chapter 17. JupiterOne Data Security

https://csrc.nist.gov/publications/detail/sp/800-162/final
https://oauth.net/2/

CHAPTER 18

JupiterOne Query Language (J1QL)

The JupiterOne Query Language (aka “J1QL”) is a query language for querying data stored by JupiterOne. The
execution of a J1QL query will seamlessly query full text search, entity-relationship graph, and any other future data
stores as needed. By design, the query language does not intend to make these data store boundaries obvious to query
authors.

18.1 Language Features

• Seamlessly blend full-text search and graph queries

• Language keywords are case-insensitive

• Inspired by SQL and Cypher and aspires to be as close to natural language as possible

• Support for variable placeholders

• Return entities, relationships, and/or traversal tree

• Support for sorting via ORDER BY clause (currently only applies to the starting entities of traversal)

• Support for pagination via SKIP and LIMIT clauses (currently only applies to the starting entities of traversal)

• Multi-step graph traversals through relationships via THAT clause

• Aliasing of selectors via AS keyword

• Pre-traversal filtering using property values via WITH clause

• Post-traversal filtering using property values or union comparison via WHERE clause

• Support aggregates including COUNT, MIN, MAX, AVG and SUM.

18.2 Basic Keywords

FIND is followed by an Entity class or type value.

81

JupiterOne Documentation

The value is case sensitive in order to automatically determine if the query needs to search for entities by
the class or the type, without requiring authors to specifically call it out.

Entity class is stored in TitleCase while type is stored in snake_case.

A wildcard * can be used to find any entity.

For example:

• FIND User is equivalent to FIND * with _class='User'

• FIND aws_iam_user is equivalent to FIND * with _type='aws_iam_user'

Note that using the wildcard at the beginning of the query without any pre-traversal filtering – that is,
FIND * THAT ... without WITH (see below) – may result in long query execution time.

WITH is followed by property name and values to filter entities.

Supported operators include:

• = or != for String value, Boolean, Number, or Date comparison.

• > or < for Number or Date comparison.

Note:

• The property names and values are case sensitive.

• String values must be wrapped in either single or double quotes - "value" or 'value'.

• Boolean, Number, and Date values must not be wrapped in quotes.

• The undefined keyword can be used to filter on the absence of a property. For example: FIND
DataStore with encrypted=undefined

AND, OR for multiple property comparisons are supported.

For example:

FIND DataStore WITH encrypted = false AND tag.Production = true

FIND user_endpoint WITH platform = 'darwin' OR platform = 'linux'

• You can filter multiple property values like this (similar to IN in SQL):

FIND user_endpoint WITH platform = ('darwin' OR 'linux')

Find Host WITH tag.Environment = ('A' or 'B' or 'C')

Find DataStore WITH classification != ('critical' and 'restricted')

THAT is followed by a Relationship verb.

The verb is the class value of a Relationship – that is, the edge between two connected entity nodes in
the graph. This relationship verb/class value is stored in ALLCAPS, however, it is case insensitive in the
query, as the query language will automatically convert it.

The predefined keyword RELATES TO can be used to find any relationship between two nodes. For
example:

FIND Service THAT RELATES TO Account

(|) can be used to select entities or relationships of different class/type.

For example, FIND (Host|Device) WITH ipAddress='10.50.2.17' is equivalent to and
much simpler than the following:

82 Chapter 18. JupiterOne Query Language (J1QL)

JupiterOne Documentation

FIND * WITH
(_class='Host' OR _class='Device') AND ipAddress='10.50.2.17'

It is fine to mix entity class and type values together. For example:

FIND (Database|aws_s3_bucket)

It can be used on Relationship verbs as well. For example:

FIND HostAgent THAT (MONITORS|PROTECTS) Host

Or both Entity and Relationships together. For example:

FIND * THAT (ALLOWS|PERMITS) (Internet|Everyone)

AS is used to define an aliased selector.

Defines an aliased selector to be used in the WHERE or RETURN portion of a query. For example:

• Without selectors: FIND Firewall THAT ALLOWS *

• With selectors: FIND Firewall AS fw THAT ALLOWS * AS n

Selectors can also be defined on a relationship:

• FIND Firewall AS fw THAT ALLOWS AS rule * AS n

WHERE is used for post-traversal filtering or union (requires selector)

From the example above:

FIND Firewall as fw that ALLOWS as rule * as n
WHERE rule.ingress=true AND

(rule.fromPort=22 or rule.toPort=22)

The following examples joins the properties of two different network entities, to identify if there are
multiple networks in the same environment using conflicting IP spacing:

FIND (Network as n1 | Network as n2)
WHERE n1.CIDR = n2.CIDR

RETURN is used to return specific entities, relationships, or properties

By default, the entities and their properties found from the start of the traversal is returned. For example,
Find User that IS Person returns all matching User entities and their properties, but not the
related Person entities.

To return properties from both the User and Person entities, define a selector for each and use them in
the RETURN clause:

FIND User as u that IS Person as p
RETURN u.username, p.firstName, p.lastName, p.email

Wildcard can be used to return all properties. For example:

FIND User as u that IS Person as p
RETURN u.*, p.*

A side effect of using wildcard to return all properties is that all metadata properties associated with the
selected entities are also returned. This may be useful when users desire to perform analysis that involves
metadata.

Keep in mind the keywords are case insensitive.

18.2. Basic Keywords 83

JupiterOne Documentation

18.3 Sorting and Pagination via ORDER BY, SKIP, and LIMIT

ORDER BY is followed by a selector.field to indicate what to sort.

SKIP is followed by a number to indicate how many results to skip.

LIMIT is followed by a number to indicate how many results to return.

In the example below, the query sorts users by their username, and returns the 15th-20th users from the sorted list.

FIND Person as u WITH encrypted = false
ORDER BY u.username SKIP 10 LIMIT 5

18.4 Aggregation Functions: COUNT, MIN, MAX, AVG and SUM

It is useful to be able to perform calculations on data that have been returned from the graph. Being able to perform
queries to retrieve a count, min, max or perform other calculations can be quite valuable and gives users more ways to
understand their data.

The ability to perform aggregations are exposed as Aggregating Functions. These are functions that can be applied
to a given set of data that was requested via the RETURN clause.

The following aggregating functions are supported:

• count(selector)

• count(selector.field)

• min(selector.field)

• max(selector.field)

• avg(selector.field)

• sum(selector.field)

The keywords are case insensitive.

A few examples:

find
bitbucket_team as team
that relates to

bitbucket_user as user
return

team.name, count(user)

find
bitbucket_team as team
that relates to

bitbucket_user as user
return

count(user), avg(user.age)

See more details and examples below.

Future development:

There are plans to support the following aggregations:

84 Chapter 18. JupiterOne Query Language (J1QL)

JupiterOne Documentation

• count(*) - for determining the count of all other entities related to a given entity.

18.5 Examples

More example queries are shown below.

These examples, and same with all packaged queries provided in the JupiterOne web apps, are constructed in a way to
de-emphasize the query keywords (they are case insensitive) but rather to highlight the relationships – the operational
context and significance of each query.

18.5.1 Simple Examples

/* Find any entity that is unencrypted */
Find * with encrypted = false

/* Find all entities of class DataStore that are unencrypted */
Find DataStore with encrypted = false

/* Find all entities of type aws_ebs_volume that are unencrypted */
Find aws_ebs_volume with encrypted = false

18.5.2 Query with relationships

/* return just the Firewall entities that protects public-facing hosts */
Find Firewall that PROTECTS Host with public = true

/* return Firewall and Host entities that matched query */
Find Firewall as f that PROTECTS Host with public = true as h RETURN f, h

/* return all the entities and relationships that were traversed as a tree */
Find Firewall that PROTECTS Host with public = true RETURN tree

18.5.3 Full-text search

/* find any and all entities with "127.0.0.1" in some property value */
Find "127.0.0.1"

/* the `FIND` keyword is optional */
"127.0.0.1"

/* find all hosts that have "127.0.0.1" in some property value */
Find "127.0.0.1" with _class='Host'

18.5.4 Negating relationships

It’s useful to know if entities do not have a relationship with another entity. To achieve this, relationships can be
negated by prefixing a relationship with an exclamation point: !.

18.5. Examples 85

JupiterOne Documentation

Find User that !IS Person

/* This also applies to any relationships */
Find User that !RELATES TO Person

This finds EBS volumes that are not in use. The query finds relationships regardless of the edge direction, therefore
the !USES in the below query translates more directly as “is not used by”.

Find aws_ebs_volume that !USES aws_instance

It is important to note that the above query returns aws_ebs_volume entities. If the query were constructed the
other way around –

Find aws_instance that !USES aws_ebs_volume

– it would return a list of aws_instances, if it does not have an EBS volume attached.

18.5.5 More complex queries

Find critical data stored outside of production environments.

This assumes you have the appropriate tags (Classification and Production) on your entities.

Find DataStore with tag.Classification='critical'
that HAS * with tag.Production='false'

Find all users and their devices without the required endpoint protection agent installed:

Find Person that has Device that !protects HostAgent

Find incorrectly tagged resources in AWS:

Find * as r
that RELATES TO Service
that RELATES TO aws_account
where r.tag.AccountName != r.tag.Environment

If your users sign on to AWS via single sign on, you can find out who has access to those AWS accounts via SSO:

Find User as U
that ASSIGNED Application as App
that CONNECTS aws_account as AWS
RETURN
U.displayName as User,
App.tag.AccountName as IdP,
App.displayName as ssoApplication,
App.signOnMode as signOnMode,
AWS.name as awsAccount

18.5.6 Using metadata

Filtering on metadata can often be useful in performing security analysis. The example below is used to find network
or host entities that did not get ingested by an integration instance. In other words, these are entities that are likely
“external” or “foreign” to the environment.

86 Chapter 18. JupiterOne Query Language (J1QL)

JupiterOne Documentation

Find (Network|Host) with _IntegrationInstanceId = undefined

The following example finds all brand new code repos created within the last 48 hours:

Find CodeRepo with _beginOn > date.now-24hr and _version=1

For more details on metadata properties, see the JupiterOne Data Model documentation.

18.6 Advanced Notes and Use Cases

18.6.1 How aggregations are applied

There are three different ways for aggregations to be applied

• on the customer’s subgraph (determined by the traversal that is run)

• on a portion of the customer’s subgraph relative to a set of entities (groupings)

• on data for a single entity

The way aggregations happen are determined by what is requested via the query language’s return clause.

Aggregations relative to a subgraph

If all selectors are aggregations, then all aggregations will be scoped to the entire traversal that the user has requested
and not tied to individual entities.

Ex. return count(user), count(team)

Aggregations relative to a grouping

If selectors are provided that do not use an aggregation function, they will be used as a grouping key. This key will be
used to apply the aggregations relative to the data chosen.

Ex. return user, count(team)

Aggregations relative to a single entity

If aggregations are provided that use the same selector as the grouping key, then aggregations will be scoped to values
on each individual entity.

Ex. return user, count(user._classes)

Aggregations Examples

The Simple Case

For example, with the following query,

18.6. Advanced Notes and Use Cases 87

JupiterOne Documentation

find
bitbucket_team as team
that relates to

bitbucket_user as user
return

team.name, count(user)

the result will be:

{
"type": "table",
"data": [
{ "team.name": "team1", "count(user)": 25 },
{ "team.name": "team2", "count(user)": 5 }

]
}

In this case, the team.name acts as the key that groups aggregations together. So count(user) finds the count of
users relative to each team.

Multiple grouping keys

When there are return selectors that are not aggregating functions, the aggregating functions will be performed relative
to the identifier that it is closer to in the traversal.

Example:

find
bitbucket_project as project
that relates to

bitbucket_team as team
that relates to

bitbucket_user as user
return

project.name, team.name, count(user)

The count(user) aggregation will be performed relative to the team, because the team traversal is closer to the
user traversal in the query.

Example result:

{
"type": "table",
"data": [
{ "project.name": "JupiterOne", "team.name": "team1", "count(user)": 25 },
{ "project.name": "JupiterOne", "team.name": "team2", "count(user)": 5 },
{ "project.name": "Windbreaker", "team.name": "team2", "count(user)": 5 }

]
}

If the return statement is changed to this:

return
project.name, count(user)

The count(user) aggregation will be performed relative to the project.

88 Chapter 18. JupiterOne Query Language (J1QL)

JupiterOne Documentation

Example result:

{
"type": "table",
"data": [
{ "project.name": "JupiterOne", "count(user)": 50 },
{ "project.name": "Windbreaker", "count(user)": 5 }

]
}

Examples relative to a single entity

If a selector is specified and an aggregating function is applied to that selector’s source identifier in some way, aggre-
gations will happen locally to the element.

Example:

find
bitbucket_project as project
that relates to

bitbucket_team as team
that relates to

bitbucket_user as user
return

project.name, count(project.aliases), team.name, count(user)

Example result:

{
"type": "table",
"data": [
{

"project.name": "JupiterOne",
"count(project.aliases)": 1,
"team.name": "team1",
"count(user)": 25

},
{

"project.name": "JupiterOne",
"count(project.aliases)": 1,
"team.name": "team2",
"count(user)": 5

},
{

"project.name": "Windbreaker",
"count(project.aliases)": 5,
"team.name": "team2",
"count(user)": 5

}
]

}

18.6. Advanced Notes and Use Cases 89

JupiterOne Documentation

90 Chapter 18. JupiterOne Query Language (J1QL)

CHAPTER 19

JupiterOne API

JupiterOne platform exposes a number of public GraphQL endpoints.

Base URL: https://api.us.jupiterone.io

Endpoint for query and graph operations: /graphql

Endpoint for alert and rules operations: /rules/graphql

An experimental node.js client and CLI can be found on Github.

19.1 Querying Entities and Relationships

Endpoint: /graphql

This query will allow you to run J1QL queries for fetching data.

query J1QL($query: String!, $variables: JSON, $dryRun: Boolean) {
queryV1(query: $query, variables: $variables, dryRun: $dryRun) {
type
data

}
}

Variables:

{
"query": "find Person with _type=${type}",
"variables": {
"type": "employee"

},
"dryRun": true

}

NOTE: there’s also a queryV1Tree variant that has nice types for use when displaying graph data.

91

https://github.com/JupiterOne/jupiterone-client-nodejs
https://github.com/JupiterOne/jupiterone-client-nodejs

JupiterOne Documentation

query J1QL($query: String!, $variables: JSON, $dryRun: Boolean) {
queryV1Tree(query: $query, variables: $variables, dryRun: $dryRun) {
type
data {

vertices {
id
edges {
id

}
}

}
}

}

Variables:

{
"query": "find Person with _type=${type} return tree",
"variables": {
"type": "employee"

},
"dryRun": true

}

variables

19.1.1 Fetching graph data

This query will be used for fetching graph data.

Note: ATM a canned query for IAM Role data is run. No input variables need to be provided.

query testQuery {
queryGraph {
vertices {

id
entity {

_id
_key
_type
_accountId
_integrationName
_integrationDefinitionId
_integrationInstanceId
_version
_createdOn
_beginOn
_endOn
_deleted
displayName

}
properties

}
edges {

id
toVertexId

(continues on next page)

92 Chapter 19. JupiterOne API

JupiterOne Documentation

(continued from previous page)

fromVertexId
relationship {

_id
_key
_type
_accountId
_integrationName
_integrationDefinitionId
_integrationInstanceId
_version
_createdOn
_beginOn
_endOn
_deleted
_fromEntityKey
_toEntityKey
displayName

}
properties

}
}

}

19.1.2 Retrieving a single vertex by Id

This query will be used for fetch a vertex by it’s id.

query VertexQuery($id: String!, $filters: VertexFilters) {
vertex(id: $id, filters: $filters) {
id
entity {

_id
_key
_type
_accountId
_integrationName
_integrationDefinitionId
_integrationInstanceId
_version
_createdOn
_beginOn
_endOn
_deleted
displayName

}
properties

}
}

Variables:

{
"id": "<a vertex id>",
"filters": {
"_id": "<an entity id>",

(continues on next page)

19.1. Querying Entities and Relationships 93

JupiterOne Documentation

(continued from previous page)

"_key": "<an entity key>",
"_type": ["<a entity type>"],
"_class": ["<a entity class>"]

}
}

NOTE: Only one of the variables (id or filters) are required. Specifying both is allowed but is somewhat redun-
dant unless you want to assert that the vertex with a specific id exists with a specific entity property.

filters is “well defined” right now (all allowed fields are shown in the variables above) but can be tweaked to allow
for arbitrary properties in the future.

19.1.3 Fetching neighbors of a vertex

The Vertex type allows vertex and edge neighbors up to a certain depth to be retrieved using the neighbors field.
The return type of the neighbors resolver is the same as that of a graph query.

query VertexQuery($id: String!, $depth: Int) {
vertex(id: $id) {
id
entity {

displayName
}
neighbors(depth: $depth) {

vertices {
id
entity {
displayName

}
}
edges {

id
relationship {
displayName

}
}

}
}

}

Variables:

NOTE: The depth that is supplied must be a value between 1 and 5 (inclusive)

{
"id": "<a vertex id>",
"depth": 5

}

19.1.4 Retrieving a edge by Id

This query will be used for fetch a vertex by it’s id.

94 Chapter 19. JupiterOne API

JupiterOne Documentation

query VertexQuery($id: String!) {
edge(id: $id, label: $id, filters: $id) {
id
relationship {

_id
_key
_type
_accountId
_integrationName
_integrationDefinitionId
_integrationInstanceId
_version
_createdOn
_beginOn
_endOn
_deleted
_fromEntityKey
_toEntityKey
displayName

}
properties

}
}

Variables:

{
"id": "<an edge id>",
"label": "<edge label>",
"filters": {
"_id": "<a relationship id>",
"_key": "<a relationship key>",
"_type": "<a relationship type>",
"_class": "<a relationship class>"

}
}

NOTE: Only one of the variables (id, label or filters) are required. Specifying a label and filters when
an id is present is somewhat redundant but can be used to assert that the edge with a specific id exists with additional
constraints.

Much like with the vertex query, filters is “well defined” right now (all allowed fields are shown in the variables
above) but can be tweaked to allow for arbitrary properties in the future.

19.1.5 Fetching the count of entities via a _type and/or _class

For fetching the count of the latest entities the _id, _key, _type and _class fields can be supplied as filters. This
query only counts the latest versions of entities matching the filter criteria.

query testQuery($filters: VertexFilters, $filterType: FilterType) {
entityCount(filters: $filters, filterType: $filterType)

}

Note: Use field aliases to request the counts of multiple different entities. Also, the filterType argument is
optional and defaults to the value AND

19.1. Querying Entities and Relationships 95

JupiterOne Documentation

query testQuery {
Users: entityCount(filters: { _class: ["User"] }, filterType: "AND")
Repos: entityCount(filters: { _class: ["CodeRepo"] }, filterType: "OR")

}

Example result:

{
"User": 40,
"CodeRepo": 153

}

19.1.6 Fetching the count of all types and classes

query testQuery {
allEntityCounts

}

Note: This resolver uses the JSON scalar as the return type.

Example result:

{
"typeCounts": {
"iam_user": 12,
"iam_managed_policy": 10,
"iam_role_policy": 10

},
"classCounts": {
"User": 12,
"AccessPolicy": 20

}
}

19.1.7 Fetching the count of all types and classes

query testQuery ($classes: [String], filterType: FilterType) {
typeCounts (classes: $classes, filterType: $filterType)

}

Note: This resolver uses the JSON scalar as the return type.

If OR is specified as the filter type, all of the types between the classes will be returned. By default, the query ANDs
the classes and returns only the count of entities that have all of the specified classes.

Example result:

{
"iam_user": 12,
"iam_managed_policy": 10,
"iam_role_policy": 10

}

96 Chapter 19. JupiterOne API

JupiterOne Documentation

19.1.8 Vertex full-text search

query testQuery($query: String!, $size: Int, $after: String) {
queryText(query: $query, size: $size, after: $after) {
vertices {

id
entity {

_source
_id
_key
_type
_class
_accountId
_integrationName
_integrationDefinitionId
_integrationInstanceId
_version
_createdOn
_beginOn
_endOn
_deleted
displayName

}
properties

}
total
pageInfo {

endCursor
hasNextPage

}
}

}

Variables:

{
"query": "127.0.0.1"

}

19.1.9 Listing vertices via a _type and/or _class

For fetching the count of the latest entities the _id, _key, _type and _class fields can be supplied as filters. This
query only returns the latest versions of entities matching the filter criteria.

query testQuery($filters: VertexFilters, $filterType: FilterType, $after: String) {
listVertices(filters: $filters, filterType: $filterType, after: $after) {
vertices {

id
entity {

// entity details here
}
properties

}
total
pageInfo {

endCursor
(continues on next page)

19.1. Querying Entities and Relationships 97

JupiterOne Documentation

(continued from previous page)

hasNextPage
}

}
}

Note: the filterType argument is optional and defaults to the value AND

Variables:

{
"filters": {
"_type": ["<an entity type>"],
"_class": ["<an entity class>"]

},
"filterType": "<AND or OR>",
"after": "the value of pageInfo.endCursor"

}

Example result

{
"vertices": [
{

"id": "some-id",
"entity": {

"displayName": "Laptop-2345"
}

}
],
"total": 1,
"pageInfo": {
"endCursor": "some-base64-cursor",
"hasNextPage": true

}
}

19.2 Entity Mutations

Endpoint: /graphql

19.2.1 Create Entity

mutation CreateEntity (
$entityKey: String!
$entityType: String!
$entityClass: String!
$timestamp: Long
$properties: JSON

) {
createEntity (
entityKey: $entityKey,
entityType: $entityType,
entityClass: $entityClass,

(continues on next page)

98 Chapter 19. JupiterOne API

JupiterOne Documentation

(continued from previous page)

timestamp: $timestamp,
properties: $properties

) {
entity {

_id
...

}
vertex {

id,
entity {

_id
...

}
properties

}
}

}

Variables:

{
"entityKey": "<an entity key>",
"entityType": "<an entity type>",
"entityClass": "<an entity class>",
"timestamp": 1529329792552,
"properties": {
// Custom properties on the Entity
...

}
}

19.2.2 Updating Entity

mutation UpdateEntity (
$entityId: String!
$timestamp: Long
$properties: JSON

) {
updateEntity (
entityId: $entityId,
timestamp: $timestamp,
properties: $properties

) {
entity {

_id
...

}
vertex {

id,
entity {

_id
...

}
properties

}
(continues on next page)

19.2. Entity Mutations 99

JupiterOne Documentation

(continued from previous page)

}
}

Variables:

{
"entityId": "<an entity Id (entity._id)>",
"timestamp": 1529329792552,
"properties": {
// Custom properties to get updated
...

}
}

19.2.3 Deleting Entity

mutation DeleteEntity (
$entityId: String!
$timestamp: Long

) {
deleteEntity (
entityId: $entityId,
timestamp: $timestamp,

) {
entity {

_id
...

}
vertex {

id,
entity {

_id
...

}
properties

}
}

}

Variables:

{
"entityId": "<an entity Id (entity._id)>",
"timestamp": 1529329792552

}

19.3 Relationship Mutations

Endpoint: /graphql

100 Chapter 19. JupiterOne API

JupiterOne Documentation

19.3.1 Create Relationship

mutation CreateRelationship (
$relationshipKey: String!
$relationshipType: String!
$relationshipClass: String!
$fromEntityId: String!
$toEntityId: String!
$timestamp: Long
$properties: JSON

) {
createRelationship (
relationshipKey: $relationshipKey,
relationshipType: $relationshipType,
relationshipClass: $relationshipClass,
fromEntityId: $fromEntityId,
toEntityId: $toEntityId,
timestamp: $timestamp,
properties: $properties

) {
relationship {

_id
...

}
edge {

id
toVertexId
fromVertexId
relationship {

_id
...

}
properties

}
}

}

Variables:

{
"relationshipKey": "<a relationship key>",
"relationshipType": "<a relationship type>",
"relationshipClass": "<a relationship class>",
"fromEntityId": "<the _id of the from entity>",
"toEntityId": "<the _id of the to entity>",
"timestamp": 1529329792552,
"properties": {
// Custom properties on the relationship
...

}
}

19.3.2 Update Relationship

19.3. Relationship Mutations 101

JupiterOne Documentation

mutation UpdateRelationship (
$relationshipId: String!
$timestamp: Long
$properties: JSON

) {
updateRelationship (
relationshipId: $relationshipId,
timestamp: $timestamp,
properties: $properties

) {
relationship {

_id
...

}
edge {

id
toVertexId
fromVertexId
relationship {

_id
...

}
properties

}
}

}

Variables:

{
"relationshipId": "<a relationship Id (relationship._id)>",
"timestamp": 1529329792552,
"properties": {
// Custom properties to get updated
...

}
}

19.3.3 Delete Relationship

mutation DeleteRelationship (
$relationshipId: String!
$timestamp: Long

) {
deleteRelationship (
relationshipId: $relationshipId,
timestamp: $timestamp,

) {
relationship {

_id
...

}
edge {

id
toVertexId

(continues on next page)

102 Chapter 19. JupiterOne API

JupiterOne Documentation

(continued from previous page)

fromVertexId
relationship {

_id
...

}
properties

}
}

}

Variables:

{
"relationshipId": "<a relationship Id (relationship._id)>",
"timestamp": 1529329792552

}

19.4 Building CSV Report

Endpoint: /graphql

mutation BuildCsv(
$filters: VertexFilters
$propertyFilters: JSON
$filterType: FilterType

) {
buildCsv(
filters: $filters
propertyFilters: $propertyFilters
filterType: $filterType

) {
stateFileUrl

}
}

Variables:

{
"filters": {
"_type": ["<an entity type>"],
"_class": ["<an entity class>"]

},
"filterType": "<AND or OR>",
"propertyFilters": {
...

}
}

19.5 Alert and Rules Operations

Endpoint: /rules/graphql

19.4. Building CSV Report 103

JupiterOne Documentation

19.5.1 Create an alert rule

mutation CreateQuestionRuleInstance (
$instance: CreateQuestionRuleInstanceInput!

) {
createQuestionRuleInstance (
instance: $instance

) {
id
name
description
version
pollingInterval
question {

queries {
query
version

}
}
operations {

when
actions

}
outputs

}
}

variables:

{
"instance": {
"name": "unencrypted-prod-data",
"description": "Data stores in production tagged critical and unencrypted",
"version": "v1",
"pollingInterval": "ONE_DAY",
"outputs": [

"alertLevel"
],
"operations": [

{
"when": {
"type": "FILTER",
"version": 1,
"condition": [

"AND",
["queries.unencryptedCriticalData.total", "!=", 0]

]
},
"actions": [
{
"type": "SET_PROPERTY",
"targetProperty": "alertLevel",
"targetValue": "CRITICAL"

},
{
"type": "CREATE_ALERT"

}

(continues on next page)

104 Chapter 19. JupiterOne API

JupiterOne Documentation

(continued from previous page)

]
}

],
"question": {

"queries": [
{
"query": "Find DataStore with (production=true or tag.Production=true) and

→˓classification='critical' and encrypted!=true as d return d.tag.AccountName as
→˓Account, d.displayName as UnencryptedDataStores, d._type as Type, d.encrypted as
→˓Encrypted",

"version": "v1",
"name": "unencryptedCriticalData"

}
]

}
}

}

Note that the recommended interval for query based alert rules (aka a question) is ONE_DAY. Supported intervals
are THIRTY_MINUTES, ONE_HOUR, and ONE_DAY.

19.5.2 Update an alert rule

mutation UpdateQuestionRuleInstance (
$instance: UpdateQuestionRuleInstanceInput!

) {
updateQuestionRuleInstance (
instance: $instance

) {
id
name
description
version
pollingInterval
question {

queries {
query
version

}
}
operations {

when
actions

}
outputs

}
}

variables:

{
"instance": {
"id": "b1c0f75d-770d-432a-95f5-6f59b4239c72",
"name": "unencrypted-prod-data",
"description": "Data stores in production tagged critical and unencrypted",

(continues on next page)

19.5. Alert and Rules Operations 105

JupiterOne Documentation

(continued from previous page)

"version": "v1",
"pollingInterval": "ONE_DAY",
"outputs": [

"alertLevel"
],
"operations": [

{
"when": {
"type": "FILTER",
"version": 1,
"condition": [

"AND",
["queries.unencryptedCriticalData.total", "!=", 0]

]
},
"actions": [
{
"type": "SET_PROPERTY",
"targetProperty": "alertLevel",
"targetValue": "CRITICAL"

},
{

"type": "CREATE_ALERT"
}

]
}

],
"question": {

"queries": [
{
"query": "Find DataStore with (production=true or tag.Production=true) and

→˓classification='critical' and encrypted!=true as d return d.tag.AccountName as
→˓Account, d.displayName as UnencryptedDataStores, d._type as Type, d.encrypted as
→˓Encrypted",

"version": "v1",
"name": "unencryptedCriticalData"

}
]

}
}

}

Note that the only difference here for update is the "id" property associated with the rule instance. All settings of
a rule instance can be modified.

19.5.3 Delete an alert rule

mutation DeleteRuleInstance ($id: ID!) {
deleteRuleInstance (
id: $id

) {
id

}
}

variables:

106 Chapter 19. JupiterOne API

JupiterOne Documentation

{
"id": "b1c0f75d-770d-432a-95f5-6f59b4239c72"

}

Note that deleting an alert rule this way will not dismiss active alerts already triggered by this rule. It is recommended
to Disable a rule in the alerts app UI instead of deleting one.

19.5.4 Trigger an alert rule on demand

mutation EvaluateRuleInstance ($id: ID!) {
evaluateRuleInstance (
id: $id

) {
outputs {

name
value

}
}

}

variables:

{
"id": "b1c0f75d-770d-432a-95f5-6f59b4239c72"

}

19.6 Question Operations

Endpoint: /graphql

19.6.1 Create a Question

mutation CreateQuestion($question: CreateQuestionInput!) {
createQuestion(question: $question) {

id
title
description
queries {

name
query
version

}
variables {

name
required
default

}
compliance {

standard
requirements

}

(continues on next page)

19.6. Question Operations 107

JupiterOne Documentation

(continued from previous page)

accountId
integrationDefinitionId

}
}

variables:

{
"question": {
"title": "What are my production resources?",
"tags": ["SecOps"],
"description": "Returns a list of all production entities.",
"queries": [
{

"name": "prodresources",
"query": "Find * with tag.Production=true"

}
],
"compliance": [

{
"standard": "HITRUST CSF",
"requirements": ["10.k"]

}
]

}
}

Notes on “named queries”:

• name field is optional

• name should be a single word without special characters

• queries named good, bad, and unkown are used to determine gaps/issues and to perform continuous compli-
ance assessment

19.6.2 Update a question

mutation UpdateQuestion($id: ID!, $update: QuestionUpdate!) {
updateQuestion(id: $id, update: $update) {

id
title
description
queries {

name
query
version

}
variables {

name
required
default

}
compliance {

standard
requirements

(continues on next page)

108 Chapter 19. JupiterOne API

JupiterOne Documentation

(continued from previous page)

}
accountId
integrationDefinitionId

}
}

variables:

{
"id": "sj3j9f0j2ndlsj300swdjfjs",
"update": {
"title": "What are my production resources?",
"tags": ["SecOps"],
"description": "Returns a list of all production entities.",
"queries": [

{
"name": "prodresources",
"query": "Find * with tag.Production=true"

}
],
"compliance": [

{
"standard": "HITRUST CSF",
"requirements": ["10.k"]

}
]

}
}

Note that the only difference here for update is the "id" property associated with the question.

19.6.3 Delete a question.

mutation DeleteQuestion($id: ID!) {
deleteQuestion(id: $id) {

id
title
description
queries {

query
name
version

}
variables {

name
required
default

}
tags
accountId
integrationDefinitionId

}
}

}

variables:

19.6. Question Operations 109

JupiterOne Documentation

{
"id": "slj3098s03j-i2ojd0j2-sjkkdjf"

}

110 Chapter 19. JupiterOne API

CHAPTER 20

General

20.1 Are my assets tracked? How many entities are there?

Returns the current count of total assets/entities tracked in JupiterOne - either automatically ingested via integrations
or manually entered through the Asset Inventory app or API.

Tags: compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

20.1.1 Queries

• Find * as e return count(e)

20.1.2 Compliance Mappings

CIS Controls: 1.1, 1.2, 1.4, 1.5, 2.1, 2.3, 2.4, 2.5

HITRUST CSF: 07.a

20.2 What are my production information assets and their owners
and classification?

Returns a list of Application, Code Repo, Workload, Function, Host, Device, Database, Data Store entities along with
their owner and classification.

Tags: compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

111

JupiterOne Documentation

20.2.1 Queries

• Find (Application|CodeRepo|Workload|Function|Host|Device|Database|DataStore) as
→˓asset return asset._class, asset._type, asset.displayName, asset.tag.
→˓AccountName, asset.owner, asset.classification

20.2.2 Compliance Mappings

CIS Controls: 1.4, 1.5

HITRUST CSF: 07.a

PCI DSS: 2.4

20.3 What are my production information assets?

Returns a list of production Applications, Code Repos, Workloads, Functions, Hosts, Devices, Databases, and Data
Stores.

Tags: compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

20.3.1 Queries

• Find (Application|CodeRepo|Workload|Function|Host|Device|Database|DataStore) with
→˓tag.Production=true

20.3.2 Compliance Mappings

CIS Controls: 1.4, 1.5

HITRUST CSF: 07.a

PCI DSS: 2.4

20.4 What are my production systems and servers?

Returns a list of production Workloads, Functions, and Hosts.

Tags: compliance, HIPAA, HITRUST CSF, PCI DSS

20.4.1 Queries

• Find (Workload|Function|Host) with tag.Production=true

112 Chapter 20. General

JupiterOne Documentation

20.4.2 Compliance Mappings

CIS Controls: 1.4, 1.5

HITRUST CSF: 07.a

PCI DSS: 2.4

20.5 What are my production data stores and databases?

Returns a list of production Databases and Data Stores.

Tags: compliance, HIPAA, HITRUST CSF, PCI DSS

20.5.1 Queries

• Find (Database|DataStore) with tag.Production=true

20.5.2 Compliance Mappings

CIS Controls: 1.4, 1.5

HITRUST CSF: 07.a

PCI DSS: 2.4

20.6 What are my production resources?

Returns a list of all production entities.

Tags: SecOps

20.6.1 Queries

• Find * with tag.Production=true

20.7 What applications and operating systems are in use?

Returns a list of software applications and operating systems.

Tags: SecOps, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

20.7.1 Queries

• Find Application

20.5. What are my production data stores and databases? 113

JupiterOne Documentation

• Find Host with platform!=undefined as h return h.platform, h.platformName, h.
→˓osName, h.osVersion, h.osDetails ORDER BY h.platform

20.7.2 Compliance Mappings

CIS Controls: 2.3

HITRUST CSF: 07.a

PCI DSS: 2.4

20.8 What are my production applications?

Returns a list of production Applications.

Tags: SecOps, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

20.8.1 Queries

• Find Application with tag.Production=true

20.8.2 Compliance Mappings

CIS Controls: 2.1

HITRUST CSF: 07.a

PCI DSS: 2.4

20.9 Do I have proper vendor support for my software applications?

Returns a list of applications and their vendors. Vendors should have support agreement and/or SLA attached.

Tags: compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

20.9.1 Queries

• Find Application as app that CONNECTS Account that RELATES TO Vendor as v return
→˓app.displayName as app, v.name as vendor, v.linkToSLA, v.linkToMSA

• Find Application that RELATES TO Vendor

• Find Application

114 Chapter 20. General

JupiterOne Documentation

20.9.2 Compliance Mappings

CIS Controls: 2.2

HITRUST CSF: 05.i

PCI DSS: 2.4

20.10 Who are the new hires within the last 12 months?

Returns all employees added in the last 12 months.

Tags: compliance, HIPAA, HITRUST CSF

20.10.1 Queries

• Find employee with _createdOn > date.now-12months

20.10.2 Compliance Mappings

HITRUST CSF: 02.a, 02.b, 02.c, 02.e

For each of the new hire, you should provide supporting evidence to meet requirements for pre-hire screening and
onboarding. Links to these evidence may be added to each employee/Person entity (e.g. linking to a SharePoint
document or a Jira issue).

20.11 What business applications are we using?

Finds all application entities that does not have associate code repos. It is assumed that an application with code repos
is a commercial-facing application or part of your custom development.

Tags: SecOps

20.11.1 Queries

• Find Application that !has CodeRepo

20.12 What changed in my environment in the last 24 hours?

Find all entities that were updated with a timestamp within the last 24 hours.

Tags: SecOps

20.12.1 Queries

• Find * with _beginOn > date.now-24hrs

20.10. Who are the new hires within the last 12 months? 115

JupiterOne Documentation

20.13 What was added to my environment in the last 24 hours?

Find all entities that were created within the last 24 hours.

Tags: SecOps

20.13.1 Queries

• Find * with _createdOn > date.now-24hrs

116 Chapter 20. General

CHAPTER 21

Access

21.1 Find anything that allows public access to everyone.

Returns all entities that have an ‘ALLOWS’ permission directly to the global ‘everyone’ entity.

Tags: access, SecOps

21.1.1 Queries

• Find Everyone that ALLOWS * return tree

• Find Everyone that ALLOWS * as resource return resource.tag.AccountName, resource.
→˓_type, resource.name, resource.classification, resource.description, resource.
→˓webLink

21.2 Show me the current password policy and compliance status.

Returns all password policies and details. The second query finds all ControlPolicy entities with ‘password’ as a
search string and the entity resources that each matched ControlPolicy evaluates – this works if you have AWS Config
enabled to evaluate your account password policy.

Tags: access, compliance, HIPAA, HITRUST CSF

21.2.1 Queries

• Find PasswordPolicy

117

JupiterOne Documentation

• 'password' with _class='ControlPolicy' as p that evaluates * as e return p.
→˓displayName as Policy, e.displayName as TargetEnv, p.compliant as Compliant, p.
→˓inputParameters as Details

21.2.2 Compliance Mappings

HITRUST CSF: 01.d, 01.p, 01.r

21.3 Are there external users with access to our systems?

Returns all User entities that are a Person (i.e. users accounts owned by an individual) who is not employed by your
organization (i.e. the Root entity). Note that the query finds relationships bidirectionally. !EMPLOYS here translates
to ‘is not employed by’. The second query returns user accounts owned by contractors.

Tags: access, compliance, HIPAA, HITRUST CSF

21.3.1 Queries

• Find User that IS Person that !EMPLOYS Root

• Find User as u that IS Person as p where u.userType='contractor' or p.
→˓employeeType='contractor'

21.3.2 Compliance Mappings

HITRUST CSF: 01.j, 05.i

Organizations must show due diligence managing the information security risks posed by external parties. This in-
cludes identifying and managing the access to data/systems by external parties such as service providers and contrac-
tors.

21.4 Who has been assigned permissions with administra-
tor/privileged access?

Returns policies with admin access and the entities that are assigned each policy. Note that in most cases, integrations
set the ‘admin’ boolean to true if the policy name contains the keyword ‘admin’.

Tags: access, SecOps, compliance, CIS Controls, HITRUST CSF, PCI DSS

21.4.1 Queries

• Find AccessPolicy with admin=true as policy that ASSIGNED * as e return policy.
→˓displayName, policy.webLink, e.displayName, e.webLink

118 Chapter 21. Access

JupiterOne Documentation

21.4.2 Compliance Mappings

CIS Controls: 4.1

HITRUST CSF: 01.c

PCI DSS: 7.1, 7.3, 8.1, 8.3, 8.7

21.5 Who has access to what systems/resources?

Returns all users and their access.

Tags: access, SecOps, compliance, HIPAA, HITRUST CSF

21.5.1 Queries

• Find (User|Person) as u that (ASSIGNED|TRUSTS|HAS|OWNS)
→˓(Application|AccessPolicy|AccessRole|Account|Device|Host) as a return u.
→˓displayName, u._type, u.username, u.email, a._type, a.displayName, a.tag.
→˓AccountName order by u.displayName

21.5.2 Compliance Mappings

HITRUST CSF: 01.e, 01.v

Access should be reviewed at least quarterly and whenever an employee’s status changes.

21.6 Who owns which user accounts?

Returns all User entities (i.e. user accounts) that are mapped to a Person.

Tags: access, SecOps, compliance, HIPAA, HITRUST CSF

21.6.1 Queries

• Find User that IS Person

21.6.2 Compliance Mappings

HITRUST CSF: 01.e

Access should be reviewed at least quarterly and whenever an employee’s status changes.

21.5. Who has access to what systems/resources? 119

JupiterOne Documentation

21.7 What are the shared/generic/service accounts or access roles?
(Including user accounts that are not individually owned)

Returns all AccessRoles (e.g aws_iam_role) that trusts a service (i.e. can be assumed/used by a service). Additionally,
the second query returns all User entities (i.e. user accounts) that are NOT mapped to a Person.

Tags: access, SecOps

21.7.1 Queries

• Find AccessRole that TRUSTS Service

• Find User with mfaEnabled != true that !IS Person

21.8 Did we remove all access from employees who left?

Returns any User entity (i.e. user account) that is mapped to a Person no longer employed by your organization (Root).
If access is properly configured and mapped in JupiterOne, this query should return nothing.

Tags: access, SecOps, compliance, HIPAA, HITRUST CSF

21.8.1 Queries

• Find User that IS Person that !EMPLOYS Root

21.8.2 Compliance Mappings

HIPAA:

HITRUST CSF: 02.i

21.9 Which user accounts do not have multi-factor authentication en-
abled?

Returns all user entities that do not have the mfaEnabled property set to true and have no MFA device assigned/in use.

Tags: access, SecOps, compliance, CIS Controls, PCI DSS

21.9.1 Queries

• Find User with mfaEnabled != true that !(ASSIGNED|USES|HAS) mfa_device

• Find User with mfaEnabled = true

120 Chapter 21. Access

JupiterOne Documentation

• Find User that (ASSIGNED|USES|HAS) mfa_device

21.9.2 Compliance Mappings

CIS Controls: 4.5, 12.11, 16.3

PCI DSS: 8.2, 8.3

21.9. Which user accounts do not have multi-factor authentication enabled? 121

JupiterOne Documentation

122 Chapter 21. Access

CHAPTER 22

Application Development

22.1 What are the code repos for a particular application or project?

Returns all code repos connected to a given Application or Project. You will need to edit this Application/Project name
to match yours.

Tags: app, dev, DevOps

22.1.1 Queries

• Find CodeRepo that relates to (Application|Project) with name='JupiterOne'

22.2 Were there any Code Repos added in the last 24 hours?

Returns all code repos whose first version was created within the last 24 hours.

Tags: app, dev, DevOps

22.2.1 Queries

• Find CodeRepo with _beginOn > date.now-24hr and _version=1

22.3 Who are the most recent contributors to this repo?

Returns the authors of the last five pull requests to a give code repo. Replace the repo name with the name of the repo
you are searching for.

Tags: app, dev, DevOps

123

JupiterOne Documentation

22.3.1 Queries

• Find User as u that OPENED PR as PR that HAS CodeRepo with name='repo-name' as
→˓repo return u.displayName, u.username, PR.displayName, PR.name, PR._createdOn,
→˓repo.name ORDER BY PR._createdOn LIMIT 5

22.4 Which PRs did this developer open in the last 5 days?

Returns a list of pull requests opened by the given developer. Replace the full text search string (at the very beginning
of query in quotes) with the name or github/gitlab/bitbucket username of the developer.

Tags: app, dev, DevOps

22.4.1 Queries

• 'Charlie' that OPENED PR with _createdOn > date.now - 5days as PR return PR.
→˓displayName, PR.name

124 Chapter 22. Application Development

CHAPTER 23

Data

23.1 Are there any non-public data stores incorrectly configured with
public access to everyone?

Find all Data Stores that are marked publicly accessible or have an ALLOWS relationship to everyone, unless the data
store is specifically tagged as ‘public’ per data classification.

Tags: data, SecOps

23.1.1 Queries

• Find DataStore with (classification!='public' or classification=undefined) that
→˓ALLOWS everyone

• Find DataStore with (classification!='public' or classification=undefined) and
→˓public=true

23.2 Which data stores do not have proper classification tags?

Find Data Stores across my entire environment that are not tagged with classification.

Tags: data, SecOps

23.2.1 Queries

• Find DataStore with classification='' or classification=undefined

125

JupiterOne Documentation

23.3 What is the inventory of my sensitive data stores?

Find Data Stores that are tagged as ‘sensitive’ or ‘confidential’ or ‘critical’.

Tags: data, SecOps, compliance, CIS Controls, HITRUST CSF, PCI DSS

23.3.1 Queries

• Find DataStore with classification='sensitive' or classification='confidential'
→˓or classification='critical'

• Find DataStore with (classification='' or classification=undefined) and
→˓(production=true or tag.Production=true)

23.3.2 Compliance Mappings

CIS Controls: 13.1

HITRUST CSF: 07.d, 07.e

23.4 Which production data stores do not have proper classification
tags?

Find Data Stores in production that are not tagged with classification.

Tags: data, SecOps

23.4.1 Queries

• Find DataStore with (classification='' or classification=undefined) and
→˓(production=true or tag.Production=true)

23.5 Is there any known confidential or critical data outside of pro-
duction?

Returns a list of Data Stores tagged with ‘confidential’ or ‘critical’ classification label outside of production environ-
ments. Confidential or critical data should remain inside production environments.

Tags: data, SecOps

23.5.1 Queries

• Find DataStore with (classification='confidential' or classification='critical')
→˓and (tag.Production!=true or production!=true)

126 Chapter 23. Data

JupiterOne Documentation

• Find DataStore with (classification='confidential' or classification='critical')
→˓that RELATES TO (Account|Service) with (tag.Production!=true or production!
→˓=true)

23.6 Evidence of data-at-rest encryption for production servers

Returns all data volumes (disks) attached to production hosts and their encryption status.

Tags: data, compliance, HIPAA, HITRUST CSF

23.6.1 Queries

• Find Host with (tag.Production=true or production=true or tag.ePHI=true or tag.
→˓PHI=true or tag.PII=true) as h that uses DataStore with encrypted=true as d
→˓return h.tag.AccountName as Account, h.displayName as Hostname, d.displayName
→˓as EncryptedDisks, d.encrypted as Encrypted

• Find Host with (tag.Production=true or production=true or tag.ePHI=true or tag.
→˓PHI=true or tag.PII=true) as h that uses DataStore with encrypted!=true as d
→˓return h.tag.AccountName as Account, h.displayName as Hostname, d.displayName
→˓as UnencryptedDisks, d.encrypted as Encrypted

23.6.2 Compliance Mappings

HITRUST CSF: 06.d, 07.e

Data volumes containing ePHI must be encrypted. If unencrypted disks are being used, as returned by the second
query, you must remediate.

23.7 Is my production or PHI/PII data stores encrypted?

Returns a list of Data Stores (such as AWS S3 buckets) tagged as production or as containing ePHI/PHI/PII data and
their encryption status.

Tags: data, compliance, HIPAA, HITRUST CSF

23.7.1 Queries

• Find DataStore with (production=true or tag.Production=true or tag.ePHI=true or
→˓tag.PHI=true or tag.PII=true) and encrypted=true as d return d.tag.AccountName
→˓as Account, d.displayName as EncryptedDataStores, d._type as Type, d.encrypted
→˓as Encrypted

• Find DataStore with (production=true or tag.Production=true or tag.ePHI=true or
→˓tag.PHI=true or tag.PII=true) and encrypted!=true as d return d.tag.AccountName
→˓as Account, d.displayName as UnencryptedDataStores, d._type as Type, d.
→˓encrypted as Encrypted

23.6. Evidence of data-at-rest encryption for production servers 127

JupiterOne Documentation

23.7.2 Compliance Mappings

HITRUST CSF: 06.d, 07.e

Data stores containing ePHI must be encrypted. If unencrypted data stores are found, as returned by the second query,
you must remediate.

23.8 Is my critical data in production encrypted?

Returns a list of Data Stores (such as AWS S3 buckets) in that are tagged as ‘critical’ in production environments and
their encryption status. Replace the classification label to match your organization’s data classification model/policy.

Tags: data, SecOps

23.8.1 Queries

• Find DataStore with (production=true or tag.Production=true) and classification=
→˓'critical' and encrypted=true as d return d.tag.AccountName as Account, d.
→˓displayName as EncryptedDataStores, d._type as Type, d.encrypted as Encrypted

• Find DataStore with (production=true or tag.Production=true) and classification=
→˓'critical' and encrypted!=true as d return d.tag.AccountName as Account, d.
→˓displayName as UnencryptedDataStores, d._type as Type, d.encrypted as Encrypted

23.9 Is there unencrypted ePHI or PII?

Returns any Data Store tagged as ePHI that is not encrypted.

Tags: data, SecOps

23.9.1 Queries

• Find DataStore with (tag.PHI=true or tag.ePHI=true or tag.PII=true) and
→˓encrypted=false

128 Chapter 23. Data

CHAPTER 24

Endpoints

24.1 Whose endpoint is out of compliance?

Find employees whose endpoint device did not meet your defined configuration compliance.

Tags: endpoint, SecOps

24.1.1 Queries

• Find Person that OWNS Device that (MONITORS|MANAGES|PROTECTS) HostAgent with
→˓compliant=false

24.2 Is there anybody who does not have a user endpoint device (e.g.
a laptop or workstation)?

Find employees who do not have an endpoint device being mapped and tracked in the system.

Tags: endpoint, SecOps

24.2.1 Queries

• Find Person that !OWNS (user_endpoint|laptop|workstation|desktop)

129

JupiterOne Documentation

24.3 What is the configuration and compliance status of my endpoint
devices?

Returns all endpoint Devices and their relevant compliance status, such as disk encryption, host firewall, auto-update,
and screensaver protection. Secondly, returns hosts or devices that do not have either an endpoint configuration or
compliance agent protection.

Tags: endpoint, compliance, HIPAA, HITRUST CSF

24.3.1 Queries

• Find HostAgent with compliant=true that (MONITORS|MANAGES) (user_
→˓endpoint|workstation|laptop|desktop|tablet)

• Find HostAgent with compliant=false that (MONITORS|MANAGES) (user_
→˓endpoint|workstation|laptop|desktop|tablet)

• Find (user_endpoint|workstation|laptop|desktop|tablet) that !(MONITORS|MANAGES)
→˓HostAgent with function='endpoint-compliance' or function='endpoint-
→˓configuration'

24.3.2 Compliance Mappings

HITRUST CSF: 01.x, 01.y, 06.d, 10.h

Systems shall be configured according to a current security baseline. Use full-disk encryption to protect the confi-
dentiality of information on laptops and other mobile devices. Also, enable local host firewall, auto install of OS
patches/updates, and screen lock with password protection.

24.4 Is there malware protection for all endpoints?

Returns all endpoint Devices and their anti-malware Host Agents. Secondly, returns devices that do not have anti-
malware agent protection.

Tags: endpoint, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.4.1 Queries

• Find HostAgent with function='anti-malware' as a that PROTECTS (user_
→˓endpoint|workstation|laptop|desktop|server) as h return a.displayName, h.
→˓displayName, h.owner

• Find (user_endpoint|workstation|laptop|desktop|server) that !PROTECTS HostAgent
→˓with function='anti-malware'

130 Chapter 24. Endpoints

JupiterOne Documentation

24.4.2 Compliance Mappings

CIS Controls: 8.1

HITRUST CSF: 10.h

PCI DSS: 5.1

24.5 Is there protection for all user endpoints/devices?

Returns all user endpoints and their Host Agents. Secondly, returns user endpoints that do not have any monitoring or
protection by a host agent.

Tags: endpoint, compliance, HIPAA, HITRUST CSF

24.5.1 Queries

• Find HostAgent that (PROTECTS|MANAGES|MONITORS) user_endpoint

• Find user_endpoint that !(PROTECTS|MANAGES|MONITORS) HostAgent

24.5.2 Compliance Mappings

HITRUST CSF: 01.g

24.6 Is operating system patching and auto update enabled on end-
point hosts?

Returns all user endpoints that has either enabled or disabled automatic operating system updates in two lists.

Tags: endpoint, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.6.1 Queries

• Find HostAgent with automaticOsUpdates='ON' and automaticSecurityUpdates='ON' as
→˓agent that (PROTECTS|MONITORS|MANAGES) user_endpoint as device return device.
→˓displayName, device.owner, agent.automaticOsUpdates, agent.
→˓automaticSecurityUpdates

• Find HostAgent with automaticOsUpdates='OFF' or automaticSecurityUpdates='OFF' as
→˓agent that (PROTECTS|MONITORS|MANAGES) user_endpoint as device return device.
→˓displayName, device.owner, agent.automaticOsUpdates, agent.
→˓automaticSecurityUpdates

24.5. Is there protection for all user endpoints/devices? 131

JupiterOne Documentation

24.6.2 Compliance Mappings

CIS Controls:

HITRUST CSF: 01.x, 01.y

PCI DSS:

24.7 Is application patching and auto update enabled on endpoint
hosts?

Returns all user endpoints that has either enabled or disabled automatic application updates in two lists.

Tags: endpoint, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.7.1 Queries

• Find HostAgent with automaticAppUpdates='ON' as agent that
→˓(PROTECTS|MONITORS|MANAGES) user_endpoint as device return device.displayName,
→˓device.owner, agent.automaticAppUpdates

• Find HostAgent with automaticAppUpdates='OFF' as agent that
→˓(PROTECTS|MONITORS|MANAGES) user_endpoint as device return device.displayName,
→˓device.owner, agent.automaticAppUpdates

24.7.2 Compliance Mappings

CIS Controls:

HITRUST CSF: 01.x, 01.y

PCI DSS:

24.8 Are my servers and systems protected by hosted-based fire-
wall?

Returns all user endpoints that has local firewall turned on or off in two lists.

Tags: infra, host, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.8.1 Queries

• Find HostAgent with firewall='ON' as agent that (PROTECTS|MONITORS|MANAGES) user_
→˓endpoint as device return device.displayName, device.owner, agent.firewall

• Find HostAgent with firewall!='ON' as agent that (PROTECTS|MONITORS|MANAGES) user_
→˓endpoint as device return device.displayName, device.owner, agent.firewall

132 Chapter 24. Endpoints

JupiterOne Documentation

24.8.2 Compliance Mappings

CIS Controls:

HITRUST CSF: 01.x, 01.y

PCI DSS: 1.4

24.9 Are there security agents monitoring and protecting my end-
point hosts/devices?

Returns all endpoint Hosts or Devices and their Host Agents. Secondly, returns devices that do not have any monitoring
or protection by a host agent.

Tags: endpoint, compliance, HIPAA, HITRUST CSF

24.9.1 Queries

• Find HostAgent as a that (PROTECTS|MANAGES|MONITORS) (Host|Device) as h return a.
→˓displayName, a._type, a.function, h.displayName, h.owner

• Find (Host|Device) with _type!='mapped_entity' that !(PROTECTS|MANAGES|MONITORS)
→˓HostAgent

24.9.2 Compliance Mappings

HITRUST CSF: 09.ab

24.10 Is operating system patching and auto update enabled on end-
point hosts?

Returns all endpoint Hosts that has either enabled or disabled automatic operating system updates in two lists.

Tags: endpoint, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.10.1 Queries

• Find (Host|HostAgent) with automaticOsUpdates='ON' and automaticSecurityUpdates=
→˓'ON'

• Find (Host|HostAgent) with automaticOsUpdates='OFF' or automaticSecurityUpdates=
→˓'OFF'

24.9. Are there security agents monitoring and protecting my endpoint hosts/devices? 133

JupiterOne Documentation

24.10.2 Compliance Mappings

CIS Controls: 3.4

HITRUST CSF: 01.y, 10.m

PCI DSS: 6.2

24.11 Is application patching and auto update enabled on endpoint
hosts?

Returns all endpoint Hosts that has either enabled or disabled automatic application updates in two lists.

Tags: endpoint, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.11.1 Queries

• Find (Host|HostAgent) with automaticAppUpdates='ON'

• Find (Host|HostAgent) with automaticAppUpdates='OFF'

24.11.2 Compliance Mappings

CIS Controls: 3.5

HITRUST CSF: 01.y, 10.m

PCI DSS: 6.2

24.12 Are my servers and systems protected by hosted-based fire-
wall?

Lists Firewall instances and the Hosts they each protect. Additionally, to identify gaps, returns a list of active Host or
Device entities that do not have local firewall enabled or a PROTECTS relationship connection to a Firewall entity.

Tags: infra, host, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.12.1 Queries

• Find Firewall as f that PROTECTS Host as h return f.displayName as firewall, h.
→˓displayName as host

• Find (Host|Device) with firewall='ON'

• Find (Host|Device) with firewall!='ON' and active=true that !PROTECTS Firewall

134 Chapter 24. Endpoints

JupiterOne Documentation

24.12.2 Compliance Mappings

CIS Controls: 9.4

HITRUST CSF: 07.a, 09.ab, 10.h

Implement host-based / local firewalls to monitor and prevent unauthorized access attempts. The organization shall
maintain information systems according to a current baseline configuration and configure system security parameters
to prevent misuse. The operating system shall have in place supporting technical controls such as antivirus, file
integrity monitoring, host-based (personal) firewalls or port filtering tools, and logging as part of their baseline.

PCI DSS:

24.13 What are the approved server/system images?

Lists all system images. Standard approved system images should be used to build servers and hosts. Images should
be updated regularly to include the latest security patches and application/OS updates.

Tags: infra, host, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.13.1 Queries

• Find Image

24.13.2 Compliance Mappings

CIS Controls: 5.1, 5.2

HITRUST CSF: 10.h

PCI DSS: 2.2

24.14 Are all system images updated in the past six months?

Lists all system images that have (or have not) been updated in the past 6 months.

Tags: infra, host, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.14.1 Queries

• Find Image with createdOn > date.now - 6 months

• Find Image with createdOn < date.now - 6 months

24.13. What are the approved server/system images? 135

JupiterOne Documentation

24.14.2 Compliance Mappings

CIS Controls: 5.1, 5.2

HITRUST CSF: 10.h

PCI DSS: 2.2

24.15 Which hosts are (or are not) using approved standard images?

Lists all server and container instances using approved standard images and those that are not, in two listings.

Tags: infra, host, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

24.15.1 Queries

• Find (aws_instance|docker_container|server) as h that USES Image as i return h._
→˓type, h.displayName, h.tag.AccountName, i._type, i.displayName

• Find (aws_instance|docker_container|server) with active=true that !USES Image

24.15.2 Compliance Mappings

CIS Controls: 5.1, 5.2

HITRUST CSF: 10.h

PCI DSS: 2.2

24.16 Which devices have been disposed in the last 12 months?

Returns a list of devices with a ‘disposed’ status and last updated within 12 months.

Tags: compliance, HIPAA, HITRUST CSF

24.16.1 Queries

• Find Device with status='disposed' and _beginOn > date.now-24hrs

24.16.2 Compliance Mappings

HITRUST CSF: 08.k

136 Chapter 24. Endpoints

CHAPTER 25

Governance

25.1 What are the corporate security policies and procedures?

Find all security policies and procedures.

Tags: compliance, HIPAA, HITRUST CSF

25.1.1 Queries

• Find security_policy

• Find security_procedure as procedure that IMPLEMENTS security_policy as policy
→˓return policy.displayName, procedure.displayName order by policy.displayName

25.1.2 Compliance Mappings

HITRUST CSF: 04.a

25.2 When was security policies and procedures last updated or re-
viewed?

Find all security policies and procedures by date, and the ones that have not been reviewed or updated in the past year.

Tags: compliance, HIPAA, HITRUST CSF

137

JupiterOne Documentation

25.2.1 Queries

• Find (security_policy|security_procedure) as p return p.displayName as
→˓PolicyProcedureName, p.updatedOn as lastUpdatedOn

• Find (security_policy|security_procedure) with (reviewedOn < date.Now - 1yr and
→˓updatedOn < date.Now - 1yr)

25.2.2 Compliance Mappings

HITRUST CSF: 04.b

25.3 Who is the appointed security officer?

Find the Person who implements the security program or is assigned the security leadership role.

Tags: compliance, HIPAA, HITRUST CSF

25.3.1 Queries

• Find Person that (IMPLEMENTS|ASSIGNED) Procedure with id='cp-role-assignment'

25.3.2 Compliance Mappings

HITRUST CSF: 02.d, 05.a

25.4 Which are my documented risks?

Return all documented risks.

Tags: compliance, HIPAA, HITRUST CSF

25.4.1 Queries

• Find Risk

25.4.2 Compliance Mappings

HITRUST CSF: 03.a, 03.b, 03.c, 03.d

Formal risk assessments shall be conducted at least annually or with major product/organization/system changes. As
a result of the assessment, any identified risk should be documented and tracked in a risk register.

138 Chapter 25. Governance

JupiterOne Documentation

25.5 Was there at least one risk assessment performed within the
past year?

Return all risk assessments performed with a createdOn timestamp in the past year; and secondly returns all risks
identified by the assessments.

Tags: compliance, HIPAA, HITRUST CSF

25.5.1 Queries

• Find risk_assessment with _createdOn > date.now - 1yr

• Find Assessment with _createdOn > date.now - 1yr that (IDENTIFIED|REVIEWED) Risk

25.5.2 Compliance Mappings

HITRUST CSF: 03.b, 03.d

Formal risk assessments shall be conducted at least annually or with major product/organization/system changes. As
a result of the assessment, any identified risk should be documented and tracked in a risk register.

25.6 Who are my vendors? Do I have a BAA/DPA/NDA/MSA and
SLA/Support Agreement with them?

Returns a list of Vendors and their properties, including links to NDA, BAA, MSA, SLA, support agreement and
vendor security review report, if available.

Tags: compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

25.6.1 Queries

• Find Vendor

25.6.2 Compliance Mappings

CIS Controls: 2.2

HITRUST CSF: 05.i

PCI DSS: 2.4

25.5. Was there at least one risk assessment performed within the past year? 139

JupiterOne Documentation

140 Chapter 25. Governance

CHAPTER 26

Infrastructure

26.1 What are directly connected to the Internet?

Find all the entities with an edge directly connected to the Internet

Tags: infra, network, SecOps

26.1.1 Queries

• Find (Internet|everyone) that relates to * return tree

26.2 What production resources are directly connected/exposed to
the Internet/everyone?

Find all production entities, except for firewalls and gateways, with an edge directly connected to the Internet or
everyone

Tags: infra, network, SecOps, compliance, PCI DSS

26.2.1 Queries

• Find (Internet|Everyone) that relates to * with tag.Production=true and _class!=
→˓'Firewall' and _class!='Gateway' as resource return resource.tag.AccountName,
→˓resource._type, resource.name, resource.classification, resource.description

26.2.2 Compliance Mappings

PCI DSS: 1.3

141

JupiterOne Documentation

26.3 Are there potential IP collisions among the networks/subnets in
my environment?

Find any two Network entities within the same account or service that have identical IP CIDR address.

Tags: infra, network, SecOps

26.3.1 Queries

• Find Network as n1 that has (Service|Account) as env that has Network as n2 where
→˓n1.CIDR=n2.CIDR return n1.displayName, n1.CIDR, n1.region, n2.displayName, n2.
→˓CIDR, n2.region, env.displayName, env.tag.AccountName order by env.tag.
→˓AccountName

26.4 What hosts or devices are connected to my internal networks?

Lists Host and Device entities that are connected to (i.e. relates to) internal Network entities.

Tags: infra, network, compliance, HIPAA, HITRUST CSF

26.4.1 Queries

• Find (Host|Device) that relates to Network with internal=true

26.4.2 Compliance Mappings

HITRUST CSF: 01.k

26.5 Show all inbound SSH firewall rules across my network environ-
ments.

Returns ingress firewall rules that match port 22 and the incoming source.

Tags: infra, network, SecOps

26.5.1 Queries

• Find Firewall as fw that ALLOWS as rule * as src where rule.ingress=true and
→˓(rule.fromPort=22 or rule.toPort=22) return fw.displayName, rule.fromPort, rule.
→˓toPort, src.displayName, src.ipAddress, src.CIDR

142 Chapter 26. Infrastructure

JupiterOne Documentation

26.6 Is inbound SSH allowed directly from an external host or net-
work?

Returns ingress firewall rules that include port 22 in the allowed range from an external host or network.

Tags: infra, network, SecOps

26.6.1 Queries

• Find Firewall as fw that ALLOWS as rule (Host|Network) with internal=false or
→˓internal=undefined as src where rule.ingress=true and (rule.fromPort<=22 and
→˓rule.toPort>=22) return fw.displayName, rule.fromPort, rule.toPort, src.
→˓displayName, src.ipAddress, src.CIDR

26.7 What network traffic is allowed between internal and external
(i.e. between trusted and untrusted) networks?

Find all Firewall entities and rules that allow traffic to/from an external Network or Host.

Tags: infra, network, SecOps, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

26.7.1 Queries

• Find Firewall as fw that ALLOWS as r (Network|Host) with internal=undefined or
→˓internal=false as n return fw.tag.AccountName, fw._type, fw.displayName, fw.
→˓description, r.ipProtocol, r.fromPort, r.toPort, n.displayName, n.CIDR, n.
→˓ipAddress

26.7.2 Compliance Mappings

CIS Controls: 12.2

HITRUST CSF: 09.m

PCI DSS: 1.2

26.8 Is there proper segmentation/segregation of internal networks?

Find all internal networks and show their purpose, environment and associated network-layer security gateway/firewall
protection.

Tags: infra, network, compliance, CIS Controls, HIPAA, HITRUST CSF, PCI DSS

26.8.1 Queries

• Find Network with internal=true as n that (HAS|CONTAINS|CONNECTS|PROTECTS)
→˓(Gateway|Firewall) with category='network' as g return n.displayName as Network,
→˓ n._type as NetworkType, n.CIDR as CIDR, n.tag.AccountName as Account, n.
→˓internal as Internal, g.displayName as Gateway, g._type as GatewayType

(continues on next page)

26.6. Is inbound SSH allowed directly from an external host or network? 143

JupiterOne Documentation

(continued from previous page)

26.8.2 Compliance Mappings

CIS Controls: 12.1

HITRUST CSF: 01.m

PCI DSS: 1.1

26.9 Are wireless networks segmented and protected by firewalls?

Find all wireless networks and show their connected router/gateway and firewall.

Tags: infra, network, compliance, HIPAA, HITRUST CSF

26.9.1 Queries

• Find Network with wireless=true as n that (HAS|CONTAINS|CONNECTS|PROTECTS)
→˓(Gateway|Firewall) with category='network' as g that
→˓(CONNECTS|ALLOWS|PERMITS|DENIES|REJECTS) as r * return n.displayName as Network,
→˓ n._type as NetworkType, n.cidr as CIDR, n.environment as Environment, g.
→˓displayName as Gateway, g._type as GatewayType, r._class, r.ipProtocol, r.
→˓fromPort, r.toPort

26.9.2 Compliance Mappings

HITRUST CSF: 09.m

26.10 Show listing of network layer firewall protection across all my
environments.

Lists Firewall instances and the Networks they each protects.

Tags: infra, network, compliance, HIPAA, HITRUST CSF

26.10.1 Queries

• Find Firewall as f that PROTECTS Network as n return f.displayName as firewall, n.
→˓displayName as network

26.10.2 Compliance Mappings

HITRUST CSF: 07.a, 09.m

Organizations shall implement controls to ensure the security of information in networks, and the protection of con-
nected services from unauthorized access.

144 Chapter 26. Infrastructure

JupiterOne Documentation

26.11 Are there VPN configured for remote access?

Lists Host, Device, or Network entities that contains the keyword ‘vpn’ in its properties.

Tags: infra, network, vpn, compliance, HIPAA, HITRUST CSF

26.11.1 Queries

• 'vpn' with _class='Host' or _class='Device' or _class='Network'

26.11.2 Compliance Mappings

HITRUST CSF: 01.j, 09.s

Virtual private networks (VPN) shall be implemented for remote access into internal systems and network environ-
ments.

26.11. Are there VPN configured for remote access? 145

JupiterOne Documentation

146 Chapter 26. Infrastructure

CHAPTER 27

Vulnerability Management

27.1 What open vulnerabilities do I have?

Returns Vulnerability findings that are still active (i.e. with a status that is open/pending).

Tags: vuln-mgmt, compliance, HIPAA, HITRUST CSF

27.1.1 Queries

• Find Vulnerability with active=true

27.1.2 Compliance Mappings

HITRUST CSF: 10.m

27.2 Which applications are vulnerable?

Returns Applications and their open (i.e. active) Vulnerability findings except low severity ones.

Tags: vuln-mgmt, compliance, HIPAA, HITRUST CSF

27.2.1 Queries

• Find (Application|Project|CodeRepo) as app that has Vulnerability with severity>2
→˓and active=true as vuln return app.name as AppName, vuln.name as Vulnerability,
→˓vuln.severity as Severity, vuln.priority as Priority

147

JupiterOne Documentation

27.2.2 Compliance Mappings

HITRUST CSF: 10.m

148 Chapter 27. Vulnerability Management

CHAPTER 28

AWS

28.1 Overview

JupiterOne provides a managed integration with Amazon Web Services. The integration connects directly to AWS
APIs to obtain infrastructure metadata and analyze resource relationships. Customers authorize read-only, security
audit access by establishing an IAM trust relationship that allows JupiterOne to assume a role in their account.

Information is ingested from all AWS regions that do not require additional contractual arrangements with AWS.
Please submit a JupiterOne support request if you need to monitor additional regions.

28.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the customer’s roleArn to assume in order to read infrastructure
information through AWS APIs. The role is configured to require an externalId; this also must be maintained in
the instance configuration.

Detailed setup instructions and a pre-built CloudFormation Stack are provided in the application and maintained in the
public JupiterOne AWS CloudFormation project on Github.

28.3 Permissions

The AWS integration requires security auditor permissions into the target AWS account, as defined by a combination of
the SecurityAudit IAM policy managed by AWS, and a few additional List*, Get*, and Describe* permissions
missing from the AWS managed policy. The exact policy and permission statements can be found in the public
JupiterOne AWS CloudFormation project on Github.

149

https://github.com/jupiterone/jupiterone-aws-integration
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/SecurityAudit
https://github.com/jupiterone/jupiterone-aws-integration

JupiterOne Documentation

28.4 Entities

The following entity resources and their meta data (not actual contents) are ingested when the integration runs:

28.5 Relationships

The following relationships are created/mapped:

28.5.1 Basic relationships within the integration instance account/resources

28.5.2 Connections to broader entity resources

28.5.3 Advanced mappings

The AWS integration performs analysis of security group rules, IAM policies, and assume role trust policies to deter-
mine the following mapping:

28.5.4 ProTips and Best Practices

• Tag your resources with the following tags:

– Classification

– Owner

– PII or PHI or PCI (boolean to indicate data type)

• Use email address as the username for your IAM Users, or tag them with Email tag, so that they can be
automatically mapped to a Person (i.e. employee) entity.

• Configure tagging as part of your integration configuration (in JupiterOne), under Advanced Options, to tag the

– AccountName and

– Production flag, if applicable.

• Configure your integration name to be the same as your AWS account alias.

150 Chapter 28. AWS

CHAPTER 29

JupiterOne Managed Integration for Microsoft Azure

29.1 Overview

JupiterOne provides a managed integration for Microsoft Azure. The integration connects directly to Azure APIs to
obtain account metadata and analyze resource relationships. Customers authorize access by . . . and providing that
credential to JupiterOne.

29.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires credentials of the App which is registered with Azure AD. You need:

1. Go to your Azure portal

2. Navigate to App registrations

3. Create a new app

4. Navigate to Overview page of the new app.

5. Get Application (client) ID and pass it as a AZURE_CLOUD_LOCAL_EXECUTION_CLIENT_ID
environment variable

6. Get Directory (tenant) ID and pass it as AZURE_CLOUD_LOCAL_EXECUTION_DIRECTORY_ID
environment variable

7. Navigate to the Certificates & secrets section.

8. Create a new client secret.

9. Store generated token and pass it as AZURE_CLOUD_LOCAL_EXECUTION_CLIENT_SECRET environment
variable

10. Navigate to API permissions section

11. Grant Group.Read.All and User.Read.All permissions

151

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/RegisteredAppsPreview

JupiterOne Documentation

12. Grant admin consent for this directory for the permissions above.

Check this instruction for additional information: https://docs.microsoft.com/en-us/graph/auth-v2-service

29.3 Entities

The following entity resources are ingested when the integration runs:

29.4 Relationships

The following relationships are created/mapped:

152 Chapter 29. JupiterOne Managed Integration for Microsoft Azure

CHAPTER 30

Bitbucket

30.1 Overview

JupiterOne provides a managed integration with Bitbucket. The integration connects directly to Bitbucket APIs to
obtain account metadata and analyze resource relationships. Customers authorize access by creating a Bitbucket
OAuth App in their account and providing the app credentials to JupiterOne.

30.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the customer’s Bitbucket OAuth App clientId and
clientSecret to authenticate requests to the Bitbucket REST APIs. The integration requires Read access to
the target Account, Team Membership, Projects, and Repositories.

See the following screenshot for an example configuration within a Bitbucket Team Settings, note the required and
optional settings.

docs/integrations/bitbucket/../../assets/integration-bitbucket-oauth-consumer-settings.png

BitBucket OAuth Example Config

Pull requests read permission is needed to ingest PRs. The PR entities serve as code review records for security and
compliance.

30.3 Entities

The following entity resources are ingested when the integration runs:

153

JupiterOne Documentation

30.4 Relationships

The following relationships are created/mapped:

30.4.1 Basic relationships within the integration instance account/resources

| | – | bitbucket_team HAS bitbucket_project | bitbucket_team HAS bitbucket_user |
bitbucket_project HAS bitbucket_repo | bitbucket_repo HAS bitbucket_pull_request |
bitbucket_user OPENED bitbucket_pull_request

154 Chapter 30. Bitbucket

CHAPTER 31

Carbon Black PSC

31.1 Overview

JupiterOne provides a managed integration with Carbon Black (Cb) Predictive Security Cloud (PSC). The integration
connects directly to Carbon Black PSC APIs to obtain configuration about its device sensors/agents, starting with Cb
Defense sensors. Customers authorize access by creating a Connector and an API Key in their target PSC account and
providing that credential to JupiterOne.

31.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the following three parameters for API authentication:

• Site (site): The part immediately follows defense- in your Carbon Black PSC / CbDefense account URL.
For example, if you access your account at https://defense-prod05.conferdeploy.net/, the
site is prod05

• API Key (apiKey): Go to Settings > Connectors from the web console of your Carbon Black account, then
click on Add Connector button, give it a Name, select API for the Connector Type to create a connector. The
API Key is displayed to you on screen.

• Connector ID (connectorId): Once a Connector is created, you will see the Connector ID on the list.

31.3 Entities

The following entity resources are ingested when the integration runs:

155

JupiterOne Documentation

31.4 Relationships

The following relationships are created/mapped:

| Relationships | | ———————————————————- | | carbonblack_psc_account HAS
cbdefense_sensor | | carbonblack_psc_account HAS cb_endpoint_protection | |
cb_sensor_policy ENFORCES cb_endpoint_protection | | cbdefense_sensor ASSIGNED
cb_sensor_policy |

156 Chapter 31. Carbon Black PSC

CHAPTER 32

GitHub

32.1 Overview

JupiterOne provides a managed integration with GitHub. The integration connects directly to GitHub APIs to obtain
account metadata and analyze resource relationships. Customers authorize access by creating a GitHub OAuth App in
their account and providing the app credentials to JupiterOne.

32.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the customer’s GitHub OAuth App clientId and clientSecret
to authenticate requests to the GitHub REST APIs. Detailed instructions for creating the OAuth App are provided by
GitHub.

32.3 Permissions

The integration is using GitHub Apps authentication, which requests permissions from the org/account installing the
app.

Beside the Metadata Permissions always granted, our app is only requesting Read Only for Repository Metadata and
Organization Members at this time.

Github References:

• https://developer.github.com/apps/building-github-apps/setting-permissions-for-github-apps/

• https://developer.github.com/v3/apps/permissions/#metadata-permissions

• https://developer.github.com/v3/apps/permissions/#permission-on-contents

157

https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app/
https://developer.github.com/apps/building-github-apps/setting-permissions-for-github-apps/
https://developer.github.com/v3/apps/permissions/#metadata-permissions
https://developer.github.com/v3/apps/permissions/#permission-on-contents

JupiterOne Documentation

32.4 Entities

The following entity resources are ingested when the integration runs:

32.5 Relationships

The following relationships are created/mapped:

32.5.1 Basic relationships within the integration instance account/resources

| | – | github_account OWNS github_repo | github_account HAS github_user

158 Chapter 32. GitHub

CHAPTER 33

Google

33.1 Overview

JupiterOne provides a managed integration with Google. The integration connects directly to the G Suite Admin API to
obtain account metadata and analyze resource relationships. Customers authorize read-only to access to a JupiterOne
Service Account.

33.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the Organization Account ID and an administrator email. The
JupiterOne Service Account must be added as an authorized API client with required permission scopes.

33.2.1 Getting Organization Account ID

From your Google Admin console:

1. Click Security, then expand Setup single sign-on (SSO)

2. Copy the idpid property value from the SSO URL. For example, https://accounts.google.com/
o/saml2/idp?idpid=C1111abcd provides the ID C1111abcd

3. Enter the value into the Account ID field in the JupiterOne integration configuration.

33.2.2 Admin API Enablement

The Admin API is not accessible to the JupterOne Service Account until the API is enabled in your G Suite organiza-
tion and permission is granted to the Service Account.

From your Google Admin console:

159

JupiterOne Documentation

1. Click Security, then expand Advanced settings and click on Manage API client access

2. Enter the JupiterOne Service Account client ID 102174985137827290632 into Client Name

3. Add the following API scopes (comma separated):

https://www.googleapis.com/auth/admin.directory.domain.readonly, https://www.
→˓googleapis.com/auth/admin.directory.user.readonly, https://www.googleapis.com/auth/
→˓admin.directory.group.readonly

1. Click Authorize

2. Return to the Admin console, click Security, then API reference

3. Check Enable API access

33.3 Entities

The following entity resources are ingested when the integration runs:

33.4 Relationships

The following relationships are created/mapped:

160 Chapter 33. Google

CHAPTER 34

HackerOne

34.1 Overview

JupiterOne provides a managed integration with HackerOne. The integration connects directly to HackerOne APIs to
obtain account metadata and analyze resource relationships. Customers authorize access by creating an API token in
their target HackerOne account and providing that credential to JupiterOne.

34.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

HackerOne provides detailed instructions on creating an API token within your HackerOne account.

34.3 Entities

The following entity resources are ingested when the integration runs:

34.4 Relationships

The following relationships are created/mapped:

161

https://docs.hackerone.com/programs/api-tokens.html

JupiterOne Documentation

162 Chapter 34. HackerOne

CHAPTER 35

jamf

35.1 Overview

JupiterOne provides a managed integration with jamf. The integration connects directly to jamf APIs to obtain account
metadata and analyze resource relationships. Customers authorize access by Basic Authentication with their target
jamf account and providing that credential to JupiterOne.

35.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

jamf provides detailed instructions on creating credentials.

35.3 Entities

The following entity resources are ingested when the integration runs:

35.4 Relationships

The following relationships are created/mapped:

163

https://developer.jamf.com/documentation#authentication

JupiterOne Documentation

164 Chapter 35. jamf

CHAPTER 36

Jira

36.1 Overview

JupiterOne provides a managed integration with Jira. The integration connects directly to Jira APIs to obtain project
information and issues.

36.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

Customers authorize access by creating a Jira user and providing the username and password to JupiterOne for HTTP
Basic Auth as described in the Jira Security for Other Integrations documentation.

36.3 Entities

The following entity resources are ingested when the integration runs:

36.4 Relationships

The following relationships are created/mapped:

165

https://developer.atlassian.com/cloud/jira/platform/security-for-other-integrations/

JupiterOne Documentation

166 Chapter 36. Jira

CHAPTER 37

KnowBe4

37.1 Overview

JupiterOne provides a managed integration with KnowBe4. The integration connects directly to KnowBe4 APIs to
obtain account metadata and analyze resource relationships. You authorize access by providing that an API token.

37.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

37.3 Entities

The following entity resources are ingested when the integration runs:

Note a training module from KnowBe4 can be either a “Store Purchase” or an “Uploaded Policy”.

37.4 Relationships

The following relationships are created/mapped:

167

JupiterOne Documentation

168 Chapter 37. KnowBe4

CHAPTER 38

Okta

38.1 Overview

JupiterOne provides a managed integration with Okta. The integration connects directly to Okta APIs to obtain account
metadata and analyze resource relationships. Customers authorize access by creating an API token in your target Okta
account and providing that credential to JupiterOne.

38.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

Instructions on creating an API token within your Okta account can be found here.

38.3 Entities

The following entity resources are ingested when the integration runs:

Note: the Service entities can later be connected to security policy procedures as control providers. This map-
ping establishes evidence that your organization security policies, procedures and controls are fully implemented,
monitored, and managed.

38.4 Relationships

The following relationships are created/mapped:

169

https://developer.okta.com/docs/api/getting_started/getting_a_token

JupiterOne Documentation

38.5 Tips

All Okta users are automatically mapped to a Person entity as an employee. If you have service accounts or generic
users in Okta, set their userType attribute to generic or service or bot in Okta user profile to skip this
mapping.

This allows you to find non-interactive users with a query like

Find User that !is Person

170 Chapter 38. Okta

CHAPTER 39

OneLogin

39.1 Overview

JupiterOne provides a managed integration with OneLogin. The integration connects directly to OneLogin APIs to
obtain account metadata and analyze resource relationships. Customers authorize access by creating an API token in
your target OneLogin account and providing that credential to JupiterOne.

39.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

Instructions on creating an API token within your OneLogin account can be found here.

39.3 Entities

The following entity resources are ingested when the integration runs:

39.4 Relationships

The following relationships are created/mapped:

171

https://developers.onelogin.com/api-docs/1/getting-started/working-with-api-credentials

JupiterOne Documentation

172 Chapter 39. OneLogin

CHAPTER 40

Openshift

40.1 Overview

JupiterOne provides a managed integration with Openshift. The integration connects directly to Openshift APIs to
obtain cluster metadata and analyze resource relationships.

40.2 Integration Instance Configuration

Authentication is currently designed to use a Service Account.

Login as admin:

oc login -u system:admin

Create service account:

oc create sa jupiterone
oc adm policy add-cluster-role-to-user cluster-reader -z jupiterone

Get service account token:

oc serviceaccounts get-token jupiterone

The integration instance configuration requires the cluster address and service account token.

40.3 Entities

The following entity resources are ingested when the integration runs:

173

JupiterOne Documentation

40.4 Relationships

The following relationships are created/mapped:

174 Chapter 40. Openshift

CHAPTER 41

SentinelOne

41.1 Overview

JupiterOne provides a managed integration with SentinelOne. The integration connects directly to SentinelOne APIs
to obtain account metadata and analyze resource relationships. Customers authorize access by creating an API token
in their target SentinelOne account and providing that credential to JupiterOne.

41.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

SentinelOne provides Every API call requires authentication. The recommended authentication is API Token. If SSO
or Two-Factor Authentication is mandatory for your username, you must use a Token.

Generating an API Token from your account WebUI:

1. In your Management Console, click Settings > USERS.

2. Click your username.

3. Click the edit button.

4. In Edit User > API Token, click Generate. If you see Revoke and Regenerate, you already have a token. If you
revoke or regenerate it, scripts that use that token will not work. There is no confirmation. Revoke removes
the token authorization. Regenerate revokes the token and generates a new token. If you click Generate or
Regenerate, a message shows the token string and the date that the token expires.

5. Click DOWNLOAD.

41.3 Entities

The following entity resources are ingested when the integration runs:

175

JupiterOne Documentation

41.4 Relationships

The following relationships are created/mapped:

176 Chapter 41. SentinelOne

CHAPTER 42

Snyk

42.1 Overview

JupiterOne provides a managed integration with Snyk. The integration connects directly to Snyk APIs to obtain
account metadata and analyze resource relationships. Customers authorize access by creating an API token in their
target Snyk account and providing that credential to JupiterOne.

42.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configurations requires the following two parameters:

• Snyk API Key (snykApiKey) In Snyk: In the upper right hand corner mouse over your account name, where
a drop down will appear. Click on account settings and your API token will appear in a hidden form in
the middle of the page. Click show and copy your key.

• Snyk Organisation ID (snykOrgId) In Snyk: Go to the dashboard. Click on manage organisation on
the far right of the screen across from Dashboard. Here, your organisation ID is displayed.

42.3 Entities

The following entity resources are ingested when the integration runs:

42.4 Relationships

The following relationships are created/mapped:

177

JupiterOne Documentation

178 Chapter 42. Snyk

CHAPTER 43

Tenable Cloud

43.1 Overview

JupiterOne provides a managed integration with Tenable.io, the Cloud Managed Tenable Platform. The integration
connects directly to Tenable Cloud APIs to obtain account metadata, vulnerability information, and application scan
results for ingestion into JupiterOne. Customers authorize access by providing API keys to JupiterOne.

43.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance, including the
API access key and secret key provided by the user.

43.3 Entities

The following entity resources are ingested when the integration runs:

43.4 Relationships

The following relationships are created/mapped:

179

https://www.tenable.com/products/tenable-io
https://developer.tenable.com

JupiterOne Documentation

180 Chapter 43. Tenable Cloud

CHAPTER 44

Threat Stack

44.1 Overview

JupiterOne provides a managed integration with Threat Stack. The integration connects directly to Threat Stack APIs
to obtain agents and vulnerability findings data. Customers authorize access by creating an API Key in their target
Threat Stack account and providing that credential to JupiterOne.

44.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the following three parameters for API authentication:

Go to Settings > Application Keys from the web console of your Threat Stack account, then find the following three
values under REST API Key, copy/paste each of them into your integration configuration screen in JupiterOne.

• Organization Name (orgName)

• Organization ID (orgId)

• User ID (userId)

• API Key (apiKey)

44.3 Entities

The following entity resources are ingested when the integration runs:

181

JupiterOne Documentation

44.4 Relationships

The following relationships are created/mapped:

| Relationships | | ————————————————- | | threatstack_account HAS
threatstack_agent | | threatstack_agent PROTECTS aws_instance | | threatstack_agent
PROTECTS server | | threatstack_agent IDENTIFIED cve |

182 Chapter 44. Threat Stack

CHAPTER 45

Veracode

45.1 Overview

JupiterOne provides a managed integration with Veracode. The integration connects directly to Veracode APIs to
obtain Vulnerability and Finding metadata and analyze resource relationships. Customers authorize access by creating
an API ID and secret in the their target Veracode account and providing those credentials to JupiterOne.

45.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

The integration instance configuration requires the customer’s API ID and secret to authenticate requests to the Vera-
code REST APIs. Veracode provides detailed instructions for obtaining these credentials.

45.3 Entities

The following entity resources are ingested when the integration runs:

45.4 Relationships

The following relationships are created/mapped:

45.4.1 Intra-Instance

45.4.2 Extra-Instance / Mapped

183

https://help.veracode.com/reader/lsoDk5r2cv%7EYrwLQSI7lfw/6UdIc6di0T5_Lo6qTHTpNA

JupiterOne Documentation

184 Chapter 45. Veracode

CHAPTER 46

Wazuh

46.1 Overview

JupiterOne provides a managed integration with Wazuh. The integration connects directly to Wazah Manager APIs to
obtain agent information. Customers authorize access to their self-hosted servers by providing the manager base URL
and a username and password to JupiterOne.

46.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

46.3 Entities

The following entity resources are ingested when the integration runs:

46.4 Relationships

The following relationships are created/mapped:

185

https://wazuh.com

JupiterOne Documentation

186 Chapter 46. Wazuh

CHAPTER 47

Whitehat

47.1 Overview

JupiterOne provides a managed integration with Whitehat. The integration connects directly to Whitehat APIs to
obtain account metadata and analyze resource relationships. Customers authorize access by creating an API key in
their target Whitehat account and providing that credential to JupiterOne.

47.2 Integration Instance Configuration

The integration is triggered by an event containing the information for a specific integration instance.

To obtain the API token for a Whitehat account, sign in to Sentinel. Click the “My Profile” button in the top right and
then “API Key”. Enter the account password and copy the displayed API Key.

47.3 Entities

The following entity resources are ingested when the integration runs:

47.4 Relationships

The following relationships are created/mapped:

47.4.1 Intra-Instance

47.4.2 Extra-Instance / Mapped

187

JupiterOne Documentation

188 Chapter 47. Whitehat

CHAPTER 48

AccessKey

A key used to grant access, such as ssh-key, access-key, api-key/token, mfa-token/device, etc.

Includes properties from:

• Key

• Entity

• Metadata

189

Key.html
Entity.html
Metadata.html

JupiterOne Documentation

190 Chapter 48. AccessKey

CHAPTER 49

AccessPolicy

A policy for access control assigned to a Host, Role, User, UserGroup, or Service.

Includes properties from:

• Entity

• Metadata

49.1 admin (boolean) - Optional

Indicates if the policy grants administrative privilege.

49.2 rules (array of string) - Optional

Rules of this policy. Each rule is written ‘as-code’ that can be operationalized with a control provider or within
JupiterOne’s rules engine.

49.3 content (string) - Optional

Content of a policy contains the raw policy rules, if applicable. For example, the JSON text of an AWS IAM Policy.
This is stored in raw data.

191

Entity.html
Metadata.html

JupiterOne Documentation

192 Chapter 49. AccessPolicy

CHAPTER 50

AccessRelationship

A Relationship that represents permission settings/rules between two entities.

Includes properties from:

• Relationship

• Metadata

50.1 _class (string) - Optional

Contains an enumeration of defined Relationship classes.

Options

• ALLOWS

• CAN_ACCESS

• DENIES

• PERMITS

• REJECTS

50.2 permissions (array of string) - Optional

Defines permissions of a Relationship. For example, ses:Get*, s3:GetObjects for access policy; or <protocol>.<port-
range> for firewall rules.

193

Relationship.html
Metadata.html

JupiterOne Documentation

50.3 accessLevel (array) - Optional

Defines the CRUD level of access - CREATE, READ, UPDATE, DELETE - and additionally, ADMIN. For
CAN_ACCESS Relationship.

Options

• CREATE

• READ

• UPDATE

• DELETE

• ADMIN

50.4 protocol (string) - Optional

Network traffic protocol (e.g. TCP, UDP, ICMP)

Options

• TCP

• UDP

• ICMP

• ALL

50.5 portRange (string) - Optional

Network traffic port range. This can be a single port (e.g. 80), or a range (e.g. 8080-8082), or any/all (represented by
the string ‘any’ or ‘0-65535’).

50.6 type (string) - Optional

Named type of access. For example: ‘SSH’, ‘HTTPS’, or ‘S3 Read Access’.

194 Chapter 50. AccessRelationship

CHAPTER 51

AccessRole

An access control role mapped to a Principal (e.g. user, group, or service).

Includes properties from:

• Entity

• Metadata

195

Entity.html
Metadata.html

JupiterOne Documentation

196 Chapter 51. AccessRole

CHAPTER 52

Account

An organizational account for a service or a set of services (e.g. AWS, Okta, Bitbucket Team, Google G-Suite account,
Apple Developer Account). Each Account should be connected to a Service.

Includes properties from:

• Entity

• Metadata

52.1 production (boolean) - Required

Indicates if this is a production account, defaults to false.

52.2 accessURL (string) - Optional

The main URL to access this account, e.g. https://lifeomic.okta.com

Format: uri

52.3 mfaEnabled (boolean) - Optional

Specifies whether multi-factor authentication (MFA) is enabled/required for users of this account.

197

Entity.html
Metadata.html
https://lifeomic.okta.com

JupiterOne Documentation

198 Chapter 52. Account

CHAPTER 53

Application

A software product or application.

Includes properties from:

• Entity

• Metadata

53.1 COTS (boolean) - Optional

Indicates if this is a Commercial Off-The-Shelf software application. Custom in-house developed application should
have this set to false.

53.2 FOSS (boolean) - Optional

Indicates if this is a Free or Open-Source software application or library. Custom in-house developed application
should have this set to false.

53.3 SaaS (boolean) - Optional

Indicates if this is a Software-as-a-Service product.

53.4 external (boolean) - Optional

Indicates if this is an externally acquired software application. Custom in-house developed application should have
this set to false.

199

Entity.html
Metadata.html

JupiterOne Documentation

53.5 mobile (boolean) - Optional

Indicates if this is a mobile app.

53.6 license (string) - Optional

Stores the type of license

Example Values

• BSD

• CC-BY-3.0

• CC-BY-4.0

• GPL-2.0

• GPL-3.0

• LGPL-2.0

• LGPL-2.1

• LGPL-3.0

• MIT

• EULA

• Proprietary

• UNLICENSED

• other

53.7 licenseURL (string) - Optional

The URL to the full license

Format: uri

53.8 productionURL (string) - Optional

The Production URL

Format: uri

53.9 stagingURL (string) - Optional

The Non-Production / Staging URL

Format: uri

200 Chapter 53. Application

JupiterOne Documentation

53.10 devURL (string) - Optional

The Development URL

Format: uri

53.11 testURL (string) - Optional

The Test URL

Format: uri

53.12 alternateURLs (array of string) - Optional

The additional URLs related to this application.

53.10. devURL (string) - Optional 201

JupiterOne Documentation

202 Chapter 53. Application

CHAPTER 54

Assessment

An object to represent an assessment, including both compliance assessment such as a HIPAA Risk Assessment or a
technical assessment such as a Penetration Testing. Each assessment should have findings (e.g. Vulnerability or Risk)
associated.

Includes properties from:

• Entity

• Metadata

54.1 category (string) - Required

The category of the Assessment.

Options

• Risk Assessment

• Readiness Assessment

• Gap Assessment

• Validation Assessment

• Compliance Assessment

• Self Assessment

• Certification

• Audit

• Technical Review

• Operational Review

• Penetration Testing

203

Entity.html
Metadata.html

JupiterOne Documentation

• Vulnerability Scan

• Other

54.2 summary (string) - Required

The summary description of the Assessment.

54.3 internal (boolean) - Required

Indicates if this is an internal or external assessment/audit. Defaults to true.

54.4 startedOn (number) - Optional

The timestamp (in milliseconds since epoch) when the Assessment was started.

Format: date-time

54.5 completedOn (number) - Optional

The timestamp (in milliseconds since epoch) when the Assessment was completed.

Format: date-time

54.6 reportURL (string) - Optional

Link to the assessment report, if available.

Format: uri

54.7 assessor (string) - Optional

Email or name or ID of the assessor

54.8 assessors (array of string) - Optional

List of email or name or ID of the assessors

204 Chapter 54. Assessment

CHAPTER 55

Attacker

An attacker or threat actor.

Includes properties from:

• Entity

• Metadata

205

Entity.html
Metadata.html

JupiterOne Documentation

206 Chapter 55. Attacker

CHAPTER 56

Certificate

A digital Certificate such as an SSL or S/MIME certificate.

Includes properties from:

• Entity

• Metadata

207

Entity.html
Metadata.html

JupiterOne Documentation

208 Chapter 56. Certificate

CHAPTER 57

Cluster

A cluster of compute or database resources/workloads.

Includes properties from:

• Entity

• Metadata

209

Entity.html
Metadata.html

JupiterOne Documentation

210 Chapter 57. Cluster

CHAPTER 58

CodeCommit

A code commit to a repo. The commit id is captured in the _id property of the Entity.

Includes properties from:

• Entity

• Metadata

58.1 branch (string) - Required

The branch the code was committed to.

58.2 message (string) - Required

The commit message.

58.3 merge (boolean) - Required

Indicates if this commit is a merge, defaults to false.

58.4 versionBump (boolean) - Required

Indicates if this commit is a versionBump, defaults to false.

211

Entity.html
Metadata.html

JupiterOne Documentation

212 Chapter 58. CodeCommit

CHAPTER 59

CodeDeploy

A code deploy job.

Includes properties from:

• RecordEntity

• Metadata

59.1 jobName (string) - Optional

Build/deploy job name.

59.2 jobNumber (integer) - Optional

Build/deploy job number.

59.3 summary (string) - Optional

Descriptive text of the job.

59.4 action (string) - Optional

Deploy action (e.g. plan, apply, destroy, rollback).

213

RecordEntity.html
Metadata.html

JupiterOne Documentation

59.5 target (string) - Optional

Name of the target system or environment.

59.6 production (boolean) - Optional

Indicates if this is a production deploy, defaults to true.

214 Chapter 59. CodeDeploy

CHAPTER 60

CodeModule

An application code module/library. Such as an npm-module or java-library.

Includes properties from:

• Entity

• Metadata

60.1 public (boolean) - Optional

Indicates if this is a public module.

215

Entity.html
Metadata.html

JupiterOne Documentation

216 Chapter 60. CodeModule

CHAPTER 61

CodeRepo

A source code repository. A CodeRepo is also a DataRepository therefore should carry all the required properties of
DataRepository.

Includes properties from:

• Entity

• Metadata

61.1 application (string) - Optional

The application that this repo is part of.

61.2 project (string) - Optional

The project that this repo belongs to.

61.3 public (boolean) - Optional

Indicates if this is a public repo.

217

Entity.html
Metadata.html

JupiterOne Documentation

218 Chapter 61. CodeRepo

CHAPTER 62

CodeReview

A code review record.

Includes properties from:

• RecordEntity

• Metadata

62.1 title (string) - Required

The title text of the review.

62.2 summary (string) - Optional

The summary text of the review.

62.3 state (string) - Optional

The state of the review.

219

RecordEntity.html
Metadata.html

JupiterOne Documentation

220 Chapter 62. CodeReview

CHAPTER 63

Configuration

A Configuration contains definitions that describe a resource such as a Task, Deployment or Workload. For example,
an aws_ecs_task_definition is a Configuration.

Includes properties from:

• Entity

• Metadata

221

Entity.html
Metadata.html

JupiterOne Documentation

222 Chapter 63. Configuration

CHAPTER 64

Control

A security or IT Control. This is most likely an additional Class applied to a Service (e.g. Okta SSO), a Device (e.g.
a physical firewall), or a HostAgent (e.g. Carbon Black CbDefense Agent).

Includes properties from:

• Entity

• Metadata

223

Entity.html
Metadata.html

JupiterOne Documentation

224 Chapter 64. Control

CHAPTER 65

ControlPolicy

An operational or configuration compliance policy with technical specifications / rules that governs (i.e. enforces,
evaluates, or monitors) a security control or IT system.

Includes properties from:

• Entity

• Metadata

65.1 category (string) - Optional

The category of control policy.

Options

• compliance

• config

• password

• other

65.2 rules (array of string) - Optional

Rules of this policy. Each rule is written ‘as-code’ that can be operationalized with a control provider or within
JupiterOne’s rules engine.

225

Entity.html
Metadata.html

JupiterOne Documentation

65.3 content (string) - Optional

Content of an AccessPolicy or ControlPolicy contains the raw policy rules, if applicable. For example, the JSON text
of an AWS IAM Policy.

226 Chapter 65. ControlPolicy

CHAPTER 66

CryptoKey

A key used to perform cryptographic functions, such as an encryption key.

Includes properties from:

• Key

• Entity

• Metadata

227

Key.html
Entity.html
Metadata.html

JupiterOne Documentation

228 Chapter 66. CryptoKey

CHAPTER 67

DataObject

An individual data object, such as an aws-s3-object, sharepoint-document, source-code, or a file (on disk). The exact
data type is described in the _type property of the Entity.

Includes properties from:

• Entity

• Metadata

67.1 category (string) - Optional

A user-provided category of the data, such as ‘Source Code’, ‘Report’, ‘Patent Application’, ‘Business Plan’, ‘Cus-
tomer Record’, ‘Genetic Data’, etc.

67.2 format (string) - Optional

The format of the data, such as ‘document’, ‘raw’, ‘plaintext’, ‘binary’, etc.

67.3 classification (string) - Required

The sensitivity of the data; should match company data classification

Example Values

• critical

• confidential

• internal

• public

229

Entity.html
Metadata.html

JupiterOne Documentation

67.4 location (string) - Optional

URI to the data, e.g. file path

67.5 PII (boolean) - Optional

Indicates if this data object is or contains Personally Identifiable Information

67.6 PHI (boolean) - Optional

Indicates if this data object is or contains Protected Health Information

67.7 PCI (boolean) - Optional

Indicates if this data object is or contains Payment Card Information

67.8 encryptionRequired (boolean) - Optional

If the data needs to be encrypted

67.9 encrypted (boolean) - Optional

If the data is encrypted

67.10 public (boolean) - Optional

Indicates if the data object is open to public access

230 Chapter 67. DataObject

CHAPTER 68

DataStore

A virtual repository where data is stored, such as aws-s3-bucket, aws-rds-cluster, aws-dynamodb-table, bitbucket-repo,
sharepoint-site, docker-registry. The exact type is described in the _type property of the Entity.

Includes properties from:

• Entity

• Metadata

68.1 location (string) - Optional

URI to the data store, e.g. https://docker-registry.lifeomic.com or https://lifeomic.sharepoint.com. Or a description to
the physical location.

68.2 encryptionRequired (boolean) - Optional

If the data needs to be encrypted

68.3 encryptionAlgorithm (string) - Optional

Encryption algorithm used to encrypt the data store

68.4 encryptionKeyRef (string) - Optional

Reference to the encryption key used to encrypt the data store

231

Entity.html
Metadata.html
https://docker-registry.lifeomic.com
https://lifeomic.sharepoint.com

JupiterOne Documentation

68.5 encrypted (boolean) - Optional

If the data store is encrypted

68.6 public (boolean) - Optional

Indicates if the data store is open to public access

68.7 hasBackup (boolean) - Optional

Indicates if the data store is data backup has been configured/enabled.

232 Chapter 68. DataStore

CHAPTER 69

Database

A database cluster/instance.

Includes properties from:

• Entity

• Metadata

69.1 location (string) - Optional

URI to access the database.

69.2 encryptionRequired (boolean) - Optional

If the data needs to be encrypted

69.3 encrypted (boolean) - Optional

If the repository is encrypted

69.4 classification (string) - Required

The sensitivity of the data; should match company data classification scheme

Example Values

• critical

233

Entity.html
Metadata.html

JupiterOne Documentation

• confidential

• internal

• public

234 Chapter 69. Database

CHAPTER 70

Deployment

A deployment of code, application, infrastructure or service. For example, a Kubernetes deployment. An auto scaling
group is also considered a deployment.

Includes properties from:

• Entity

• Metadata

70.1 desiredSize (number) - Optional

Desired size (i.e. number of instances) associated with this deployment.

70.2 currentSize (number) - Optional

Current size (i.e. number of instances) active with this deployment.

70.3 maxSize (number) - Optional

Maximum size (i.e. number of instances) limited by this deployment.

235

Entity.html
Metadata.html

JupiterOne Documentation

236 Chapter 70. Deployment

CHAPTER 71

Device

A physical device or media, such as a server, laptop, workstation, smartphone, tablet, router, firewall, switch, wifi-
access-point, usb-drive, etc. The exact data type is described in the _type property of the Entity.

Includes properties from:

• Entity

• Metadata

71.1 category (string) - Required

The device category

Example Values

• server

• endpoint

• storage-media

• mobile

• other

71.2 hardwareVendor (string) - Required

The manufacturer or vendor of the device, e.g. Apple Inc., Generic

71.3 hardwareModel (string) - Required

The device hardware model, e.g. MacBookPro13,3

237

Entity.html
Metadata.html

JupiterOne Documentation

71.4 hardwareVersion (string) - Optional

The device hardware version

71.5 hardwareSerial (string) - Required

The device serial number

71.6 assetTag (string) - Optional

The asset tag number/label that matches the identifier in asset tracking system, for company owned physical devices

71.7 platform (string) - Optional

Operating System Platform

Options

• darwin

• linux

• unix

• windows

• android

• ios

• embedded

• other

71.8 osDetails (string) - Optional

Operating System Full Details (e.g. macOS High Sierra version 10.13.6)

71.9 osName (string) - Optional

Operating System Name (e.g. macOS)

71.10 osVersion (string) - Optional

Operating System Version (e.g. 10.13.6)

238 Chapter 71. Device

JupiterOne Documentation

71.11 userEmails (array of string) - Optional

The email addresses of the users this device is assigned to. Used if the device is shared by more than one user.
Otherwise the ‘owner’ is the sole user. Leave empty/undefined if the device is unassigned.

71.12 location (string) - Optional

Site where this device is located.

71.13 cost (number) - Optional

The purchase cost of the device.

71.14 value (number) - Optional

The estimated business value of the device. The value is typically calculated as the monetary cost of the device + the
value of data on the device.

71.15 BYOD (boolean) - Required

Indicates if this is a BYOD device – an employee-provided device that has access to company systems/resources.

71.16 status (string) - Optional

Status label of this device

Options

• assigned

• archived

• decommissioned

• defective

• deployed

• disposed

• locked

• lost/stolen

• pending

• ready

• unknown

• other

71.11. userEmails (array of string) - Optional 239

JupiterOne Documentation

240 Chapter 71. Device

CHAPTER 72

Document

A document or data object.

Includes properties from:

• Entity

• Metadata

241

Entity.html
Metadata.html

JupiterOne Documentation

242 Chapter 72. Document

CHAPTER 73

Domain

An internet domain.

Includes properties from:

• Entity

• Metadata

243

Entity.html
Metadata.html

JupiterOne Documentation

244 Chapter 73. Domain

CHAPTER 74

Entity

A node in the graph database that represents an Entity. This reference schema defines common shared properties
among most Entities.

Includes properties from:

• Metadata

74.1 name (string) - Required

Name of this entity

74.2 displayName (string) - Required

Display name, e.g. a person’s preferred name or an AWS account alias

74.3 summary (string) - Optional

A summary / short description of this entity.

74.4 description (string) - Optional

An extended description of this entity.

245

Metadata.html

JupiterOne Documentation

74.5 classification (string) - Optional

The sensitivity of the data; should match company data classification scheme

Example Values

• critical

• confidential

• internal

• public

74.6 criticality (integer) - Optional

A number that represents the value or criticality of this entity, on a scale between 1-10.

74.7 risk (integer) - Optional

The risk level of this entity, on a scale between 1-10.

74.8 trust (integer) - Optional

The trust level of this entity, on a scale between 1-10.

74.9 complianceStatus (number) - Optional

The compliance status of the entity, as a percentage of compliancy.

74.10 status (string) - Optional

Status of this entity set by the external source system or by a user, e.g. Active, Inactive, Decommissioned

Options

• active

• inactive

• suspended

• terminated

• open

• closed

• pending

• unknown

• other

246 Chapter 74. Entity

JupiterOne Documentation

74.11 active (boolean) - Optional

Indicates if this entity is currently active.

74.12 public (boolean) - Optional

Indicates if this is a public-facing resource (e.g. a public IP or public DNS record) or if the entity is publicly accessible.
Default is false.

74.13 validated (boolean) - Optional

Indicates if this node has been validated as a known/valid Entity.

74.14 temporary (boolean) - Optional

Indicates if this node is a temporary resource, such as a lambda instance or an EC2 instance started by ECS.

74.15 createdOn (number) - Optional

The timestamp (in milliseconds since epoch) when the entity was created at the source. This is different than _create-
dOn which is the timestamp the entity was first ingested into JupiterOne.

Format: date-time

74.16 updatedOn (number) - Optional

The timestamp (in milliseconds since epoch) when the entity was last updated at the source.

Format: date-time

74.17 expiresOn (number) - Optional

If the entity is a temporary resource, optionally set the expiration date. For example, the expiration date of an SSL
cert.

Format: date-time

74.18 webLink (string) - Optional

Web link to the source. For example: https://console.aws.amazon.com/iam/home#/roles/Administrator. This property
is used by the UI to add a hyperlink to the entity.

Format: uri

74.11. active (boolean) - Optional 247

https://console.aws.amazon.com/iam/home#/roles/Administrator

JupiterOne Documentation

74.19 owner (string) - Optional

The owner of this entity. This could reference the name of the owner, or as reference ID/key to another entity in the
graph as the owner.

74.20 tag.* (string) - Optional

Named tags assigned to the entity (i.e., ‘tag.Name’, ‘tag.OtherName’)

74.21 tags (array of string) - Optional

An array of unnamed tags

74.22 notes (array of string) - Optional

User provided notes about this entity

248 Chapter 74. Entity

CHAPTER 75

Finding

A security finding, which may be a vulnerability or just an informative issue. A single finding may impact one or more
resources. The IMPACTS relationship between the Vulnerability and the resource entity that was impacted serves
as the record of the finding. The IMPACTS relationship carries properties such as ‘identifiedOn’, ‘remediatedOn’,
‘remediationDueOn’, ‘issueLink’, etc.

Includes properties from:

• RecordEntity

• Metadata

75.1 assessment (string) - Optional

The name/id of the assessment that produced this finding.

75.2 status (string) - Optional

Status of the vulnerability

75.3 severity (string) - Required

Severity rating based on impact and exploitability. Can be a string such as ‘critical’, ‘high’, ‘medium’, ‘low’, ‘info’.
Or an integer usually between 0-5.

249

RecordEntity.html
Metadata.html

JupiterOne Documentation

75.4 priority (string) - Optional

Priority level mapping to Severity rating. Can be a string such as ‘critical’, ‘high’, ‘medium’, ‘low’, ‘info’. Or an
integer usually between 0-5.

75.5 score (number) - Optional

The overall vulnerability score, e.g. CVSSv3.

75.6 impact (string) - Optional

The impact description or rating.

75.7 exploitability (number) - Optional

The exploitability score/rating.

75.8 vector (string) - Optional

The vulnerability attack vector. (e.g. a CVSSv3 vector looks like this - ‘AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N’)

75.9 stepsToReproduce (array of string) - Optional

Steps to reproduce this finding.

75.10 recommendation (string) - Optional

Recommendation on how to remediate/fix this finding.

75.11 targets (array of string) - Optional

The target listing of projects, applications, repos or systems this vulnerability impacts. Specifying either
the project/repo name or the application URL here will auto-map this Vulnerability to the corresponding
Project/CodeRepo/Application entity if a match is found.

75.12 targetDetails (array of string) - Optional

Additional details about the targets. Can be a string or an array.

250 Chapter 75. Finding

JupiterOne Documentation

75.13 remediationSLA (integer) - Optional

The number of days that the Vulnerability must be remediated within, based on SLA set by the organization’s inter-
nal vulnerability management program policy. The actually due date is set by ‘remediationDueOn’ property on the
IMPACTS relationship between the Vulnerability and its impacted resource entity.

75.14 blocksProduction (boolean) - Optional

Indicates whether this vulnerability finding is a blocking issue. If true, it should block a production deploy. Defaults
to false.

75.15 open (boolean) - Required

Indicates if this is an open vulnerability.

75.16 production (boolean) - Required

Indicates if this vulnerability is in production.

75.17 public (boolean) - Required

Indicates if this is a publicly disclosed vulnerability. If yes, this is usually a CVE and the ‘webLink’ should be set to
‘https://nvd.nist.gov/vuln/detail/${CVE-Number}’ or to a vendor URL. If not, it is most likely a custom application
vulnerability.

75.18 validated (boolean) - Optional

Indicates if this Vulnerability finding has been validated by the security team.

75.19 references (array of string) - Optional

The array of links to references.

75.13. remediationSLA (integer) - Optional 251

https://nvd.nist.gov/vuln/detail

JupiterOne Documentation

252 Chapter 75. Finding

CHAPTER 76

Firewall

A piece of hardware or software that protects a network/host/application.

Includes properties from:

• Entity

• Metadata

76.1 category (array of string) - Required

The category of the Firewall. Indicates the scope that the Firewall applies to – i.e. Network, Host, Application.

Options

• network

• host

• application

• other

76.2 isStateful (boolean) - Optional

Indicates if the rules in the firewall is stateful.

253

Entity.html
Metadata.html

JupiterOne Documentation

254 Chapter 76. Firewall

CHAPTER 77

Framework

An object to represent a standard compliance or technical security framework.

Includes properties from:

• Metadata

77.1 name (string) - Required

Name of this entity

77.2 displayName (string) - Required

Display name

77.3 summary (string) - Optional

A summary / short description of this entity.

77.4 description (string) - Optional

An extended description of this entity.

255

Metadata.html

JupiterOne Documentation

77.5 standard (string) - Required

The name of the framework standard.

Options

• HIPAA

• HITRUST CSF

• CSA STAR

• PCI DSS

• NIST CSF

• FedRAMP

• ISO 27001

• SOC

• OWASP

• Other

77.6 version (string) - Required

The version of the framework. For example, HITRUST CSF may have version 8.1, 9.0, 9.1, etc.; OWASP may have
version 2010, 2013, 2017.

256 Chapter 77. Framework

CHAPTER 78

Function

A virtual application function. For example, an aws_lambda_function, azure_function, or google_cloud_function

Includes properties from:

• Entity

• Metadata

78.1 image (string) - Optional

The image of this function, typically refers to a zip package.

78.2 version (string) - Optional

The version of this function.

78.3 runtime (string) - Optional

The runtime of this function. For example: ‘nodejs6.10’, ‘nodejs8.10’, or ‘python2.7’.

78.4 memorySize (string) - Optional

The allocated memory of this function to execute.

257

Entity.html
Metadata.html

JupiterOne Documentation

78.5 codeSize (string) - Optional

The size of code of this function.

78.6 codeHash (string) - Optional

The hash of code of this function.

78.7 trigger (string) - Optional

What triggers this function to execute.

78.8 handler (string) - Optional

The handler of this function

258 Chapter 78. Function

CHAPTER 79

Gateway

A gateway/proxy that can be a system/appliance or software service, such as a network router or application gateway.

Includes properties from:

• Entity

• Metadata

79.1 category (array of string) - Required

The category of the Gateway (corresponds to which OSI layer does the Proxy operates at).

Options

• network

• application

• data

• other

79.2 function (array of string) - Required

The function of the Gateway

Options

• routing

• nat

• api-gateway

• content-filtering

259

Entity.html
Metadata.html

JupiterOne Documentation

• content-distribution

• load-balancing

• firewall

• ssl-termination

• reverse-proxy

• remote-access-gateway

• application-protection

• intrusion-detection

• intrusion-prevention

• mail-filtering

• malware-protection

• other

79.3 public (boolean) - Required

Indicates if the Gateway is open to public access

260 Chapter 79. Gateway

CHAPTER 80

Group

A defined, generic group of Entities. This could represent a group of Resources, Users, Workloads, DataRepositories,
etc.

Includes properties from:

• Entity

• Metadata

261

Entity.html
Metadata.html

JupiterOne Documentation

262 Chapter 80. Group

CHAPTER 81

Host

A compute instance that itself owns a whole network stack and serves as an environment for workloads. Typically it
runs an operating system. The exact host type is described in the _type property of the Entity. The UUID of the host
should be captured in the _id property of the Entity

Includes properties from:

• Entity

• Metadata

81.1 hostname (string) - Required

The primary/local hostname

81.2 ipAddress (string) - Optional

The main IP address. This property is usually used to store the primary IP address of a Host.

Format: ip

81.3 publicDnsName (string) - Optional

The public DNS name

Format: hostname

263

Entity.html
Metadata.html

JupiterOne Documentation

81.4 privateDnsName (string) - Optional

The private DNS name

Format: hostname

81.5 publicIpAddress (string) - Optional

The public IP address

Format: ipv4

81.6 privateIpAddress (string) - Optional

The private IP address

Format: ipv4

81.7 ipAddresses (array of string) - Optional

A listing of all IPv4 addresses associated with this Host

81.8 ipv6Addresses (array of string) - Optional

A listing of all IPv6 addresses associated with this Host

81.9 macAddress (string) - Optional

Primary MAC address

81.10 platform (string) - Optional

Operating System Platform

Options

• darwin

• linux

• unix

• windows

• android

• ios

• embedded

264 Chapter 81. Host

JupiterOne Documentation

• other

81.11 osDetails (string) - Optional

Operating System Full Details (e.g. macOS High Sierra version 10.13.6)

81.12 osName (string) - Optional

Operating System Name (e.g. macOS)

81.13 osVersion (string) - Optional

Operating System Version (e.g. 10.13.6)

81.14 macAddresses (array of string) - Optional

A listing of all MAC addresses associated with this Host

81.15 isPhysical (boolean) - Optional

Indicates if this is a physical host, such as a physical server.

81.11. osDetails (string) - Optional 265

JupiterOne Documentation

266 Chapter 81. Host

CHAPTER 82

HostAgent

A software agent or sensor that runs on a host/endpoint

Includes properties from:

• Entity

• Metadata

82.1 function (array of string) - Required

The function of sensor/agent

Options

• endpoint-compliance

• endpoint-configuration

• endpoint-protection

• anti-malware

• DLP

• FIM

• host-firewall

• HIDS

• log-monitor

• activity-monitor

• vulnerability-detection

• container-security

• other

267

Entity.html
Metadata.html

JupiterOne Documentation

268 Chapter 82. HostAgent

CHAPTER 83

Image

A system image. For example, an AWS AMI (Amazon Machine Image).

Includes properties from:

• Entity

• Metadata

269

Entity.html
Metadata.html

JupiterOne Documentation

270 Chapter 83. Image

CHAPTER 84

Incident

An operational or security incident.

Includes properties from:

• Entity

• Metadata

84.1 category (string) - Required

The category of the incident

Options

• 1. General Incident

• 2. Attack on Internal Facing Assets

• 3. Attack on External Facing Assets

• 4. Malware

• 5. Social Engineering

• 6. Data Breach

• 7. Physical or Environmental

84.2 severity (string) - Required

Severity rating based on impact. Can be a string such as ‘critical’, ‘major’, ‘minor’, or an integer usually between 1-3.

271

Entity.html
Metadata.html

JupiterOne Documentation

84.3 impacts (array of string) - Optional

The target listing of [IDs/keys to] systems and resources this incident impacts.

84.4 reportable (boolean) - Required

Indicates if this is a reportable incident per applicable regulations, such as HIPAA, PCI, or GDPR.

84.5 reporter (string) - Optional

The person/entity who reported this incident.

84.6 postmortem (string) - Optional

Summary and/or a link to the documented lesson learned.

272 Chapter 84. Incident

CHAPTER 85

Internet

The Internet node in the graph. There should be only one Internet node.

Includes properties from:

• Metadata

85.1 displayName (string) - Optional

Display name

85.2 CIDR (string) - Optional

The IPv4 network CIDR block

85.3 CIDRv6 (string) - Optional

The IPv6 network CIDR block

85.4 public (boolean) - Optional

Indicates if the network is open to public access

273

Metadata.html

JupiterOne Documentation

274 Chapter 85. Internet

CHAPTER 86

IpAddress

An re-assignable IpAddress resource entity. Do not create an entity for an IP Address _configured_ on a Host. Use
this only if the IP Address is a reusable resource, such as an Elastic IP Address object in AWS.

Includes properties from:

• Entity

• Metadata

86.1 dnsName (string) - Optional

The assigned DNS name

Format: hostname

86.2 publicIpAddress (string) - Optional

The assigned public IP address

Format: ip

86.3 privateIpAddress (string) - Optional

The assigned private IP address

Format: ip

275

Entity.html
Metadata.html

JupiterOne Documentation

86.4 ipVersion (integer) - Optional

Indicates IP version 4 or 6

Options

• 4

• 6

276 Chapter 86. IpAddress

CHAPTER 87

Key

An ssh-key, access-key, api-key/token, pgp-key, etc.

Includes properties from:

• Entity

• Metadata

87.1 fingerprint (string) - Optional

The fingerprint that identifies the key

87.2 material (string) - Optional

The key material

87.3 usage (string) - Optional

The key usage - for example: ssh access or data encryption

277

Entity.html
Metadata.html

JupiterOne Documentation

278 Chapter 87. Key

CHAPTER 88

Metadata

The standard metadata properties of a given entity/relationship. These properties are system generated (e.g. set by an
integration). They are viewable in the UI but not directly editable by a user.

88.1 _accountId (string) - Required

The account / tenant identifier

88.2 _id (string) - Required

An auto-generated and globally unique ID

88.3 _key (string) - Required

A unique identifier of an entity/relationship within the scope of a single integration instance. For example, for a
Bitbucket repo, this _id will be the GUID of the repo as assigned by Bitbucket. For an IAM Role, the _id will be the
ARN of the role.

88.4 __iconPath (string) - Optional

Path to the icon used in the web app UI

279

JupiterOne Documentation

88.5 _class (string) - Required

Used to create an abstract security data model. For example, a EC2 instance will have ‘_class’:’Host’. An integration
can supply one or more classes which can be used to indicate if a particular entity/relationship conforms to one
or more standard classifications. This property is similar to _type except that _class refers to a type that has been
standardized while _type is an entity type that only has to be unique in the scope of the provider. It is possible that an
entity/relationship has a _type value but no _class value in cases where there is no standard classification for a given
entity/relationship.

88.6 _type (string) - Required

Describes the type of entity/relationship as identified by the data source (often the integration or sometimes manual
user input). The _class property is similar to _type but _class refers to a categorization that has been standardized and
it is not unique to a single data integration.

88.7 _integrationName (string) - Optional

Name of the integration that created this entity.

88.8 _integrationDefinitionId (string) - Optional

The unique ID of the integration definition that created this entity.

88.9 _integrationInstanceId (string) - Optional

The unique ID of the integration instance that created this entity.

88.10 _createdOn (number) - Required

The timestamp (in milliseconds since epoch) when this node was created - the earliest timestamp for this entity as
known by the security platform (might be different from when entity was actually created in external system)

Format: date-time

88.11 _createdBy (string) - Optional

The entityId of the user who created this node, if it is created manually and not by an integration.

88.12 _beginOn (number) - Required

The timestamp (in milliseconds since epoch) when this node was updated

Format: date-time

280 Chapter 88. Metadata

JupiterOne Documentation

88.13 _endOn (number) - Optional

The timestamp (in milliseconds since epoch) when a new version of this node was created

Format: date-time

88.14 _updatedBy (string) - Optional

The entityId of the user who last updated this node, if it is created manually and not by an integration.

88.15 _lastSeenOn (number) - Required

The timestamp (in milliseconds since epoch) when this node was last seen in events/logs or other ingested data sources

Format: date-time

88.16 _version (integer) - Required

Numerical auto-incrementing value that represents the version number of this node. Increments every time the node is
updated.

88.17 _latest (boolean) - Optional

Indicates if this node is the latest version of the Entity.

88.18 _deleted (boolean) - Optional

Indicates if this node is soft-deleted.

88.19 vendorManaged (boolean) - Optional

Indicates if this entity/relationship is managed by the vendor.

88.20 inUse (boolean) - Optional

Indicates if this entity/relationship is in use.

88.21 ignore (boolean) - Optional

Instructs the query to ignore this entity/relationship by default.

88.13. _endOn (number) - Optional 281

JupiterOne Documentation

282 Chapter 88. Metadata

CHAPTER 89

Module

A software or hardware module. Such as an npm-module or java-library.

Includes properties from:

• Entity

• Metadata

89.1 public (boolean) - Optional

Indicates if this is a public module.

283

Entity.html
Metadata.html

JupiterOne Documentation

284 Chapter 89. Module

CHAPTER 90

Network

A network, such as an aws-vpc, aws-subnet, cisco-meraki-vlan.

Includes properties from:

• Entity

• Metadata

90.1 environment (string) - Required

The environment of network

Options

• development

• test

• staging

• production

• private

• wireless

• guest

• remote-access

• administrative

• other

285

Entity.html
Metadata.html

JupiterOne Documentation

90.2 CIDR (string) - Required

The IPv4 network CIDR block (e.g. 0.0.0.0/0)

Format: ipv4

90.3 CIDRv6 (string) - Optional

The IPv6 network CIDR block (e.g. ::/0)

Format: ipv6

90.4 public (boolean) - Required

Indicates if the network is publicly accessible.

90.5 internal (boolean) - Required

Indicates if this is an internal/private network.

90.6 wireless (boolean) - Optional

Indicates if this is a wireless network.

286 Chapter 90. Network

CHAPTER 91

NetworkInterface

An re-assignable software defined network interface resource entity. Do not create an entity for a network interface
configured on a Host. Use this only if the network interface is a reusable resource, such as an Elastic Network
Interface object in AWS.

Includes properties from:

• Entity

• Metadata

91.1 macAddress (string) - Optional

The assigned MAC address

Format: hostname

91.2 dnsName (string) - Optional

The assigned DNS name

Format: hostname

91.3 publicIpAddress (string) - Optional

The assigned public IP address

Format: ip

287

Entity.html
Metadata.html

JupiterOne Documentation

91.4 privateIpAddress (string) - Optional

The assigned private IP address

Format: ip

91.5 ipVersion (integer) - Optional

Indicates IP version 4 or 6

Options

• 4

• 6

288 Chapter 91. NetworkInterface

CHAPTER 92

Organization

An organization, such as a company (e.g. LifeOmic) or a business unit (e.g. HR). An organization can be internal or
external. Note that there is a more specific Vendor class.

Includes properties from:

• Entity

• Metadata

92.1 _type (string) - Optional

The type of organization (within the context of the primary organization).

Options

• company

• department

• business-unit

• subsidiary

• government-agency

• partner

• other

92.2 website (string) - Optional

The organization’s main website URL.

Format: uri

289

Entity.html
Metadata.html

JupiterOne Documentation

92.3 emailDomain (string) - Optional

The domain name for internal organization email addresses.

92.4 external (boolean) - Optional

Indicates if this organization is external

290 Chapter 92. Organization

CHAPTER 93

PR

A pull request.

Includes properties from:

• RecordEntity

• Metadata

93.1 title (string) - Required

The title text of the PR.

93.2 summary (string) - Optional

The summary text of the PR.

93.3 state (string) - Required

The state of the PR.

Options

• open

• merged

• declined

• superseded

291

RecordEntity.html
Metadata.html

JupiterOne Documentation

93.4 source (string) - Required

The source branch.

93.5 target (string) - Required

The target/destination branch.

93.6 repository (string) - Required

The name of the CodeRepo this PR belongs to.

93.7 approved (boolean) - Optional

Indicates if every commit associated with this PR has been approved by a reviewer other than the code author.

93.8 validated (boolean) - Optional

Indicates if every commit associated with this PR was submitted by a validated author known to the organization.

292 Chapter 93. PR

CHAPTER 94

PasswordPolicy

A password policy is a specific Ruleset. It is separately defined because of its pervasive usage across digital environ-
ments and the well known properties (such as length and complexity) unique to a password policy.

Includes properties from:

• Entity

• Metadata

94.1 minLength (integer) - Optional

Minimum password length

94.2 requireSymbols (boolean) - Optional

Indicates if a password must contain at least one symbol

94.3 requireNumbers (boolean) - Optional

Indicates if a password must contain at least one number

94.4 requireUppercase (boolean) - Optional

Indicates if a password must contain at least one uppercase character

293

Entity.html
Metadata.html

JupiterOne Documentation

94.5 requireLowercase (boolean) - Optional

Indicates if a password must contain at least one lowercase character

94.6 maxAgeDays (integer) - Optional

Specifies how long (in days) a password remains valid before it expires (0 indicates no limit - passwords do not expire)

94.7 minAgeMins (integer) - Optional

Specifies the minimum time interval (in minutes) between password changes (0 indicates no limit)

94.8 historyCount (integer) - Optional

Specifies the number of previous passwords that users are prevented from reusing (0 indicates none)

94.9 preventReset (boolean) - Optional

Indicates if the user is allowed/prevented to change their own password

94.10 expiryWarningDays (integer) - Optional

Specifies the number of days prior to password expiration when a user will be warned to reset their password (0
indicates no warning)

94.11 hardExpiry (boolean) - Optional

Specifies whether users are prevented from setting a new password after their password has expired

94.12 excludeUsername (boolean) - Optional

Indicates if the username must be excluded from the password

94.13 excludeAttributes (array of string) - Optional

The user profile attributes whose values must be excluded from the password

294 Chapter 94. PasswordPolicy

JupiterOne Documentation

94.14 excludeCommonPasswords (boolean) - Optional

Indicates whether to check passwords against a common/weak password dictionary

94.15 lockoutAttempts (integer) - Optional

Specifies the number of times users can attempt to log in to their accounts with an invalid password before their
accounts are locked (0 indicates no limit)

94.16 autoUnlockMins (integer) - Optional

Specifies the time interval (in minutes) a locked account remains locked before it is automatically unlocked (0 indicates
no limit)

94.17 requireMFA (boolean) - Optional

Specifies whether multi-factor authentication (MFA) is required

94.14. excludeCommonPasswords (boolean) - Optional 295

JupiterOne Documentation

296 Chapter 94. PasswordPolicy

CHAPTER 95

Person

An entity that represents an actual person, such as an employee of an organization.

Includes properties from:

• Entity

• Metadata

95.1 firstName (string) - Required

The person’s official first name in the system (such as HR database)

95.2 lastName (string) - Required

The person’s official last name in the system (such as HR database)

95.3 middleName (string) - Optional

The person’s official middle name in the system (such as HR database)

95.4 email (array of string) - Required

The email addresses of the person; the first one in the array is the primary email.

297

Entity.html
Metadata.html

JupiterOne Documentation

95.5 title (string) - Optional

The person’s role or title within an organization

95.6 phone (array of string) - Optional

The person’s phone numbers; the first one in the array is the primary contact number.

95.7 address (string) - Optional

The person’s physical contact address

95.8 employeeId (string) - Optional

The person’s employee ID/number within an organization

95.9 employeeType (string) - Optional

The type of employment

Options

• employee

• contractor

• intern

• vendor

• advisor

• other

95.10 userIds (array of string) - Optional

One or more user Ids associated with this person

95.11 manager (string) - Optional

Name of the person’s manager

95.12 managerId (string) - Optional

Employee ID of the person’s manager

298 Chapter 95. Person

JupiterOne Documentation

95.13 managerEmail (string) - Optional

Email of the person’s manager

Format: email

95.13. managerEmail (string) - Optional 299

JupiterOne Documentation

300 Chapter 95. Person

CHAPTER 96

Policy

A written policy documentation.

Includes properties from:

• RecordEntity

• Metadata

96.1 title (string) - Required

Title of the policy

96.2 summary (string) - Required

Summary or overview the describes the policy. Summary text is intended as guidance to the author and not included
in the published version.

96.3 author (string) - Optional

Author of the record

96.4 content (string) - Required

Text content of the policy. For policies/procedures used by the Policy Builder app, this will contain the template text
in markdown format. Stored in raw data.

301

RecordEntity.html
Metadata.html

JupiterOne Documentation

96.5 applicable (boolean) - Optional

Indicates if policy or procedure is applicable based on the organization’s current risk and compliance needs. A Policy
that is not applicable may become applicable later as the organization’s requirements and maturity change.

96.6 adopted (boolean) - Optional

Indicates if policy or procedure has been adopted. Only adopted policies and procedures are included in the published
view of the Policy Builder app.

302 Chapter 96. Policy

CHAPTER 97

Procedure

A written procedure and control documentation. A Procedure typically IMPLEMENTS a parent Policy. An actual
Control further IMPLEMENTS a Procedure.

Includes properties from:

• RecordEntity

• Metadata

97.1 title (string) - Required

Title of the procedure

97.2 summary (string) - Required

Summary or overview the describes the procedure. Summary text is intended as guidance to the author and not
included in the published version.

97.3 author (string) - Optional

Author of the record

97.4 content (string) - Required

Text content of the policy. For policies/procedures used by the Policy Builder app, this will contain the template text
in markdown format. Stored in raw data.

303

RecordEntity.html
Metadata.html

JupiterOne Documentation

97.5 control (string) - Optional

The type of control specified by this procedure.

Options

• administrative

• technical

• physical

• operational

• other

97.6 applicable (boolean) - Optional

Indicates if procedure is applicable based on the organization’s current risk and compliance needs. A Policy that is not
applicable may become applicable later as the organization’s requirements and maturity change.

97.7 adopted (boolean) - Optional

Indicates if procedure has been adopted. Only adopted policies and procedures are included in the published view of
the Policy Builder app.

304 Chapter 97. Procedure

CHAPTER 98

Process

A compute process – i.e. an instance of a computer program / software application that is being executed by one or
many threads. This is NOT a program level operational process (i.e. a Procedure).

Includes properties from:

• Entity

• Metadata

98.1 state (string) - Optional

Indicates the state of the process.

305

Entity.html
Metadata.html

JupiterOne Documentation

306 Chapter 98. Process

CHAPTER 99

Project

A software development project. Can be used for other generic projects as well but the defined properties are geared
towards software development projects.

Includes properties from:

• Entity

• Metadata

99.1 key (string) - Optional

A defined project key. It is ideal for a code project to have a consistent key that matches that of issue tracking project.
For example, the key for a Bitbucket project should match the key of its corresponding Jira project.

99.2 productionURL (string) - Optional

The Production URL

Format: uri

99.3 stagingURL (string) - Optional

The Non-Production / Staging URL

Format: uri

307

Entity.html
Metadata.html

JupiterOne Documentation

99.4 devURL (string) - Optional

The Development URL

Format: uri

99.5 testURL (string) - Optional

The Test URL

Format: uri

99.6 alternateURLs (array of string) - Optional

The additional URLs related to this application.

308 Chapter 99. Project

CHAPTER 100

Record

A DNS record; or an official record (e.g. Risk); or a written document (e.g. Policy/Procedure); or a reference (e.g.
Vulnerability/Weakness). The exact record type is captured in the _type property of the Entity.

Includes properties from:

• RecordEntity

• Metadata

309

RecordEntity.html
Metadata.html

JupiterOne Documentation

310 Chapter 100. Record

CHAPTER 101

RecordEntity

A node in the graph database that represents a Record Entity, with a set of different defined common properties than
standard (resource) entities.

Includes properties from:

• Metadata

101.1 name (string) - Required

Name of this entity

101.2 displayName (string) - Required

Display name, e.g. a person’s preferred name or an AWS account alias

101.3 summary (string) - Optional

A summary / short description of this entity.

101.4 description (string) - Optional

An extended description of this entity.

311

Metadata.html

JupiterOne Documentation

101.5 classification (string) - Optional

The sensitivity of the data; should match company data classification scheme. For example: critical - confidential -
internal - public.

Example Values

• critical

• confidential

• internal

• public

101.6 category (string) - Optional

The category of the official record

Options

• exception

• finding

• hr

• incident

• issue

• job

• legal

• request

• policy

• procedure

• problem

• review

• risk

• other

101.7 webLink (string) - Optional

Hyperlink to the location of this record, e.g. URL to a Jira issue

Format: uri

101.8 content (string) - Optional

Text content of the record/documentation

312 Chapter 101. RecordEntity

JupiterOne Documentation

101.9 open (boolean) - Optional

Indicates if this record is currently open. For example, an open Vulnerability finding (Vulnerability extends Record).

101.10 public (boolean) - Optional

If this is a public record. Defaults to false.

101.11 production (boolean) - Optional

If this is a production record. For example, a production change management ticket would have this set to true, and
have a category = change property. Another example would be a Vulnerability finding in production.

101.12 approved (boolean) - Optional

If this is record has been reviewed and approved.

101.13 approvedOn (number) - Optional

The timestamp (in milliseconds since epoch) when this record was approved.

Format: date-time

101.14 approvers (array of string) - Optional

The list of approvers on the record.

101.15 reporter (string) - Optional

The person or system that reported or created this record.

101.16 reportedOn (number) - Optional

The timestamp (in milliseconds since epoch) when this record was reported/opened. In most cases, this would be the
same as createdOn but occasionally a record can be created at a different time than when it was first reported.

Format: date-time

101.9. open (boolean) - Optional 313

JupiterOne Documentation

101.17 createdOn (number) - Optional

The timestamp (in milliseconds since epoch) when the entity was created at the source. This is different than _create-
dOn which is the timestamp the entity was first ingested into JupiterOne.

Format: date-time

101.18 updatedOn (number) - Optional

The timestamp (in milliseconds since epoch) when the entity was last updated at the source.

Format: date-time

314 Chapter 101. RecordEntity

CHAPTER 102

Relationship

A Relationship is the edge between two Entity nodes in the graph. The _class of the relationship should be, in most
cases, a generic descriptive verb, such as ‘HAS’ or ‘IMPLEMENTS’.

Includes properties from:

• Metadata

102.1 _class (string) - Optional

Contains an enumeration of defined Relationship classes.

Options

• ALLOWS

• ASSIGNED

• CONNECTS

• CONTAINS

• CONTRIBUTES_TO

• DENIES

• DEPLOYED_TO

• EVALUATES

• EXPLOITS

• EXTENDS

• HAD

• HAS

• IS

315

Metadata.html

JupiterOne Documentation

• IDENTIFIED

• IMPACTS

• IMPLEMENTS

• MANAGES

• MITIGATES

• MONITORS

• PERFORMED

• PERMITS

• PROTECTS

• PROVIDES

• REJECTS

• OWNS

• TRIGGERS

• TRUSTS

• USES

102.2 displayName (string) - Optional

Display name of this relationship. By default, or if this property is not set, the Relationship should display the value
of its _class, such as ‘HAS’ or ‘IMPLEMENTS’.

102.3 webLink (string) - Optional

Web link to the source. For example, with a relationship like CodeRepo -HAS-> Vulnerability, there could be a
webLink on the HAS relationship that points to a Jira issue to track that particular finding instance.

Format: uri

102.4 isValidated (boolean) - Optional

Indicates if this relationship has been validated.

102.5 isTemporary (boolean) - Optional

Indicates if this is a temporary relationship.

316 Chapter 102. Relationship

JupiterOne Documentation

102.6 isGroupLayout (boolean) - Optional

Indicates if relationship represent a group. If true, visually this should be implemented with group styling such that
the child nodes are shown contained within their parent boundary, instead of shown as lines connecting the nodes.

102.7 tag.* (string) - Optional

Named tags assigned to the entity (i.e., ‘tag.Name’, ‘tag.OtherName’)

102.8 tags (array of string) - Optional

An array of unnamed tags

102.6. isGroupLayout (boolean) - Optional 317

JupiterOne Documentation

318 Chapter 102. Relationship

CHAPTER 103

Requirement

An individual requirement for security, compliance, regulation or design.

Includes properties from:

• RecordEntity

• Metadata

103.1 title (string) - Required

The title text of the requirement.

103.2 summary (string) - Optional

The summary text of the requirement.

103.3 state (string) - Optional

The state of the requirement (e.g. ‘implemented’).

319

RecordEntity.html
Metadata.html

JupiterOne Documentation

320 Chapter 103. Requirement

CHAPTER 104

Resource

A generic assignable resource. A resource is typically non-functional by itself unless used by or attached to a host or
workload.

Includes properties from:

• Entity

• Metadata

321

Entity.html
Metadata.html

JupiterOne Documentation

322 Chapter 104. Resource

CHAPTER 105

Review

A review record.

Includes properties from:

• RecordEntity

• Metadata

105.1 title (string) - Required

The title text of the review.

105.2 summary (string) - Optional

The summary text of the review.

105.3 state (string) - Optional

The state of the review.

323

RecordEntity.html
Metadata.html

JupiterOne Documentation

324 Chapter 105. Review

CHAPTER 106

Risk

An object that represents an identified Risk as the result of an Assessment. The collection of Risk objects in JupiterOne
make up the Risk Register. A Control may have a MITIGATES relationship to a Risk.

Includes properties from:

• RecordEntity

• Metadata

106.1 assessment (string) - Optional

The name/id of the assessment that produced this risk.

106.2 category (string) - Optional

The category (or area) of the risk. For example, ‘process maturity’ or ‘natural disaster’.

106.3 probability (integer) - Required

Probability rating of the risk: ‘3: high/certain’, ‘2: medium/likely’, ‘1: low/unlikely’, ‘0: none/negligible’.

Options

• 0

• 1

• 2

• 3

325

RecordEntity.html
Metadata.html

JupiterOne Documentation

106.4 impact (integer) - Required

Impact rating. ‘3: high/severe’, ‘2: medium/moderate’, ‘1: low/minor’, ‘0: none/insignificant’.

Options

• 0

• 1

• 2

• 3

106.5 score (integer) - Required

Overall Risk Score = Probability x Impact

106.6 details (string) - Optional

Additional details to describe the risk.

106.7 mitigation (string) - Optional

Description of the mitigation, either planned or implemented, if applicable.

106.8 status (string) - Required

Current status of this documented risk. Default status is open.

Options

• reported

• acknowledged

• accepted

• mitigated

• prioritized

• transferred

• pending

• open

326 Chapter 106. Risk

CHAPTER 107

Root

The root node in the graph. There should be only one Root node per organization account.

Includes properties from:

• Metadata

107.1 displayName (string) - Optional

Display name

327

Metadata.html

JupiterOne Documentation

328 Chapter 107. Root

CHAPTER 108

Rule

An operational or configuration compliance rule, often part of a Ruleset.

Includes properties from:

• Entity

• Metadata

108.1 category (string) - Optional

The category of ruleset.

Options

• compliance

• config

• password

• other

108.2 content (string) - Optional

Contents of the rule, if applicable.

329

Entity.html
Metadata.html

JupiterOne Documentation

330 Chapter 108. Rule

CHAPTER 109

Ruleset

An operational or configuration compliance ruleset with rules that governs (or enforces, evaluates, monitors) a security
control or IT system.

Includes properties from:

• Entity

• Metadata

109.1 category (string) - Optional

The category of ruleset.

Options

• compliance

• config

• password

• other

109.2 rules (array of string) - Optional

Rules of ruleset. Each rule is written ‘as-code’ that can be operationalized with a control provider or within
JupiterOne’s rules engine.

109.3 content (string) - Optional

Contents of the raw rules, if applicable.

331

Entity.html
Metadata.html

JupiterOne Documentation

332 Chapter 109. Ruleset

CHAPTER 110

Scanner

A system vulnerability, application code or network infrastructure scanner.

Includes properties from:

• Entity

• Metadata

110.1 category (array of string) - Required

The category of scanner

Options

• system

• network

• application

• other

333

Entity.html
Metadata.html

JupiterOne Documentation

334 Chapter 110. Scanner

CHAPTER 111

Service

A service provided by a vendor.

Includes properties from:

• Entity

• Metadata

111.1 category (array of string) - Required

The category of service, e.g. software, platform, infrastructure, other

Options

• software

• platform

• infrastructure

• other

111.2 endpoints (array of string) - Required

Array of service endpoints, e.g. ec2.amazonaws.com

335

Entity.html
Metadata.html

JupiterOne Documentation

336 Chapter 111. Service

CHAPTER 112

Site

The physical location of an organization. A Person (i.e. employee) would typically has a relationship to a Site (i.e.
located_at or work_at). Also used as the abstract reference to AWS Regions.

Includes properties from:

• Entity

• Metadata

112.1 category (array of string) - Optional

Type of site

Options

• headquarters

• branch

• campus

• office

• aws-region

• data-center

• lab

• other

112.2 location (string) - Optional

The address/location of the site. Or an AWS Region (e.g. us-east-2).

337

Entity.html
Metadata.html

JupiterOne Documentation

112.3 hours (string) - Optional

Hours of operation. e.g. M-F 9am-6pm

112.4 secured (boolean) - Optional

Indicates the site is secured with physical controls such as key card access and surveillance cameras.

112.5 restricted (boolean) - Optional

Indicates that access to the site is restricted (a level above secured access).

338 Chapter 112. Site

CHAPTER 113

Task

A computational task. Examples include AWS Batch Job, ECS Task, etc.

Includes properties from:

• Entity

• Metadata

339

Entity.html
Metadata.html

JupiterOne Documentation

340 Chapter 113. Task

CHAPTER 114

Team

A team consists of multiple member Person entities. For example, the Development team or the Security team.

Includes properties from:

• Entity

• Metadata

114.1 email (string) - Optional

The team email address

Format: email

341

Entity.html
Metadata.html

JupiterOne Documentation

342 Chapter 114. Team

CHAPTER 115

Training

A training module, such as a security awareness training or secure development training.

Includes properties from:

• RecordEntity

• Metadata

343

RecordEntity.html
Metadata.html

JupiterOne Documentation

344 Chapter 115. Training

CHAPTER 116

User

A user account/login to access certain systems and/or services. Examples include okta-user, aws-iam-user, ssh-user,
local-user (on a host), etc.

Includes properties from:

• Entity

• Metadata

116.1 username (string) - Required

Username

116.2 email (string) - Optional

The email address associated with the user account

Format: email

116.3 shortLoginId (string) - Optional

The shortened login Id. For example, if the username is the full email address (first.last@company.com), the short-
LoginId would be the part before @ (first.last).

116.4 mfaEnabled (boolean) - Optional

Specifies whether multi-factor authentication (MFA) is enabled for this user.

345

Entity.html
Metadata.html
mailto:first.last@company.com

JupiterOne Documentation

346 Chapter 116. User

CHAPTER 117

UserGroup

A user group, typically associated with some type of access control, such as a group in Okta or in Office365. If a
UserGroup has an access policy attached, and all member Users of the UserGroup would inherit the policy.

Includes properties from:

• Entity

• Metadata

117.1 email (string) - Optional

The group email address

Format: email

347

Entity.html
Metadata.html

JupiterOne Documentation

348 Chapter 117. UserGroup

CHAPTER 118

Vendor

An external organization that is a vendor or service provider.

Includes properties from:

• Entity

• Metadata

118.1 category (string) - Required

The category of vendor.

Options

• business-operations

• cloud

• facilities

• finance

• infrastructure

• legal

• purchasing

• security

• software

• platform-development

• platform-social-media

• professional-services-staffing

• professional-services-recruiting

349

Entity.html
Metadata.html

JupiterOne Documentation

• professional-services-consulting

• generic-service-provider

• generic-subscription

• CSP

• ISP

• MSP

• MSSP

• IdP

• other

118.2 website (string) - Optional

The vendor’s main website URL.

Format: uri

118.3 departments (array of string) - Optional

List of business departments the vendor provides service for (e.g. IT, HR, Finance, Marketing, Develop-
ment/Engineering, Security).

118.4 emailDomain (string) - Optional

The email domain for the vendor (e.g. @jupiterone.io).

118.5 mainContactName (string) - Optional

The vendor’s point of contact person.

118.6 mainContactEmail (string) - Optional

Email of the vendor’s point of contact person.

Format: email

118.7 mainContactPhone (string) - Optional

Phone number of the vendor’s point of contact person.

350 Chapter 118. Vendor

JupiterOne Documentation

118.8 mainContactAddress (string) - Optional

Main physical/mailing address of the vendor.

118.9 admins (array of string) - Optional

List of admin users to the vendor account, if applicable. If this vendor account is integrated directly to JupiterOne and
its data is ingested, the admin users should be already mapped as User entities.

118.10 breachResponseDays (integer) - Optional

The number of days the vendor agrees to report an identified data breach, per vendor agreement and/or SLA. This is
typically 3 to 30 days. Note that GDPR requires breach notification within 3 days / 72 hours.

118.11 linkToNDA (string) - Optional

Link to Non-Disclosure Agreement (NDA) document.

Format: uri

118.12 linkToMSA (string) - Optional

Link to Master Service Agreement (MSA) document.

Format: uri

118.13 linkToSLA (string) - Optional

Link to Service Level Agreement (SLA) document.

Format: uri

118.14 linkToBAA (string) - Optional

Link to Business Associate Agreement (BAA) document - for HIPAA only.

Format: uri

118.15 linkToDPA (string) - Optional

Link to GDPR Data Processing Addendum (DPA) document - for GDPR only.

Format: uri

118.8. mainContactAddress (string) - Optional 351

JupiterOne Documentation

118.16 linkToVTR (string) - Optional

Link to the external vendor technology risk (VTR) report.

Format: uri

118.17 linkToISA (string) - Optional

Link to the external information security assessment (ISA) report.

Format: uri

118.18 statusPage (string) - Optional

Link to the vendor’s service status page (e.g. https://status.aws.amazon.com/).

Format: uri

352 Chapter 118. Vendor

https://status.aws.amazon.com/

CHAPTER 119

Vulnerability

A security vulnerability (application or system or infrastructure). A single vulnerability may relate to multiple findings
and impact multiple resources. The IMPACTS relationship between the Vulnerability and the resource entity that was
impacted serves as the record of the finding. The IMPACTS relationship carries properties such as ‘identifiedOn’,
‘remediatedOn’, ‘remediationDueOn’, ‘issueLink’, etc.

Includes properties from:

• RecordEntity

• Metadata

119.1 category (string) - Required

The category of the vulnerability finding

Options

• application

• system

• infrastructure

• other

119.2 status (string) - Optional

Status of the vulnerability

353

RecordEntity.html
Metadata.html

JupiterOne Documentation

119.3 severity (string) - Required

Severity rating based on impact and exploitability. Can be a string such as ‘critical’, ‘high’, ‘medium’, ‘low’, ‘info’.
Or an integer usually between 0-5.

119.4 priority (string) - Optional

Priority level mapping to Severity rating. Can be a string such as ‘critical’, ‘high’, ‘medium’, ‘low’, ‘info’. Or an
integer usually between 0-5.

119.5 score (number) - Optional

The overall vulnerability score, e.g. CVSSv3.

119.6 impact (number) - Optional

The impact score/rating.

119.7 exploitability (number) - Optional

The exploitability score/rating.

119.8 vector (string) - Optional

The vulnerability attack vector. (e.g. a CVSSv3 vector looks like this - ‘AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N’)

119.9 impacts (array of string) - Optional

The target listing of projects, applications, repos or systems this vulnerability impacts. Specifying either
the project/repo name or the application URL here will auto-map this Vulnerability to the corresponding
Project/CodeRepo/Application entity if a match is found.

119.10 remediationSLA (integer) - Optional

The number of days that the Vulnerability must be remediated within, based on SLA set by the organization’s inter-
nal vulnerability management program policy. The actually due date is set by ‘remediationDueOn’ property on the
IMPACTS relationship between the Vulnerability and its impacted resource entity.

354 Chapter 119. Vulnerability

JupiterOne Documentation

119.11 blocking (boolean) - Required

Indicates whether this vulnerability finding is a blocking issue. If true, it should block a production deploy. Defaults
to false.

119.12 open (boolean) - Required

Indicates if this is an open vulnerability.

119.13 production (boolean) - Required

Indicates if this vulnerability is in production.

119.14 public (boolean) - Required

Indicates if this is a publicly disclosed vulnerability. If yes, this is usually a CVE and the ‘webLink’ should be set to
‘https://nvd.nist.gov/vuln/detail/${CVE-Number}’ or to a vendor URL. If not, it is most likely a custom application
vulnerability.

119.15 validated (boolean) - Optional

Indicates if this Vulnerability finding has been validated by the security team.

119.16 references (array of string) - Optional

The array of links to references.

119.11. blocking (boolean) - Required 355

https://nvd.nist.gov/vuln/detail

JupiterOne Documentation

356 Chapter 119. Vulnerability

CHAPTER 120

Weakness

A security weakness.

Includes properties from:

• RecordEntity

• Metadata

120.1 category (string) - Optional

The category of the vulnerability finding

Options

• application

• system

• infrastructure

• other

120.2 exploitability (string) - Optional

Indicates the likelihood of exploit.

120.3 references (array of string) - Optional

The array of links to references.

357

RecordEntity.html
Metadata.html

JupiterOne Documentation

358 Chapter 120. Weakness

CHAPTER 121

Workload

A virtual compute instance, it could be an aws-ec2-instance, a docker-container, an aws-lambda-function, an
application-process, or a vmware-instance. The exact workload type is described in the _type property of the En-
tity.

Includes properties from:

• Entity

• Metadata

121.1 image (string) - Optional

The image this workload is derived from, such as an AMI or docker image. At the abstract level, this usually maps to
the _id of a Resource.

121.2 fqdn (string) - Optional

The fully qualified domain name of attached to the instance, if applicable

359

Entity.html
Metadata.html

JupiterOne Documentation

360 Chapter 121. Workload

CHAPTER 122

JupiterOne 2018.10 Release

2018-09-21

122.1 New Features

• Asset Inventory CSV Download now available to generate report based on current selection of assets.

122.2 Improvements

• AWS Integration: Additional properties ingested for EC2 EBS Volume Entities, including encryption status,
availability zone, size, IOPS, state, snapshot ID, and volume type.

• Galaxy Graph Viewer: Major performance improvements.

• Asset Inventory: Filtering is now using a more intuitive condition logic for property and tag values.

• Asset Inventory: Tags are now grouped together at the top of filtering pane.

• Asset Inventory: Added icons to better indicate the true/false/empty_string/null values of a prop-
erty.

122.3 Bug Fixes

• Root / now redirects properly to the home/landing page.

• Integration links on landing page are now linked to page for viewing existing instances.

• Encryption status for S3 Bucket Entities are now correctly displayed in Asset Inventory app.

361

JupiterOne Documentation

362 Chapter 122. JupiterOne 2018.10 Release

CHAPTER 123

JupiterOne 2018.11 Release

2018-10-04

123.1 New Features

• AWS Integration Multi-Region is now supported. JupiterOne will now ingest and analyze resources across all
regions by default. This is automatically enabled and there is no change needed on your side. This will enable
you to see any resource that is potentially misplaced or malicious in a region you did not intend to use.

• In-app Help and Guides is now available. It can be activated via the Help Menu at the top navigation bar.

123.2 Improvements

• Backend and infrastructure stability improvements

• Improved error handling

• Captured additional properties from AWS EC2 instances

363

JupiterOne Documentation

364 Chapter 123. JupiterOne 2018.11 Release

CHAPTER 124

JupiterOne 2018.12 Release

2018-10-15

124.1 New Features

• Search and Query with the JupiterOne Query Language (J1QL) - J1QL seamlessly blends full-text search
and querying of the entity-relationship graph. It is simple to construct which aspires to be as close to natural
language as possible. It is available directly on the home page / Landing Zone app.

• Automatic mapping of AWS IAM users to Person/employee entities if the IAM username is the same as the
email address belonging to the Person/employee.

124.2 Improvements

• Stability improvements of the graph database backend

• Bug fixes for indexing and full-text search services

365

JupiterOne Documentation

366 Chapter 124. JupiterOne 2018.12 Release

CHAPTER 125

JupiterOne 2018.13 Release

2018-11-14

125.1 New Features

• Packaged Questions are now provided as part of the Query Library, accessible directly in the Landing Zone
app, next to the Query/Search bar. This allows you to ask simple compliance and operational questions with our
pre-built queries based on the data model and/or specific data integrations. The packaged questions are tagged
with flags such as compliance, DevOps, SecOps, aws, HIPAA, etc. so that you can easily search/filter
them.

• Saved Queries/Questions and History: From the Landing Zone, you can access history of your previously
executed queries. You can save them to be readily accessible in the future without having to re-type the query.
You can also clone a packaged question/query and customize it in your saved query library.

• Okta Applications: JupiterOne now ingest Application entities from Okta. You can see these in the Asset
Inventory view or Graph Viewer or as part of your query results.

• Github Integration: The first iteration of Github integration is live! In this version, you will need to configure
JupiterOne as an OAuth app directly in your Github application and use the OAuth Key/Secret to configure the
integration within JupiterOne. A future version will enable JupiterOne as a published Github app.

• In-app Support: You can now easily search for knowledge base articles or submit a support ticket directly
within the JupiterOne web interface.

125.2 Improvements

• Improved how full text search handles multiple search strings.

• Various tweak and improvements to J1QL.

• Improved relationship mapping rules and engine.

367

JupiterOne Documentation

368 Chapter 125. JupiterOne 2018.13 Release

CHAPTER 126

JupiterOne 2018.14 Release

2018-12-18

126.1 New Features

• Lots of features added to JupiterOne Query Language (J1QL)

– Query now supports aggregations

Example: FIND User as u return COUNT(u) to get a count of all users

– Query now supports date comparison

Example: FIND * with _beginOn > date.now-24hrs to find all resources that changed in the
last 24 hours.

– Query now supports simplified selection of multiple entities (OR)

Example: Find (Host|Device) with ipAddress='10.50.2.17' is equivalent to Find *
with _class='Host' or _class='Device' with ipAddress='10.50.2.17'

• You can now manually add entities via the Asset Inventory app

• You can see detailed properties in a side panel by selecting an entity in the Asset Inventory app

• New Users and Access, My Profile and Invitations experience

• JupiterOne now ingests AWS networking data and maps out detailed relationships to enable deep analysis of
network traffic access permissions. This allows security teams to gain accurate insight into which host(s) or
network(s) are truly accessible from an external network or host (e.g. the Internet).

• JupiterOne now analysis AWS assume role policy to determine trust relationships between an IAM role and a
service or another IAM principal either within the same account or from an external account.

• Users can now sign on to JupiterOne via Google Sign On.

• New packaged questions and queries added/updated by operational domain:

369

JupiterOne Documentation

– [general] Who are the new hires within the last 12 months?

– [general] What business applications are we using?

– [general] Which are my documented risks?

– [general] Who are my vendors? Do I have a BAA/DPA/NDA/MSA with them?

– [general] What changed in my environment in the last 24 hours?

– [general] What was added to my environment in the last 24 hours?

– [access] Are there external users with access to our systems?

– [appdev] What are the code repos for a particular application or project?

– [data] Which data stores do not have proper classification tags?

– [data] Which production data stores do not have proper classification tags?

– [data] Is there any known critical data outside of production?

– [data] Show me evidence of data-at-rest encryption for production servers.

– [data] Is my critical data in production encrypted?

– [data] Is my production or PHI/PII data stores encrypted?

– [data] Which production data stores do not have proper classification tags?

– [data] Is there any known critical data outside of production?

– [data] Is there unencrypted ePHI or PII?

– [infra] Is there proper segmentation/segregation of internal networks?

– [infra] Show listing of network layer firewall protection across all my environments.

– [infra] Show listing of active firewall protection across all my environments.

– [infra] Are there any active systems without host firewall protection?

– [aws] Which IAM roles are assigned which IAM policies?

– [aws] Who has access to my AWS accounts?

– [aws] Who has access to my production AWS accounts?

– [aws] Who has direct user access to my AWS accounts?

– [aws] Who has direct user access to my production AWS accounts?

– [aws] Who has access to my AWS accounts vis SSO?

– [aws] Who has access to my production AWS accounts via SSO?

– [aws] Who has access to my AWS accounts via SSO in a multi-account environment?

– [aws] Who can assume which role across my AWS environment?

– [aws] Are there assume role trusts to external entities?

– [aws] Are there any EBS volumes not in use?

– [aws] What Lambda functions are in my environment?

– [aws] How are my Lambda functions invoked?

– [aws] Which security group rules allow inbound traffic from a public network or host on the Internet?

– [aws] Which security group rules allow outbound traffic to a public network or host on the Internet?

370 Chapter 126. JupiterOne 2018.14 Release

JupiterOne Documentation

– [aws] Which security group rules allow inbound traffic from the Internet?

– [aws] Which security group rules allow outbound traffic to the Internet?

126.2 Improvements and Bug Fixes

• Improvements on relationship mapping:

– Support mapping to multiple targets from an array of source property values

– Support mapping from multiple source properties to a single target property

– Allow an integration to create target mapped entity from a relationship

– Trigger mapper to run when mappings.json configuration changes

• Added lots of documentation on data model, details of data ingestion from integrations, and data security.

• Fixed “encrypted” property showing up as “undefined” for some AWS entities

• Added AWS S3 region and improved encryption properties

e.g. you can find data stores outside of EU with a query like FIND DataStore with region !=
'eu-central-1'

• A few other small bug fixes and UI improvements

126.2. Improvements and Bug Fixes 371

JupiterOne Documentation

372 Chapter 126. JupiterOne 2018.14 Release

CHAPTER 127

JupiterOne 2019.15 Release

2019-01-07

127.1 New Features

• Graph mode for the search/query results in Landing Zone is now available! You can switch to Graph mode
for any search or query to get a focused visual or the entities and relationships from the results. The graph is
interactive so that you can further expand for deeper analysis.

• Much improved Search in Landing Zone that allows all of the following modes in one place:

1. Keywords search to ask saved/packaged questions

2. Full text search across all entities based on their property values

3. JupiterOne query language (J1QL) for precise querying of entities and relationships

4. Combining full text search with J1QL

• New ingestion and analysis from AWS:

– S3 Bucket ACL processing and access mapping

– S3 Bucket public access block configuration

– Account password policy

– IAM User MFA devices and access keys

• Added OR operator support on relationship keywords in J1QL. For example: Find HostAgent that
(PROTECTS|MANAGES|MONITORS) Host

• Condensed quick filter by entity class icons in Asset Inventory app.

• You can edit or delete an entity manually from the Asset Inventory app.

• Web links are added to most entities ingested, allowing you to directly open in a new tab to view the resource
in the source web console.

373

JupiterOne Documentation

• Added linking to Geolocation lookup of IP Address and CIDR of a Host or Network.

• New packaged questions and queries added:

– [general] What are my information assets?

– [general] What are my production data stores and databases?

– [general] What are my production resources?

– [general] What are my production applications?

– [general] Which devices have been disposed in the last 12 months?

– [access] Who has been assigned permissions with ‘Admin’ access?

– [access] Who owns which user accounts?

– [access] What are the shared/generic/service accounts? (user accounts that are not individually owned)

– [access] Show me the current password policy and compliance status.

– [access] Find anything that allows public access to everyone.

– [appdev] Were there any Code Repos added in the last 24 hours?

– [data] Is my production or PHI/PII data stores encrypted?

– [data] Are there any non-public data stores incorrectly configured with public access to everyone?

– [endpoint] What is the configuration and compliance status of my endpoint devices?

– [endpoint] Whose endpoint is out of compliance?

– [endpoint] Is there malware protection for all endpoints?

– [endpoint] Are there security agents monitoring and protecting my endpoint hosts/devices?

– [endpoint] Are my servers and systems protected by hosted-based firewall?

– [infra] Are there potential IP collisions among the networks/subnets in my environment?

– [infra] What are directly connected to the Internet?

– [infra] What network traffic is allowed between internal and external networks?

– [infra] Is there proper segmentation/segregation of internal networks?

– [infra] Are wireless networks segmented and protected by firewalls?

– [infra] Are there VPN configured for remote access?

– [infra] Show all inbound SSH firewall rules across my network environments.

– [infra] Is inbound SSH allowed directly from an external host or network?

– [aws] Is MFA enabled for the Account Root User for all my AWS accounts?

– [aws] Are there root user access keys in use for any of my AWS accounts?

– [aws] Is public access block configured for non-public S3 Buckets?

– [aws] Is public read access enabled for any S3 Bucket?

– [aws] Is public write access enabled for any S3 Bucket?

– [aws] Is S3 bucket access granted to anybody outside of the account?

– [aws] Is there any S3 bucket that grants full control access to anybody other than the owner?

374 Chapter 127. JupiterOne 2019.15 Release

JupiterOne Documentation

– [aws] What are the service roles in my AWS accounts (i.e. an IAM Role that has a trust policy to an AWS
Service)?

– [aws] Are all EBS volumes encrypted?

– [aws] Is default server side encryption enabled for all S3 Buckets?

– [aws] Who has been assigned full Administrator access?

– [aws] Are there assume role trusts to external entities?

– [aws] Are all the AWS Config rules complaint? (if AWS Config service is enabled)

– [aws] Are there any noncompliant production resources in AWS per Config evaluation? (if AWS Config is
enabled)

– [aws] Are there EC2 instances exposed to the Internet?

– [aws] Which EC2 instances may have external network connections?

127.2 Improvements and Bug Fixes

• Improved username display next to the user avatar.

• UI/UX improvements on Landing Zone search, with Clear, Save, and Clear All action buttons for query results.

• Improved accuracy of full-text search.

• Fixed missing column in some query/search results.

• Fixed account name tagging not enabled by default in certain integration configurations.

• Several stability and robustness improvements on backend services.

• New icons for several entity classes.

127.2. Improvements and Bug Fixes 375

JupiterOne Documentation

376 Chapter 127. JupiterOne 2019.15 Release

CHAPTER 128

JupiterOne 2019.16 Release

2019-02-21

128.1 New Features

• New ingestion and analysis from AWS:

– RDS clusters and instances

Try Find aws_rds_cluster that CONTAINS aws_db_instance return tree

– DynamoDB tables

Try Find aws_dynamodb_table that relates to * return tree

– S3 bucket public access settings

Try Find aws_s3_bucket with BlockPublicAcls != true

– AMI images - note that only custom AMI images are currently ingested, not public or marketplace AMIs.

Try Find aws_ami that relates to * return tree

• SAML Single Sign On (SSO) now generally available to enterprise customers

• Endpoint Compliance Agent powered by Stethoscope app released for macOS devices. Access it from the
“Power Ups” menu, and send invite to your users by email. The agent checks the following endpoint configura-
tion with the default policy:

– OS version

– Patching/update status

– Host firewall status

– Disk encryption status

– Screensaver / screen lock protection

377

JupiterOne Documentation

– Remote login status

• Veracode Integration first iteration - supports ingestion of Vulnerability findings.

• Google Integration first iteration - supports ingestion of Users and User Groups.

• Sharing URL is added to query results from Landing Zone.

• New packaged questions and queries added:

– [aws] Find all the IAM user access keys in production AWS accounts.

– [aws] Find all the SSH key pairs in production AWS accounts.

– [aws] Are there SSH keys not in use?

– [aws] Is there anything that connects to an external AWS account that is not part of my organization?

– [access] Did we remove all access from employees who left?

– [access] Which user accounts do not have multi-factor authentication enabled?

– [appdev] Who are the most recent contributors to this repo?

– [appdev] Which PRs did this developer open in the last 5 days?

– [data] What is the inventory of my sensitive data stores?

– [endpoint] Is operating system patching and auto update enabled on endpoint hosts?

– [endpoint] Is application patching and auto update enabled on endpoint hosts?

– [endpoint] What are the approved server/system images?

– [endpoint] Are all system images updated in the past six months?

– [endpoint] Which hosts are (or are not) using approved standard images?

– [infra] What production resources are directly connected/exposed to the Internet/everyone?

– [general] What applications and operating systems are in use?

– [general] Who are my software vendors? Do I have proper vendor support for my software applications?

128.2 Improvements and Bug Fixes

• Added column sorting of query results from Landing Zone.

• Continued improvements of backend services.

• Several bug fixes of indexer, mapper, persister and integrations.

• Fixed action and display bugs associated with adding/editing an entity in Asset Inventory.

• Lots of improvements made to the managed SDK to support open source integration development.

• Updated timestamp properties for AWS integration to number instead of string so that queries can use them for
date/time comparison.

• Renamed AWS entity _type definitions to be more consistent with the Terraform type naming convention.

378 Chapter 128. JupiterOne 2019.16 Release

CHAPTER 129

JupiterOne 2019.17 Release

2019-03-05

129.1 New Features

• New ingestion and analysis from AWS:

– ELB entities - application load balancers and network load balancers

Try Find (aws_alb|aws_nlb)

– ACM certificates and relationships to resources that use each certificate

Try Find aws_acm_certificate that relates to * return tree and Find
aws_acm_certificate that !USES *

– CloudFront distributions and their origins

Try Find aws_cloudfront_distribution that CONNECTS * return tree

– WAF and the resources they protect

Try Find aws_waf_web_acl that PROTECTS * return tree

• Vendor are now automatically inferred and mapped from single sign on applications (e.g. a SAML application
in Okta). Additional properties of each vendor can be added via the Asset Inventory app. This gives you a
jumpstart in cataloging and managing vendors.

129.2 Improvements and Bug Fixes

• Fixed missing tags for DynamoDB resources

• Raw data storage to support versioning and document store (e.g. policies)

• Various improvements to the managed integrations SDK

379

JupiterOne Documentation

• Bug fixes and improvements to the mapper

380 Chapter 129. JupiterOne 2019.17 Release

CHAPTER 130

JupiterOne 2019.18 Release

2019-03-18

130.1 New Features

• Major UI update to provide a true single page app experience.

• Brand new experience for integrations configuration.

new-integrations-ux

• New ingestion and analysis from AWS:

– AWS Transfer for SFTP servers and users. Try this query:

Find aws_account
that HAS aws_transfer
that HAS Host
that HAS User
that RELATES TO *
return tree

• Carbon Black PSC and Defense Sensor integration released - ingests sensor agents, policies, and relation-
ships indicating which sensor is assigned which policy. Also maps the sensors to end-user devices and the device
owner. See docs for more details.

Try these queries:

Find cbdefense_sensor that PROTECTS Device

Find Person
that OWNS Device
that PROTECTS cbdefense_sensor

381

http://docs.jupiterone.io/en/latest/docs/integrations/cbdefense/jupiter-integration-cbdefense.html

JupiterOne Documentation

• OneLogin integration released - ingests users, user groups, applications and their relationships. Similar to the
Okta integration, this allows you to easily query and visualize who has access to what within your identity and
access configuration and the connections to the rest of your digital infrastructure. See docs for more details.

130.2 Improvements and Bug Fixes

• Improved entity relationships for Veracode integrations. Findings are mapped to vulnerablities and weaknesses
when applicable.

• Lots of documentation updates on https://docs.jupiterone.io, including:

– Updated docs for each integration

– JupiterOne query tutorial

• Improvements and bug fixes with AWS integration:

– Lambda functions and Redshift clusters are now properly connected to their corresponding VPCs

– Fixed an issue where duplicate Bucket ACL grants are processed

– Added mapping to external/public AMIs not owned by the AWS account instance

– Fixed a couple of Type Errors associated with property ingestion

• Fixed an authentication parameter issue with Google integration.

• Fixed an issue where deleted entities still appear in the Asset Inventory.

382 Chapter 130. JupiterOne 2019.18 Release

http://docs.jupiterone.io/en/latest/docs/integrations/onelogin/jupiter-integration-onelogin.html
https://docs.jupiterone.io
http://docs.jupiterone.io/en/latest/guides/tutorial-j1ql.html

CHAPTER 131

JupiterOne 2019.19 Release

2019-04-01

131.1 New Features

We are excited to announce a major release with a ton of new features:

• Major update to the Policies app, including

– the ability to build (from a library of over 150 document templates), edit and continuously manage your
organization’s security policies and procedures directly online, using the web app;

– a hierarchical graph view of the policies and the procedures that implements each policy, which serves as
a visual proof to compliance auditors that the policies are fully implemented;

– ability to allow general staff (all employees) to log in to JupiterOne to view published version of the
policies and procedures, and capture their acknowledgement and acceptance.

• Updated Policy Builder CLI with publish command to promote local copies of the policies and procedures
to your JupiterOne account online, to easily take advantage of the new features in the web app.

• Brand new Compliance app (early access release) that

– automatically connects policies, procedures to each individual requirements of supported compliance
frameworks; and

– maps stored queries to compliance requirements to generate evidences for audits and assessments, in a
data-centric and fully automated manner.

– provides support for compliance frameworks applicable to your organization, such as NIST and HIPAA.

• Brand new Onboarding experience when you first sign up for a JupiterOne account, with guided tutorials for
the major features.

• Early access release of the Alerts app – alert rules must be provisioned via the API in this pre-release. Rules are
configured using J1QL queries and alerted in the app. Future release will include email and Slack notifications.

383

JupiterOne Documentation

• WhiteHat Security integration released - ingests vulnerability findings and maps them to applications or code
repos as well as associated CVEs and CWEs as applicable. See docs for more details.

• Wazuh OSSEC agent integration released - ingests Wazuh OSSEC agents from your internally managed
Wazuh deployment, and maps the agents to the hosts they protect. See docs for more details.

• New App Switcher design

app-switcher

• Multi-line query input with syntax highlighting in the Landing app

multi-
line-query

• New status indicators to easily spot data ingestion or authentication errors for each integration configuration.

ic-
indicators

131.2 Improvements and Bug Fixes

• Fixed an issue with Okta integration where mapped relationship between an Okta user to the AWS IAM role
assigned to the user was not properly removed when the assignment is revoked.

• Fixed the component height issue with the query result graph.

• Fixed an issue Asset Inventory app not properly filtering boolean properties.

• Improved performance and user experience when creating/updating/deleting an entity from the Asset Inventory
web UI.

384 Chapter 131. JupiterOne 2019.19 Release

http://docs.jupiterone.io/en/latest/docs/integrations/whitehat/jupiter-integration-whitehat.html
http://docs.jupiterone.io/en/latest/docs/integrations/wazuh/jupiter-integration-wazuh.html

JupiterOne Documentation

• Addressed the 30-second timeout limitation of Amazon API Gateway, to allow more complex queries to continue
to execute in the background instead of returning an error.

131.2. Improvements and Bug Fixes 385

JupiterOne Documentation

386 Chapter 131. JupiterOne 2019.19 Release

CHAPTER 132

JupiterOne 2019.20 Release

2019-04-15

132.1 New Features

• Updates to early access Alerts app:

– View alert details and dismiss alerts

– Create and edit alert rules in the webapp (previously only via the API)

– First alert rule pack released - rules for AWS configuration auditing: https://github.com/JupiterOne/
jupiterone-alert-rules/blob/master/rule-packs/aws-config.json

Also see: https://docs.jupiterone.io/en/latest/guides/j1-queries-for-aws-config.html

• New JupiterOne CLI for querying and entity/relationship/alert operations via the command line. A
JupiterOne NodeJS Client is also available to help with your own automation. https://github.com/JupiterOne/
jupiterone-client-nodejs

• Ability to enable API Key access for one or more user groups to allow the users to generate API keys used for
the external client or CLI.

• Jira integration initial release - ingests Jira issues and store them as Record entities from specified project(s).
Maps the Jira users to employees and to the issues they created or reported.

This is especially useful if you track incidents and risks in Jira and would like them to be consolidated and
mapped to the rest of your resources.

The ability to create a Jira issue from a query or an alert is coming soon.

• SentinelOne integration initial release - ingests SentinelOne endpoint agents and connects them to the devices
and their owners. You can leverage the agent status as a contextual data point in security analysis.

For example, the following query gives you a visual graph of the employee that has an inactive SentinelOne
agent, that person’s device, and the user accounts that person has access to:

387

https://github.com/JupiterOne/jupiterone-alert-rules/blob/master/rule-packs/aws-config.json
https://github.com/JupiterOne/jupiterone-alert-rules/blob/master/rule-packs/aws-config.json
https://docs.jupiterone.io/en/latest/guides/j1-queries-for-aws-config.html
https://github.com/JupiterOne/jupiterone-client-nodejs
https://github.com/JupiterOne/jupiterone-client-nodejs

JupiterOne Documentation

Find sentinelone_agent with isActive!=true as agent
that protects Device as d
that relates to Person as p
that is User as u
return tree

sentinelone-
inactive-user

• AWS Inspector and GuardDuty integration - You can now query for Inspector and GuardDuty findings in
JupiterOne, and see a graph visualization of how the findings relate to CVEs and the resources they impact.

findings-
table

388 Chapter 132. JupiterOne 2019.20 Release

JupiterOne Documentation

findings-
graph

– Inspector findings from multiple assessment runs are de-duplicated which significantly cuts down the
noise.

– You can also configure alerts based on the configuration and contextual relationships of the impacted
resources. For example, an alert with the following query:

Find (Host|DataStore) with classification='critical'
that has Finding with numericSeverity > 7

• Backup configuration is captured for AWS S3, RDS, and DynamoDB data stores and databases. You can
simply run the following query to find anything that has backup enabled (switch to false to find those with no
backup):

Find DataStore with hasBackup=true

132.2 Improvements and Bug Fixes

• Improved typography and added app icon to the navigation bar.

• Improved new user onboarding UI/UX.

• Fixed an issue that prevents email address from correctly saving on a Person entity in the Asset Inventory app.

• Fixed a bug where mapper failed to map a trust relationship in an edge case.

• Several other UI fixes and adjustments.

132.2. Improvements and Bug Fixes 389

JupiterOne Documentation

390 Chapter 132. JupiterOne 2019.20 Release

CHAPTER 133

JupiterOne 2019.21 Release

2019-04-30

133.1 New Features

• Alerts app updated and released with the following capabilities:

– New UX that combines alerts and findings management into one app

– Updated UI for creating/editing alert rules

– Ability to import alert rule packs. See available rule packs at: https://github.com/JupiterOne/
jupiterone-alert-rules/

– Receive daily email notifications of active/new alerts

• Updated JupiterOne Client and CLI to support managing custom questions.

– Custom questions will show up in the Question/Query Library.

– They can be access via keywords search in the Landing app.

– They will also be mapped to compliance requirements in the Compliance app, if the question is configured
with a corresponding mapping.

• Ability to enable API Key access for one or more user groups to allow the users to generate API keys used for
the external client or CLI.

• Simplified and improved full text search:

– You no longer have to wrap keywords in quotes to perform a full text search

– Partial keywords search is supported – property value index is updated to tokenize on capital letters as well
as common non-space non-alphanumeric characters

– Cross-field matching in supported – search will return results that match keywords across any property of
a particular entity. For example:

391

https://github.com/JupiterOne/jupiterone-alert-rules/
https://github.com/JupiterOne/jupiterone-alert-rules/

JupiterOne Documentation

* searching administrator policy will match an entity with _class: Policy and name:
AdministratorAccess in two different properties

* searching prod instance will match entities with _type: aws_instance and tag.
AccountName: jupiterone-prod-us properties

• J1QL shorthand comparison for property filters. For example, you can type

Find DataStore with classification=('confidential' or 'restricted')

instead of

Find DataStore with classification='confidential' or classification='restricted'

• Jamf integration initial release. See details at https://docs.jupiterone.io/en/latest/docs/integrations/jamf/
jupiter-integration-jamf.html

• Tenable Cloud integration initial release. See details at https://docs.jupiterone.io/en/latest/docs/integrations/
tenable-cloud/jupiter-integration-tenable-cloud.html

• OpenShift integration initial release. See details at https://docs.jupiterone.io/en/latest/docs/integrations/
openshift/jupiter-integration-openshift.html

• AWS EC2 Auto Scaling supported added to the AWS integration. Here are two example queries that will allow
you to find instances that are / are not part of an auto-scaling group.

Find aws_instance that has aws_autoscaling_group

Find aws_instance that !has aws_autoscaling_group

133.2 Improvements and Bug Fixes

• Improved notification email design

• Updated Bitbucket integration due to Bitbucket API v2.0 change which removes the reference to username

• Non-admin users can capture their review and acceptance of security policies in the Policy app

• Added direct linking support to specific a policy/procedure document in the Policy app and fixed broken links
referenced in the documents.

• Fixed a couple of bugs related to updating the entity properties as part of a relationship mapping in
jupiter-mapper

• Properly handling relationship deletions in jupiter-mapper

• Updated error messages during onboarding to be more descriptive of the issue

• Several other UI/UX improvements and minor bug fixes

• Updated API docs and SSO integration guide.

• Added guide to describe how to use JupiterOne together with AWS GuardDuty and Inspector for proactive threat
monitoring in AWS.

392 Chapter 133. JupiterOne 2019.21 Release

https://docs.jupiterone.io/en/latest/docs/integrations/jamf/jupiter-integration-jamf.html
https://docs.jupiterone.io/en/latest/docs/integrations/jamf/jupiter-integration-jamf.html
https://docs.jupiterone.io/en/latest/docs/integrations/tenable-cloud/jupiter-integration-tenable-cloud.html
https://docs.jupiterone.io/en/latest/docs/integrations/tenable-cloud/jupiter-integration-tenable-cloud.html
https://docs.jupiterone.io/en/latest/docs/integrations/openshift/jupiter-integration-openshift.html
https://docs.jupiterone.io/en/latest/docs/integrations/openshift/jupiter-integration-openshift.html

CHAPTER 134

JupiterOne 2019.22 Release

2019-05-14

134.1 New Features

• Added support for UNIQUE keyword in J1QL to return de-duplicated values, or value combinations, in the
query return results.

• Alerts app updates:

– Added Sorting for alerts and findings table; Filtering for findings.

– Updated daily email format and included a count of resources added in past 24 hours as part of the “daily
digest”.

– Several other UI tweaks for the Alerts app.

– Added Evaluate Now action button to run an alert rule on-demand.

– More exciting features and updates to come!

• Added the ability to select/tweak your own vanity URL as part of account creation / onboarding.

• HackerOne integration initial release. See details at https://support.jupiterone.io/hc/en-us/articles/
360022902553-HackerOne

134.2 Improvements and Bug Fixes

• Added check to prevent the default Administrators group from being accidentally deleted.

• Made description field optional when creating/updating a question in the library.

• Fixed an issue in the mapper when an assessor’s email (from an Assessment entity) is incorrectly mapped to
a Person.

393

https://support.jupiterone.io/hc/en-us/articles/360022902553-HackerOne
https://support.jupiterone.io/hc/en-us/articles/360022902553-HackerOne

JupiterOne Documentation

• Minor updates and fixes across Veracode, WhiteHat, Bitbucket and Github integrations.

134.3 Additional Notes

Please note that we are migrating our documentation site to a consolidated docs + support + community site at
https://support.jupiterone.io

• Check out the articles in Getting Started Steps, User Guides, and Developer Docs: https://support.jupiterone.
io/hc/en-us

• Submit and vote on feature requests: https://support.jupiterone.io/hc/en-us/community/topics/
360000688873-Feature-Requests

394 Chapter 134. JupiterOne 2019.22 Release

https://support.jupiterone.io/hc/en-us
https://support.jupiterone.io/hc/en-us
https://support.jupiterone.io/hc/en-us/community/topics/360000688873-Feature-Requests
https://support.jupiterone.io/hc/en-us/community/topics/360000688873-Feature-Requests

CHAPTER 135

JupiterOne 2019.23 Release

2019-05-28

135.1 New Features

• Added table of contents sidebar with scroll spy on Landing, so that it is easy to jump to specific query results
on the page.

• Policies and procedures related to a Compliance requirement now has direct web links to them that open up in
the Policies app.

– Also, details of each compliance requirement now display in full screen view.

• Github integration now supports suspicious PR analysis. See details at: https://support.jupiterone.io/hc/en-us/
articles/360022721934-Detect-Suspicious-Code-Commits

• Threat Stack integration initial release - captures TS agents. See details at https://support.jupiterone.io/hc/
en-us/articles/360023924853-Threat-Stack

• KnowBe4 integration initial release - captures users, user groups, training campaigns,
training modules and associated relationships among those entities. See details at https://support.
jupiterone.io/hc/en-us/articles/360023741834-KnowBe4

135.2 Improvements and Bug Fixes

• UI improvements of the Policies app.

• Fixed an issue where integration logs were not displayed beyond 50 lines.

• Fixed an issue with sharing query links that has single quotes (') in the query.

• Minor updates to the data model classes and properties. Introduced Deployment, Module, Process,
Requirement, Rule, Ruleset and Scanner entities.

395

https://support.jupiterone.io/hc/en-us/articles/360022721934-Detect-Suspicious-Code-Commits
https://support.jupiterone.io/hc/en-us/articles/360022721934-Detect-Suspicious-Code-Commits
https://support.jupiterone.io/hc/en-us/articles/360023924853-Threat-Stack
https://support.jupiterone.io/hc/en-us/articles/360023924853-Threat-Stack
https://support.jupiterone.io/hc/en-us/articles/360023741834-KnowBe4
https://support.jupiterone.io/hc/en-us/articles/360023741834-KnowBe4

JupiterOne Documentation

• Fixed UI issue where sorting arrow in Asset Inventory table showing the wrong direction.

• Mapper rules now allow transformation to be specified to normalize values when producing mappings

• Fixed a pagination issue with Google users and added additional user properties.

• Added bounty properties to HackerOne integration.

• Correctly process Jamf users, groups, admin users and computer device users.

• Major improvement to Okta integration to support accounts with thousands of users or more.

396 Chapter 135. JupiterOne 2019.23 Release

CHAPTER 136

JupiterOne 2019.24 Release

2019-06-11

136.1 New Features

• Query language now supports group by aggregates based on entity attributes in addition to relationships. For
example, try:

// Count number of pull requests by repo and then state

Find PR as pr
return pr.repository, pr.state, count(pr)

or

// Count unencrypted data stores by type

Find DataStore with encrypted=false as ds
return ds._type, count(ds) as value

• Updated AWS GuardDuty integration to better support threat analysis by parsing the threat intel list and attack
source details. Try:

Find Finding as f return f.threatList, count(f)

or

Find Finding as f return f.attackSource, count(f)

• Alerts Trend and History Data:

Each alert now displays a trend chart to visualize changes over time. Selecting a data point on the trend chart
will show you the results data captured by the alert at that point in time.

397

JupiterOne Documentation

alerts-
trend

• Added capabilities in Compliance app that

– allows you to import/upload any compliance framework, including your own custom security controls and
best practices;

– performs automated continuous gap analysis based on matching queries;

– shows improved indicators to show status of policies, evidence collected, and gap analysis outcome; and

– maps policies, procedures and evidences to controls in addition to requirements.

compliance-
view

• Multi-factor authentication (MFA) can be enabled for JupiterOne user accounts (requires feature enablement per
account)

398 Chapter 136. JupiterOne 2019.24 Release

JupiterOne Documentation

user-
profile-mfa

• Quick Search in Asset Inventory allows you to type in simple full text search strings to quick filter results
based on entity property values.

asset-
quick-search

• New packaged questions and queries added:

– [aws] Show me correlation of instances impacted by Inspector findings and GuardDuty findings

– [appdev] Are code changes reviewed and approved?

– [appdev] Are there code commits by an unknown developer in a PR?

– [grc] Are security policies and procedures updated or reviewed within the past 12 months?

– [grc] Is vendor SLA being monitored? Is there regular status reporting for my vendors?

– [general] What vendor software applications are in use?

– [general] What operating systems are in use?

– [general] What applications are we developing?

136.2 Improvements and Bug Fixes

• Significant query performance improvements

• Query result improvements:

– common timestamp properties are parsed into human readable ISO datetime strings

136.2. Improvements and Bug Fixes 399

JupiterOne Documentation

– URL / web link properties are parsed and hyperlinked

– IP address properties are linked out to geolocation details

• Bitbucket integration now allows you to selectively enable/disable ingestion of PR data for analysis. See details
in this article.

• Various small updates across all integrations.

• Many updates to package questions/queries to support compliance gap analysis.

400 Chapter 136. JupiterOne 2019.24 Release

CHAPTER 137

JupiterOne 2019.25 Release

2019-06-25

137.1 New Features

• Compliance app updates:

– You can edit policy/procedure-to-requirement/control mappings directly in the webapp UI

– You can add links to external compliance evidence to each requirement/control and optionally provide
notes on the external evidence.

– Improved compliance gap analysis logic - added warning/attention status in addition to
compliant/fulfilled, gap, and indeterminate.

– All mappings now work for controls of a standard framework in addition to requirements.

• Added an option to Hide unrelated node to filter out nodes in the graph that are not directly connected to the
selected node.

• Snyk integration initial release - captures open source dependency vulnerability findings identified by Snyk
scans and map them to code repos, CVEs, and CWEs. See details at https://support.jupiterone.io/hc/en-us/
articles/360024788554-Snyk

137.2 Early Access / Beta Features

• Insights app with customizable dashboards and metric charts. (For Enterprise tier subscriptions only)

– Supports query driven charts in Number, Pie/Donut, Line, Table, or Matrix format.

– Supports customizable Team (shared) and Personal dashboards. Layout of each dashboard is individually
customizable per user.

• Trends for saved/packaged questions. (For Enterprise tier subscriptions only)

401

https://support.jupiterone.io/hc/en-us/articles/360024788554-Snyk
https://support.jupiterone.io/hc/en-us/articles/360024788554-Snyk

JupiterOne Documentation

– When enabled, question result will present a chart showing historic data trends.

– The timeframe of the trend chart can be switched to WEEK, MONTH, QUARTER or YEAR.

– You can also save/add the trend chart to a dashboard in the Insights app via the Add to Dashboard button.

question-
trend

• Support CREATE_JIRA_TICKET and SEND_EMAIL as an alert action. This must be configured via the
advanced rule editor, in the operations.actions portion of an alert rule’s JSON configuration.

For example:

{
...
"operations": [

{
...
"actions": [
...
{
"type": "CREATE_JIRA_TICKET",
"summary": "Summary text of the Jira issue",
"project": "11024",
"issueType": "Task",
"integrationInstanceId": "88ce9ad3-a49d-4995-aa9f-56d996f88b34",
"entityClass": "Vulnerability"

},
{
"type": "SEND_EMAIL",
"recipients": [
"user@company.com"

]
}

]
}

]
}

Each action can be configured independently on a rule.

Notes on Jira issue creation:

– Requires a Jira integration to have been configured, since the action references its
integrationInstanceId. This is the UUID in the URL by going to your Jira integra-
tion configuration.

– project specifies the Jira Project ID (not Project Key) - the pid number in this URL:
https://yourjira.domain/secure/project/EditProject!default.jspa?pid=11024

– UI improvements are coming soon to make configuration the above easier.

402 Chapter 137. JupiterOne 2019.25 Release

https://yourjira.domain/secure/project/EditProject%21default.jspa?pid=11024

JupiterOne Documentation

137.3 Improvements and Bug Fixes

• More query performance improvements

• Added pagination support for query results in the web UI (for more than 250 items) and when browsing questions
in the library

• UI improvements for compliance requirement details modal

• UI improvements for Assets Inventory app, including the data grid and quick search bar

• Fixed an issue with sorting in the Alerts > Vulnerability Findings view

• Updated documentation for common questions and queries. See details at https://support.jupiterone.io/hc/en-us/
articles/360024909073-Common-Questions-and-Queries-Catalog

• “Clear All” button to clear query results also clears the query in search bar

137.3. Improvements and Bug Fixes 403

https://support.jupiterone.io/hc/en-us/articles/360024909073-Common-Questions-and-Queries-Catalog
https://support.jupiterone.io/hc/en-us/articles/360024909073-Common-Questions-and-Queries-Catalog

	Configure Managed Integrations
	Other Data

	Get started with search
	Ask Questions
	Full Text Search
	JupiterOne Query Language (J1QL)
	Combining full text search with J1QL

	Navigating the JupiterOne Graphs
	JupiterOne Query Language Tutorial
	Part 1 - Simple Root query
	Part 2 - Infrastructure Analysis
	Part 3 - User and Access Analysis
	Part 4 - Cross Account Analysis
	Part 5 - Endpoint Compliance

	How to use filters in the Asset Inventory app
	Quick Filters by Class and/or Type
	Granular Filters by Properties

	Alerts
	Import Alert Rules from Rule Pack
	Create Custom Alert Rules
	Managing Alerts
	Configure Daily Notification Email

	Findings
	Managing Findings
	Create Alerts for Findings
	Visualizing Findings with J1 Query and Graph

	Frequently Asked Questions
	How do I get my custom / on-premise data into JupiterOne?
	Where do these Person entities come from? Why are they not tagged with an integration?
	How do I add custom properties to my AWS entities from the source?
	Some AWS resources seem to be missing from the Asset Inventory / Graph. What is going on?
	I have a Network marked as “public”, what does that mean?
	How is it determined if an AWS VPC or Subnet is public?
	How are Person entities (i.e. employees) created?
	How can I avoid creating a Person entity for a generic/system user account?
	I see a user named “Callisto” on my account. Who is that?
	Endpoint compliance data isn’t appearing as expected. How can I troubleshoot this?
	How do I search/filter on all AWS entities without enumerating all types?

	J1 Queries for AWS Config
	ACM Rules
	EC2 Rules
	IAM Rules
	Lambda Rules
	RDS Rules
	DynamoDB Rules
	S3 Rules
	Other Rules

	Using JupiterOne for Active Vulnerability and Threat Monitoring in AWS
	Accessing the Findings in the Alerts app
	Correlation and Alerting

	How to configure SAML SSO integration with JupiterOne
	Supported Features
	Configuration Steps
	Attribute Mappings
	Removing Users
	Current Limitations

	Detect Suspicious Code Commits in Pull Requests
	Enable Detection
	How does it work?
	Combine suspicious commits checking and vulnerability checking for CI/CD

	JupiterOne Node.js Client and CLI
	Using JupiterOne as a central repository for SecOps and compliance artifacts
	TL;DR
	Security artifacts as code
	Uploading to JupiterOne

	JupiterOne Endpoint Compliance Agent “Power Up”
	The Agent
	Installation
	Policies
	Advanced Use Cases

	JupiterOne Data Model
	Entity
	Relationships
	What does this look like?

	JupiterOne Data Security
	Data Protection
	External Data Ingestion/Import
	Data Ownership and Access
	Application Access

	JupiterOne Query Language (J1QL)
	Language Features
	Basic Keywords
	Sorting and Pagination via ORDER BY, SKIP, and LIMIT
	Aggregation Functions: COUNT, MIN, MAX, AVG and SUM
	Examples
	Advanced Notes and Use Cases

	JupiterOne API
	Querying Entities and Relationships
	Entity Mutations
	Relationship Mutations
	Building CSV Report
	Alert and Rules Operations
	Question Operations

	General
	Are my assets tracked? How many entities are there?
	What are my production information assets and their owners and classification?
	What are my production information assets?
	What are my production systems and servers?
	What are my production data stores and databases?
	What are my production resources?
	What applications and operating systems are in use?
	What are my production applications?
	Do I have proper vendor support for my software applications?
	Who are the new hires within the last 12 months?
	What business applications are we using?
	What changed in my environment in the last 24 hours?
	What was added to my environment in the last 24 hours?

	Access
	Find anything that allows public access to everyone.
	Show me the current password policy and compliance status.
	Are there external users with access to our systems?
	Who has been assigned permissions with administrator/privileged access?
	Who has access to what systems/resources?
	Who owns which user accounts?
	What are the shared/generic/service accounts or access roles? (Including user accounts that are not individually owned)
	Did we remove all access from employees who left?
	Which user accounts do not have multi-factor authentication enabled?

	Application Development
	What are the code repos for a particular application or project?
	Were there any Code Repos added in the last 24 hours?
	Who are the most recent contributors to this repo?
	Which PRs did this developer open in the last 5 days?

	Data
	Are there any non-public data stores incorrectly configured with public access to everyone?
	Which data stores do not have proper classification tags?
	What is the inventory of my sensitive data stores?
	Which production data stores do not have proper classification tags?
	Is there any known confidential or critical data outside of production?
	Evidence of data-at-rest encryption for production servers
	Is my production or PHI/PII data stores encrypted?
	Is my critical data in production encrypted?
	Is there unencrypted ePHI or PII?

	Endpoints
	Whose endpoint is out of compliance?
	Is there anybody who does not have a user endpoint device (e.g. a laptop or workstation)?
	What is the configuration and compliance status of my endpoint devices?
	Is there malware protection for all endpoints?
	Is there protection for all user endpoints/devices?
	Is operating system patching and auto update enabled on endpoint hosts?
	Is application patching and auto update enabled on endpoint hosts?
	Are my servers and systems protected by hosted-based firewall?
	Are there security agents monitoring and protecting my endpoint hosts/devices?
	Is operating system patching and auto update enabled on endpoint hosts?
	Is application patching and auto update enabled on endpoint hosts?
	Are my servers and systems protected by hosted-based firewall?
	What are the approved server/system images?
	Are all system images updated in the past six months?
	Which hosts are (or are not) using approved standard images?
	Which devices have been disposed in the last 12 months?

	Governance
	What are the corporate security policies and procedures?
	When was security policies and procedures last updated or reviewed?
	Who is the appointed security officer?
	Which are my documented risks?
	Was there at least one risk assessment performed within the past year?
	Who are my vendors? Do I have a BAA/DPA/NDA/MSA and SLA/Support Agreement with them?

	Infrastructure
	What are directly connected to the Internet?
	What production resources are directly connected/exposed to the Internet/everyone?
	Are there potential IP collisions among the networks/subnets in my environment?
	What hosts or devices are connected to my internal networks?
	Show all inbound SSH firewall rules across my network environments.
	Is inbound SSH allowed directly from an external host or network?
	What network traffic is allowed between internal and external (i.e. between trusted and untrusted) networks?
	Is there proper segmentation/segregation of internal networks?
	Are wireless networks segmented and protected by firewalls?
	Show listing of network layer firewall protection across all my environments.
	Are there VPN configured for remote access?

	Vulnerability Management
	What open vulnerabilities do I have?
	Which applications are vulnerable?

	AWS
	Overview
	Integration Instance Configuration
	Permissions
	Entities
	Relationships

	JupiterOne Managed Integration for Microsoft Azure
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Bitbucket
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Carbon Black PSC
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	GitHub
	Overview
	Integration Instance Configuration
	Permissions
	Entities
	Relationships

	Google
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	HackerOne
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	jamf
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Jira
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	KnowBe4
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Okta
	Overview
	Integration Instance Configuration
	Entities
	Relationships
	Tips

	OneLogin
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Openshift
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	SentinelOne
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Snyk
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Tenable Cloud
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Threat Stack
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Veracode
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Wazuh
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	Whitehat
	Overview
	Integration Instance Configuration
	Entities
	Relationships

	AccessKey
	AccessPolicy
	admin (boolean) - Optional
	rules (array of string) - Optional
	content (string) - Optional

	AccessRelationship
	_class (string) - Optional
	permissions (array of string) - Optional
	accessLevel (array) - Optional
	protocol (string) - Optional
	portRange (string) - Optional
	type (string) - Optional

	AccessRole
	Account
	production (boolean) - Required
	accessURL (string) - Optional
	mfaEnabled (boolean) - Optional

	Application
	COTS (boolean) - Optional
	FOSS (boolean) - Optional
	SaaS (boolean) - Optional
	external (boolean) - Optional
	mobile (boolean) - Optional
	license (string) - Optional
	licenseURL (string) - Optional
	productionURL (string) - Optional
	stagingURL (string) - Optional
	devURL (string) - Optional
	testURL (string) - Optional
	alternateURLs (array of string) - Optional

	Assessment
	category (string) - Required
	summary (string) - Required
	internal (boolean) - Required
	startedOn (number) - Optional
	completedOn (number) - Optional
	reportURL (string) - Optional
	assessor (string) - Optional
	assessors (array of string) - Optional

	Attacker
	Certificate
	Cluster
	CodeCommit
	branch (string) - Required
	message (string) - Required
	merge (boolean) - Required
	versionBump (boolean) - Required

	CodeDeploy
	jobName (string) - Optional
	jobNumber (integer) - Optional
	summary (string) - Optional
	action (string) - Optional
	target (string) - Optional
	production (boolean) - Optional

	CodeModule
	public (boolean) - Optional

	CodeRepo
	application (string) - Optional
	project (string) - Optional
	public (boolean) - Optional

	CodeReview
	title (string) - Required
	summary (string) - Optional
	state (string) - Optional

	Configuration
	Control
	ControlPolicy
	category (string) - Optional
	rules (array of string) - Optional
	content (string) - Optional

	CryptoKey
	DataObject
	category (string) - Optional
	format (string) - Optional
	classification (string) - Required
	location (string) - Optional
	PII (boolean) - Optional
	PHI (boolean) - Optional
	PCI (boolean) - Optional
	encryptionRequired (boolean) - Optional
	encrypted (boolean) - Optional
	public (boolean) - Optional

	DataStore
	location (string) - Optional
	encryptionRequired (boolean) - Optional
	encryptionAlgorithm (string) - Optional
	encryptionKeyRef (string) - Optional
	encrypted (boolean) - Optional
	public (boolean) - Optional
	hasBackup (boolean) - Optional

	Database
	location (string) - Optional
	encryptionRequired (boolean) - Optional
	encrypted (boolean) - Optional
	classification (string) - Required

	Deployment
	desiredSize (number) - Optional
	currentSize (number) - Optional
	maxSize (number) - Optional

	Device
	category (string) - Required
	hardwareVendor (string) - Required
	hardwareModel (string) - Required
	hardwareVersion (string) - Optional
	hardwareSerial (string) - Required
	assetTag (string) - Optional
	platform (string) - Optional
	osDetails (string) - Optional
	osName (string) - Optional
	osVersion (string) - Optional
	userEmails (array of string) - Optional
	location (string) - Optional
	cost (number) - Optional
	value (number) - Optional
	BYOD (boolean) - Required
	status (string) - Optional

	Document
	Domain
	Entity
	name (string) - Required
	displayName (string) - Required
	summary (string) - Optional
	description (string) - Optional
	classification (string) - Optional
	criticality (integer) - Optional
	risk (integer) - Optional
	trust (integer) - Optional
	complianceStatus (number) - Optional
	status (string) - Optional
	active (boolean) - Optional
	public (boolean) - Optional
	validated (boolean) - Optional
	temporary (boolean) - Optional
	createdOn (number) - Optional
	updatedOn (number) - Optional
	expiresOn (number) - Optional
	webLink (string) - Optional
	owner (string) - Optional
	tag.* (string) - Optional
	tags (array of string) - Optional
	notes (array of string) - Optional

	Finding
	assessment (string) - Optional
	status (string) - Optional
	severity (string) - Required
	priority (string) - Optional
	score (number) - Optional
	impact (string) - Optional
	exploitability (number) - Optional
	vector (string) - Optional
	stepsToReproduce (array of string) - Optional
	recommendation (string) - Optional
	targets (array of string) - Optional
	targetDetails (array of string) - Optional
	remediationSLA (integer) - Optional
	blocksProduction (boolean) - Optional
	open (boolean) - Required
	production (boolean) - Required
	public (boolean) - Required
	validated (boolean) - Optional
	references (array of string) - Optional

	Firewall
	category (array of string) - Required
	isStateful (boolean) - Optional

	Framework
	name (string) - Required
	displayName (string) - Required
	summary (string) - Optional
	description (string) - Optional
	standard (string) - Required
	version (string) - Required

	Function
	image (string) - Optional
	version (string) - Optional
	runtime (string) - Optional
	memorySize (string) - Optional
	codeSize (string) - Optional
	codeHash (string) - Optional
	trigger (string) - Optional
	handler (string) - Optional

	Gateway
	category (array of string) - Required
	function (array of string) - Required
	public (boolean) - Required

	Group
	Host
	hostname (string) - Required
	ipAddress (string) - Optional
	publicDnsName (string) - Optional
	privateDnsName (string) - Optional
	publicIpAddress (string) - Optional
	privateIpAddress (string) - Optional
	ipAddresses (array of string) - Optional
	ipv6Addresses (array of string) - Optional
	macAddress (string) - Optional
	platform (string) - Optional
	osDetails (string) - Optional
	osName (string) - Optional
	osVersion (string) - Optional
	macAddresses (array of string) - Optional
	isPhysical (boolean) - Optional

	HostAgent
	function (array of string) - Required

	Image
	Incident
	category (string) - Required
	severity (string) - Required
	impacts (array of string) - Optional
	reportable (boolean) - Required
	reporter (string) - Optional
	postmortem (string) - Optional

	Internet
	displayName (string) - Optional
	CIDR (string) - Optional
	CIDRv6 (string) - Optional
	public (boolean) - Optional

	IpAddress
	dnsName (string) - Optional
	publicIpAddress (string) - Optional
	privateIpAddress (string) - Optional
	ipVersion (integer) - Optional

	Key
	fingerprint (string) - Optional
	material (string) - Optional
	usage (string) - Optional

	Metadata
	_accountId (string) - Required
	_id (string) - Required
	_key (string) - Required
	__iconPath (string) - Optional
	_class (string) - Required
	_type (string) - Required
	_integrationName (string) - Optional
	_integrationDefinitionId (string) - Optional
	_integrationInstanceId (string) - Optional
	_createdOn (number) - Required
	_createdBy (string) - Optional
	_beginOn (number) - Required
	_endOn (number) - Optional
	_updatedBy (string) - Optional
	_lastSeenOn (number) - Required
	_version (integer) - Required
	_latest (boolean) - Optional
	_deleted (boolean) - Optional
	vendorManaged (boolean) - Optional
	inUse (boolean) - Optional
	ignore (boolean) - Optional

	Module
	public (boolean) - Optional

	Network
	environment (string) - Required
	CIDR (string) - Required
	CIDRv6 (string) - Optional
	public (boolean) - Required
	internal (boolean) - Required
	wireless (boolean) - Optional

	NetworkInterface
	macAddress (string) - Optional
	dnsName (string) - Optional
	publicIpAddress (string) - Optional
	privateIpAddress (string) - Optional
	ipVersion (integer) - Optional

	Organization
	_type (string) - Optional
	website (string) - Optional
	emailDomain (string) - Optional
	external (boolean) - Optional

	PR
	title (string) - Required
	summary (string) - Optional
	state (string) - Required
	source (string) - Required
	target (string) - Required
	repository (string) - Required
	approved (boolean) - Optional
	validated (boolean) - Optional

	PasswordPolicy
	minLength (integer) - Optional
	requireSymbols (boolean) - Optional
	requireNumbers (boolean) - Optional
	requireUppercase (boolean) - Optional
	requireLowercase (boolean) - Optional
	maxAgeDays (integer) - Optional
	minAgeMins (integer) - Optional
	historyCount (integer) - Optional
	preventReset (boolean) - Optional
	expiryWarningDays (integer) - Optional
	hardExpiry (boolean) - Optional
	excludeUsername (boolean) - Optional
	excludeAttributes (array of string) - Optional
	excludeCommonPasswords (boolean) - Optional
	lockoutAttempts (integer) - Optional
	autoUnlockMins (integer) - Optional
	requireMFA (boolean) - Optional

	Person
	firstName (string) - Required
	lastName (string) - Required
	middleName (string) - Optional
	email (array of string) - Required
	title (string) - Optional
	phone (array of string) - Optional
	address (string) - Optional
	employeeId (string) - Optional
	employeeType (string) - Optional
	userIds (array of string) - Optional
	manager (string) - Optional
	managerId (string) - Optional
	managerEmail (string) - Optional

	Policy
	title (string) - Required
	summary (string) - Required
	author (string) - Optional
	content (string) - Required
	applicable (boolean) - Optional
	adopted (boolean) - Optional

	Procedure
	title (string) - Required
	summary (string) - Required
	author (string) - Optional
	content (string) - Required
	control (string) - Optional
	applicable (boolean) - Optional
	adopted (boolean) - Optional

	Process
	state (string) - Optional

	Project
	key (string) - Optional
	productionURL (string) - Optional
	stagingURL (string) - Optional
	devURL (string) - Optional
	testURL (string) - Optional
	alternateURLs (array of string) - Optional

	Record
	RecordEntity
	name (string) - Required
	displayName (string) - Required
	summary (string) - Optional
	description (string) - Optional
	classification (string) - Optional
	category (string) - Optional
	webLink (string) - Optional
	content (string) - Optional
	open (boolean) - Optional
	public (boolean) - Optional
	production (boolean) - Optional
	approved (boolean) - Optional
	approvedOn (number) - Optional
	approvers (array of string) - Optional
	reporter (string) - Optional
	reportedOn (number) - Optional
	createdOn (number) - Optional
	updatedOn (number) - Optional

	Relationship
	_class (string) - Optional
	displayName (string) - Optional
	webLink (string) - Optional
	isValidated (boolean) - Optional
	isTemporary (boolean) - Optional
	isGroupLayout (boolean) - Optional
	tag.* (string) - Optional
	tags (array of string) - Optional

	Requirement
	title (string) - Required
	summary (string) - Optional
	state (string) - Optional

	Resource
	Review
	title (string) - Required
	summary (string) - Optional
	state (string) - Optional

	Risk
	assessment (string) - Optional
	category (string) - Optional
	probability (integer) - Required
	impact (integer) - Required
	score (integer) - Required
	details (string) - Optional
	mitigation (string) - Optional
	status (string) - Required

	Root
	displayName (string) - Optional

	Rule
	category (string) - Optional
	content (string) - Optional

	Ruleset
	category (string) - Optional
	rules (array of string) - Optional
	content (string) - Optional

	Scanner
	category (array of string) - Required

	Service
	category (array of string) - Required
	endpoints (array of string) - Required

	Site
	category (array of string) - Optional
	location (string) - Optional
	hours (string) - Optional
	secured (boolean) - Optional
	restricted (boolean) - Optional

	Task
	Team
	email (string) - Optional

	Training
	User
	username (string) - Required
	email (string) - Optional
	shortLoginId (string) - Optional
	mfaEnabled (boolean) - Optional

	UserGroup
	email (string) - Optional

	Vendor
	category (string) - Required
	website (string) - Optional
	departments (array of string) - Optional
	emailDomain (string) - Optional
	mainContactName (string) - Optional
	mainContactEmail (string) - Optional
	mainContactPhone (string) - Optional
	mainContactAddress (string) - Optional
	admins (array of string) - Optional
	breachResponseDays (integer) - Optional
	linkToNDA (string) - Optional
	linkToMSA (string) - Optional
	linkToSLA (string) - Optional
	linkToBAA (string) - Optional
	linkToDPA (string) - Optional
	linkToVTR (string) - Optional
	linkToISA (string) - Optional
	statusPage (string) - Optional

	Vulnerability
	category (string) - Required
	status (string) - Optional
	severity (string) - Required
	priority (string) - Optional
	score (number) - Optional
	impact (number) - Optional
	exploitability (number) - Optional
	vector (string) - Optional
	impacts (array of string) - Optional
	remediationSLA (integer) - Optional
	blocking (boolean) - Required
	open (boolean) - Required
	production (boolean) - Required
	public (boolean) - Required
	validated (boolean) - Optional
	references (array of string) - Optional

	Weakness
	category (string) - Optional
	exploitability (string) - Optional
	references (array of string) - Optional

	Workload
	image (string) - Optional
	fqdn (string) - Optional

	JupiterOne 2018.10 Release
	New Features
	Improvements
	Bug Fixes

	JupiterOne 2018.11 Release
	New Features
	Improvements

	JupiterOne 2018.12 Release
	New Features
	Improvements

	JupiterOne 2018.13 Release
	New Features
	Improvements

	JupiterOne 2018.14 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.15 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.16 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.17 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.18 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.19 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.20 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.21 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.22 Release
	New Features
	Improvements and Bug Fixes
	Additional Notes

	JupiterOne 2019.23 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.24 Release
	New Features
	Improvements and Bug Fixes

	JupiterOne 2019.25 Release
	New Features
	Early Access / Beta Features
	Improvements and Bug Fixes

